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VARIANCE OF ARITHMETIC SUMS AND L-FUNCTIONS IN Fq[t]

CHRIS HALL, JONATHAN P. KEATING, AND EDVA RODITTY-GERSHON

Abstract. We compute the variances of sums in arithmetic progressions of arithmetic functions
associated with certain L-functions of degree two and higher in Fq[t], in the limit as q → ∞.
This is achieved by establishing appropriate equidistribution results for the associated Frobenius
conjugacy classes. The variances are thus related to matrix integrals, which may be evaluated. Our
results differ significantly from those that hold in the case of degree-one L-functions (i.e. situations
considered previously using this approach). They correspond to expressions found recently in the
number field setting assuming a generalization of the pair-correlation conjecture. Our calculations
apply, for example, to elliptic curves defined over Fq[t].

1. Introduction

1.1. Analytic motivation. Let Λ(n) denote the von Mangoldt function, defined by

Λ(n) =

{
log p if n = pk for some prime p and integer k ≥ 1,

0 otherwise.

The prime number theorem implies that∑
n≤x

Λ(n) = x+ o(x),

as x → ∞, determining the average of Λ(n) over long intervals. In many problems one needs to
understand sums over shorter intervals and in arithmetic progressions. This is significantly more
difficult, because the fluctuations between different short intervals/arithmetic progressions can be
large, and in many important cases we do not have rigorous results.

One may seek to characterize the fluctuations in these sums via their variances. These variances
are the subject of several long-standing conjectures. For example, in the case of short intervals
Goldston and Montgomery [GM87] have made the following conjecture

Conjecture 1.1.1 (Variance of primes in short intervals). For any fixed ε > 0,

X∫
1

( ∑
X≤n≤x+h

Λ(n)− h
)2
dx ∼ hX

(
logX − log h

)
uniformly for 1 ≤ h ≤ X1−ε.

It is natural to try to compute the variance in Conjecture 1.1.1 using the Hardy-Littlewood
Conjecture

(1.1.2)
∑
n≤X

Λ(n)Λ(n+ k) ∼ S(k)X
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as X →∞, where S(k) is the singular series, defined in terms of products over primes p and q

S(k) =

2
∏
p>2

(
1− 1

(p−1)2

)∏
q>2
q|k

q−1
q−2 if k is even,

0 if k is odd.

Montgomery and Soundararajan [MS04] proved that (1.1.2), together with an assumption concern-
ing the implicit error term, implies a more precise asymptotic for the variance in Conjecture 1.1.1
when logX ≤ h ≤ X1/2, namely that it is equal to

hX
(

logX − log h− γ0 − log 2π
)

+Oε

(
h15/16X(logX)17/16 + h2X1/2+ε

)
,

where γ0 is the Euler-Mascheroni constant.
An alternative approach to computing this variance follows from

ζ ′(s)

ζ(s)
= −

∞∑
n=1

Λ(n)

ns
,

which links statistical properties of Λ(n) to those of the zeros of the Riemann zeta-function ζ(s).
Taking this line, Goldston and Montgomery [GM87] proved that Conjecture 1.1.1 is equivalent
to the following conjecture, due to Montgomery [Mon73], concerning the pair correlation of the
non-trivial zeros of the zeta-function. Denoting the nontrivial zeros by 1

2 + iγ and assuming the
Riemann Hypothesis (so γ ∈ R), let

F(X,T ) =
∑

0<γ,γ′≤T
Xi(γ−γ′)w(γ − γ′),

where w(u) = 4
4+u2

.

Conjecture 1.1.3 (Montgomery’s Pair Correlation Conjecture). For any fixed A ≥ 1

F(X,T ) ∼ T log T

2π

uniformly for T ≤ X ≤ TA.

See also [Cha03] and [LPZ12], where lower order terms are considered in the equivalence.
There is a similar theory in the case of sums in arithmetic progressions. The Prime Number

Theorem for arithmetic progression states that for a fixed modulus c, when A is coprime to c

(1.1.4)
∑
n≤X

n=A mod c

Λ(n) ∼ X

φ(c)
, as X →∞ ,

where φ(c) is the Euler totient function, giving the number of reduced residues modulo c. The
variance of sums over different arithmetic progressions is then defined by

(1.1.5) G(X, c) =
∑

A mod c
gcd(A,c)=1

∣∣∣∣∣∣∣
∑
n≤X

n≡A mod c

Λ(n)− X

φ(c)

∣∣∣∣∣∣∣
2

.

Asymptotic formulae are known whenG(X, c) is summed over a long range of values of c (c.f. [Mon70],
[Hoo75b] and [Hoo74]), but much less is known concerning G(X, c) itself. In the latter case, Hooley
has made the following conjecture [Hoo75a].

Conjecture 1.1.6 (Variance of primes in arithmetic progressions).

G(X, c) ∼ X log c.
2



Hooley was not specific about the size of c relative to X for which this asymptotic should hold.
Friedlander and Goldston [FG96] have shown that in the range c > X1+o(1),

(1.1.7) G(X, c) ∼ X logX −X − X2

φ(c)
+O

(
X

(logX)A

)
+O((log c)3) .

This is a relatively straightforward range because it contains at most one prime. They conjecture
that Hooley’s asymptotic holds if X1/2+ε < c < X and further conjecture that if X1/2+ε < c < X1−ε

then

(1.1.8) G(X, c) ∼ X log c−X ·

γ0 + log 2π +
∑
p|c

log p

p− 1

 .

They show that both Conjecture 1.1.6 and (1.1.8) hold assuming the Hardy-Littlewood conjecture

with small remainders. For c < X1/2 relatively little seems to be known.
Conjectures 1.1.1 and 1.1.6 remain open, but their analogues in the function field setting have

been proved in the limit of large field size [KR14]. Let Fq be a finite field of q elements and Fq[t]
the ring of polynomials with coefficients in Fq. Let M⊂ Fq[t] be the subset of monic polynomials
and Mn ⊂ M be the subset of polynomials of degree n. Let I ⊂ M be the subset of irreducible
polynomials and In = I ∩ Mn. The norm of a non-zero polynomial f ∈ Fq[t] is defined to be

|f | = qdeg f .
The von Mangoldt function is the function on M defined for m ≥ 1 by

Λ(f) =

{
d if f = πm with π ∈ Id
0 otherwise.

The Prime Polynomial Theorem in this context is the identity

(1.1.9)
∑
f∈Mn

Λ(f) = qn .

The analogue of Conjecture 1.1.1 is the following result, proved in [KR14]: for h ≤ n− 5,

(1.1.10)
1

qn

∑
A∈Mn

∣∣∣∣∣∣
∑

|f−A|≤qh
Λ(f)− qh+1

∣∣∣∣∣∣
2

∼ qh+1(n− h− 2)

as q →∞; note that |{f : |f −A| ≤ qh}| = qh+1.
In the same vein, there is a function-field result, also established in [KR14], that is similar to

Conjecture 1.1.6: fix n ≥ 2, then, given a sequence of finite fields Fq and square-free polynomials
c ∈ Fq[t] with 2 ≤ deg(c) ≤ n+ 1, one has

(1.1.11)
∑

A mod c
gcd(A,c)=1

∣∣∣∣∣∣∣∣
∑
f∈Mn

f≡A mod c

Λ(f)− qn

Φ(c)

∣∣∣∣∣∣∣∣
2

∼ qn(deg(c)− 1)

as q →∞.
The asymptotic formulae (1.1.10) and (1.1.11) were established in [KR14] by expressing the vari-

ances as sums over families of L-functions. These L-functions can be expressed as the characteristic
polynomials of matrices representing Frobenius conjugacy classes. In the limit as q → ∞, these
matrices become equidistributed in one of the classical compact groups and the sums become ma-
trix integrals of a kind familiar in Random Matrix Theory. Evaluating these integrals leads to the
expressions above.
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This approach to computing variances has subsequently been applied to other arithmetic func-
tions defined over function fields, including the Möbius function [KR16], the square of the Möbius
function (i.e., the characteristic function of square-free polynomials) [KR16], square-full polynomi-
als [RG17], and the generalized divisor functions [KRRGR18]. For overviews see [Rud14], [KRG16],
and [Rod]. The arithmetic functions considered so far have all been associated with degree-one L-
functions (or simple functions of these). Our main aim in this paper is to extend the theory to
arithmetic functions associated with L-functions of degree two and higher. For example, our re-
sults apply to L-functions associated with elliptic curves defined over Fq[t], and one expects them
to apply to all standard automorphic L-functions. This will require us to establish the appropriate
equidistribution results for such L-functions. We achieve this using the machinery developed by
Katz [Kat12].

The main reason for moving to higher-degree L-functions is the recent discovery in the number-
field setting that one gets qualitatively new behaviour when the degree exceeds one [BKS16].

We summarize briefly now the results in [BKS16]. Let S denote the Selberg class L-functions.
For F ∈ S primitive, write

F (s) =
∞∑
n=1

aF (n)

ns
.

Then F (s) has an Euler product

(1.1.12) F (s) =
∏
p

exp

( ∞∑
l=1

bF (pl)

pls

)
and satisfies the functional equation

Φ(s) = εFΦ(1− s),

where Φ(s) = Φ(s) and

Φ(s) = cs
( r∏
j=1

Γ(λjs+ µj)

)
F (s),

for some c > 0, λj > 0, Re(µj) ≥ 0 and |εF | = 1.
There are two important invariants of F (s): the degree dF and the conductor qF , given by

dF = 2
r∑
j=1

λj , qF = (2π)dF c2
r∏
j=1

λ
2λj
j ,

respectively. Another is mF , the order of the pole at s = 1, which equals 1 for the Riemann zeta
function and is expected to be 0 otherwise.

Let ΛF be the arithmetic function defined by

F ′(s)

F (s)
= −

∞∑
n=1

ΛF (n)

ns
,

and let ψF be the function defined by

ψF (x) :=
∑
n≤x

ΛF (n).

The former will be the main focus of our attention.
A generalized prime number theorem of the form∑

n≤x
ΛF (n) = mFx+ o(x)
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is expected to hold. In analogy with the case of the Riemann zeta function, it is natural to consider
the variance

ṼF (X,h) :=

X∫
1

∣∣∣ψF (x+ h)− ψF (x)−mFh
∣∣∣2dx

where h 6= 0. For example, when F represents an L-function associated with an elliptic curve,
ṼF (X,h) is the variance of sums over short intervals involving the Fourier coefficients of the as-
sociated modular form evaluated at primes and prime powers; and in the case of Ramanujan’s
L-function, it represents the corresponding variance for sums involving the Ramanujan τ -function.

For most F ∈ S it is expected that∑
n≤X

ΛF (n)ΛF (n+ h) = o(X) when h 6= 0.

This might lead one to expect that ṼF (X,h) typically exhibits significantly different asymptotic
behaviour than in the case when F is the Riemann zeta-function because in that case (1.1.2) plays
a central role in our understanding of the variance. However, all principal L-functions are believed
to look essentially the same from the perspective of the statistical distribution of their zeros; that
is, it is conjectured that the zeros of all primitive L-functions have a limiting distribution which
coincides with that of random unitary matrices, as in Montgomery’s conjecture (1.1.3). It was
proved in [BKS16], assuming the Generalized Riemann Hypothesis (GRH), that an extension of
the pair correlation conjecture for the zeros that includes lower order terms (and which itself follows
from the ratio conjecture of [CFZ08], along the lines of [CS07]) is equivalent to the formulae (1.1.13)

and (1.1.14) below for ṼF (X,h) which generalize the Montgomery-Soundararajan formula (1.1).
If 0 < B1 < B2 ≤ B3 < 1/dF , then

ṼF (X,h) = hX
(
dF log

X

h
+ log qF − (γ0 + log 2π)dF

)
+Oε

(
hX1+ε(h/X)c/3

)
+Oε

(
hX1+ε

(
hX−(1−B1)

)1/3(1−B1)
)

(1.1.13)

uniformly for X1−B3 � h� X1−B2 , for some c > 0.
Otherwise, if 1/dF < B1 < B2 ≤ B3 < 1,

ṼF (X,h) =
1

6
hX
(

6 logX −
(
3 + 8 log 2

))
+Oε

(
hX1+ε(h/X)c/3

)
+Oε

(
hX1+ε

(
hX−(1−B1)

)1/3(1−B1)
)

(1.1.14)

uniformly for X1−B3 � h� X1−B2 , for some c > 0.
If dF = 1 there is only one regime of behaviour, governed by (1.1.13). When qF = 1, this

coincides exactly with (1.1); and when qF 6= 1, it generalizes (1.1) in a straightforward way.

If dF > 1 there are two ranges depending on the size of h. In the first range, ṼF (X,h)/h is
proportional to log h; in the second regime it is independent of h at leading order.

It is this kind of behaviour that we seek to understand better in the context of function fields. We
shall focus on variances defined over arithmetic progressions rather than short intervals. In that
case we are able to establish unconditional theorems, Theorem 1.2.3 and Theorem 9.0.1 below,
which again exhibit the qualitatively new form of the variance when the degree is two or higher.

Our function field results can be used to motivate predictions for the variance of sums over
arithmetic progressions of ΛF in the number field context reviewed above. In order to illustrate
these predictions, we focus now on two representative examples: elliptic curve L-functions and the
Ramanujan L-function.
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Let E/Q be an elliptic curve of conductor N defined over Q. The associated L-function F (s)
will be denoted by L(s, E) and is given by

L(s, E) =
∏
p|N

(1− app−s−1/2)−1
∏
p-N

(1− app−s−1/2 + p−2s)−1

where ap is the difference between p+ 1 and the number of points on the reduced curve mod p

ap = p+ 1−#Ẽ(Fp).

When p | N , then ap is either 1, −1, or 0. In general, we have the Hasse bound on ap, |ap| < 2
√
p,

hence we can write
ap

p1/2
= 2 cos(θp) = αp + βp

where, for p - N , one has αp = eiθp and βp = e−iθp with θp ∈ [0, π] and for p | N , one has αp = ap,
and βp = 0. Let ΛE be the arithmetic function defined by the logarithmic derivative of L(s, E):

L(s, E)′

L(s, E)
= −

∞∑
n=1

ΛE(n)n−s.

It follows that for e ≥ 1

ΛE(n) =

{
log p · (αep + βep) if n = pe with p prime

0 otherwise.

Our results in the function field setting are analogous to computing the variance of the sum of ΛE
in arithmetic progressions

Sx,c,E(A) :=
∑
n≤x

n=A mod c

ΛE(n).

Our function field result (see Theorem 9.0.1 ) leads us to predict that for xε < c, ε > 0, the following
holds:

Var(Sx,c,E) ∼ x

φ(c)
min{log x, 2 log c}.

This demonstrates the two regimes of behaviour. We can also detect the degree of the L-function
in question as the coefficient of log c.

Another example of a degree-two L-function is the Ramanujan L-function:

L(s, τ) =
∏
p

(
1− τ(p)

ps+11/2
+

1

p2s

)−1

,

where τ is the Ramanujan tau function τ : N→ Z defined by the following identity:∑
n≥1

τ(n)qn = q
∏
n≥1

(1− qn)24,

where q = exp(2πiz). Ramanujan conjectured (and his conjecture was proved by Deligne) that

|τ(p)| ≤ 2p11/2 for all primes p. Hence, as before, we can write

τ(p)

p11/2
= 2 cos(θp) = αp + βp.

Let Λτ be the arithmetic function defined by the logarithmic derivative of L(s, τ):

L(s, τ)′

L(s, τ)
= −

∞∑
n=1

Λτ (n)n−s.
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It follows that for e ≥ 1

Λτ (n) =

{
log p · (αep + βep) if n = pe with p prime

0 otherwise,

Again we are led to speculate that for xε < c and ε > 0, if

Sx,c,τ (A) :=
∑
n≤x

n=A mod c

Λτ (n)

then the following holds:

Var(Sx,c,τ ) ∼ x

φ(c)
min{log x, 2 log c}.

1.2. Function-field analogue. Our results are quite general and to state them requires a good
deal of notation and terminology to be explained. For this reason we postpone presenting them
until later sections, when the necessary theory has been developed. To illustrate them however we
first present below a special case of one of them, and then we sketch a proof.

Remark 1.2.1. For reference, our main results are Theorem 9.0.1 (see §9) and Theorem 12.3.1
(see §12). The former provides the variance estimates we need in terms of a matrix integral and
the latter provides an application of these estimates to L-functions of abelian varieties. Two key
ingredients used to prove these theorems are Theorem 10.0.4 (see §10) and Theorem 11.0.1 (see
§11) which provide requisite equidistribution and big-monodromy results respectively.

Suppose q is an odd prime power, and let ELeg/Fq(t) be the Legendre curve, that is, the elliptic
curve with affine model

y2 = x(x− 1)(x− t).
Over the ring Fq[t], this curve has bad multiplicative reduction at t = 0, 1 and good reduction
everywhere else, so it has conductor s = t(t − 1). It also has additive reduction at ∞, so the
L-function is given by an Euler product

L(T,ELeg/Fq(t)) =
∏
π∈P

L(T deg(π), ELeg/Fπ)−1

where P ⊂ Fq[t] is the subset of monic irreducibles and Fπ is the residue field Fq[t]/πFq[t].
Each Euler factor of L(T,ELeg/Fq(t)) is the reciprocal of a polynomial in Q[T ] and satisfies

T
d

dT
logL(T,ELeg/Fπ)−1 =

∞∑
m=1

aπ,mT
m ∈ Z[[T ]].

Moreover, if we define ΛLeg to be the function on the subset M of monic polynomials given by

ΛLeg(f) =

{
d · aπ,m if f = πm with π ∈ P and deg(π) = d

0 otherwise,

then the L-function satisfies

T
d

dT
log(L(T,ELeg/Fq(t))) =

∞∑
n=1

 ∑
f∈Mn

ΛLeg(f)

Tn.

Let c ∈ Fq[t] be monic and square free. For each n ≥ 1 and each A in Γ(c) = (Fq[t]/cFq[t])×,
consider the sum

(1.2.2) Sn,c(A) :=
∑
f∈Mn

f≡A mod c

ΛLeg(f).

7



Let A vary uniformly over Γ(c), and consider the moments

E[Sn,c(A)] =
1

|Γ(c)|
∑

A∈Γ(c)

Sn,c(A), Var[Sn,c(A)] =
1

|Γ(c)|
∑

A∈Γ(c)

|Sn,c(A)− E[Sn,c(A)]|2.

These moments (and the quantity |Γ(c)|) depend on q, so one can ask how they behave when we
replace Fq by a finite extension, that is, let q →∞. Using the theory we develop in this paper one
can prove the following theorem.

Theorem 1.2.3. If gcd(c, s) = t and if deg(c) is sufficiently large, then

|Γ(c)| · E[Sn,c(A)] =
∑
f∈Mn

gcd(f,c)=1

ΛLeg(f), lim
q→∞

|Γ(c)|
q2n

·Var[Sn,c(A)] = min{n, 2 deg(c)− 1}.

See Theorem 12.3.1. We sketch the proof below in §1.3.

Remark 1.2.4. This should be compared to (1.1.11). For definiteness, we could replace “sufficiently
large” by deg(c) > 900, but we do not believe this bound to be optimal. We also do not believe
the hypothesis on gcd(c, s) is necessary (cf. Remark 11.0.2). We use it to deduce that certain
monodromy groups are big. We do not have any examples of coprime c and s where we know the
monodromy groups are not big.

Remark 1.2.5. The fact that the expression for the variance depends on 2 deg(c) is a direct conse-
quence of the fact that the associated L-functions have degree two. (For an L-function of degree
r, one will get a leading term of r deg(c) instead.) This then leads to there being two ranges of
behaviour.

1.3. Sketch of proof of Theorem. The calculation of the first moment proceeds immediately
from the definition (1.2.2). The first step in our proof of the rest of the theorem is to use Fourier
analysis on the multiplicative group Γ(c) and rewrite the first and second moments in terms of
coefficients of twisted L-functions. Part of this step is to construct a two-dimensional `-adic Galois
representation

ρLeg : GK → GL(V ),

and for each character ϕ in the dual group Φ(c) = Hom(Γ(c), Q̄×` ), to define a twisted L-function

LC(T, ρLeg ⊗ ϕ) =
∏
π-c

L(T dπ , (ρLeg ⊗ ϕ)π)−1 = exp

( ∞∑
n=1

bρLeg⊗ϕ,n
Tn

n

)
where C is the set of finite places dividing c and the infinite place. The reason for doing this is
that one can then rewrite the moments using orthogonality of characters, and we show that, for
any field embedding ι : Q̄→ C, one has

E[Sn,c(A)] =
1

φ(c)
ι(bρLeg⊗1,n), Var[Sn,c(A)] =

1

φ(c)2

∑
ϕ∈Φ(c)∗

|ι(bρLeg⊗ϕ,n)|2

where S∗ = S r {1} for S ⊆ Φ(c).
The next step is to analyze the coefficients bρLeg⊗ϕ,n. It is relatively easy to show that they lie

in Q̄. One can also interpret them cohomologically via a trace formula. Moreover, using Deligne’s
theorem one can show that, for some integer R ≥ 0 and all ϕ in a subset Φ(c)ρ good ⊆ Φ(c), the
normalized L-function

L∗C(T, ρLeg ⊗ ϕ) = LC(T/q, ρLeg ⊗ ϕ) = exp

( ∞∑
n=1

b∗ρLeg⊗ϕ,n
Tn

n

)
8



is the reverse characteristic polynomial of a unitary matrix θρ,ϕ ∈ UR(C) which is unique up to
conjugacy. Let

Φ(c)ρ bad = Φ(c) r Φ(c)ρ good

so that we have

φ(c)

q2n
Var[Sn,c(A)] =

1

φ(c)

∑
ϕ∈Φ(c)∗ρ good

|Tr(std(θnρ,ϕ))|2 +
1

φ(c)

∑
ϕ∈Φ(c)∗ρ bad

|ι(b∗ρLeg⊗ϕ,n)|2.

The subset Φ(c)ρ bad has density zero as q →∞, and Deligne’s theorem also implies that the terms
in the sum over bad characters are uniformly bounded. In particular,

φ(c)

q2n
Var[Sn,c(A)] ∼ 1

|Φ(c)∗ρ good|
∑

ϕ∈Φ(c)∗ρ good

|Tr(std(θnρ,ϕ))|2

as q →∞.
The final step in the proof is to show that

1

|Φ(c)∗ρ good|
∑

ϕ∈Φ(c)∗ρ good

|Tr(std(θnρ,ϕ))|2 ∼
∫

UR(C)

|Tr(θn)|2dθ

with respect to Haar measure on UR(C). To do this, we must show that the θρ,ϕ are equidistributed
in UR(C). Roughly speaking, this is equivalent to showing that some accompanying monodromy
group is big and is where the conditions on gcd(c, s) and deg(c) come into play. We say a bit more
about this in the next section.

1.4. Underlying equidistribution theorem. The key ingredients we use to prove Theorem 1.2.3
and its generalizations are the Mellin transform and Katz’s equidistribution theorem. More pre-
cisely, we start with a lisse sheaf F on a dense open T ⊆ A1

t [1/s] and twist it by variable Dirichlet
characters ϕ with square-free conductor c to obtain a family of lisse sheaves Fϕ on T [1/c]; this
family is a Mellin transform of F . One can associate a monodromy group Garith to this family
generated by Frobenius conjugacy classes FrobE,ϕ for variable Dirichlet characters ϕ over finite
extensions E/Fq. A priori Garith is reductive and defined over Q̄`, but Deligne’s Riemann hypoth-
esis allows us to associate the classes FrobE,ϕ for ‘good’ ϕ to well-defined conjugacy classes in a
compact form of the ‘same’ reductive group over C. Katz’s equidistribution theorem implies these
classes are equidistributed.

For our applications, we need equidistribution in a unitary group UR(C), and thus we need Garith

to be as big as possible, namely GLR,Q̄` . We were only able to prove this is the case under the
hypotheses that deg(c) � 1 and that F has a unipotent block of exact multiplicity one about
t = gcd(c, s) = 0. While we do expect that one may encounter exceptions when deg(c) is small,
we do not believe our lower bound on deg(c) is sharp. On the other hand, the hypothesis on the
monodromy about the unique prime dividing gcd(c, s) was made in order to ensure we could exhibit
elements of Garith whose existence helped ensure the group was big. We conjecture one still has big
monodromy under the weaker hypothesis that gcd(c, s) = 1.

1.5. Overview. The structure of this paper is as follows. We start in §2 by establishing notation
and relatively basic facts that we need throughout the rest of the paper.

Throughout the first several sections of the paper we work over a global function field K = Fq(X),
but starting in §5, we restrict to K = Fq(t). Throughout the entire paper we fix an `-adic Galois
representation

ρ : GK,S → GL(V )

where GK,S is a quotient of the absolute Galois group GK of K. We also fix a finite set of places C
of K. Ultimately it consists of the place at infinity in Fq(t) and the finite places corresponding to
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primes dividing a square-free polynomial c ∈ Fq[t]. The characters we twist by will be continuous
homomorphisms

ϕ : Gt
K,C → Q̄×`

where Gt
K,C is another quotient of GK .

In §3, we define two L-functions: a partial L-function LC(T, ρ) and the complete L-function
L(T, ρ). It is the coefficients of the former which appear in our moment formulas, but the latter is
what might be called ‘the’ L-function of ρ. Both are defined via an Euler product: for the complete
L-function, we use an Euler product over P, the set of all places of K; for the other, we exclude
the Euler factors over C. They coincide if and only if the excluded (or missing) Euler factors are
trivial. We recall the cohomological manifestation of each L-function and the trace formula. We
also derive numerical invariants for ρ required for computing the degree of each L-function.

In §4, we consider twists of the representation ρ by tame `-adic characters ϕ with conductor
supported on C. If one replaces ρ by ρ⊗ ϕ, then one can apply the material of §3 to define
L(T, ρ⊗ ϕ) and LC(T, ρ⊗ ϕ). We provide an annotated version of those results in a manner which
is convenient for us.

In §5, we revert to K = Fq(t) and define the von Mangoldt function Λρ of our Galois representa-
tion. It is a multiplicative function M→ Q̄` defined using the Euler factors L(T, ρv) for the finite
places in Fq(t), and for the trivial representation ρ = 1, one has, for m ≥ 1,

Λ1(f) =

{
deg(π) f = πm and π irreducible

0 otherwise.

For each A ∈ Γ(c), we consider the sum

Sn,c(A) =
∑

f∈Mn(A)

Λρ(f)

where Mn(A) = { f ≡ A mod c } ⊆ Mn. We regard the sum as random variable with values in
Q̄` by varying A uniformly over Γ(c) and express its moments as sums of coefficients of the partial
L-functions LC(T, ρ⊗ ϕ) where ϕ varies over characters of Γ(c).

In §6, we define purity and weights. Purity boils down to saying that, in the complex plane, some
set of numbers lies on a circle centered at zero, and weight corresponds to the radius. These are the
properties usually used to state some sort of Riemann hypothesis. We impose purity on the (zeros
of the) Euler factors of L(T, ρ⊗ ϕ) and use Deligne’s theorem to deduce purity of its cohomology
factors Pi(T, ρ⊗ ϕ). A priori, these factors are polynomials in Q̄`[T ], but in fact, Deligne’s theorem
implies they have coefficients in Q̄. His theorem also tells us what the weight of each cohomological
factor should be, so we can use a field embedding ι : Q̄→ C to regard the sums Sn,c(A) as complex
numbers.

In §7, we isolate conditions for a complete L-functions L(T, ρ⊗ ϕ) to be a pure polynomial, and
they hold for most ϕ. These are the L-functions for which a suitable normalization L∗(T, ρ⊗ ϕ)
has coefficients in Q̄ and is unitary, that is, equals the characteristic polynomial of a complex
unitary matrix. We also isolate conditions for LC(T, ρ⊗ ϕ) to be a pure polynomial since it is the
coefficients of these L-functions which appear in our moment calculations. They conditions imply
the partial and complete L-functions are polynomials and coincide.

In §8, we partition Φ(c) into subsets of good and bad characters, and then we further partition
the bad characters into mixed and heavy characters. A character ϕ is good if it makes sense to
say that a certain renormalization L∗C(T, ρ⊗ ϕ) of LC(T, ρ⊗ ϕ) is unitary, and otherwise it is bad,
and L∗C(T, ρ⊗ ϕ) is no longer unitary. If LC(T, ρ⊗ ϕ) is an impure polynomial, then ϕ is mixed,
and if LC(T, ρ⊗ ϕ) is not even a polynomial, then ϕ is heavy since LC(T, ρ⊗ ϕ) has poles of excess
weight.
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In §9, we return to our moment calculations. The main result of the section is that the second
moment can be approximated using a matrix integral over some compact subgroup K ⊆ UR(C),
and one has control over the error term precisely when no non-trivial ϕ is heavy. At this stage,
all we know about K is that each unitary L∗C(T, ρ⊗ ϕ) corresponds to a unique conjugacy class
θρ,ϕ ⊂ K and that the classes become equidistributed in K as q → ∞. In later sections we give
conditions for it to be big, that is, equal to UR(C).

In §10, we partition Φ(c) into cosets of a ‘one-parameter’ subgroup Φ(u)ν ⊆ Φ(c), and then
we attach a monodromy group to each coset ϕΦ(u)ν . We define what it means for one of these
monodromy groups to be big, and then we define the big characters in Φ(c) to be those ϕ whose
coset has big monodromy. We then show that if the density of big characters tends to one as
q →∞, then the θρ,ϕ are equidistributed in K = UR(C). In this case we say the Mellin transform
of ρ has big monodromy.

In §11, we prove a theorem which asserts that the Mellin transform of ρ has big monodromy
provided ρ satisfies certain hypotheses. The material in this section rests heavily on the monumental
works of Katz, most notably the monograph [Kat12]. In order to prove our result, we were forced
to impose the condition that the (square-free) conductor s of ρ and the twisting conductor c satisfy
deg(gcd(c, s)) = 1. We also imposed conditions on the local monodromy of ρ at the zero of deg(c, s).
We used both of these hypotheses to deduce that the relevant monodromy groups contained an
element so special that the group was forced to be big (e.g., for the specific example considered
in Theorem 1.2.3 one obtains pseudoreflections). While the specific result we proved is new, it
borrows heavily from the rich set of tools developed by Katz, and one familiar with his work will
easily recognize the intellectual debt we owe him.

In §12, we bring everything together and show how Galois representations arising from (Tate
modules of) certain abelian varieties satisfy the requisite properties to apply the theorems of the
earlier sections. More precisely, we consider Jacobians of (elliptic and) hyperelliptic curves of
arbitrary genus, the Legendre curve being one such example. Because we chose to work with
hyperelliptic curves we were forced to assume q is odd. Nonetheless, we expect one can find other
suitable examples in characteristic two.

There are four appendices to the paper containing material we needed for the results in Section 11.
In the first we recall the definition and some basic facts about middle-extension sheaves. In the
second we recall well-known formulas for Euler-Poincaré characteristic. In the third appendix we
prove the group-theoretic result which asserts that a reductive subgroup of GLR with the sort
of special element alluded to above is big. In the last appendix we recall much of the abstract
formalism required to define the monodromy groups which we want to show are big. While none of
this material is new, it elaborates on some of the facts which we felt were not always easy to give
a direct reference for in [Kat12]. In particular, our work should not be regarded as a substitute
for Katz’s original monograph, but we hope some readers will find it an acceptable and enriching
complement to his masterful presentation.

2. Notation

Let q = qn0 be powers of a prime p and Fq be a finite field with q elements. We write q →∞ to
mean n→∞.

Let X be a proper smooth geometrically connected curve over Fq0 and K be the function field
Fq(X) (e.g., X = P1

t and K = Fq(t)). Let P be the set of places of K, and for each v ∈ P, let Fv
be its residue field and dv = [Fv : Fq] be its degree. We identify the elements of P with the closed
points of X in the usual way.

Let Ksep be a separable closure of K and F̄q ⊂ Ksep be the algebraic closure of Fq ⊂ K. Let
GK = Gal(Ksep/K) and GFq = Gal(F̄q/Fq), and let ḠK ⊆ GK be the stabilizer of F̄q so that there
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is an exact sequence

1 −→ ḠK −→ GK −→ GFq −→ 1

of profinite groups. Given a quotient GK � Q of profinite groups, we write Q̄ ⊆ Q for the image
of ḠK and call it the geometric subgroup.

For each subset S ⊂ P, let KS ⊆ Ksep be the maximal subextension unramified away from S
and Kt

S ⊆ KS be the maximal subextension tamely ramfied over S. Both extensions are Galois
over K, so we write GK,S and Gt

K,S for their respective Galois groups. There is a commutative
diagram

(2.0.1)

GK //

""

GK,S

{{
Gt
K,S

of quotients.
For each v ∈ P, we fix a place of Ksep over v and write D(v) ⊆ GK for its decomposition group;

the latter is well defined up to conjugacy. Let I(v) ⊆ D(v) be the inertia subgroup and P (v) ⊆ I(v)
be the wild inertia subgroup (i.e., the p-Sylow subgroup). The quotient Gv = D(v)/I(v) is the

absolute Galois group of Fv, and we write Frobv ∈ Gv for the Frobenius element Frobdvq and
FrobvI(v) for its preimage in D(v).

If v 6∈ S, then the inertia subgroup I(v) is contained in the kernel of the horizontal map in (2.0.1).
In particular, every element of the coset FrobvI(v) maps to the same element of GK,S which we
denote Frobv ∈ GK,S .

Given a smooth geometrically connected curve U over Fq, we write Ū for the base change curve
U ×Fq F̄q. We fix a geometric generic point η̄ of U and write π1(U) and π1(Ū) for the arithmetic
and geometric étale fundamental groups of U respectively. Moreover, if T is a second smooth
geometrically connected curve over Fq and if T → U is a finite étale cover, then we implicitly
suppose the geometric generic point of T maps to that of U and write π1(T ) → π1(U) for the
induced inclusion of fundamental groups.

Let ` ∈ Z be a prime distinct from p and Q̄` be an algebraic closure of Q`. All sheaves on U
we consider are constructible étale Q̄`-sheaves, unless stated otherwise, and we write H i(Ū ,F) and
H i
c(Ū ,F) for the étale cohomology groups of F . For each integer n, we also write F(n) for the Tate

twisted sheaf F ⊗Q̄` Q̄`(n) and recall that

det(1− T Frobq | H i(Ū ,F(n))) = det(1− qnT Frobq | H i(Ū ,F)).

A similar identity holds for cohomology with compact supports (cf. [Del77, Proof of 6.1.13]). In
particular, we have identities

dim(H i(Ū ,F(n))) = dim(H i(Ū ,F)), dim(H i
c(Ū ,F(n))) = dim(H i

c(Ū ,F))

for every i and n.
The sheaf F is lisse (or locally constant) on U if and only it corresponds to a continuous rep-

resentation π1(U) → GL(V ) from the étale fundamental group to a finite-dimensional Q̄` vector
space V (cf. [Mil80, II.3.16.d]). In that case one has identifications

(2.0.2) H0(Ū ,F) = V π1(Ū) and H2
c (Ū ,F(2)) = Vπ1(Ū)

with the subspace of π1(Ū)-invariants and quotient space of π1(Ū)-coinvariants (see [Del77, Exp. 6,
1.18.d]).
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3. L-functions

In this section, we recall the construction of two L-functions attached to a Galois representation
of the absolute Galois group of a global function field K. A priori, both L-functions are given via
Euler products, the essential difference being that one Euler product is over all places of K while
the other excludes the Euler factors at a finite set of places of K. We call them the complete and
partial L-functions respectively. Each will play a role in later sections, and in particular, when they
differ, that is, when at least one omitted Euler factor is non-trivial, their roles will also differ. We
do not elucidate the difference in this section, but we do give necessary and sufficient criteria for
the L-functions to coincide.

As we recall, both L-functions have a cohomological genesis via the Grothendieck–Lefschetz trace
formula. Therefore they can be expressed as rational functions, that is, quotients of polynomials
in a single variable, and the polynomials are products of (reverse) characteristic polynomials of an
operator acting on certain `-adic cohomology groups. Given basic information about ρ, we show
how to calculate the degrees of its L-functions, e.g., in terms of numerical invariants such as Swan
and absolute conductors.

3.1. Euler products. Let S ⊂ P be a finite subset of places. Let V be a finite-dimensional
Q̄`-vector space and ρ be a homomorphism

ρ : GK,S → GL(V )

which is continuous with respect to the profinite topologies.
The decomposition group D(v) stabilizes the subspace Vv = V I(v), and the inertia subgroup I(v)

acts trivially on it, so there is a representation

ρv : Gv → GL(Vv).

The Euler factor of ρ at v is given by

L(T, ρv) := det (1− Tρv(Frobv) | Vv) ∈ Q̄`[T ],

and its degree equals the dimension of Vv.
Let C ⊂ P be a finite subset. The partial and complete L-functions of ρ are the formal power

series in Q̄`[T ] with respective Euler products

(3.1.1) LC(T, ρ) :=
∏
v 6∈C

L(T dv , ρv)
−1

and L(T, ρ) :=
∏
v∈P

L(T dv , ρv)
−1
.

The ratio

MC(T, ρ) := L(T, ρ)/LC(T, ρ) =
∏
v∈C

L(T dv , ρv)
−1

is the reciprocal of a polynomial, and MC(T, ρ) = 1 iff L(T, ρ) = LC(T, ρ).

3.2. Galois modules versus sheaves. While most of this paper uses the language of global fields,
it is useful to adopt a geometric language. Certain readers will find the latter language more to
their taste, and we acknowledge that many of our results may have a more appealing formulation
in the language of geometry (and sheaves). However, we felt the language of Galois representations
over global (function) fields was accessible to a broader audience, so we tried to do ‘as much as
possible’ in that language.
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3.3. Middle extensions. Recall X is a proper smooth geometrically connected curve over Fq. Let
U ⊆ X be a dense Zariski open subset over Fq. Let F be a sheaf on X and Fη̄ be its geometric
generic stalk. The latter is a GK-module, and up to replacing U by a dense open subset, it is even
a module over the étale fundamental group π1(U), that is, F is lisse on U . Conversely, for every
finite-dimensional Q̄`-vector space V and continuous homomorphism π1(U) → GL(V ), there is a
lisse Q̄`-sheaf on U whose stalk over η̄ is the π1(U)-module V .

There are two sheaves and morphisms one can associate to the inclusion j : U → X: those in the
diagram

(3.3.1) j!j
∗F −→ F −→ j∗j

∗F
and constructed in Appendix A.

Definition 3.3.2. We say F is supported on U iff the first map of (3.3.1) is an isomorphism, and
F is a middle extension iff the second map is an isomorphism for every j.

The following proposition shows that there is a canonical middle extension sheaf on X we can
associate to ρ. We denote it by ME(ρ).

Proposition 3.3.3. There is a middle extension F with Fη̄ = V as GK-modules, and it is unique
up to isomorphism.

Proof. One can identify Vv with the stalk ME(ρ)v and ρv with the restriction of π1(U) → GL(V )
to the decomposition group D(v) ⊂ π1(U) See Proposition A.0.4 and compare [Mil80, 3.1.16]. �

Corollary 3.3.4. Let S ′ ⊂ P be a finite subset containing S and ρ′ : GK,S′ → GL(V ) be the
composition of ρ with the natural quotient GK,S′ � GK,S . Then ME(ρ) and ME(ρ′) are isomorphic.

Proof. The quotient GK → GK,S factors as GK � GK,S′ � GK,S , and ME(ρ′)η̄ = V = ME(ρ) as

GK-modules. Since ME(ρ),ME(ρ′) are both middle extensions, Proposition 3.3.3 implies they are
isomorphic. �

3.4. Cohomological manifestation. Suppose Z = X r U equals C. Then L(T, ρ) and LC(T, ρ)
equal the L-functions of the sheaves ME(ρ) and j!j

∗ME(ρ) respectively. More precisely, the Euler
products of the latter coincide with (3.1.1). Moreover, they all have the same Euler factors over U ,
hence MC(T, ρ) has an Euler product over Z which coincides with that of the L-function of ME(ρ)
over Z.

The étale cohomology groups of these sheaves are finite-dimensional Q̄`-vector spaces, and Frobq
acts Q̄`-linearly on them. In particular, we have characteristic polynomials

(3.4.1) PC,i(T, ρ) := det
(
1− T Frobq | H i

c(Ū ,ME(ρ))
)

which are trivial for i 6= 0, 1, 2 since U a curve. Moreover, PC,i(T ) = 1 if U is an affine curve, that
is, if C is non-empty, and then

(3.4.2) LC(T, ρ) = PC,1(T, ρ)/PC,2(T, ρ).

Similarly, the characteristic polynomials

(3.4.3) Pi(T, ρ) := det(1− T Frobq | H i(X̄,ME(ρ))).

are trivial for i 6= 0, 1, 2 since X is a curve, and they satisfy

(3.4.4) L(T, ρ) =
P1(T, ρ)

P0(T, ρ)P2(T, ρ)
.

Finally, if C = ∅ and thus U = X, then

P∅,i(T, ρ) = Pi(T, ρ) for all i,

and thus L(T, ρ) = L∅(T, ρ).
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3.5. Numerical invariants of ρ. Let

rankv(ρ) := deg(L(T, ρv)), dropv(ρ) := dim(V )− rankv(ρ),

and Swanv(ρ) be the Swan conductor of V as an Q̄`[I(v)]-module (see [Kat88, 1.6]). We call these
and

dropC(ρ) :=
∑
v∈C

dv · dropv(ρ)

the local invariants of ρ. On the other hand, we call

rank(ρ) := dim(V ), drop(ρ) :=
∑
v∈P

dv · dropv(ρ), Swan(ρ) :=
∑
v∈P

dv · Swanv(ρ)

and

r∅(ρ) := deg(L(T, ρ)), rC(ρ) := deg(LC(T, ρ))

the global invariants.

Proposition 3.5.1. Let g be the genus of X̄. Then the Euler characteristics χ(X̄,ME(ρ)) and
χc(Ū ,ME(ρ)) (cf. (B.0.5)) satisfy

(3.5.2) r∅(ρ) = −χ(X̄,ME(ρ)) = (drop(ρ) + Swan(ρ))− (2− 2g) · rank(ρ)

and

(3.5.3) rC(ρ) = −χc(Ū ,ME(ρ)) = (drop(ρ)− dropC(ρ) + Swan(ρ))− (2− 2g − deg(C)) · rank(ρ).

Moreover, if ME(ρ) is supported on U (see Definition 3.3.2 ), then χc(Ū ,ME(ρ)) = χ(X̄,ME(ρ)).

Proof. See Proposition B.1.1 and Corollary B.1.2. �

One deduces immediately that

(3.5.4) rC(ρ) = r∅(ρ) + deg(C) · rank(ρ)− dropC(ρ).

3.6. Trace formula. The local traces of ρ are given by

(3.6.1) aρ,v,m := Tr (ρv(Frobv)
m | Vv) for v ∈ P and m ≥ 1,

and they satisfy

(3.6.2) T
d

dT
logL(T, ρv)

−1 =

∞∑
m=1

aρ,v,mT
m for v ∈ P.

Combining this with (3.1.1) yields the identity

(3.6.3) T
d

dT
logLC(T, ρ) =

∞∑
n=1

 ∑
md=n

∑
v∈PdrC

d · aρ,v,m

Tn

where Pd ⊂ P is the finite subset of places of degree d.
Let Ū ⊆ X̄ be the open complement of C. The cohomological traces of ρ are given by

bρ,n :=
2∑
i=0

(−1)i · Tr
(
Frobq | H i

c(Ū ,ME(ρ))
)

for n ≥ 1

and they satisfy

(3.6.4) T
d

dT
logLC(T, ρ) =

∞∑
n=1

bρ,nT
n.
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Combining this with (3.6.3) yields the Grothendieck–Lefschetz trace formula

(3.6.5)
∑
md=n

∑
v∈PdrC

d · aρ,v,m = bρ,n.

See [Del77, Exp. 2, §3] for details.

4. Twisted L-functions

In this section, we apply the theory of the previous section to the twist of a Galois representation
by a Dirichlet character. We start by defining the twist and its L-functions, and then we apply the
theory from the previous section, e.g., to calculate the respective degrees.

4.1. Twists by characters. Let S ⊂ P be a finite subset and V be a finite-dimensional Q̄`-vector
space. Let

ρ : GK,S → GL(V )

be a Galois representation, that is, a continuous homomorphism.
Let C ⊂ P be a finite subset. An `-adic character with conductor supported on C is a continuous

homomorphism

ϕ : GK,C → Q̄×` ,
and we write Φ(C) for the set of all such characters which also have finite image. By definition, ϕ
factors as a composite homomorphism

GK,C � Gab
K,C → Q̄×`

through the maximal abelian quotient. We say it is tame iff it factors as a composite homomorphism

Gab
K,C � Gt,ab

K,C → Q̄×`
through the maximal tame (abelian) quotient.

Let R = C ∪ S so that there are natural quotients

GK,R � GK,S and GK,R � GK,C .

Let ρR and ϕR be the respective compositions

ρR : GK,R � GK,S → GL(V ), ϕR : GK,R � GK,C → Q̄×` .
The tensor product of ρ and ϕ is the representation

ρ⊗ ϕ = (g 7→ ρR(g)ϕR(g)) : GK,R → GL(Vϕ)

where Vϕ = V as Q̄`-vector spaces.

4.2. L-functions. The Euler factors of the L-functions of ρ⊗ ϕ are given by

L(T, (ρ⊗ ϕ)v) := det(1− T (ρ⊗ ϕ)v(Frobv) | V I(v)
ϕ ),

and in particular,

(4.2.1) L(T, (ρ⊗ ϕ)v) = L(ϕC(Frobv)T, ρv) for v 6∈ C.

Moreover, the partial and complete L-functions of ρ⊗ ϕ satisfy

LC(T, ρ⊗ ϕ) :=
∏
v 6∈C

L(T dv , (ρ⊗ ϕ)v)
−1

=
∏
i

PC,i(T, ρ⊗ ϕ)(−1)i+1

and

L(T, ρ⊗ ϕ) :=
∏
v∈P

L(T dv , (ρ⊗ ϕ)v)
−1

=
∏
i

Pi(T, ρ⊗ ϕ)(−1)i+1
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respectively where

PC,i(T, ρ⊗ ϕ) := det
(
1− T Frobq | H i

c(Ū ,ME(ρ⊗ ϕ))
)

and
Pi(T, ρ⊗ ϕ) := det(1− T Frobq | H i(X̄,ME(ρ⊗ ϕ))).

Recall Ū ⊂ X̄ is the open complement of C. Compare (3.1.1), (3.4.1), and (3.4.2).

4.3. Numerical invariants. Recall the numerical invariants defined in §3.5. We say a character
ϕ is tame iff it factors through the maximal tame quotient GK,C � Gt

K,C , or equivalently, Swan(ρ)
vanishes. Let

rC(ρ⊗ ϕ) := deg(LC(T, ρ⊗ ϕ))

as in §3.5.

Proposition 4.3.1. If ϕ is tame, then

(4.3.2) rC(ρ⊗ ϕ) = rC(ρ) = deg(L(T, ρ)) + (deg(c) + 1) dim(V )− dropC(ρ).

Proof. If ϕ is tame and g is the genus of X̄, then Proposition 3.5.1 and Lemma B.1.3 imply

rC(ρ⊗ ϕ)
(3.5.3)

= (drop(ρ⊗ ϕ)− dropC(ρ⊗ ϕ) + Swan(ρ⊗ ϕ))− (2− 2g − deg(C)) · rank(ρ⊗ ϕ).
B.1.3
= (drop(ρ)− dropC(ρ) + Swan(ρ))− (2− 2g − deg(C)) · rank(ρ)

(3.5.3)
= rC(ρ)

(3.5.4)
= r∅(ρ) + deg(C) · rank(ρ)− dropC(ρ).

The proposition follows by observing that

r∅(ρ) = deg(L(T, ρ)), deg(C) = deg(c) + 1, rank(ρ) = dim(V ).

�

Remark 4.3.3. Observe deg(LC(T, ρ⊗ ϕ)) is independent of ϕ.

4.4. Trace formula. By (4.2.1), we have

(4.4.1) T
d

dT
logL(T, (ρ⊗ ϕ)v)

−1 =

∞∑
m=1

ϕ(Frobv)
maρ,v,mT

m for v ∈ P r C.

We also have

(4.4.2) T
d

dT
logLC(T, ρ⊗ ϕ) =

∞∑
n=1

bρ⊗ϕ,nT
n

where

bρ⊗ϕ,n :=
2∑
i=1

(−1)i · Tr
(
Frobq | H i

c(Ū ,ME(ρ⊗ ϕ))
)

for n ≥ 1.

Thus, we have the twisted Grothendieck-Lefschetz trace formula

(4.4.3)
∑
md=n

∑
v∈PdrC

d · ϕ(Frobv)
maρ,v,m = bρ⊗ϕ,n.

Compare (3.6.5).

5. Sums in Arithmetic Progressions

Throughout this section (and many of the remaining sections) we suppose that X is the projective
t-line P1

t and thus that K = Fq(t).
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5.1. Dirichlet characters. Let c ∈ Fq[t] be monic and square free of degree d ≥ 1, and let

Γ(c) := (Fq[t]/cFq[t])× and Φ(c) := Hom(Γ(c), Q̄×).

The latter are finite abelian groups and are non-canonically isomorphic of order equal to the Euler
totient φ(c). Let UC ⊂ P be the complement of the finite set

C := supp(c) = { v ∈ P : ordv(c) 6= 0 }.

Then ∞ ∈ C and Σv∈C deg(v) = d+ 1.
The elements of u of UC are in natural bijection with the maximal ideals pu ⊂ Fq[t] which do not

contain c, and such an ideal is generated by a unique monic πu ∈ pu. In particular, abelian class
field theory supplies both a well-defined element Frobu ∈ Gab

K,C and a homomorphism

αC : Gab
K,C → Γ(c) with αC(Frobu) = πu mod c for u ∈ UC .

This allows us to regard any character ϕ ∈ Φ(c) as a (continuous) composite homomorphism

ϕ : GK,C � Gt,ab
K,C � Γ(c)→ Q̄×.

We call the composite homomorphism a tame Dirichlet character and say it has conductor supported
in C.

5.2. Von Mangoldt function. LetM⊂ Fq[t] be the subset of monic polynomials, I ⊂M be the
subset of irreducibles, and Id ⊂ I be the monics of degree d. There is a natural bijection between
the finite places v ∈ P r {∞} and the elements π ∈ I since X = P1

t . We write v : I → P r {∞}
for the map sending an irreducible to its corresponding place.

We define the von Mangoldt function of ρ to be the map Λρ : M→ Q̄` given by

(5.2.1) Λρ(f) =

{
d · aρ,v(π),m f = πm where m ≥ 1 and π ∈ Id
0 otherwise.

Recall aρ,v(π),m is the local trace defined in (3.6.1), and in (3.6.2), it is completely determined by the

Euler factor L(T, ρv). We also define the extension by zero of ϕ ∈ Φ(c) to be the map ϕ! : M→ Q̄`

given by

ϕ!(f) =

{
ϕ(f + cFq[t]) if gcd(f, c) = 1

0 otherwise.

It is multiplicative and satisfies

ϕ!(π) =

{
ϕ(Frobv(π)) if π - c
0 otherwise

for π ∈ I.

There may be other multiplicative maps extending ϕ, but for our extension we have the identity

(5.2.2) bρ⊗ϕ,n =
∑
f∈Mn

ϕ!(f)Λρ(f) for n ≥ 1

by (4.4.3). We observe that in the special case ϕ = 1 this simplifies to

(5.2.3) bρ,n =
∑

A∈Γ(c)

∑
f∈Mn(A)

Λρ(f)

where Mn(A) ⊆Mn is the subset of f satisfying f ≡ A mod c.
18



5.3. Sums in random arithmetic progressions. Consider the sum

(5.3.1) Sn,c(A) :=
∑

f∈Mn(A)

Λρ(f) for A ∈ Γ(c) and n ≥ 1

where Λρ : M→ Q̄` is the von Mangoldt function of ρ.
For each n, we would like to regard the sum as a random variable on Γ(c), e.g., so that we can

speak of the mean and variance. If we were loathe to impose hypotheses on the range of Λρ, we
might consider the drastic measure of choosing a field isomorphism Q̄` → C. Instead, we fix field
embeddings ι : Q̄→ C and Q̄→ Q̄` and suppose the range of Λρ is a subset of Q̄ ⊂ Q̄`. This allows
us to define the elements

E[Sn,c(A)] :=
1

φ(c)

∑
A∈Γ(c)

Sn,c(A),(5.3.2)

Var[Sn,c(A)] :=
1

φ(c)

∑
A∈Γ(c)

|ι(Sn,c(A)− E[Sn,c(A)])|2(5.3.3)

in Q̄ and C respectively.

5.4. Coefficients of L-functions. Observe that, for each A1, A2 ∈ Γ(c), one has

1

φ(c)

∑
ϕ∈Φ(c)

ϕ(A1)ϕ̄(A2) =

{
1 if A1 = A2

0 if A1 6= A2,

and thus by (5.2.2), one has

Sn,c(A) =
1

φ(c)

∑
f∈Mn

Λρ(f)
∑

ϕ∈Φ(c)

ϕ!(f)ϕ̄!(A) =
1

φ(c)

∑
ϕ∈Φ(c)

bρ⊗ϕ,n · ϕ̄!(A).

Therefore, if we write 1 ∈ Φ(c) for the trivial character, then (5.3.2) becomes

E[Sn,c(A)] =
1

φ(c)2

∑
ϕ∈Φ(c)

bρ⊗ϕ,n
∑

A∈Γ(c)

ϕ̄!(A) =
1

φ(c)
bρ,1,n

since, for every ϕ1, ϕ2 ∈ Φ(c), one has

(5.4.1)
1

φ(c)

∑
A∈Γ(c)

ϕ1(A)ϕ̄2(A) =

{
1 if ϕ1 = ϕ2

0 if ϕ1 6= ϕ2.

In particular, we have the identity

Sn,c(A)− E[Sn,c(A)] =
1

φ(c)

∑
ϕ∈Φ(c)∗

bρ⊗ϕ,n · ϕ̄(A) where Φ(c)∗ = Φ(c) r {1},

and (5.3.3) becomes

Var[Sn,c(A)] =
1

φ(c)3

∑
A∈Γ(c)

∑
ϕ1,ϕ2∈Φ(c)∗

bρ⊗ϕ1,nbρ⊗ϕ2,n · ϕ̄1!(A)ϕ2!(A)

=
1

φ(c)2

∑
ϕ∈Φ(c)∗

|bρ⊗ϕ,n|2

by (5.4.1).
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In summary, the function Sn,c(A) of the random variable A satisfies

(5.4.2) E[Sn,c(A)] =
1

φ(c)
bρ⊗1,n, Var[Sn,c(A)] =

1

φ(c)2

∑
ϕ∈Φ(c)
ϕ6=1

|ι(bρ⊗ϕ,n)|2.

In order to say anything meaningful about these numbers individually or as q grows, we need to
impose additional hypotheses on ρ, e.g., that the Euler factors of L(T, ρ) satisfy a suitable Riemann
hypothesis. Doing so will enable us to apply Deligne’s theorem and to rewrite the variance in terms
of a matrix integral.

6. Purity and Weights

Let Q̄→ Q̄` and ι : Q̄→ C be field embeddings. Using these embeddings we can define what it
means for a representation such as ρ to be pointwise ι-pure of some weight w ∈ R. We do so by
imposing a Riemann hypothesis on the zeros of each of the Euler factors, i.e., that they embed in
C via ι and lie on a suitable circle centered at the origin. The property is local in that it places
constraints on each of the Euler factors, and it does not immediately say anything global. To show
that the partial and complete L-functions also satisfy a suitable Riemann hypothesis, one needs
Deligne’s theorem.

6.1. Purity. We say a polynomial in Q̄`[T ] is ι-pure of q-weight w iff it is non-zero and each of its
zeros α ∈ Q̄` lies in Q̄ and satisfies

|ι(α)|2 = (1/q)w.

We also say it is pure of q-weight w iff it is ι-pure of q-weight w for every ι. More generally, we say
it is mixed of q-weights ≤ w iff it is a product of polynomials, each pure of q-weight ≤ w.

Remark 6.1.1. Our terminology is unconventional in that we incorporate q, however, we need to
make q explicit since we have not said where the polynomial comes from.

Remark 6.1.2. In many applications w is usually rational and often an integer.

6.2. Riemann hypothesis. We say the representation ρ⊗ ϕ is pointwise (ι-)pure of weight w iff
the Euler factor L(T dv , (ρ⊗ ϕ)v) is (ι-)pure of q-weight w for every v 6∈ S.

Theorem 6.2.1. (Deligne) If ρ⊗ ϕ is pointwise (ι-)pure of weight w, then the cohomological factors
Pi,C(T, ρ⊗ ϕ) are (ι-)mixed of q-weights ≤ w+ n and the factors Pi(T, ρ⊗ ϕ) both lie in Q̄[T ] and
are (ι-)pure of q-weight w + n.

Proof. See Theorems 1 and 2 of [Del80] for the respective assertions about Pi,C(T, ρ⊗ ϕ) and
Pi(T, ρ⊗ ϕ) in terms of the middle extension ME(ρ⊗ ϕ). The theorems are stated in terms of ι, but
one can easily deduce the statement for pointwise pure ρ⊗ ϕ by considering all ι simultaneously. �

The following lemma implies every twist ρ⊗ ϕ is pointwise pure if and only if ρ is.

Lemma 6.2.2. If ρ = ρ⊗ 1 is pointwise ι-pure of weight w, then so is ρ⊗ ϕ.

Proof. Observe that ζ = ϕC(Frobv) is a root of unity since Γ(c) has finite order, hence ζ ∈ Q̄ and
|ι(ζ)|2 = 1. If v 6∈ C and if α ∈ Q̄ is a zero of L(T, (ρ⊗ ϕ)v), then (4.2.1) implies that α/ζ is a zero
of L(T, ρv). In particular, |α|2 = |α/ζ|2 = (1/qdv)w, hence L(T dv , (ρ⊗ ϕ)v) is ι-pure of q-weight w
for almost all v. �
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6.3. Weight bound for missing Euler factors. Let F be a middle-extension sheaf on X (e.g.,
ME(ρ⊗ ϕ)). We say that F is pointwise (ι-)pure of weight w iff for some dense Zariski open subset
U ⊆ X on which F is lisse, the corresponding representation of π1(U) is pointwise (ι-)pure of weight
w. In general, even for U maximal among such U , the complement Z = X rU may be non-empty,
and there may be mild degeneration among the zeros of the corresponding Euler factors.

Lemma 6.3.1. Let j : U → X be the inclusion of a dense Zariski open subset and Z = X r U . If
F is lisse on U and pointwise ι-pure of weight w, then

det(1− TFrobq | H0(Z̄, j∗F)) =
∏
z∈Z

L(T dz ,Fz)

is ι-mixed of q-weights ≤ w.

Proof. See [Del80, 1.8.1]. �

7. Polynomial L-functions

A priori, the partial and complete L-functions are different and rational, that is, a quotient of
two polynomials. We suppose that ρ is pointwise ι-pure of known weight so that we can speak
of the weights of the zeros and poles of the L-functions. Under suitable additional conditions on
ϕ, the L-functions of ρ⊗ ϕ coincide, are polynomials, and are ι-pure of known q-weight. As we
explain in the next section, these properties will allow us to associate a conjugacy class of unitary
matrices to ρ⊗ ϕ.

7.1. Semisimplicity. Consider an exact sequence of GK,S-modules

(7.1.1) 0 −→ V1 −→ V −→ V2 −→ 0,

and let ρ : GK,S → GL(V ) and ρi : GK,S → GL(Vi) for i = 1, 2 be the corresponding structure
homomorphisms.

A priori, (7.1.1) does not split, but we say ρ is arithmetically semisimple iff the sequence splits
for every GK,S-invariant subspace V1 ⊆ V . By Clifford’s theorem, the condition implies that ρ
is geometrically semisimple since ḠK,S is normal in GK,S (cf. [CR06, 49.2]): every ḠK,S-invariant
subspace of V has a ḠK,S-invariant complement. We also say that ρ is geometrically simple iff ρ is
irreducible and geometrically semisimple.

Lemma 7.1.2. If ρ is geometrically simple, then so is ρ⊗ ϕ.

Proof. If Wϕ ⊆ Vϕ be a ḠK,R-invariant subspace, then W = Wϕ⊗ ϕ̄ is a ḠK,R-invariant subspace.
Moreover, if ρ is geometrically simple, then W equals 0 or V , hence Wϕ equals 0 or Vϕ. �

7.2. Invariants and coinvariants. We say ρ has trivial geometric invariants iff the subspace in
V of ḠK,S-invariants is zero, and it has trivial geometric coinvariants iff the quotient space of
ḠK,S-coinvariants of V is zero. These properties are equivalent when ρ is geometrically semisimple.

Proposition 7.2.1. If ρ is pointwise ι-pure, then it is geometrically semisimple, and in particular
it has trivial geometric invariants if and only if it has trivial geometric coinvariants.

Proof. One can rephrase semisimplicity for ρ in terms of semisimplicity for ME(ρ) (cf. [BBD82,
5.1.7]). It follows that both are geometrically semisimple if ρ is ι-pure (see [BBD82, 5.3.8]), and
then the spaces of invariants and coinvariants are isomorphic, so both vanish or neither does. �

Corollary 7.2.2. If ρ is pointwise ι-pure and has trivial geometric invariants, then H i(X̄,ME(ρ))
and H i

c(Ū ,ME(ρ)) vanish for i 6= 1, and there is an exact sequence

(7.2.3) 0 −→ H0(Z̄,ME(ρ)) −→ H1
c (Ū ,ME(ρ)) −→ H1(X̄,ME(ρ)) −→ 0.

Therefore L(T, ρ) = P1(T, ρ) and LC(T, ρ) = P1,C(T, ρ).
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Proof. Suppose ρ is pointwise ι-pure and has trivial geometric invariants so that Proposition 7.2.1
implies ρ has trivial geometric coinvariants. We claim H i(X̄,ME(ρ)) vanishes for i 6= 1. The Corol-
lary then follows by observing that (B.0.3) simplifies to (7.2.3) and that H2

c (Ū ,ME(ρ)) vanishes by
(B.0.4).

The claim is independent of U , so up to shrinking U , we suppose j∗ME(ρ) is lisse. Then

H0(X̄,ME(ρ)) = H0(Ū ,ME(ρ)) and H2(X̄,ME(ρ)) = H2
c (Ū ,ME(ρ))

are the subspace of π1(Ū)-invariants and (a Tate twist of the) quotient space of π1(Ū)-coinvariants
respectively of V by (2.0.2). The claim is also independent of S, so up to replacing S by a
finite superset in P, we suppose ρ factors through a natural quotient ḠK,S � π1(Ū). Then the
cohomology spaces in question are the ḠK,S-invariants and ḠK,S-coinvariants of V , which are trivial
by hypothesis, so H i(X̄,ME(ρ)) vanishes for i 6= 1 as claimed. �

7.3. Pure polynomial L-functions. In this section we present two theorems. They address the
partial and complete L-functions of ρ⊗ ϕ respectively. In both cases we focus on necessary and
sufficient conditions for the L-function in question to be a polynomial.

Let A1
t [1/c] ⊆ A1

t be the open complement of the locus c = 0. To say that a sheaf F on P1
t

is supported on U ⊆ P1
t means that the stalks of F vanish over the points of the complement

Z = P1
t r U .

Theorem 7.3.1. The following are equivalent:

(i) MC(T, ρ) = 1, that is, ME(ρ) is supported on A1
t [1/c];

(ii) LC(T, ρ) is a polynomial which is ι-pure of q-weight w + 1.

Note, MC(T, ρ) is the L-function of the restriction of ME(ρ) to Z, so the former is trivial if and
only if the latter is.

Proof. If (i) holds, then the subspace of I(∞)-invariants of V is trivial, so a fortiori, the subspace
of ḠK,S-invariants is trivial. Therefore Corollary 7.2.2 implies LC(T, ρ) equals L(T, ρ) = P1(T, ρ)
and hence Theorem 6.2.1 implies (ii) holds.

If (ii) holds, then P2,C(T, ρ) divides P1,C(T, ρ) by (3.4.2). Theorem 6.2.1 implies P2,C(T, ρ) =
P2(T, ρ) is ι-pure of q-weight w + 2, so it is coprime to P1,C(T, ρ) and hence trivial. Therefore
H2(X̄,ME(ρ)) vanishes, and hence H0(X̄,ME(ρ)) also vanishes since ρ is geometrically semisimple.
That is, ρ has trivial geometric invariants. Moreover, 1/MC(T, ρ) is a polynomial which is ι-mixed
of q-weights ≤ w by Lemma 6.3.1 while L(T, ρ) is a polynomial which is ι-pure of q-weight w, so
Corollary 7.2.2 implies (i) holds. �

Now we turn to the complete L-function.

Theorem 7.3.2. Suppose ρ⊗ ϕ is pointwise ι-pure of weight w. Then the following assertions are
equivalent:

(i) the complete L-function L(T, ρ⊗ ϕ) is in Q̄(T ) but not Q̄[T ];

(ii) the cohomological factors P0(T, ρ⊗ ϕ) and P2(T, ρ⊗ ϕ) are non-trivial polynomials in Q̄[T ];

(iii) the cohomological factor P2(T, ρ⊗ ϕ) is a non-trivial polynomial in Q̄[T ];

(iv) the twist ρ⊗ ϕ has non-trivial geometric coinvariants;

(v) the twist ρ⊗ ϕ has non-trivial geometric invariants and coinvariants.

If these assertions are not true, then

(vi) LC(T, ρ⊗ ϕ) equals P1,C(T, ρ⊗ ϕ) and is ι-mixed of q-weights ≤ w + 1;
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(vii) L(T, ρ⊗ ϕ) is the largest ι-pure factor of q-weight w + 1 of LC(T, ρ⊗ ϕ).

Proof. First we prove the assertions are equivalent. On one hand, Theorem 6.2.1 implies that the
cohomological factors Pi(T, ρ) are relatively prime, so (i) and (ii) are equivalent. Moreover, (ii) and
(v) (resp. (iii) and (iv)) are equivalent by (2.0.2) and (3.4.1). On the other hand, Proposition 7.2.1
implies that P0(T, ρ⊗ ϕ) is trivial if and only if P2(T, ρ⊗ ϕ) is trivial, so (ii) and (iii) are equivalent.

Now suppose the assertions are not true. On one hand, Corollary 7.2.2 implies

L(T, ρ⊗ ϕ) = P1(T, ρ⊗ ϕ), LC(T, ρ⊗ ϕ) = P1,C(T, ρ⊗ ϕ),

so both are polynomials as claimed. On the other hand, Theorem 6.2.1 implies L(T, ρ⊗ ϕ) is ι-pure
of q-weight w + 1 and LC(T, ρ⊗ ϕ) is ι-mixed of q-weights ≤ w + 1 since ρ⊗ ϕ is pointwise ι-pure
of weight w. Moreover, Lemma 6.3.1 implies that LC(T, ρ⊗ ϕ)/L(T, ρ⊗ ϕ) = 1/MC(T, ρ⊗ ϕ) is
a polynomial which is ι-mixed of q-weights ≤ w, so L(T, ρ⊗ ϕ) is the largest ι-pure factor of
LC(T, ρ⊗ ϕ) of q-weight w + 1 as claimed. �

Remark 7.3.3. Observe that LC(T, ρ⊗ ϕ) is ‘usually’ a pure polynomial of degree r∅(ρ) (cf. Re-
mark 4.3.3).

8. Trichotomy of Characters

Fix field embeddings Q̄ → Q̄` and ι : Q̄ → C. We suppose throughout this section that ρ is
pointwise ι-pure of weight w so that we can apply Deligne’s theorem and talk about the weights
of the zeros and poles of LC(T, ρ⊗ ϕ) as ϕ varies. Having done so, we partition Φ(c) into three
classes of characters based the possible size of the summands of

(8.0.1) Var[Sn,c(A)] =
1

φ(c)2

∑
ϕ∈Φ(c)r{1}

|ι(bρ⊗ϕ,n)|2.

In our classification, each ϕ ∈ Φ(c) is either good or bad (for ρ), and each bad character is either
mixed or heavy. One one hand, one can show that most characters are good and that they’re the
ones for which we will regard

b∗ρ⊗ϕ,n :=
ι(bρ⊗ϕ,n)

qn(1+w)/2

as the trace of a unitary matrix. This will allow us to approximate the sum in (8.0.1) using a matrix
integral. On the other hand, the heavy characters are those for which |b∗ρ⊗ϕ,n|2 is unbounded as
q →∞, and their number is bounded as q →∞.

8.1. Good versus bad. We say that a character ϕ ∈ Φ(c) is good for ρ iff it belongs to the subset

(8.1.1) Φ(c)ρ good :=
{
ϕ ∈ Φ(c) : LC(T, ρ⊗ ϕ) = L(T, ρ⊗ ϕ) ∈ Q̄[T ]

}
,

and otherwise we say it is bad for ρ and define

Φ(c)ρ bad := Φ(c) r Φ(c)ρ good.

As we will see, this coincides with Katz’s classification of characters in [Kat12] (cf. Lemma 10.3.1).
By Theorem 7.3.2, the good characters are precisely those for which the partial L-function

LC(T, ρ⊗ ϕ) has three properties: it is identical to the polynomial

P1,C(T, ρ) = det(1− T Frobq | H1
c (Ā1

t [1/c],ME(ρ⊗ ϕ)));

it has degree R = rC(ρ); it is ι-pure of q-weight w + 1. Equivalently, they are the characters for
which the normalized L-function

(8.1.2) L∗C(T, ρ⊗ ϕ) = LC(T/(
√
q)1+w, ρ⊗ ϕ)

is a polynomial and ι-pure of q-weight zero.
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In particular, if std: UR(C)→ GLR(C) is the inclusion UR(C) ⊆ GLR(C), then for each good ϕ,
there is a unique conjugacy class

θρ,ϕ ⊂ UR(C) ⊆ GLR(C)

such that ι(L∗C(T, ρ⊗ ϕ)) equals the characteristic polynomial of std(θρ,ϕ). Therefore, from the
identity

(8.1.3) T
d

dT
ι(L∗C(T, ρ⊗ ϕ)) =

∞∑
n=1

b∗ρ⊗ϕ,nT
n

one deduces that

(8.1.4) b∗ρ⊗ϕ,n = −Tr(std(θnρ,ϕ)) for ϕ ∈ Φ(c)ρ good

and n ≥ 1.

8.2. Equidistributed matrices. If we combine (8.0.1) with (8.1.4), then

(8.2.1)
φ(c)

qn(1+w)
Var[Sn,c(A)] =

1

φ(c)

∑
ϕ∈Φ(c)∗ρ good

|Tr(std(θnρ,ϕ))|2 +
1

φ(c)

∑
ϕ∈Φ(c)∗ρ bad

|ι(b∗ρ⊗ϕ,n)|2.

Definition 8.2.2. Let K ⊆ UR(C) be a compact reductive subgroup, say a maximal compact
subgroup of a reductive subgroup G(C) ⊆ GLR(C). The multiset

Θρ,q := { θρ,ϕ : ϕ ∈ Φ(c)ρ good } ⊆ UR(C)

becomes equidistributed in K as q →∞ iff it satisfies:

(i) K ∩ θ is non-empty, for any θ ∈ Θρ,q and any q;

(ii) for any continuous central function f : K→ C, one has

(8.2.3) lim
q→∞

1

|Φ(c)∗ρ good|
∑

ϕ∈Φ(c)∗ρ good

f(θρ,ϕ) =

∫
K

f(θ)dθ

where dθ is probability Haar measure on K.

The general theory of Katz tells us that, in favorable situations, some such K exists and is unique
up to conjugation.

Remark 8.2.4. The Peter-Weyl theorem implies that proving 8.2.2.ii holds is equivalent to proving
that (8.2.3) holds for every f of the form f = Tr ◦ Λ where

Λ: K→ GLdim(Λ)(C)

is a finite-dimensional representation. One may even restrict to irreducible representations.

8.3. Refining bad: mixed versus heavy. There are two ways a character can be bad:

(i) either L(T, ρ⊗ ϕ) is not a polynomial in Q̄(T );

(ii) or L(T, ρ⊗ ϕ) and LC(T, ρ⊗ ϕ) are polynomials but not equal to each other in Q̄[T ].

What distinguishes the first case from the second is that ι(L(T, ρ⊗ ϕ)) has poles some of which
have excessive weight. More precisely, if the factor P2(T, ρ⊗ ϕ) of the denominator of L(T, ρ⊗ ϕ)
is non-trivial, then it ι-mixed of q-weights ≤ w + 1 but not ι-mixed of q-weights ≤ w (cf. Theo-
rem 7.3.2).

24



Definition 8.3.1. We say that ϕ is heavy for ρ (or ρ-heavy) iff it lies in the subset

Φ(c)ρ heavy := {ϕ ∈ Φ(c)ρ bad : L(T, ρ⊗ ϕ) 6∈ Q̄[T ] }.
Otherwise, we say that ϕ is mixed for ρ (or ρ-mixed) to mean it lies in the subset

Φ(c)ρmixed := Φ(c)ρ bad r Φ(c)ρ heavy.

Equivalently, ϕ is mixed for ρ if and only if LC(T, ρ⊗ ϕ) is a polynomial which is ι-mixed of
q-weights ≤ w + 1 but not ι-pure of q-weight w + 1.

Lemma 8.3.2. Suppose ρ is geometrically simple and pointwise ι-pure and ϕ ∈ Φ(c). Then ϕ is
heavy for ρ if and only if ρ⊗ ϕ is geometrically isomorphic to the trivial representation.

Proof. The essential point is that since ρ⊗ ϕ is geometrically simple, the quotient space of geometric
coinvariants (Vϕ)ḠK,R either vanishes or equals Vϕ. The former occurs if and only if ρ⊗ ϕ is

geometrically isomorphic to the trivial representation, so the lemma follows from Theorem 7.3.2. �

Corollary 8.3.3. Suppose ρ is geometrically simple and pointwise ι-pure, and let r = dim(V ).
Then Φ(c)ρ heavy ⊆ {1} if and only if one of the following hold:

(i) r > 1;

(ii) r = 1 and ρ is geometrically isomorphic to the trivial representation;

(iii) r = 1 and ρ is not geometrically isomorphic to a Dirichlet character in Φ(c).

Moreover, Φ(c)ρ heavy = {1} if and only if (ii) holds.

Proof. Let ϕ ∈ Φ(c). Lemma 8.3.2 implies that ϕ is heavy for ρ if and only if ρ⊗ ϕ is geometrically
isomorphic to the trivial representation (and hence r = 1). By the contrapositive, ϕ is not heavy
for ρ if and only if r > 1 or ρ is not geometrically isomorphic to 1/ϕ. Therefore (i) or (iii) holds if
and only if Φ(c)ρ heavy is empty, and (ii) holds if and only if Φ(c)ρ heavy = {1}. �

9. Variance Revisited

We have yet to make precise what we mean when we say that most characters are good or that
most bad characters are mixed. Nonetheless, the following theorem shows how we can express the
Var[Sn,c(A)] using our trichotomy of characters.

Theorem 9.0.1. Let K ⊆ UR(C) be a compact reductive subgroup and dθ be its Haar measure.
Suppose that ρ is pointwise ι-pure of weight w, that Θρ,q is equidistributed in K as q → ∞, and
that Φ(c)ρ heavy ⊆ {1}. Then

φ(c)

qn(1+w)
·Var[Sn,c(A)] =

|Φ(c)ρ good|
|Φ(c)|

∫
K

|Tr(θn)|2dθ +O

(
|Φ(c)ρmixed r {1}|

|Φ(c)|

)
as q →∞.

The proof is in §9.2.

Remark 9.0.2. Later we will prove:

|Φ(c)ρ good| ∼ |Φ(c)|, |Φ(c)ρmixed r {1}| = O(|Φ(c)|/q)
See Corollaries 10.3.2 and 10.3.3.

Remark 9.0.3. One can also show that

(9.0.4)

∫
UR(C)

|Tr std(θn)|2 dθ = min{n,R}.
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See1 [DE01, Th. 1].

9.1. Archimedean bounds.

Lemma 9.1.1. If M is an invertible d × d matrix with coefficients in Q̄` and if det(1 − M T )
is mixed of q-weights ≤ w, then Tr(M) ∈ Q̄ and |ι(Tr(M))|2 ≤ dqw for every field embedding
ι : Q̄→ C.

Proof. If M is invertible and ψ(T ) = det(1−M T ) is mixed, there exist β1, . . . , βd ∈ Q̄× such that

ψ(T ) =
d∏
i=1

(1− βiT ) = 1− Tr(M) · T + · · ·+ (−1)d · det(M) · T d

and such that Tr(M) = β1 + · · · + βm also lies in Q̄. Therefore, if ι : Q̄ → C is a field embedding,
then

|Tr(M)|2 =

∣∣∣∣∣
d∑
i=1

ι(βi)

∣∣∣∣∣
2

≤
d∑
i=1

|ι(βi)|2 = dqw

as claimed. �

Lemma 9.1.2. Suppose ρ is pointwise ι-pure of weight w and ϕ ∈ Φ(c). If ϕ is heavy for ρ, then
|b∗ρ⊗ϕ,n|2 = O(qn), and otherwise |b∗ρ⊗ϕ,n|2 = O(1). Moreover, the bounds assume n tends to infinity
and the implied constants depend only on ρ.

Proof. Consider the Tate twist

F := ME(ρ⊗ ϕ)⊗ Q̄`((1 + w)/2).

It is pointwise ι-pure of weight −1 since F is pointwise ι-pure of weight w, and its partial L-function
is L∗C(T, ρ⊗ ϕ). Therefore

b∗ρ⊗ϕ,n = −Tr
(
Frobnq | H1

c (Ā1
t [1/c],F)

)
+ Tr

(
Frobnq | H2

c (Ā1
t [1/c],F)

)
by (8.1.3). Moreover, the second term on the right vanishes unless ϕ is heavy, and

| ι
(
Tr
(
Frobnq | H i

c(Ā1
t [1/c],F)

))
|2 = O(qn(i−1))

by Theorem 6.2.1 and Lemma 9.1.1. �

9.2. Proof of Theorem 9.0.1. By (8.2.1) we have

φ(c)

qn(1+w)
Var[Sn,c(A)] =

1

φ(c)

∑
ϕ∈Φ(c)∗ρ good

|Tr(std(θnρ,ϕ))|2 +
1

φ(c)

∑
ϕ∈Φ(c)∗ρ bad

|ι(b∗ρ⊗ϕ,n)|2

for any S ⊆ Φ(c).
On one hand, by (8.2.3) we have

lim
q→∞

1

φ(c)

∑
ϕ∈Φ(c)ρ good

ϕ6=1

|Tr(std(θnρ,ϕ))|2 =
|Φ(c)ρ good|
|Φ(c)|

∫
UR(C)

|Tr(θn)|2dθ.

On the other hand, by Lemma 9.1.2 we have

1

φ(c)

∑
ϕ∈Φ(c)ρ bad

ϕ6=1

|ι(b∗ρ⊗ϕ,n)|2 =
1

|Φ(c)|
∑

ϕ∈Φ(c)ρmixed

ϕ6=1

O(1) +
1

|Φ(c)|
∑

ϕ∈Φ(c)ρ heavy

ϕ 6=1

O(qn)

1NB: The reference [DS94, Th. 2] is sometimes used, but as explained in [DE01], the theorem is incorrectly stated.
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=
|Φ(c)ρmixed r {1}|

|Φ(c)|
·O(1) +

|Φ(c)ρ heavy r {1}|
|Φ(c)|

·O(qn)

where the implied constants are independent of ϕ, and the last term vanishes if Φ(c)ρ heavy ⊆ {1}.

Remark 9.2.1. While we do not need the result, we point out that (5.4.2) and Lemma 9.1.2 imply

φ(c)

qn(1+w)
· |ι(E[Sn,c(A)])|2 = |b∗ρ,n|2 = O(1) for q →∞

when ρ is pointwise ι-pure of weight w and ϕ is not heavy for ρ.

10. Big Monodromy Implies Equidistribution

In principle, one could try to exhibit equidistribution for all of Θρ,q at once. Instead we fol-
low Katz and (try to) prove simultaneous and uniform equidistribution for certain one-parameter
families of characters. More precisely, we partition Φ(c) into cosets ϕΦ(u)ν of a subgroup Φ(u)ν

(defined in §10.2) and (try to) prove equidistribution for characters in

(10.0.1) ϕΦ(u)νρ good = ϕΦ(u)ν ∩ Φ(c)ρ good.

Doing so for a single coset is equivalent to showing that an associated monodromy group we denote
Ggeom(ρ, ϕΦ(u)ν) equals GLR,Q̄` . See §10.2, §10.3, and §10.4.

The monodromy group is an algebraic subgroup of GLR,Q̄` . We say the former is big iff it equals
the latter, and we write

(10.0.2) Φ(c)ρ big = {ϕ ∈ Φ(c) : Ggeom(ρ, ϕΦ(u)ν) is big }

for the subset of big characters. We say that the Mellin transform of ρ has big monodromy in
GLR,Q̄` iff

(10.0.3) |Φ(c)ρ big| ∼ |Φ(c)| as n→∞

where q = qn0 for prime power q0. We show that it implies Θρ,q becomes equidistributed in UR(C).
By Remark 8.2.4, it suffices to prove the following theorem.

Theorem 10.0.4. Suppose ρ is pointwise ι-pure and ϕ is in Φ(c)ρ big. Let Λ: UR(C)→ GLdim(Λ)(C)
be a finite-dimensional representation. If q = qn0 is sufficiently large, then

(10.0.5)
1

|ϕΦ(u)νρ good|
∑

ϕ′∈ϕΦ(u)νρ good

Tr Λ(θρ,ϕ′) =

∫
UR(C)

Tr Λ(θ) dθ + o(1) as n→∞,

and the implicit constant depends only on r = dim(V ) and dim(Λ). In particular, if the Mellin
transform of ρ has big monodromy, then Θρ,q becomes equidistributed in UR(C) as n→∞.

The proof is in §10.5.

Remark 10.0.6. Observe that the q-weight w of ρ plays no role in the statement of the theorem. This
is because we factored out the weight in the normalization (8.1.2). Another way to achieve the same
renormalization is to replace ρ by an appropriate Tate twist so that w = −1 and L∗C(T, ρ⊗ ϕ) =
LC(T, ρ⊗ ϕ).
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10.1. Reduction to Gm. Recall X = P1
t and c ∈ Fq[t] ⊂ K is monic and square free. Let P1

u

denote the projective u-line and Uc = X r C. Moreover, let L = Fq(u) → K the Fq-linear field
embedding generated by u 7→ c and corresponding to the finite cover c : X → P1

u. The morphism
has generic degree n = deg(c) and is generically etale since it has n distinct points over u = 0. It
also fits in a commutative diagram

Uc //

c

��

X

c
��

Coo

c
��

Gm
// P1
u C′ = {0,∞}oo

where the outer vertical maps are finite morphisms.
Let R be a finite set of places in L including those lying under C ∪ S and those which ramify in

K/L, and let U ′ ⊂ P1
u be the corresponding open complement. Then for each ϕ ∈ Φ(c), we have

an induced representation

Ind(ρ⊗ ϕ) : GL,R → GL(Ind(Vϕ))

where Ind(Vϕ) is a vector space of dimension n · dim(Vϕ). The representation is the geometric
generic fiber of F = c∗ME(ρ⊗ ϕ), and the hypotheses on R imply F is lisse on U ′ ⊂ P1

u. (In fact,
Proposition A.0.4 implies F and ME(Ind(ρ⊗ ϕ)) are isomorphic on U ′.). In particular, if ū is a
geometric closed point of P1

u, that is, the image of a closed point of X̄, and if

c−1(ū) = {t̄1, . . . , t̄m} ⊂ X̄,

then the various geometric stalks satisfy

(10.1.1) (c∗F)ū = H0(ū, c∗F) = ⊕mi=1H
0(t̄i,F) = ⊕mi=1Ft̄i

as Q̄`-vector spaces (cf. [Mil80, II.3.1.(e) and II.3.5.(c)]). Thus if F is supported on Uc, then c∗F
is supported on Gm.

Lemma 10.1.2. If ρ is pointwise ι-pure of weight w, then so is Ind(ρ⊗ ϕ).

Proof. Let v̄ be a place in L not lying in R, and let v|v̄ denote any place in K lying over v̄. Then

L(T deg(v̄), Ind(ρ⊗ ϕ)v̄) =
∏
v|v̄

L(T deg(v), (ρ⊗ ϕ)v).

by (10.1.1). In particular, Lemma 6.2.2 implies the factors on the right are ι-pure of q-weight w,
so the left side is also ι-pure of q-weight w. �

The functorial properties of c∗ yield canonical isomorphisms

(10.1.3) H i(X̄,F) = H i(X̄, c∗F) and H i
c(Ūc,F) = H i

c(Ḡm, c∗F)

for each i. For example, c∗ is exact since c is a finite map, so the first identity in (10.1.3) is a
consequence of the (trivial) Leray spectral sequence (cf. [Mil80, II.3.6 and III.1.18]). In particular,
the identities (3.4.2), (3.4.4), and (10.1.3) jointly imply that

(10.1.4) L(T,ME(ρ⊗ ϕ)) = L(T, c∗ME(ρ⊗ ϕ)) and LC(T,ME(ρ⊗ ϕ)) = LC′(T, c∗ME(ρ⊗ ϕ))

for ϕ ∈ Φ(c).
28



10.2. One-parameter families. Recall c ∈ Fq[t] ⊂ K is monic and square free and Fq(u)→ K is
the function-field embedding which sends u to c. The norm map K → Fq(u) is multiplicative and
sends t− a to (−1)nu for n = deg(c) and a ∈ Fq a zero of c. It also induces homomorphisms

ν : Γ(c)→ Γ(u) and ν∗ : Φ(u)→ Φ(c)

where
Γ(u) := (Fq[u]/uFq[u])× and Φ(u) := Hom(Γ(u), Q̄×` )

(see [Kat13, §2]). In particular, ν is surjective, so its dual ν∗ is injective, and we can identify Φ(u)
with its image Φ(u)ν . Moreover, as the following lemma shows, twisting by elements of the coset
ϕΦ(u)ν is the ‘same’ as twisting by elements of Φ(u).

Lemma 10.2.1. Let ϕ ∈ Φ(c) and α ∈ Φ(u).

(i) c∗ME(ρ⊗ ϕ) is isomorphic to ME(Ind(ρ⊗ ϕ)).

(ii) c∗ME(ρ⊗ ϕαν) is isomorphic to ME(Ind(ρ⊗ ϕ)⊗ α).

Proof. By [Kat02, 3.3.1], c∗ME(ρ⊗ ϕ) is a middle extension, and since it is generically equal to the
middle extension sheaf ME(Ind(ρ⊗ ϕ)), Proposition 3.3.3 implies part (i) holds.

Up to replacing ρ by ρ⊗ ϕ, we suppose without loss of generality that ϕ = 1. Let T ⊆ P1
t be

a dense Zariski open subset and U = c(T ). Suppose that U ⊆ Gm so that c∗ME(α) is lisse on T ,
that the restriction c : T → U is étale, and that ME(ρ) is lisse on T . Let i : T → P1

t and j : U → P1
u

be the inclusions. We have

ME(ρ⊗ αν) ' i∗i∗(ME(ρ⊗ αν)) ' i∗i∗(ME(ρ)⊗ME(αν)) ' i∗i∗(ME(ρ)⊗ c∗ME(α))

since each of the sheaves is a middle extensions and lisse on T . Therefore the projection formula
implies

c∗ME(ρ⊗ αν) ' c∗(i∗i∗(ME(ρ)⊗ c∗ME(α))) ' j∗j∗(c∗ME(ρ)⊗ME(α))

since each of the sheaves is lisse on U and a middle extension on P1
u (by part (i)) and since c : T → U

is étale. Finally,

j∗j
∗(c∗ME(ρ)⊗ME(α)) ' j∗j∗(ME(Ind(ρ))⊗ME(α)) ' ME(Ind(ρ)⊗ α)

and thus part (ii) holds. �

10.3. Counting good characters. We say a character ϕ ∈ Φ(c) is good for ρ or simply good iff
it lies in the subset Φ(c)ρ good defined in (8.1.1). When c = t and thus A1

t [1/c] = Gm, then our
notion of good coincides with that of Katz’s (cf. [Kat12, Chapter 3]). For general c, the following
lemma shows how our notion relates to his via c∗:

Lemma 10.3.1. If ϕ ∈ Φ(c) and α ∈ Φ(u), then the following are equivalent:

(i) ϕαν is good for ρ;

(ii) ME(ρ⊗ ϕαν) is supported on A1
t [1/c];

(iii) ME(Ind(ρ⊗ ϕ)⊗ α) is supported on Gm;

(iv) α ∈ Φ(u) is good for c∗ME(ρ⊗ ϕ).

Proof. Theorem 7.3.1 implies the first conditions (i) and (ii) are equivalent. Conditions (ii) and
(iii) are equivalent by the identity in (10.1.1) for ū ∈ C′. Finally, taking c = t and applying the
equivalence of (i) and (ii) yields the equivalence of (iii) and (iv). �

Let Φ(c)ρ bad be the complement Φ(c) r Φ(c)ρ good and ϕΦ(u)νρ bad = Φ(c)ρ bad ∩ ϕΦ(u)ν .

Corollary 10.3.2. |ϕΦ(u)νρ bad| ≤ (1 + deg(c)) · rank(ρ).
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Proof. If ϕ ∈ Φ(c)ρ bad, then ϕ it coincides with some tame character of ρ at some v ∈ C, and there
are at most (1 + deg(c)) · rank(ρ) such characters. Compare [Kat12, pp. 12–13]. �

Corollary 10.3.3. |Φ(c)ρ good| ∼ |Φ(c)| as q →∞.

Proof. Observe that Corollary 10.3.2 implies

|Φ(c)| − |Φ(c)ρ good| = |Φ(c)ρ bad| =
∑

ϕΦ(u)ν

|Φ(u)νρ bad| ≤ O(|Φ(c)|/|Φ(u)ν |) = o(|Φ(c)|)

as q →∞. �

One can also show that

(10.3.4) |Φ(c0)ρ good| ∼ |Φ(c0)| as q →∞

for any monic divisor c0 | c.

10.4. Tannakian monodromy groups. Suppose c = t and thus C′ = C = {0,∞} and Φ(u) =
Φ(c). Suppose moreover that ρ is geometrically simple and dim(V ) > 1 so that no geometric
subquotient of ME(ρ) is a Kummer sheaf.

Let j : Gm → P1
u be the inclusion, let j0 : Gm → A1

u be the inclusion map, and for each α ∈ Φ(u),
let

ωα(ME(ρ)) = H1
c (Ā1

u, j0∗j
∗ME(ρ⊗ α)).

It is a GFq -module, that is, Frobq acts functorially, and it corresponds to a well-defined conjugacy
class of elements FrobFq ,α ⊂ GL(ω(ME(ρ))) where ω(ME(ρ)) = ω1(ME(ρ)) and 1 ∈ Φ(u) is the
trivial character. Moreover, if α is good, then

ωα(ME(ρ)) = H1
c (Ḡm,ME(ρ⊗ α)),

and in particular

LC(T, ρ⊗ α) = det(1− FrobαT | ω(ME(ρ))).

In a way we will not make precise here, the Frobα ‘generate’ `-adic reductive subgroups

Ggeom(ρ,Φ(u)ν) ⊆ Garith(ρ,Φ(u)ν) ⊆ GLR,Q̄`

which are well-defined up to conjugacy. They are fundamental groups of certain Tannakian cate-
gories, and we call them the Tannakian monodromy groups of ρ. See Appendix D for details. We
say the Mellin transform of ρ has big Tannakian monodromy iff Ggeom(ρ,Φ(u)ν) = GLR,Q̄` .

For general c and ϕ ∈ Φ(c), we write

Ggeom(ρ, ϕΦ(u)ν) ⊆ Garith(ρ, ϕΦ(u)ν) ⊆ GLR,Q̄`

for the Tannakian monodromy groups of Ind(ρ⊗ ϕ), and we say that the Mellin transform of
ρ⊗ ϕ has big Tannakian monodromy iff Ggeom(ρ, ϕΦ(u)ν) = GLR,Q̄` . Now the action of Frobq on

ωα(ME(ρ⊗ ϕ)) corresponds to a well-defined conjugacy class FrobFq ,α ⊂ Garith(ρ, ϕΦ(u)ν).

10.5. Proof of Theorem 10.0.4. We may suppose without loss of generality that Λ is irreducible
since it is semisimple and Tr(Λ1⊕Λ2) = Tr(Λ1)+Tr(Λ2) for any representations Λ1,Λ2. Moreover,
we have the Schur orthogonality relations∫

UR(C)

Tr Λ(θ) dθ =

{
1 Λ is the trivial representation

0 otherwise
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so to prove (10.0.5) we must show that

(10.5.1)
1

|ϕΦ(u)νρ good|
∑

ϕ′∈ϕΦ(u)νρ good

Tr Λ(θρ,ϕ′) =

{
1 Λ is the trivial representation

o(1) otherwise

when q is large.
If q is sufficiently large, then Corollary 10.3.2 implies that

|ϕΦ(u)νρ bad| ≤ (1 + deg(c)) · rank(ρ) < |ϕΦ(u)ν |

and thus ϕΦ(u)νρ good is non-empty. In particular, the left side of (10.5.1) is defined for large q, and
it is identically 1 when Λ is the trivial representation. On the other hand, if Λ is non-trivial and if
q is bigger than (|ϕΦ(u)νρ bad|+ 1)2, then [Kat12, 7.5] implies that

(10.5.2)
1

|ϕΦ(u)νρ good|

∣∣∣∣∣∣
∑

ϕ′∈ϕΦ(u)νρ good

Tr Λ(θρ,ϕ′)

∣∣∣∣∣∣ ≤ (dim(V ) + dim(Λ))

(
1
√
q

+
1
√
q3

)
.

Thus (10.5.1) holds, as claimed, and the implicit constant depends only on r and dim(Λ).
To complete the proof of the theorem we must show that Θρ,q becomes equidistributed in UR(C).

We observe that

(10.5.3) |Tr Λ(θρ,ϕ′)| ≤ dim(Λ) for ϕ′ ∈ ϕΦ(u)νρ good

Therefore ∑
ϕ∈Φ(c)ρ good

Tr Λ(θρ,ϕ) =
∑

ϕ∈Φ(c)ρ good∩ ρ big

Tr Λ(θρ,ϕ) + o(1) · |Φ(c)ρ good r Φ(c)ρ good∩ ρ big|

where

Φ(c)ρ good∩ ρ big = Φ(c)ρ good ∩ Φ(c)ρ big.

In particular, if the Mellin transform of ρ has big monodromy, that is, if (10.0.3) holds, then

|Φ(c)ρ good r Φ(c)ρ good∩ ρbig|
|Φ(c)ρ good|

= o(1) for q →∞

and thus
1

|Φ(c)ρ good|
∑

ϕ∈Φ(c)ρ good

Tr Λ(θρ,ϕ)
(10.5.3)

=
1

|Φ(c)ρ good|
∑

ϕ∈Φ(c)ρ good∩ ρ big

Tr Λ(θρ,ϕ) + o(1) ·O(dim(Λ))

(10.0.5)
=

∫
UR(C)

Tr Λ(θ) dθ + o(1)

as q →∞. Therefore Θρ,q becomes equidistributed in UR(C) as claimed.

11. Exhibiting Big Monodromy

In this section we present sufficient criteria for the Mellin transform of ρ to have big monodromy
and refer the interested reader to §12 for explicit examples of representations meeting these criteria.
Before stating the main theorem, we make some hypotheses and introduce pertinent terminology.

Throughout this section, we suppose that gcd(s, c) = t − a, for some a ∈ Fq. One could easily
argue that this is less general than supposing that s, c are relatively prime, however, we do not
presently have a way to avoid our hypothesis. For ease of exposition, we also suppose that a = 0
and observe that, up to performing an additive translation t 7→ t+ a, this represents no additional
loss of generality.
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For t = 0,∞, we regard Vϕ as an I(t)-module and then denote it Vϕ(t). We write Vϕ(t)unip for
the maximal subspace of Vϕ(t) on which I(t) acts unipotently. It is a direct summand of Vϕ(t), and
each simple e-dimensional submodule of it is isomorphic to a common module Unip(e). We say
Vϕ(t) has a unique unipotent block of exact multiplicity one iff, for a unique integer e ≥ 1, some
I(t)-submodule is isomorphic Unip(e) but no submodule is isomorphic to Unip(e)⊕Unip(e).

Theorem 11.0.1. Suppose that gcd(s, c) = t and that deg(c) ≥ 3. Suppose moreover that V (0) has
a unique unipotent block of exact multiplicity one and that ρ is geometrically simple and pointwise
pure. If r := dim(V ) and deg(c) satisfy

deg(c) >
1

r

(
72(r2 + 1)2 − r − deg(L(T, ρ)) + dropC(ρ)

)
,

then the Mellin transform of ρ has big monodromy.

We prove the theorem in §11.11.

Remark 11.0.2. As the reader will notice, the proof of our theorem has a lot in common with tatz’s
proof of [Kat12, Th. 17.1]. We both need the hypothesis on gcd(c, s) and the structure of V (0)unip in
order to exhibit special elements of the relevant arithmetic monodromy groups. More precisely, the
hypothesis that gcd(c, s) = t helps ensure that, for sufficiently many ϕ, some induced representation
Ind(Vϕ) has the property that Ind(Vϕ)(0)unip = V (0)unip (cf. Lemma 11.10.1). The hypothesis on
the structure of these coincident modules then leads to the desired element (cf. Lemma 11.7.4). We
expect one can remove this hypothesis but do not know how to do so.

Remark 11.0.3. The hypothesis gcd(c, s) = t also plays a minor role in Proposition 11.9.1. However,
one could easily make other hypotheses (e.g., gcd(c, s) = 1) and still be able to proceed (cf. [Kat13,
Th. 5.1]).

11.1. Two norm maps. This subsection recalls material from [Kat12, §2] and borrows heavily
from loc. cit.

Let B be the finite Fq-algebra Fq[t]/cFq[t]. It is a direct product of finite extensions of Fq and
hence étale since c is square free. More generally, for each finite extension E/Fq, the Fq-algebra

BE = B ⊗Fq E

is étale and has the structure of a free B-module of rank d = [E : Fq].
Let B be the functor from the category of Fq-algebras to itself defined for an Fq-algebra R by

B(R) = R[t]/cR[t].

It is the functor R 7→ BR = B ⊗Fq R. In fact, B(R) even has the structure of an étale R-algebra
which is free of rank deg(c). In particular, for each Fq-algebra R, there is a norm map B(R)→ R
which is part of a transformation

NormB/Fq : B→ idFq−algebras

between B and the identity functor on the category of Fq-algebras.
Let B× be the functor from the category of Fq-algebras to the category of groups defined by

B×(R) = (R[t]/cR[t])×.

It is the composition of B with the functor A 7→ A× of Fq-algebras. Moreover, the restriction of
the norm map B(R)→ R to the group of units yields a homomorphism

νR : B×(R)→ R×,

and in particular, νFq is the map ν of §10.2.
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For each finite extension E/Fq, let BE , B×E be the functors on variable Fq-algebras R defined by

BE(R) = BE ⊗Fq R, B×E(R) = (BE ⊗Fq R)×

respectively.
On one hand, BE takes values in the category of Fq-algebras. However, BE(R) also has the

structure of an étale BR-algebra which is free of rank d as a BR-module since

BE ⊗Fq R = B ⊗Fq E ⊗Fq R = BR ⊗Fq E

and since BE is an étale B-algebra which is free of rank d as a B-module. In particular, there is a
transformation

NormE/Fq : BE → B
between the functors BE and B.

On the other hand, B×E takes values in the category of groups and is even a smooth commutative
group scheme. More precisely, B× is a group scheme over Fq of multiplicative type (i.e., a torus),
and B×E is the torus ResE/Fq(B×) over Fq given by extending scalars to E and then taking the Weil

restriction of scalars of B× back down to Fq (cf. [BLR90, §7.6]). Moreover, the transformation
NormE/Fq induces a transformation

NormE/Fq : B×E → B×

which is even an étale surjective homomorphism of tori. In particular, since

B×E(Fq) = B×(E) = (E[t]/cE[t])×

one obtains a second norm map

ν ′E : (E[t]/cE[t])× → (Fq[t]/cFq[t])×

which is a surjective homomorphism by Lang’s theorem.

11.2. Characters of a twisted torus. Let E/Fq be a finite extension and ΦE(c) be the dual
group Hom(B×(E), Q̄×` ) so that ΦFq(c) = Φ(c). Suppose that c splits completely over E, and let
a1, . . . , an ∈ E be the zeros of c so that c =

∏n
i=1(t− ai) in E[t].

For each E-algebra R, the Chinese Remainder Theorem implies that there is a unique algebra
isomorphism

(11.2.1) R[t]/cR[t]→
n∏
i=1

R[t]/(t− ai)R[t]

which sends the residue class of t to the tuple (a1, . . . , an) of residue class representatives. Writing
it as an isomorphism B(R) → Rn and restricting to units yields a group isomorphism B×(R) →
(R×)n. As R varies over E-algebras, the latter isomorphisms in turn yield an isomorphism of tori
σ : B× → Gn

m over E. In particular, applying Weil restriction of scalars from E to Fq yields an
isomorphism

ResE/Fq(σ) : B×E → Gn
m,E

of tori over Fq where Gm,E = ResE/Fq(Gm).

There is a unique permutation φ ∈ Sym([n]) where [n] = {1, 2, . . . , n} satisfying aφ−1(i) = aqi
since c is square free and has coefficients in Fq. While σ does not descend to a morphism B× → Gn

m

in general, we can use φ to construct a twisted form T of Gn
m over Fq such that σ is the pullback

of a morphism B× → T over Fq. More precisely, we define the twisted Frobenius τ on T = Gn
m as

the composition

(b1, . . . , bn) 7→ (bq1, . . . , b
q
n) 7→ (bqφ(1), . . . , b

q
φ(n))
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of the usual Frobenius automorphism and a permutation of the coordinates of Gn
m. One can

easily verify that τd is the dth power of the usual Frobenius and thus T is indeed a twist of Gn
m

(cf. [Car85, Sec. 1.17 and Ch. 3] or [PR94, §2.1.7]). Moreover, one can also show that (a1, . . . , an)
is fixed by τ and even that

T(Fq) = Tτ=1 = B×(Fq).
In particular, by precomposing with τ we obtain the automorphism τ∨E on

Hom(T(E), Q̄×` ) = Hom(Gn
m(E), Q̄×` ) = Hom(E×, Q̄×` )n

given by

(11.2.2) τ∨E : (ϕ1, . . . , ϕn) 7→ (ϕq
φ−1(1)

, . . . , ϕq
φ−1(n)

).

Composition of ResE/Fq(σ) with the projection Gn
m,E → Gm,E onto the ith factor yields a

surjective homomorphism

πi : B×E → Gm,E

of tori over Fq. In particular, taking duals of the respective groups of E-rational points and using
the bijections Gm,E(Fq) = Gm(E) = E× yields an isomorphism

σ∨E :
n∏
i=1

Hom(E×, Q̄×` ) 3 (ϕ1, . . . , ϕn) 7→
n∏
i=1

ϕiπi ∈ ΦE(c).

We observe that since ν ′E is surjective its dual ν ′ ∨E is a monomorphism Φ(c)→ ΦE(c) and thus we
can identify Φ(c) with a subset of Hom(E×, Q̄×` )n. More precisely, it is the subgroup of characters
fixed by τ∨E and thus

(11.2.3) (σ∨E)−1(ν ′ ∨E (Φ(c))) = { (ϕ1, . . . , ϕn) ∈ Hom(E×, Q̄×` )n : ϕφ(i) = ϕqi for i ∈ [n] }.

11.3. Characters with distinct components. We say that a character ϕ ∈ ΦE(c) has distinct
components iff it lies in the subset

ΦE(c)distinct =
{
σ∨E(ϕ1, . . . , ϕn) ∈ ΦE(c) : ϕi 6= ϕj for 1 ≤ i < j ≤ n

}
,

and we define the corresponding subset of Φ(c) as the intersection

Φ(c)distinct = ΦE(c)distinct ∩ ν ′ ∨E (Φ(c))

where ν ′ ∨E : Φ(c)→ ΦE(c) is the dual of ν ′E .

Lemma 11.3.1. Φ(c)distinct is well defined, that is, it does not depend upon our choice of E.

Proof. Let E′/E be a finite extension and observe that the norm map E′× → E× is surjective so
induces a monomorphism

Hom(E×, Q̄×` )→ Hom(E′×, Q̄×` ),

and thus

ΦE(c)distinct = ΦE′(c)distinct ∩ ΦE(c).

In particular, if E′′/Fq is a second finite extension over which c splits completely and if E′ contains
the compositum EE′′, then

ΦE(c)distinct ∩ ν ′ ∨E (Φ(c)) = ΦE′(c)distinct ∩ ν ′ ∨E′ (Φ(c)) = ΦE′′(c)distinct ∩ ν ′ ∨E′′(Φ(c))

and Φ(c)distinct is indeed well defined. �
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Let c =
∏r
j=1 πi ∈ Fq[t] be a factorization into monic irreducibles. The quotient Ej = Fq[t]/πjFq[t]

is a finite extension of Fq of degree nj = deg(πj). It is also the splitting field of πj and thus may
be embedded in E. Moreover, there are bijections

(11.3.2) Φ(c) =

r∏
j=1

Φ(πj) =

r∏
j=1

Hom(E×j , Q̄
×
` ), ΦE(c) =

r∏
j=1

ΦE(πj) =

r∏
j=1

Hom(E×, Q̄×` )nj

given by applying the Chinese Remainder Theorem.
For each monic factor c0 of c in Fq[t], let Φ(c0)distinct be the subset of Φ(c0) defined similarly as

above but with c0 in lieu of c. One can easily verify that it does not depend upon the polynomial
c of which c0 is a factor.

Lemma 11.3.3. |Φ(πj)distinct| ∼ |Φ(πj)|, for each j ∈ [r], as q →∞.

Proof. Let j ∈ [r], and suppose without loss of generality that a1, . . . , anj are the zeros of πj and
φ(i) ≡ i+ 1 mod nj for i ∈ [nj ]. Then by (11.2.3) and (11.3.2) there is an identification

Φ(πj) = { (ϕ1, . . . , ϕnj ) ∈ Hom(E×j , Q̄
×
` )nj : ϕi+1 = ϕqi for i ∈ [nj − 1] }.

since any ϕ ∈ Hom(E×, Q̄×` ) factors through an inclusion E×j → E× if ϕq
nj

= ϕ.

The groups E×j and Hom(E×j , Q̄
×
` ) are cyclic and non-canonically isomorphic, so let g and χ be

respective generators. Then we have a further identifications

Φ(πj) = { (χe1 , . . . , χenj ) ∈ Hom(E×j , Q̄
×
` )nj : ei+1 ≡ qei mod qnj − 1 for i ∈ [nj − 1] }

= { (ge1 , . . . , genj ) ∈ (E×j )nj : ei+1 ≡ qei mod qnj − 1 for i ∈ [nj − 1] }.
From this last identification one easily deduces an identification between Φ(πj)distinct and the set

{ (ge1 , . . . , genj ) ∈ (E×j )nj : ei+1 ≡ qei mod qnj − 1 for i ∈ [nj − 1] and Fq(ge1) = Ej },
and thus

|Φ(πj)distinct| = |{ ge ∈ E×j : e ∈ [qnj − 1] and Ej = Fq(ge) }|.
Finally, it is well known that the cardinality of the righthand set is asymptotic to qnj −1 as q →∞
(cf. [Ros02, 2.2]), and thus

|Φ(πj)| = |Hom(E×j , Q̄
×
` )| = |E×j | = qnj − 1 ∼ |Φ(πj)distinct| for q →∞

as claimed. �

Corollary 11.3.4. If c0 is a monic factor of c in Fq[t], then |Φ(c0)distinct| ∼ |Φ(c0)| as q →∞.

Proof. Suppose without loss of generality that c = π1 · · ·πs with s ∈ [r] so that there is a bijection

Φ(c0) =
s∏
j=1

Φ(πj).

This bijection in turn induces an inclusion

Φ(c0)distinct →
s∏
j=1

Φ(πj)distinct

whose coimage is bounded above by
∏s
j=1(deg(c0) − nj) since an element of the codomain lies in

the image if (and only if) the components are pairwise distinct. In particular,

|Φ(c0)distinct| ∼
s∏
j=1

|Φ(πj)distinct|
Lemma 11.3.3∼

s∏
j=1

|Φ(πj)| for q →∞

as claimed. �
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11.4. Properties of H2
c . Let X be a smooth geometrically connected curve over Fq, let T ⊆ X

be a dense Zariski open subset, and let F be a sheaf on X.

Lemma 11.4.1. There is an isomorphism H2
c (T̄ ,F)→ H2

c (X̄,F).

Proof. See [Del77, §6, Remarques 1.18 (d)] and also [Del80, §1.4, (1.4.1b)]. �

Let G be a sheaf on X and G∨ be its dual. Suppose F and G are lisse on T , and thus so is
G∨. Let ρ : π1(T ) → GL(V ), ω : π1(T ) → GL(W ), and ω∨ : π1(T ) → GL(W∨) be the respective
corresponding representations.

Lemma 11.4.2. Suppose F and G are lisse and geometrically simple on T .

(i) dim(H2
c (T̄ ,F ⊗ G∨)) = dim(Homπ1(T̄ )(W,V )) ≤ 1.

(ii) dim(H2
c (T̄ ,F ⊗ G∨)) = 1 if and only if F and G are geometrically isomorphic on T .

Proof. Use [Del77, §6, Remarques 1.18 (d)] and Schur’s lemma [CR06, 27.3]. Compare [Kat96,
§7.0]. �

11.5. Invariant scalars. Let λ ∈ F̄×q . If we identify Gm with P1
u r {0,∞} and regard λ as an

element of Gm(F̄q), then multiplication by it (i.e., translation) induces an automorphism of P1
u over

F̄q which we also denote λ : P1
u → P1

u. We say λ is an invariant scalar of G iff the direct image λ∗G
is geometrically isomorphic to G. For example, 1 is an invariant scalar for every G, and every λ is
an invariant scalar of the constant sheaf Q̄`.

Let α : π1(Gm)→ Q̄×` be a tame character. The corresponding sheaf Lα = ME(α) is a so-called
Kummer sheaf.

Lemma 11.5.1. Every λ ∈ F̄×q is an invariant scalar of Lα.

Proof. The tame fundamental group of Gm is a quotient and completely generated by the images
of the inertia groups I(0) and I(∞). The character α is completely determined by these images,
and translation by λ does not change how I(0) and I(∞) act since it fixes both 0 and∞. Therefore
λ∗Lα and Lα are lisse and geometrically isomorphic on Gm, and λ is an invariant scalar of Lα. �

Corollary 11.5.2. λ is an invariant scalar of G if and only if it is an invariant scalar of G ⊗ Lα
In particular, the answer to the question of whether or not λ is an invariant scalar of c∗ME(ρ⊗ ϕ)
depends only on the coset ϕΦ(u)ν .

Proof. The sheaves λ∗Lα and Lα are lisse and geometrically isomorphic on Gm by Lemma 11.5.1.
Moreover,

λ∗(G ⊗ Lα)⊗ (G ⊗ Lα)∨ = λ∗G ⊗ (λ∗Lα ⊗ L∨α)⊗ G∨,
so λ∗G ⊗ G∨ and λ∗(G ⊗ Lα) ⊗ (G ⊗ Lα)∨ are lisse and geometrically isomorphic on P1

u r {0,∞}.
Thus λ is an invariant scalar of G if and only if it is an invariant scalar of G ⊗ Lα. �

The following lemma gives a cohomological criterion for detecting invariant scalars.

Lemma 11.5.3. Let λ ∈ F̄×q . Suppose λ∗G and G are lisse and geometrically simple on U . Then
the following are equivalent:

(i) λ is an invariant scalar of G;

(ii) H2
c (Ū , λ∗G ⊗ G∨) 6= 0;

(iii) H2(P̄1
u, λ∗G ⊗ G∨) 6= 0.

Proof. Lemma 11.4.2 implies the equivalence of (1) and (2), and Lemma 11.4.1 implies the equiva-
lence of (2) and (3). �
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11.6. Avoiding invariant scalars. Consider the affine plane curve

Xλ : λc(x1) = c(x2),

and let πi : Xλ → A1
t be the map (x1, x2) 7→ xi. They are part of a commutative diagram

Xλ
π2 //

π1
��

π

  

A1
t

c
��

A1
t λc

// A1
u

where π = cπ2 = λcπ1. Moreover, the maps c and λc are generically étale of degree n = deg(c),
thus their fiber product π is generically étale of degree n2. Let g : Xλ → A1

t × A1
t be the product

map (π1, π2).
Let E/Fq be a finite extension over which c splits and Z = {a1, . . . , an} ⊆ E be the zeros of c.

Lemma 11.6.1. Xλ is smooth over the n2 points of Z ×A1
u
Z = Z × Z.

Proof. The subset Z ⊂ A1
t is the vanishing locus of c and λc, hence Z ×A1

u
Z = Z × Z. Moreover,

∂

∂x2
(λc(x1)− c(x2)) = c′(x2) =

n∑
i=1

∏
j 6=i

(x− aj)

does not vanish at any ai ∈ Z since c is square free, so Xλ is smooth at every (ai, aj) ∈ Z ×Z. �

Consider the external tensor product sheaf

Eρ⊗ϕ,λ := ME(ρ⊗ ϕ)�ME(ρ⊗ ϕ)∨ = π∗1ME(ρ⊗ ϕ)⊗ π∗2ME(ρ⊗ ϕ)∨

on A1
t × A1

t and the tensor product sheaf

Tρ⊗ϕ,λ := λc∗ME(ρ⊗ ϕ)⊗ c∗ME(ρ⊗ ϕ)∨

on P1
u. They have respective generic ranks r2 and (nr)2 since both ME(ρ⊗ ϕ) and its dual have

generic rank r and since c has degree n.
Let Tλ ⊆ Xλ be a smooth dense Zariski open subset and Uλ = π(Tλ). Up to shrinking Tλ, we

suppose that Eρ⊗ϕ,λ is lisse on Tλ and that π is étale over Uλ.

Lemma 11.6.2. The sheaves π∗g
∗(Eρ⊗ϕ,λ) and Tρ⊗ϕ,λ are lisse and isomorphic on Uλ.

Proof. Consider the commutative diagram

Tλ

π

��

g // π1(Tλ)× π2(Tλ)
i //

h

��

A1
t × A1

t

(λc,c)
��

Uλ
∆

// Uλ × Uλ
j

// A1
u × A1

u

where i and j are the canonical inclusions, h is induced by (λc, c), and ∆ is the diagonal map. On
one hand, h is étale, so h∗i

∗(Eρ⊗ϕ,λ) is lisse on Uλ×Uλ and therefore ∆∗h∗i
∗(Eρ⊗ϕ,λ) is lisse on Uλ.

On the other hand, there are canonical isomorphisms

π∗g
∗(Eρ⊗ϕ,λ) ' π∗(π1, π2)∗i∗(Eρ⊗ϕ,λ) ' ∆∗h∗i

∗(Eρ⊗ϕ,λ) ' ∆∗j∗(λc, c)∗(Eρ⊗ϕ,λ) ' ∆∗j∗Tρ⊗ϕ,λ
on Uλ. �

The contrapositive of the following corollary gives us a way to show some λ is not an invariant
scalar.
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Corollary 11.6.3. Suppose ρ is geometrically simple and ϕ ∈ Φ(c). Then the following are equiv-
alent:

(i) λ is an invariant scalar of c∗ME(ρ⊗ ϕ);

(ii) H2
c (Ūλ, Tρ⊗ϕ,λ) 6= 0.

They imply

(iii) H2
c (T̄λ, Eρ⊗ϕ,λ) 6= 0.

Proof. Lemmas 11.5.3 and 11.6.2 imply the equivalence of (1) and (2). If π1(Uλ) → GL(V ) is the

representation corresponding to Tλ, then V π1(Uλ) ⊆ V π1(Tλ) so (2.0.2) and (2) imply (3). �

The following proposition was inspired by [Kat02, Proof of Th. 5.1.3].

Proposition 11.6.4. Suppose deg(c) ≥ 2 + deg(gcd(c, s)) and ϕ ∈ Φ(c)distinct.

(i) If ρ is geometrically irreducible, then so is ME(ρ⊗ ϕ).

(ii) λ = 1 is the only invariant scalar of c∗ME(ρ⊗ ϕ).

Proof. Let E/Fq be a splitting field of c and a1, a2 ∈ E be zeros of c which are distinct from
each other and the zeros of s. Let ϕ1, ϕ2 ∈ Hom(E×, Q̄×` ) be the corresponding components of
(σ∨E)−1(ν ′ ∨E (ϕ)) as an element of (σ∨E)−1(ΦE(c)) (compare (11.2.3) and (11.3.2)). Then ϕ1, ϕ2 are
distinct characters, so α = ϕ1/ϕ2 is a non-trivial character.

Let λ ∈ F̄×q be an arbitrary scalar. If λ 6= 1, then for each component T ′λ ⊆ Tλ over F̄q, there is

a smooth point t′ = (t′1, t
′
2) ∈ T ′λ(F̄q) satisfying {t′1, t′2} = {a1, a2}. The map π is étale over 0 since

c is square free, hence we can use π to identify I(t′) with I(0). We can also identify I(t′1) and I(t′2)
with I(0).

On one hand, the stalk of ME(ρ⊗ ϕ) at t = t′i and the stalk at t = 0 of Q̄r
`⊗Lϕi are isomorphic as

I(0)-modules since s(ai) 6= 0. Moreover, the stalk of Eρ⊗ϕ,λ at t′ and the stalk at u = 0 of Q̄r2

` ⊗Lϕ
are isomorphic as I(0)-modules. On the other hand, the latter stalks have no I(0)-invariants since ϕ
is non-trivial, so a fortiori, the geometric generic stalk of Eρ⊗ϕ,λ has no π1(T̄λ)-invariants. Therefore
(2.0.2) implies H2

c (T̄λ, Eρ⊗ϕ,λ) vanishes for λ 6= 1, and hence the contrapositive of Corollary 11.6.3
implies λ = 1 is the only invariant scalar of c∗ME(ρ⊗ ϕ). �

11.7. Baby theorem. In this subsection we prove a simplified version of Theorem 11.0.1.
Let U be a dense Zariski open subset of Gm = P1

u r {0,∞} and θ : π1(U) → GL(W ) be a
continuous representation to a finite-dimensional Q̄`-vector space W . Let Φ(u) be the dual of
Γ(u) = (Fq[u]/uFq[u])× (cf. §10.2). For u = 0,∞, let W (u) denote W regarded as an I(u)-module
and W (u)unip be its maximal submodule where I(u) acts unipotently. If θ is geometrically simple
and pointwise pure of weight w and if dim(W ) > 1, then we can associate to θ a pair of Tannakian
monodromy groups

Ggeom(θ,Φ(u)) ⊆ Garith(θ,Φ(u)) ⊆ GLR,Q̄`
for R = χ(Ḡm,ME(θ)) (see §D.14 and Theorem D.7.1).

Theorem 11.7.1. Suppose that θ is geometrically simple and pointwise pure of weight w, that
dim(W ) > 1 or that θ does not factor through the composed quotient π1(U)� π1(Gm)� πt1(Gm),
and that λ = 1 is the only invariant scalar of ME(θ). Suppose moreover that W (0)unip has dimen-
sion at most r and a unique unipotent block of exact multiplicity one and that R > 72(r2 + 1)2.
Finally, suppose W (∞)unip = 0. Then Ggeom(θ,Φ(u)) equals GLR,Q̄`.

The proof consists of a few steps and will occupy the remainder of this section.
Let G = Garith(θ,Φ(u)) and H = Ggeom(θ,Φ(u)).
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Lemma 11.7.2. G and H are reductive and there is an exact sequence

1→ H → G→ T → 1

for some torus T over Q̄`.

Proof. Observe that ME(θ) is geometrically simple yet is not a Kummer sheaf since otherwise
one would have dim(W ) = 1 and θ would factor through π1(U) � πt

1(Gm). Moreover, θ is
geometrically simple and pointwise pure of weight w by hypothesis. Therefore the lemma follows
from Proposition D.14.1.i. �

A priori G or H could be disconnected, so let G0 and H0 be the respective identity components.

Lemma 11.7.3. G0 and H0 are (Lie-)irreducible subgroups of GLR,Q̄`.

Proof. This follows from [Kat12, Th. 8.2 and Cor. 8.3] since λ = 1 is the only invariant scalar of
ME(θ). �

Let µm : (Q̄×)m → Zm be the mth weight multiplicity map for m = R given in Definition C.1.2.

Lemma 11.7.4. There exist an element g ∈ G0 and an eigenvalue tuple γ ∈ (Q̄×` )R of g satisfying
the following:

(i) γ = (γ1, . . . , γR) lies in (Q̄×)R and thus det(g) = γ1 · · · γR lies in Q̄×;

(ii) |ι(det(g))|2 = (1/q)w for some w 6= 0 and every field embedding ι : Q̄→ C;

(iii) c = µR(γ) satisfies len(c) ≤ r + 1 and 1 = clen(c) < clen(c)−1 and c2 ≤ r.

Proof. This follows from Proposition D.14.1.ii with g = f c for any element f ∈ FrobFq ,1 and for

c = [G : G0]. More precisely, if α = (α1, . . . , αR) is an eigenvalue tuple of f , then all the αi lie
in Q̄, all the non-zero weights w1, . . . , wn of the αi are negative since W (∞)unip vanishes, one has
1 ≤ n ≤ r since 1 ≤ dim(W (0)unip) ≤ r, there is a unique non-zero weight of multiplicity one
since W (0)unip has a unique unipotent block of exact multiplicity one, and the weight zero has
multiplicity R−n ≥ R− r > 1. Hence it suffices to take γ ∈ (Q̄×)R to be the eigenvalue tuple with
γi = αci for 1 ≤ i ≤ R and w to be (w1 + · · ·+ wn)c. �

Corollary 11.7.5. det(H) equals Q̄×` .

Proof. Follows from Lemma 11.7.4.ii and the argument in [Kat12, Proof of Th. 17.1] using the
element g in Lemma 11.7.4. �

Let [G0, G0] be the derived subgroup of G0.

Lemma 11.7.6. [G0, G0] equals SLR,Q̄`.

Proof. Combine Lemmas 11.7.3 and 11.7.4 to deduce that the hypotheses of Theorem C.4.1 hold,
and thus G0 equals one of SLR(Q̄`) or GLR(Q̄`). The derived subgroup of both of these groups
equals SLR(Q̄`). �

We may now complete the proof of the theorem. First, we have inclusions

[G0, G0] ⊆ [G,G] ⊆ [GLR,Q̄` ,GLR,Q̄` ] = SLR,Q̄` ,

and Lemma 11.7.6 implies the outer terms are equal, so the inclusions are equalities. Moreover,
Lemma 11.7.2 implies H is normal in G and G/H is abelian, so H contains [G,G] = SLR,Q̄` , and
hence, by Corollary 11.7.5, H = GLR,Q̄` as claimed.
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11.8. Frobenius reciprocity. Let c : T → U be a finite étale map of smooth geometrically con-
nected curves over Fq. Let F (resp. G) be a lisse sheaf on T (resp. U) and π1(T ) → GL(V )
(resp. π1(U) → GL(W )) be the corresponding representation. Let F∨ be the dual of F and
π1(T )→ GL(V ∨) be the corresponding representation.

Lemma 11.8.1. c∗(F∨) is isomorphic to the dual of c∗F .

Proof. See [Kat02, Lem. 3.1.3]. �

Therefore we may unambiguously write c∗F∨.

Proposition 11.8.2. dim(H2
c (T̄ , c∗G ⊗ F∨)) = dim(H2

c (Ū ,G ⊗ c∗F∨)).

Proof. Let H = π1(T̄ ) and G = π1(Ū). We suppose that V (resp. W ) is a left H-module (resp. G-
module), and define IndGH(V ) to be the (Mackey) induced module HomG(Q̄`[H], V ) and ResGH(W )
to be the restricted module W regarded as a left H-module. Then Frobenius reciprocity implies
that there is a bijection of vector spaces

HomH(ResGH(W ), V )→ HomG(W, IndGH(V ))

given by ψ 7→ (w 7→ (r 7→ ψ(rv))) (cf. [Kat02, §3.0]). Moreover, Lemma 11.4.2 implies that

dim(H2
c (T̄ , c∗G ⊗ F∨)) = dim(HomH(ResGH(W ), V ))

and that

dim(H2
c (Ū ,G ⊗ c∗F∨)) = dim(HomG(W, IndGH(V ))),

so the proposition follows immediately. �

11.9. Begetting simplicity. In this section we give a criterion for Ind(ρ⊗ ϕ) to be geometrically
simple. Our argument was inspired by [Kat13, Proof of Th. 5.1.1].

Proposition 11.9.1. Let ϕ ∈ Φ(c)distinct. Suppose that gcd(c, s) = t, that deg(c) ≥ 2, and that
ϕ(Γ(t)) = 1. If ρ is geometrically simple, then so are ρ⊗ ϕ and Ind(ρ⊗ ϕ).

Proof. Let T ⊆ P1
t be a dense Zariski open subset and U = c(T ). Up to shrinking T , we suppose

that F = ME(ρ⊗ ϕ) is lisse over T and that c is étale over U .
Suppose that ρ is geometrically simple and thus so is ρ⊗ ϕ. Let G = c∗F∨ (cf. Lemma 11.8.1),

and observe that Lemma 10.2.1.i implies that G and ME(Ind(ρ⊗ ϕ))∨ are isomorphic over U . We
wish to show that dim(H2(Ū ,G ⊗ G∨)) = 1 so that Lemma 11.4.2 implies that ME(Ind(ρ⊗ ϕ)) is
geometrically simple over U , that is, that Ind(ρ⊗ ϕ) is geometrically simple. In fact, Lemma 11.4.1
and Proposition 11.8.2 imply that

dim(H2
c (P̄1

u,G ⊗ G∨)) = dim(H2
c (Ū , c∗F ⊗ c∗F∨)) = dim(H2

c (T̄ , c∗c∗F ⊗ F∨)),

so it suffices to show the last term equals 1.
The functor c∗ is left adjoint to the functor c∗ since c is finite (cf. [Mil80, II.3.14]), so the identify

map c∗F → c∗F induces an adjoint c∗c∗F → c. Generically it is the trace map Ind(Vϕ)→ Vϕ and
thus is surjective (cf. [Mil80, V.1.12]). Let K be the kernel so that we have an exact sequence of
sheaves

(11.9.2) 0→ K → c∗c∗F → F → 0.

These sheaves and F∨ are all lisse over T , so the sequence

(11.9.3) 0→ K⊗F∨ → c∗c∗F ⊗ F∨ → F ⊗F∨ → 0

is exact on T . In particular, we have a corresponding exact sequence of cohomology

H2
c (Ū ,K ⊗F∨)→ H2

c (T̄ , c∗c∗F ⊗ F∨)→ H2
c (T̄ ,F ⊗ F∨)→ H3

c (T̄ ,K ⊗F∨)
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the last term of which vanishes. The hypothesis that F is geometrically simple implies the penul-
timate term has dimension 1 by Lemma 11.4.2, so it suffices to show that the first term vanishes.

Let E/Fq be a splitting field of c, let a1, . . . , an ∈ E be the zeros of c, and let

(ϕ1, . . . , ϕn) = (σ∨E)−1(ν ′ ∨E (ϕ)) ∈ Hom(E×, Q̄×` )n

as in (11.2.3). We suppose without loss of generality that a1 = 0 and thus s(a2) · · · s(an) 6= 0 since
gcd(c, s) = t.

Let H = π1(T̄ ) and G = π1(Ū), and let H → GL(Vϕ) and G → GL(IndGH(Vϕ)) be the rep-
resentations corresponding to F and c∗F respectively. The exact sequences (11.9.2) and (11.9.3)
correspond to exact sequences of H-modules

(11.9.4) 0→ K → R→ Vϕ → 0

and
0→ K ⊗ V ∨ϕ → R⊗ V ∨ϕ → Vϕ ⊗ V ∨ϕ → 0

where R = ResGH(IndGH(Vϕ)). We claim the first term of the latter sequence has no I(0)-convariants
so a fortiori has no π1(T̄ )-coinvariants, and hence H2(T̄ ,K ⊗F∨) vanishes as claimed.

The translation map t 7→ t+ ai induces an isomorphism I(0) ' I(ai) for each i ∈ [n], so we can
regard Vϕ(ai) as an I(0)-module. In fact, we have isomorphisms of I(0)-modules

R(0) '
n⊕
i=1

Vϕ(ai), K(0) '
n⊕
i=2

Vϕ(ai), (K ⊗ V ∨ϕ )(0) '
n⊕
i=2

(Q̄r−1
` ⊗ ϕ−1

i ).

More precisely, the first isomorphism corresponds to the fact that the geometric stalks of c∗c∗F and
F satisfy (c∗c∗F)0 = ⊕c(a)=0Fa since c is étale over u = 0 (cf. (10.1.1)); the second isomorphism
uses (11.9.4) and the assumption that a1 = 0 to identify K(0) with R(0)/Vϕ(0); and the last
isomorphism uses that s(a2) · · · s(an) 6= 0, that is, C r {a1} lies in the locus of lisse reduction of
ME(ρ⊗ ϕ)∨.

The hypothesis that Γ(t) is in the kernel of ϕ implies that Vϕ(0) ' V (0) as I(0)-modules.
Moreover, ϕ2, . . . , ϕn are all non-trivial since they are distinct from the trivial character ϕ1 by
hypothesis, so each of the summands (Q̄r−1

` ⊗ϕ−1
i ) has trivial I(0)-coinvariants. Therefore K⊗V ∨ϕ

has trivial π1(T̄ )-coinvariants as claimed. �

11.10. Preserving unipotent blocks. For each monic divisor c0 of c in Fq[t], consider the subset

Φ(c0)ρ good = {ϕ ∈ Φ(c0) : ME(ρ⊗ ϕ) is supported on A1
t [1/c0] }.

If ρ is the trivial representation, then it consists of the odd primitive characters of conductor c0.
For t = 0,∞, let Vϕ(t) denote Vϕ regarded as an I(t)-module. Similarly, for u = 0,∞, let

Ind(Vϕ)(u) denote Ind(Vϕ) regarded as an I(u)-module, and let Ind(Vϕ)(u)unip be the maximal
submodule of Ind(Vϕ)(u) where I(u) acts unipotently. We say that Ind(Vϕ)(0) (resp. Vϕ(0)) has a
unipotent block of dimension e and exact multiplicity m iff it has an I(0)-submodule isomorphic
to U(e)⊕m but no I(0)-submodule isomorphic to U(e)⊕m+1.

Lemma 11.10.1. Suppose gcd(c, s) = t, and let c0 = c/t and ϕ ∈ Φ(c)distinct ∩ Φ(c0)ρ good. Then

(i) Ind(Vϕ)(0) has a unipotent block of dimension e and exact multiplicity m if and only if V (0)
does;

(ii) Ind(Vϕ)(∞)unip = 0.

Proof. On one hand, Vϕ(z)unip = 0 for every z ∈ Cr{0} since ϕ is in Φ(c0)ρ good and gcd(c0, s) = 1.
Moreover, Vϕ(0) and V (0) are isomorphic as I(0)-modules since ϕ(Γ(t)) = 1. Therefore the only
unipotent blocks of Ind(Vϕ)(0) are those coming from Vϕ(0), and all such blocks contribute identical
blocks to Vϕ(0) (cf. [Mil80, II.3.1.(e) and II.3.5.(c)]), so (i) holds. On the other hand, every
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unipotent block of Ind(Vϕ)(∞) contributes to Vϕ(∞)unip, and the latter vanishes since ϕ is good
for ρ, so (ii) holds. �

11.11. Proof of Theorem 11.0.1. Recall that R is given by

(11.11.1) R := rC(ρ) = (deg(c) + 1)r + deg(L(T, ρ))− dropC(ρ)

and it equals deg(LC(T, ρ⊗ ϕ)) for all ϕ ∈ Φ(c) (see Proposition 4.3.1).

Lemma 11.11.2. R > 72(r2 + 1)2

Proof. Follows from (11.11.1) and the hypothesis on deg(c) in the statement of the theorem. �

Let c0 = c/t.

Lemma 11.11.3. Suppose ϕ ∈ Φ(c)distinct ∩ Φ(c0)ρ good. Then the following hold:

(i) Ind(ρ⊗ ϕ) is geometrically simple;

(ii) dim(Ind(Vϕ)(0)unip) = dim(Vϕ(0)unip) and Ind(Vϕ)(0) has a unique unipotent block of exact
multiplicity one;

(iii) Ind(Vϕ)(∞)unip = 0.

Proof. Part (i) follows from Proposition 11.9.1 since ϕ is in Φ(c)distinct ∩ Φ(c0), since ρ is geomet-
rically simple, and since deg(c) ≥ 2. Parts (ii) and (iii) follow from Lemma 11.10.1 since ϕ is also
in Φ(c0)ρ good and since V (0) has a unique unipotent block of exact multiplicity one. �

Corollary 11.11.4. (Φ(c)distinct ∩ Φ(c0)ρ good) ⊆ Φ(c)ρ big.

Proof. Let ϕ ∈ Φ(c)distinct ∩ Φ(c0)ρ good, and let θ = Ind(ρ⊗ ϕ) and W = Ind(Vϕ). Then Lem-
mas 11.11.3 and 10.1.2 imply that θ = Ind(ρ⊗ ϕ) is geometrically simple and pointwise pure of
weight w since ϕ ∈ Φ(c)distinct. Moreover, dim(W ) = deg(c) · dim(V ) > 2 since deg(c) ≥ 2, and
Proposition 11.6.4 implies that λ = 1 is the only invariant scalar of ME(θ) ' c∗ME(ρ⊗ ϕ) since
deg(c) ≥ 3 and ϕ ∈ Φ(c)distinct. Lemma 11.11.3 also implies that W (0) has a unique unipotent
block of exact multiplicity one, that dim(W (0)unip) = dim(V (0)unip) ≤ dim(V ) = r, and that
W (∞)unip = 0. Finally, Lemma 11.11.2 implies R > 72(r2 + 1)2. Therefore the hypotheses of
Theorem 11.7.1 hold, and hence ϕ ∈ Φ(c)ρ big. �

Corollary 11.11.5. (Φ(c)distinct ∩ Φ(c0)ρ good)Φ(u)ν ⊆ Φ(c)ρ big.

Proof. Follows from Corollary 11.11.4 since Φ(c)ρ big is a union of cosets ϕΦ(u)ν . �

Let ϕ ∈ Φ(c) and ϕΦ(u)ν be the corresponding coset.

Lemma 11.11.6. |ϕΦ(u)ν ∩ Φ(c0)| = 1.

Proof. We must show that there is a unique element α ∈ Φ(u) satisfying ϕαν(Γ(t)) = 1. Since
gcd(s, c) = t, we can speak of the component of ϕ at t = 0: it is the character given by restricting
χ to the subgroup Γ(t) ⊆ Γ(c). There is a unique element of Φ(u)ν with the same component at
t = 0, call it βν . Then α = 1/β is the desired character. �

We need one more estimate to complete the proof of the theorem.

Lemma 11.11.7. |Φ(c)distinct ∩ Φ(c0)ρ good| ∼ |Φ(c0)distinct| ∼ |Φ(c0)| as q →∞.

Proof. We observe that there are natural inclusions(
Φ(c0)distinct r ∪π|c0Φ(c0/π)

)
⊆ (Φ(c)distinct ∩ Φ(c0)) ⊆ Φ(c0)distinct
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since an element of Φ(c0)distinct will fail to lie in Φ(c)distinct only if one of its deg(c0) components is
trivial, that is, if it lies in Φ(c0/π) for some prime factor π | c0. Intersecting with Φ(c0)ρ good gives
further inclusions(

(Φ(c0)ρ good ∩ Φ(c0)distinct) r ∪π|c0Φ(c0/π)
)
⊆ (Φ(c)distinct ∩ Φ(c0)ρ good) ⊆ Φ(c0)distinct.

Finally, we know that

|Φ(c0)ρ good|
(10.3.4)∼ |Φ(c0)| 11.3.4∼ |Φ(c0)distinct|, | ∪π|c0 Φ(c0/π)|/|Φ(c)| � 1/q = o(1)

and hence ∣∣(Φ(c0)ρ good ∩ Φ(c0)distinct) r ∪π|c0Φ(c0/π)
∣∣ ∼ |Φ(c0)|

as q →∞. �

Corollary 11.11.8. |(Φ(c)distinct ∩ Φ(c0)ρ good)Φ(u)ν | ∼ |Φ(c)| for q →∞.

Proof. Combine Lemma 11.11.6 and Lemma 11.11.7. �

The theorem now follows by observing that

|Φ(c)| Cor. 11.11.8∼ |(Φ(c)distinct ∩ Φ(c0)ρ good)Φ(u)ν |
Cor. 11.11.5
≤ |Φ(c)ρ big| ≤ |Φ(c)|

and thus

|Φ(c)ρ big| ∼ |Φ(c)|
for q →∞.

∴ The Mellin transform of ρ has big monodromy as claimed and Theorem 11.0.1 holds.

12. Application to Explicit Abelian Varieties

In this section we apply the theory developed in the previous sections to representations coming
from (the Tate modules of) a general class of abelian varieties. More precisely, we give an explicit
family of abelian varieties for which we can show the corresponding representations satisfy the
hypotheses of Theorem 11.0.1. Our principal application, of which Theorem 1.2.3 is a special case,
is Theorem 12.3.1.

Throughout this section we suppose that q is an odd prime power so that we can speak of
hyperelliptic curves. One who is interested in even characteristic or in L-functions whose Euler
factors have odd degree is encouraged to consider Kloosterman sheaves (e.g., see [Kat88, 7.3.2]).

12.1. Some hyperelliptic curves and their Jacobians. Let g be a positive integer. In this
section we construct an explicit family of abelian varieties which give rise to Galois representations
we can easily show satisfy the hypotheses Theorem 10.0.4. One member of this family is an elliptic
curve, the Legendre curve, and it has affine model

XLeg : y2 = x(x− 1)(x− t).

It is isomorphic to its own Jacobian, and the general abelian varieties in our family will be Jacobians
of curves. More precisely, we fix a monic square free f ∈ Fq[x] of degree 2g and consider the
projective plane curve X/K with affine model

(12.1.1) X : y2 = f(x)(x− t).

For technical reasons we will eventually suppose that f has a zero a in Fq, and up to the change
of variables x 7→ x + a, we will suppose that a = 0. We do not need this hypothesis yet since the
discussion in this section does not use it.
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The curve X has genus g. If g > 1, it is a so-called hyperelliptic curve, and otherwise it is an
elliptic curve. Either way its Jacobian J is a g-dimensional principally polarized abelian variety
over K. See [CFA+06] for more information about hyperelliptic curves and their Jacobians.

For each finite place v = π, one can define a reduction X/Fπ starting with the reduction of
(12.1.1) modulo π.

Lemma 12.1.2. The monic polynomial s = f(t) ∈ Fq[t] satisfies the following:

(i) if π - s, then X/Fπ is a smooth projective curve of genus g;

(ii) if π | s, then X/Fπ is smooth away from a single node and has genus g − 1.

Proof. The essential point is that, for any monic polynomial h(x) with coefficients in a field F of
characteristic not two, the affine curve y2 = h(x) is smooth iff h is a square free polynomial. More
generally, if h = h1h

2
2 where h1, h2 ∈ F [x] are square free and relatively prime, then the following

hold:

(i) the map (x, y) 7→ (x, y/h2(x)) induces a birational map from y2 = h1(x) to y2 = h(x);

(ii) the deg(h2) points (x, y) satisfying h2(x) = y = 0 are so-called nodes of y2 = h(x);

(iii) the map in (1) corresponds to blowing up the nodes in (2);

(iv) the curve y2 = h1(x) is smooth of genus b(deg(h1)− 1)/2c since h1 is square free;

(v) both curves have one (resp. two) points at infinity if deg(h) is odd (resp. even).

(Compare [Har77, Ex. I.5.6].) The proof of the lemma will consist of showing that we are in this
general situation.

Let t0 ∈ Fπ satisfy t ≡ t0 mod π, and let h0(x) := f(x)(x− t0) ∈ Fπ[x]. The polynomial f(x) is
square free by hypothesis, so h0(x) is square free iff f(t0) = 0, or equivalently, π | s. In particular,
if π - s, then h0 is square free and y2 = h0(x) is smooth of genus g. Otherwise, h0 = h1h

2
2 where

h1 = f/(x − t0) and h2 = x − t0 are coprime (since f is square free), and thus y2 = h0(x) is
smooth away from the node (t0, 0) and birational to the curve y2 = h1(x) which is smooth of genus
g − 1. �

Remark 12.1.3. One can also define a reduction X/F∞ by writing t = 1/u and clearing denomina-
tors, and one eventually finds that X/F∞ has genus zero. However, the arguments are subtler and
beyond the scope of this article, so we omit them.

For example, XLeg has smooth reduction away from t = 0, 1,∞, over t = 0, 1 its reduction is a
so-called node, and over t = ∞ it is a so-called cusp. Since it is isomorphic to its Jacobian, these
are sometimes referred to as good, multiplicative, and additive reduction respectively. However,
in general, one needs to construct separately reductions J/Fπ, for every π, and also a reduction
J/F∞.

Lemma 12.1.4.

(i) If π - s, then J/Fπ is the Jacobian of X/Fπ so is a g-dimensional abelian variety;

(ii) If π | s, then J/Fπ is an extension of an abelian variety by a one-dimensional torus.

Proof. Both statements are easy consequences of Lemma 12.1.2. More precisely, if X/Fπ is projec-
tive and smooth away from n nodes, then J/Fπ is an extension of a (g − n)-dimensional abelian
variety by an n-dimensional torus. See [BLR90, 9.2.8] and keep in mind Lemma 12.1.2. �

Remark 12.1.5. One can also show that J/F∞ is a g-dimensional additive linear algebraic group, but
demonstrating it directly is harder and requires a finer statement than the claim in Remark 12.1.3.
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One can regard the various reductions of J as the special fibers of the (identity component of the)
Néron model of J/K over P1

t . However, for our purposes, Lemma 12.1.4 contains all the information
we need about the model. More precisely, we only need to know the respective dimensions gπ, mπ,
and aπ of the good, multiplicative, and additive parts of J/Fπ. Thus

(12.1.6) (gπ,mπ, aπ) =

{
(g, 0, 0) if π - s
(g − 1, 1, 0) if π | s

by Lemma 12.1.4. In §12.2 we will show that

(g∞,m∞, a∞) = (0, 0, g)

as claimed in Remark 12.1.5.

12.2. Tate modules. Let ` be a prime distinct from the characteristic p of Fq. For each m ≥ 0,
let J [`m] ⊆ J(K̄) be the subgroup of `m-torsion; it is isomorphic to (Z/`m)2g and hence is a finite
Galois module. Multiplication by ` induces an epimorphism J [`m+1]� J [`m], for each m, and the
Z`-Tate module of J is the projective limit

T`(J) := lim←− J [`m].

Concretely one can regard T`(J) as the set

{ (P0, P1, . . .) : Pm ∈ J [`m] and `Pm+1 = Pm for m ≥ 0 }.
It is even a Galois Z`-module (since the action of GK and multiplication by ` commute), and it is
isomorphic to Z`2g as a Z`-module (cf. [ST68, §1]).

Let V be the vector space T`(J) ⊗Z` Q̄` and GK → GL(V ) be the corresponding Galois repre-
sentation. For each v ∈ P, let V (v) denote V as an I(v)-module and let V (v)unip be the maximal
submodule where I(v) acts unipotently.

Proposition 12.2.1. Let v ∈ P, and let gz and mz be the respective dimensions of the abelian and
multiplicative part of J/Fv Then

V (v)unip ' U(1)⊕2gv ⊕ U(2)⊕mv .

Proof. This is a general fact about Tate modules of abelian varieties. See [Gro72, Exp. IX, §2.1]. �

Let S = {π ∈ P : π | s} ∪ {∞} where s = f(t) as in Lemma 12.1.2. Then by Proposition 12.2.1,
the action of GK on V induces a representation

ρ : GK,S → GL(V )

since
dim(V I(v)) = dim(V ) = 2g for v ∈ P r S

by (12.1.6).

Lemma 12.2.2. ρ is geometrically simple and pointwise pure of weight one, and it satisfies

dropv(ρ) =


0 v ∈ P r S
1 v ∈ S r {∞}
2g v =∞

, Swan(ρ) = 0.

Proof. The values dropv(ρ) for v 6=∞ follow directly from (12.1.6) since

dropv(ρ) = dim(V )− dim(V I(v)) = 2g − 2gv −mv

by Proposition 12.2.1. For the assertions about geometric simplicity and weight and about drop∞(ρ)
and Swan(ρ) we refer to [KS99, 10.1.9 and 10.1.17] (cf. [Hal08, §5] for a related discussion about
J [`]). �
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Corollary 12.2.3. L(T, J/K) = 1, that is, it is a polynomial and deg(L(T, J/K)) = 0.

Proof. The representation ρ is geometrically simple and dim(V ) = 2g > 0, so ρ has trivial geometric
invariants. Moreover, it is pointwise pure of weight w = 1, so Theorem 7.3.2 implies L(T, ρ) is a
polynomial of degree

r∅(ρ)
(3.5.2)

= drop(ρ) + Swan(ρ)− 2 · dim(V )
12.2.2

= (deg(f) · 1 + 1 · 2g) + 0− 2 · 2g = 0

as claimed. �

Let c ∈ Fq[t] be monic and square free and C ⊂ P be the finite subset consisting of ∞ and v(π)
for every prime factor π of c (cf. §4).

Lemma 12.2.4. For every ϕ ∈ Φ(c), the representation ρ⊗ ϕ is geometrically simple and pointwise
pure of weight one, and ϕ is not heavy.

Proof. Lemma 7.1.2 implies that ρ⊗ ϕ is geometrically simple since ρ is. Moreover, it has trivial
geometric invariants since dim(V ) = 2g > 1, so ϕ is not heavy. Finally, Lemma 6.2.2 implies that
it is pointwise pure of weight w = 1 since ρ is. �

Corollary 12.2.5. If ϕ ∈ Φ(c), then LC(T, ρ⊗ ϕ) is a polynomial and

deg(LC(T, ρ⊗ ϕ)) = 2g · deg(c)− deg(gcd(c, s)).

Proof. By Lemma 12.2.4 the hypotheses of Theorem 7.3.2 hold, and hence LC(T, ρ⊗ ϕ) is a poly-
nomial of degree

rC(ρ)
(4.3.2)

= deg(L(T, ρ)) + (deg(c) + 1) dim(V )− dropC(ρ) = 2g · (deg(c) + 1)− dropC∩S(ρ).

The corollary follows by observing that

dropC∩S(ρ) =
∑
v∈C∩S

dv · dropv(ρ) = deg(gcd(c, s)) · 1 + drop∞(ρ)

and that drop∞(ρ) = 2g. �

12.3. Arithmetic application. In this section we show how to apply our main theorem to the
example given above. Let M ⊂ Fq[t] be the subset of monic polynomials, I ⊂ M and Mn ⊂ M
be the subsets of irreducibles and polynomials of degree n respectively, and Id =Md ∩ I. Recall
that K = Fq(t) and that π 7→ v(π) induces a bijection I → P r {∞}.

The Euler factor at v = ∞ of the L-function of J is trivial since drop∞(ρ) = dim(V ), and thus
the complete L-function satisfies

L(T, J/K) =
∏
π∈I

L(T deg(π), J/Fπ)−1 =
∏
v∈P

L(T dv , ρv)
−1 = Lf (T, ρ).

Similarly, for the partial L-function of ρ, we have

LC(T, ρ) =
∏

v∈PrC
L(T dv , ρv)

−1 =
∏
π∈I
π-c

L(T deg(π), J/Fπ)−1.

For each π ∈ I, the Euler factor L(T, J/Fπ)−1 is the reciprocal of a polynomial with coefficients
in Z so satisfies

T
d

dT
log(L(T, J/Fπ)) =

∞∑
n=1

aπ,nT
n

for integers aπ,n ∈ Z.
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The complete L-function is also a polynomial with coefficients in Z, and it satisfies

T
d

dT
log(L(T, J/K)) = T

d

dT
log(Lf (T, ρ)) =

∞∑
n=1

 ∑
f∈Mn

Λρ(f)

Tn

where Λρ(f) : M→ Z is the von Mangoldt function of ρ defined in (5.2.1) by

Λρ(f) =

{
d · aπ,n f = πm and π ∈ Id
0 otherwise.

Similarly, the partial L-function of ρ is a polynomial with coefficients in Z and satisfies

T
d

dT
LC(T, ρ) =

∞∑
n=1

 ∑
f∈Mn

gcd(f,c)=1

Λρ(f)

Tn.

For A in Γ(c) = (Fq[t]/cFq[t])× and positive integer n, we defined the sum Sn,c(A) in (5.3.1) by

Sn,c(A) =
∑
f∈Mn

f≡A mod c

Λρ(f).

We then defined the expected value and variance of this sum as A varies uniformly over Γ(c) by

E[Sn,c(A)] =
1

φ(c)

∑
A∈Γ(c)

Sn,c(A), Var[Sn,c(A)] =
1

φ(c)

∑
A∈Γ(c)

|Sn,c(A)− E[Sn,c(A)]|2

respectively where φ(c) = |Γ(c)| (see (5.4.2)).

Theorem 12.3.1. Suppose that gcd(c, s) = t and that deg(c) > 1
2g (72(4g2 + 1)2 + 1). Then

φ(c) · E[Sn,c(A)] =
∑
f∈Mn

gcd(f,c)=1

Λρ(f) and lim
q→∞

φ(c)

q2n
·Var[Sn,c(A)] = min{n, 2g · deg(c)− 1}.

Proof. This will follow from applying Theorems 11.0.1, 10.0.4, and 9.0.1 successively, the last with
Remarks 9.0.2 and 9.0.3 in mind. To complete the proof we show that all the hypotheses of the
first theorem are met.

Lemma 12.2.4 implies that ρ is pointwise pure of weight w = 1 and that Φ(c)ρ heavy is empty2.
Moreover, Proposition 12.2.1 implies that V (0) has a unique unipotent block of dimension two and
no other unipotent block of multiplicity one (since 2g − 2 6= 1), hence Theorem 11.0.1 implies that
the Mellin transform of ρ has big monodromy since gcd(c, s) = t and since

deg(c) >
1

2g
(72((2g)2 + 1)2 − 2g − 0 + (1 + 2g)) =

1

2g
(72(4g2 + 1)2 + 1).

Therefore the hypotheses of Theorem 11.0.1 hold as claimed. �

Taking g = 1 and f = x(x− 1) yields Theorem 1.2.3 from §1.

2There are mixed characters, but as shown the proof of Theorem 9.0.1, they do not contribute to the main term
of the variance estimate.
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Appendix A. Middle Extension Sheaves

Recall the following notation:

X : a proper smooth geometrically connected curve over Fq;

U : dense Zariski open subset of X defined over Fq;

K : function field Fq(X);

P : set of places of K;

C : finite subset of P;

GK : absolute Galois group GK = Gal(Ksep/K);

I(v) : inertia subgroup in GK of v ∈ P;

GK,C : quotient of GK by normal closure of 〈 I(v) | v ∈ P r C 〉;
` : prime in N coprime to q;

F : sheaf on X;

G : sheaf on U .

All sheaves in this section are constructible and étale with coefficients in Q̄`.
Let j : U → X be the inclusion of a dense Zariski open subset. Given G (e.g., the pullback sheaf

F|U = j∗F), there are two3 functorial extensions of G to a sheaf on all of X we wish to consider:
the extension by zero j!G and the direct image j∗G. As F and G vary we have

HomX(j!G,F) = HomU (G, j∗F) and HomX(F , j∗G) = HomU (j∗F ,G),

that is, the functors j!, j∗ are adjoints of j∗ (cf. [Mil80, II.3.14.a]). In particular, the adjoints of the
identity j∗F → j∗F are maps of the form j!j

∗F → F and F → j∗j
∗F called adjunction maps. We

say that F is supported on U iff the first map is an isomorphism, and F is a middle extension iff
the second map is an isomorphism for every j.

Lemma A.0.1.

(i) If j∗F is lisse and F → j∗j
∗F is an isomorphism, then F is a middle extension.

(ii) If G is lisse, then j∗G is a middle extension.

Proof. Let U ′ ⊆ X be a dense Zariski open and U ′′ = U ∩ U ′. Consider the commutative diagram

U ′′
i′ //

i
��

U ′

j′

��
U

j
// X

of inclusions and the corresponding commutative diagram

(A.0.2)

F

��

// j∗j
∗F

��
j′∗j
′∗F // (ij)∗(ij)

∗F = (i′j′)∗(i
′j′)∗F

of adjunction maps.

3One can also consider hybrid versions such as j′′! j
′
∗G for inclusions j′ : U → U ′ and j′′ : U ′′ → X, but we do not

need such versions.
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Suppose G is lisse. On one hand, this implies the map G → i∗i
∗G is an isomorphism, so the right

map of (A.0.2) is an isomorphism when G = j∗F . In particular, if the top map of (A.0.2) is also
an isomorphism, then the left map must also be an isomorphism, for every j′, hence (i) holds. On
the other hand, the direct image map j∗G → j∗i∗i

∗G is also an isomorphism. It even coincides with
the adjunction map j∗G → j′∗j

′∗j∗G via the functorial identities j∗i∗i
∗G = j′∗i

′
∗i
∗G = j′∗j

′∗j∗G, so
(ii) holds. �

Lemma A.0.3. Suppose F is a middle extension. If j∗F ' G on U , then F ' j∗G on X.

Proof. Let j∗j
∗F → F be the inverse of the adjunction map F → j∗j

∗F , and let j∗F → G and
G → j∗F be mutually inverse morphisms. Then the composed maps

F → j∗j
∗F → j∗G and j∗G → j∗j

∗F → F
are mutually inverse. �

Let η̄ be a geometric generic point of X and V be a finite-dimensional Q̄`[GK,C ]-module. The
following proposition shows that there is a canonical middle extension sheaf on X we can associate
to V (cf. [Mil80, 3.1.16]).

Proposition A.0.4. There is a middle extension F with Fη̄ = V as GK,C-modules, and it is unique
up to isomorphism.

Proof. Suppose U ⊆ X is the open complement corresponding to C so that the structure map
GK → GL(V ) factors through the quotient GK � GK,C and so that we can identify GK,C with
the étale fundamental group π1(U, η̄). Then there is a lisse sheaf G on U corresponding to the
representation π1(U, η̄) → GL(V ) through which GK → GL(V ) factors, and it is unique up to
isomorphism. In particular, G and F = j∗G is are middle extension sheaves by Lemma A.0.1.ii
and Fη̄ = Gη̄ = V as GK,C-modules. Every isomorphism Fη̄ ' V of GK,C-modules extends to
an isomorphism j∗F → G of lisse sheaves, and Lemma A.0.3 implies the latter extends to an
isomorphism F ' j∗G. �

Appendix B. Euler Characteristics

We continue the notation of the previous section. Let j : U → X be the inclusion of a dense
Zariski open subset and F be a sheaf on U . Then there is an exact sequence

0 −→ j!F −→ j∗F −→ SF −→ 0

where SF is a skyscraper sheaf supported on Z = XrU , and the corresponding long exact sequence
of (étale) cohomology (over F̄q) can be written

(B.0.1) · · · → H i(Z̄,SF )→ H i+1
c (Ū ,F)→ H i+1(X̄, j∗F)→ · · ·

where n ∈ Z.

Lemma B.0.2. There exist exact sequences

(B.0.3) 0→ H0
c (Ū ,F)→ H0(X̄, j∗F)→ H0(Z̄,SF )→ H1

c (Ū ,F)→ H1(X̄, j∗F)→ 0

and

(B.0.4) 0 −→ H2
c (Ū ,F) −→ H2(X̄, j∗F) −→ 0

and all other cohomology groups in (B.0.1) vanish.

Proof. The first term of (B.0.1) vanishes unless n = 0 since dim(Z) = 0, and the other two terms
vanish for n+ 1 6= 0, 1, 2 since U and X are curves. Therefore (B.0.1) breaks into the pieces (B.0.3)
and (B.0.4), and all other terms vanish. �

49



If U = X, then the middle term of (B.0.3) vanishes, and otherwise the first term vanishes since
any curve U ( X is affine. Either way, the Euler characteristics

(B.0.5) χ(X̄, j∗F) :=

2∑
n=0

(−1)n dim(H i(X̄, j∗F)), χc(Ū , j∗F) :=

2∑
n=0

(−1)n dim(H i
c(Ū , j∗F)),

and χ(Z̄,SF ) = dim(H0(Z̄,SF )) satisfy

(B.0.6) χ(X̄, j∗F)− χc(Ū ,F) = χ(Z̄,SF ) =
∑
z∈Z

deg(z) · dim(FI(z)η̄ ).

B.1. Middle Extensions. Let ρ be a Galois representation and ME(ρ) be the corresponding
middle-extension sheaf.

Proposition B.1.1. Let g be the genus of X̄. Then

χ(X̄,ME(ρ)) = (2− 2g) · rank(ρ)− (drop(ρ) + Swan(ρ))

Proof. Suppose ME(ρ) is lisse on U ; we may since ME(ρ) is a middle extension. On one hand, the
Euler-Poincare formula, as proved by Raynaud [Ray95, Th. 1], asserts

χc(Ū ,ME(ρ)) = χc(Ū) · rank(ρ)− Swan(ρ), χc(Ū) = 2− 2g − deg(Z).

On the other hand, a short calculation shows

χ(Z̄,ME(ρ)) = deg(Z) · rank(ρ)− drop(ρ)

since U is open and dense in X and hence Z is finite, and thus

χ(X̄,ME(ρ)) = χc(Ū ,ME(ρ)) + χ(Z̄,ME(ρ)) = (2− 2g) · rank(ρ)− drop(ρ)− Swan(ρ)

as claimed. �

Let C ⊂ P be the subset of places corresponding to the finite complement Z = X r U .

Corollary B.1.2. If ME(ρ) is supported on U , then χc(Ū ,ME(ρ)) = χ(X̄,ME(ρ)), and

χc(Ū ,ME(ρ)) = (2− deg(C)) · rank(ρ)− (drop(ρ)− dropC(ρ) + Swan(ρ))

in general.

Proof. If ME(ρ) is supported on U , then dropC(ρ) = deg(C) · rank(ρ), so it suffices to show (3.5.3)
holds in general. Recall that Z = C , so the desired identity follows easily from the identities

χc(Ū ,ME(ρ)) = χ(X̄,ME(ρ))− χ(Z̄,ME(ρ))

and

χ(Z̄,ME(ρ)) = deg(C) · rank(ρ)− dropC(ρ)

and (3.5.2). �

Let ϕ be a character of conductor supported by C.

Lemma B.1.3.

(i) If ϕ is tame, then Swan(ρ⊗ ϕ) = Swan(ρ).

(ii) drop(ρ⊗ ϕ)− drop(ρ) = dropC(ρ⊗ ϕ)− dropC(ρ).
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Proof. If v ∈ P, then Swanv(ρ⊗ ϕ) = Swanv(ρ) since tensoring with tamely ramified character (e.g.,
ϕ) does not change the local Swan conductor. Moreover, if v 6∈ C, then V and Vϕ are isomorphic
as I(v)-modules (since ϕ has conductor supported on C). Hence L(T, ρv) and L(T, (ρ⊗ ϕ)v) have
the same degree, and in particular,

dropv(ρ⊗ ϕ)− dropv(ρ) = deg(L(T, ρv))− deg(L(T, (ρ⊗ ϕ)v)) = 0

when v 6∈ C. �

Appendix C. Detecting a Big Subgroup of GLR

Let R be a positive integer and G be a connected reductive subgroup of GLR(Q̄`), and suppose
G acts irreducibly on Q̄R

` . The main goal of this section is to state and prove a theorem of the
following form:

Claim C.0.1. If G contains a suitable element g, then G = SLR(Q̄`) or G = GLR(Q̄`).

We give explicit conditions on g after introducing some terminology and preliminary results.

C.1. Weight multiplicity map. Let m be a positive integer and [m] = {1, . . . ,m}.

Definition C.1.1. A weight partition map of an element α = (α1, . . . , αm) in (Q̄×)m is a map
wα : [m]→ [m] satisfying the following for every i, j ∈ [m]:

wα(i) = wα(j) iff |ι(αi)| = |ι(αj)|; |w−1
α (i)| ≥ |w−1

α (j)| if i ≤ j.

The fibers of wα partition the indices i ∈ [m] according to the corresponding weights − logq |ι(αi)|2
and are ordered according to size.

In general, α may have multiple weight partition maps, but all will induce the same partition of
[m], have the same range, and yield the same map [m]→ Z given by i 7→ |w−1

α (i)|. In particular, if
wα is a weight partition map of α and if σ ∈ Sym(m), then the composed map wασ is also a weight
partition map of α.

Definition C.1.2. The mth weight multiplicity map is the map

µm : (Q̄×)m → Zm

which sends an element α to the tuple λ = (λ1, . . . , λm) satisfying λi = |w−1
α (i)| for some weight

partition map wα and every i ∈ [m].

Definition C.1.3. For any λ = µm(α), let len(λ) = max{1 ≤ i ≤ m : λi 6= 0}.

Observe that [len(λ)] is the range of any weight partition map wα of α and (λ1, . . . , λlen(λ)) is a
partition of m.

Example C.1.4. Let λ = µ5(1,−1, q,−q, q2). Then λ = µ5(q2,−q, q,−1, 1) = (2, 2, 1, 0, 0), and
thus len(λ) = 3 and (2, 2, 1) is a partition of 5.

Lemma C.1.5. Let α, β ∈ (Q̄×)m, and let s ∈ Q̄× and σ ∈ Sym(m). Suppose βi = sασ(i) for every
i ∈ [m]. Then µm(α) = µm(β).

Proof. Let wα, wβ be respective weight partition maps of α, β. Then for every i, j ∈ [m], one has

wβ(i) = wβ(j) ⇐⇒ |ι(βi)| = |ι(βj)| ⇐⇒ |ι(ασ(i))| = |ι(ασ(j))| ⇐⇒ wασ(i) = wασ(j).

In particular, the weight partition maps σwα, wβ of α, β respectively coincide, so µm(α) = µm(β)
as claimed. �

51



C.2. Tensor indecomposability. Let m,n ≥ 2 be integers, let α ∈ (Q̄×)m, β ∈ (Q̄×)n, and γ ∈
(Q̄×)mn be elements, and let a = µm(α), b = µn(β), c = µmn(γ). We regard α and β as respective
tuples of eigenvalues of matrices A ∈ GLm(Q̄) and B ∈ GLn(Q̄). We also suppose that γ is an
eigenvalue tuple of the tensor product A⊗B, and thus there exists a bijection τ : [m]× [n]→ [mn]
satisfying

γτ(i,j) = αiβj for (i, j) ∈ [m]× [n].

Let wα, wβ, wγ be weight partition maps of α, β, γ respectively.

Lemma C.2.1. There exists a unique map κ : [len(a)]×[len(b)]→ [len(c)] which makes the following
diagram commute:

[m]× [n]
τ //

wα×wβ
��

[mn]

wγ

��
[len(a)]× [len(b)] κ

// [len(c)].

In particular,

(C.2.2) ck =
∑

κ(i,j)=k

aibj .

Proof. To see that such a map exists observe that wγτ factors through wα × wβ since

(wα × wβ)(i1, j1) = (wα × wβ)(i2, j2) ⇐⇒ |αi1 | = |αi2 | and |βj1 | = |βj2 |
=⇒ |αi1βj1 | = |αi2βj2 |
⇐⇒ |γτ(i1,j1)| = |γτ(i2,j2)|
⇐⇒ wγτ(i1, j1) = wγτ(i2, j2)

for every i1, i2 ∈ [m] and j1, j2 ∈ [n]. To see that the map is unique, observe that the left vertical
map of the diagram is surjective and that the map must satisfy l 7→ wγτ(i, j) for any (i, j) in
(wα × wβ)−1(l). Finally, (C.2.2) follows from the identities

ck = |w−1
γ (k)| = |(τ ◦ wγ)−1(k)| = |(wα × wβ ◦ κ)−1(k)| =

∑
κ(i,j)=k

|(wα × wβ)−1(i, j)| =
∑

κ(i,j)=k

aibj .

�

Example C.2.3. Let α = (1, 1, q), β = (1, q, q), and γ = (1, 1, q, q, q, q, q, q2, q2). The maps wα
and wβ are canonical and given by

wα(i) =

{
1 i = 1, 2

2 i = 3
, wβ(j) =

{
2 j = 1

1 j = 2, 3
.

The maps τ and wγ are not canonical, so we choose

τ(i, j) = 3(j − 1) + i, wγ(j) =


2 i = 1, 2

1 j = 3, . . . , 7

3 i = 8, 9

.

Then one has a = b = (2, 1, 0) and c = (4, 2, 2, 0, 0, 0, 0, 0, 0), and also

wγτ(i, j) =


1 (i, j) = (1, 1), (2, 1)

3 (i, j) = (3, 2), (3, 2)

2 otherwise
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for (i, j) ∈ [3]× [3]. Therefore, the domain and codomain of κ are [2]× [2] and [3] respectively, and

κ(i, j) =


1 (i, j) = (1, 1), (2, 2)

2 (i, j) = (1, 2)

3 (i, j) = (2, 1)

for (i, j) ∈ [2]× [2].

Lemma C.2.4. For each l ∈ [len(a)], the restriction of κ to {l} × [len(b)] is injective, and in
particular, len(b) ≤ len(c).

Proof. Recall that [len(a)] and [len(b)] are the respective ranges of wα and wβ, so suppose i ∈ [m]
and j1, j2 ∈ [n]. Moreover, one has

κ(wα(i), wβ(j1)) = κ(wα(i), wβ(j2)) ⇐⇒ wγτ(i, j1) = wγτ(i, j2)

⇐⇒ |γτ(i,j1)| = |γτ(i,j2)|
⇐⇒ |αiβj1 | = |αiβj2 |
⇐⇒ wβ(j1) = wβ(j2),

and thus the restriction of κ to {wα(i)} × [len(b)] is injective as claimed. �

Let r be a positive integer.

Lemma C.2.5.

(i) If clen(c) ≤ r, then alen(a) ≤ r and blen(b) ≤ r.

(ii) If a1 > r (resp. b1 > r), then clen(b) > r (resp. clen(a) > r).

Proof. For part (i), we prove the contrapositive. More precisely, if k ∈ [len(c)], then one has

ck
(C.2.2)

=
∑

κ(i,j)=k

aibj ≥ alen(a)blen(b) ≥ max{alen(a), blen(b)},

and thus clen(c) > r if alen(a) > r or blen(b) > r. Thus (i) holds.
For part (ii), we suppose, without loss of generality, that a1 > r and show that clen(b) > r. We

first observe that Lemma C.2.4 implies the integers κ(1, 1), . . . , κ(1, len(b)) are distinct. Moreover,
for each l ∈ [len(b)], one has

cκ(1,l) ≥ a1bl > r · 1 = r.

Therefore at least len(b) integers in the monotone decreasing sequence c1, . . . , clen(b) exceed r, and
thus (ii) holds. �

The following proposition is the main result of this subsection. We will use it to deduce that a
certain representation is tensor indecomposable whenever mn� r.

Proposition C.2.6. Suppose clen(c) = 1 < len(c) and c2 ≤ r. If len(c) ≤ r+ 1, then m,n ≤ r2 + 1

and thus mn ≤ (r2 + 1)2.

Proof. Lemma C.2.5.i implies that alen(a) = blen(b) = 1 since clen(c) = 1. Therefore len(a) ≥ 2 and
len(b) ≥ 2 since m ≥ 2 and n ≥ 2 respectively, and moreover, c2 ≥ clen(a) or c2 ≥ clen(b). Hence
the contrapositive of Lemma C.2.5.ii implies a1 ≤ r and b1 ≤ r since c2 ≤ r. In particular, if
len(c) ≤ r + 1, then Lemma C.2.4 implies len(a), len(b) ≤ r + 1, and thus

m =

len(a)∑
i=1

ai ≤ ra1 + alen(a) ≤ r2 + 1, n =

len(b)∑
j=1

bj ≤ rb1 + blen(b) ≤ r2 + 1

as claimed. �
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C.3. Pairing avoidance. Let n be a positive integer and I be the n × n identity matrix. We
define the orthogonal and symplectic groups of matrices by

On(Q̄) =
{
M ∈ GLn(Q̄) : MM t = I

}
and

Sp2n(Q̄) =

{
M ∈ GL2n(Q̄) : MPM t = P for P =

(
0 I
−I 0

)}
respectively.

Lemma C.3.1. Suppose h ∈ GLm(Q̄) where m = n (resp. m = 2n) and hgh−1 ∈ On(Q̄)
(resp. hgh−1 ∈ Sp2n(Q̄)) . Let α ∈ (Q̄×)m be a tuple of the eigenvalues of g and a = µm(α).
Then some involution π ∈ Sym(len(a)) satisfies the following:

(i) ai = aπ(i) for every i ∈ [len(a)];

(ii) π has at most one fixed point.

Proof. Since g and hgh−1 have the same eigenvalues, we suppose without loss of generality that
h = 1. The involution s 7→ 1/s of Q̄× induces a permutation of the eigenvalues of elements of
On(Q̄) and Sp2n(Q̄). The latter is an involution σ ∈ Sym(m) with the property that, for any
weight partition map wα of α and every i ∈ [m], one has

wα(i) = wασ(i) ⇐⇒ |αi| = |ασ(i)| ⇐⇒ |αi| = |1/αi| ⇐⇒ |αi| = 1.

The involution in question is given by wα(i) 7→ wασ(i) for every i ∈ [m]; recall wα maps onto
[len(a)]. �

The following is the main result of this subsection. We will use it to show that some subgroup
of GLm(Q̄) fails to preserve non-degenerate pairings which are either symmetric or alternating.

Proposition C.3.2. Let g be an element of GLm(Q̄), α ∈ (Q̄×)m be a tuple of its eigenvalues,
and a = µm(α). If there exist i, j such that ai, aj are distinct from each other and from all ak
for k 6= i, j, then g is not conjugate to an element of Om(Q̄). If moreover m = 2n, then g is not
conjugate to an element of Sp2n(Q̄).

Proof. We prove the contrapositive. More precisely, if hgh−1 ∈ Om(Q̄) (resp. hgh−1 ∈ Sp2n(Q̄)) for
some h ∈ GLm(Q̄) and if π ∈ Sym(len(a)) is an involution satisfying the properties of Lemma C.3.1,
then π(i) = i for at most one i. Therefore, for all but at most one i and for j = π(i), one has i 6= j
and ai = aj . In particular, there is at most one i such that ai 6= aj for j 6= i. �

C.4. Main theorem. In this section we state and prove the main result of this appendix.

Theorem C.4.1. Let r,R be positive integers and G be a connected reductive subgroup of GLR(Q̄`).
Let g ∈ G be an element and γ ∈ (Q̄×` )R be an eigenvector tuple of g. Suppose that G is irreducible,

that γ lies in (Q̄×)R, and that c = µR(γ) satisfies 1 < len(c) ≤ r+ 1 and 1 = clen(c) < clen(c)−1 and

c2 ≤ r. If R > 72(r2 + 1)2, then either G = SLR(Q̄`) or G = GLR(Q̄`).

The proof will occupy the remainder of this subsection.
Since G is algebraic, it contains the semisimplification of g, an element for which γ is also an

eigenvector. Hence we replace g by its semisimplification and suppose without loss of generality
that g is semisimple. We also replace G and g by the conjugates h−1Gh and h−1gh by a suitable
element h ∈ GLR(Q̄`) so that we may suppose without loss of generality that g is the diagonal
matrix diag(γ1, . . . , γR).

Let V = Q̄R
` and f be the diagonal matrix

f = diag(|ι(γ1)|, . . . , |ι(γR)|).
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We claim we may regard f as an element of GLR(Q̄`). More precisely, it is an element of

GLR(ι(Q̄)) ⊂ GLR(C) since |ι(γi)|2 = ι(γi)ι(γi) lies in the algebraically closed subfield ι(Q̄) ⊂ C
and thus so does |ι(γi)|. Replacing G, g, f by conjugates by a suitable common permutation matrix,
we suppose without loss of generality that |ι(γ1)| is an eigenvalue of f of multiplicity c1.

Lemma C.4.2. f is a semisimple element of G such that f − |ι(γ1)| ∈ End(V ) has rank at most
r2.

Proof. For some sequence e1, . . . , en of tuples ei = (ei,1, . . . , ei,m) ∈ Zm, the intersection of G with
the subgroup of diagonal matrices in GLR(Q̄`) consists of all matrices diag(α1, . . . , αm) satisfying

m∏
i=1

α
e1,i
i =

m∏
i=1

α
e2,i
i = · · · =

m∏
i=1

α
en,i
i = 1.

By hypothesis, g lies in this intersection, and thus

|ι(
m∏
i=1

γ
e1,i
i )| = |ι(

m∏
i=1

γ
e2,i
i )| = · · · = |ι(

m∏
i=1

γ
en,i
i )| = |ι(1)|

or equivalently
m∏
i=1

|ι(γi)|e1,i =
m∏
i=1

|ι(γi)|e2,i = · · · =
m∏
i=1

|ι(γi)|en,i = 1.

Therefore f is a diagonal (hence semisimple) element of G as claimed. It remains to show f −
|ι(γ1)| ∈ End(V ) has rank at most r2. Indeed, exactly c1 of its eigenvalues equal |ι(γ1)|, hence the
rank of f − |ι(γ1)| is

R− c1 ≤
len(c)∑
i=2

ci ≤ r · r = r2

by our hypotheses on c. �

Let [G,G] be the derived (i.e., commutator) subgroup of G. Observe that G acts irreducibly on
V = Q̄R

` by hypothesis, so its center Z(G) consists entirely of scalars and G is an almost product of
[G,G] and Z(G). In particular, [G,G] is a connected semisimple group which also acts irreducibly
on V , and for some a ∈ Q̄×` , the scalar multiple af lies in [G,G].

Let g ⊆ glR = End(V ) be the Lie algebra of [G,G]. We claim g is simple. On one hand, g
is a semisimple irreducible Lie subalgebra of glR since [G,G] is semisimple and acts irreducibly
on V . It also contains af , and Lemma C.4.2 implies that dim((af − a|ι(γ1)|)V ) ≤ r2, hence the
contrapositive of Proposition C.2.6 implies that V is not tensor decomposable as a representation
of g. On the other hand, g has a decomposition g =

∏n
i=1 gi with respect to simple Lie subalgebras

g1, . . . , gn ⊆ g, and thus V has a tensor decomposition V =
⊗n

i=1 Vi where gi acts faithfully on Vi.
In particular, n = 1 since V is not tensor decomposable, and thus g is simple as claimed. (Compare
[Kat02, proof of Th. 1.4.3].)

We now apply the following theorem to deduce that g is one of sl(V ), so(V ), or sp(V ).

Theorem C.4.3. (Zarhin) Let g ⊆ End(V ) be a simple Lie subalgebra, and suppose that g acts
irreducibly on V . Let (a, f) ∈ Q̄` × g and r = rank(f − a). If R = dim(V ) > 72r2, then g is one of
sl(V ), so(V ), or sp(V ).

Proof. See [Zar90, Lem. 4 and Th. 6]. These results refer to constants D and D2 respectively, and
in the proofs one finds D = 1/8 and D2 = 9/D = 72 suffice. The latter is the source of the constant
72 in the hypothesis R > 72r2. Compare [Kat02, Th. 1.4.4]. �
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To complete the proof of the theorem it suffices to rule out g = so(V ) and g = sp(V ) or equivalently
to show that G preserves neither an orthogonal nor a symplectic pairing. However, our hypotheses
on c together with the contrapositive of Proposition C.3.2 implies that G preserves neither such
type of pairing, so g = sl(V ) as claimed. That is, [G,G] is SL(V ) and G is equal to one of SL(V )
or GL(V ).

Appendix D. Perverse Sheaves and the Tannakian Monodromy Group

D.1. Category of perverse sheaves. Given a smooth curve X over a perfect field F, we can
speak of the so-called derived category Db

c(X, Q̄`). Its objects M are complexes of constructible
Q̄`-sheaves on X over F whose cohomology complex

· · · −→ H−1(M) −→ H0(M) −→ H1(M) −→ · · ·

is bounded and whose cohomology sheaves Hi(M) are all constructible. There is a well-defined
dual object DM , the Verdier dual of M . Moreover, for each n ∈ Z, there is a well-defined shifted
complex M [n] which satisfies Hi(M [n]) = Hi+n(M).

We say that M is semi-perverse iff H0(M) is punctual and Hi(M) vanishes for i > 0 and that
M is perverse iff M and DM are semi-perverse. We write Perv(X, Q̄`) for the full subcategory of
perverse objects in Db

c(X, Q̄`). It is an abelian category thus one can speak of subquotients of its
objects as well as kernels and cokernels of its morphisms. It is common to call its objects perverse
sheaves despite the fact that they are complexes of sheaves.

There is a natural functor from the category of constructible Q̄`-sheaves onX over k toDb
c(X, Q̄`):

it sends a sheaf F to a complex concentrated at i = 0 and takes a morphism to the unique extension
to a morphism of complexes. The image of this functor is not stable under duality though: if F∨ is
the dual of F , then DF is isomorphic to F∨(1)[2]. If instead one sends sends each F to F(1/2)[1],
then self-dual objects are taken to self-dual objects and middle-extension sheaves are taken to
perverse sheaves.

D.2. Purity. Let X be a smooth curve over Fq. We say an object M in Db
c(X, Q̄`) is ι-mixed of

weights ≤ w iff Hi(M) is pointwise ι-mixed of weights ≤ w+ i for every i, and then M [n] is ι-mixed
of weights w + n. We also say M is ι-pure of weight w iff M is ι-mixed of weights ≤ w and DM
is ι-mixed of weights ≤ −w, and then M [n] is ι-pure of weight w+ n. Finally, we say M is pure of
weight w iff it is ι-pure of weight w for every field embedding ι : Q̄→ C.

D.3. Subobjects and subquotients. Let (C,⊕) be an abelian category, let 0 be its zero object,
and let M,N be a pair of objects in C.

We say that N is a subobject of M and write N ⊆M iff there is a monomorphism N ↪→M in C.
More generally, we say N of M is a subquotient of M iff there exist an object S, a monomorphism
S ↪→M , and an epimorphism S � N all in C. Equivalently, N is a subquotient of M iff there exist
an object Q, an epimorphism M � Q, and a monomorphism N ↪→ Q all in C.

Proposition D.3.1. If M ∈ Perv(Gm, Q̄`) is ι-pure of weight w, then so is every subquotient N .

Proof. See [BBD82, 5.3.1]. �

Given a pair N1, N2 ⊆ M of subobjects, we write N1 ⊆ N2 ⊆ M iff N1 ⊆ N2 and, for the
corresponding monomorphisms, N1 ↪→ M equals the composition N1 ↪→ N2 ↪→ M . We also write
N1 = N2 ⊆M iff N1 ⊆ N2 ⊆M and N2 ⊆ N1 ⊆M . For example, if M is an object in Perv(Gm, Q̄`)
and if φ is the Frobenius automorphism of M̄ , then the subobjects N ⊆ M give rise to precisely
those subobjects N̄ ⊆ M̄ satisfying N̄ = φ(N̄) ⊆ M̄ .
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D.4. Kummer sheaves. Let Gm = P1
u r {0,∞} over Fq, and let πt

1(Gm) be the tame étale
fundamental group, that is, the maximal quotient of π1(Gm) whose kernel contains the p-Sylow
subgroups of I(0) and I(∞). It lies in an exact sequence

1→ πt
1(Ḡm)→ πt

1(Gm)→ Gal(F̄q/Fq)→ 1

where πt
1(Ḡm) is the image of π1(Ḡm) via the tame quotient π1(Gm)� πt

1(Gm).
We say a constructible sheaf on P̄1 is a Kummer sheaf iff it is a middle-extension sheaf which is

lisse of rank one on Ḡm and for which the corresponding representation factors through the quotient
π1(Ḡm)� πt

1(Ḡm). Equivalently, the Kummer sheaves are the middle-extension sheaves Lρ on P̄1

associated to a continuous character ρ : πt
1(Ḡm)→ Q̄×` .

D.5. Middle convolution on P. Let π : Gm ×Gm → Gm be the multiplication map on Gm over
Fq. Using it one can define two additive bifunctors on Db

c(Ḡm, Q̄`) corresponding to two flavors of
multiplicative convolution:

M ?! N := Rπ!(M �N), M ?∗ N := Rπ∗(M �N).

There is a canonical map M?!N →M?∗N , but it need not be an isomorphism in general. However,
if both convolution objects lie in Perv(Ḡm, Q̄`), then one can speak of the image of the map and
define

M ∗mid N := Image(M ?! N →M ?∗ N).

This observation led Katz to define the full subcategory P of Perv(Ḡm, Q̄`) whose objects are all M
for which N 7→M?!N and N 7→M?∗N take perverse sheaves to perverse sheaves (see [Kat96, §2.6]
and [Kat12, Ch. 2]). Among other things, it includes perverse sheaves F [1] for F a simple middle-
extension sheaf on Ḡm of generic rank at least two. Moreover, it is an additive category with
respect to the usual direct sum of sheaves. Katz called the resulting additive bifunctor on P middle
convolution.

D.6. The category Parith. Let Db
c(Gm, Q̄`) → Db

c(Ḡm, Q̄`) be the “extension of scalars” functor
which sends an object of M over Fq to the object M̄ = M ×Fq F̄q. It maps objects of Perv(Gm, Q̄`)

to objects of Perv(Ḡm, Q̄`), and we define Parith to be the full subcategory of Perv(Gm, Q̄`) whose
objects M are those for which M̄ lies in P. Among other things, Parith contains perverse sheaves
F [1] for F a geometrically simple middle-extension sheaf on Gm over Fq which is of generic rank
at least two.

Once again we have the two flavors of multiplicative convolution

M ?! N := Rπ!(M �N), M ?∗ N := Rπ∗(M �N).

for any pair of objects M,N in Perv(Gm, Q̄`). We can also define middle convolution on Parith as
before

M ∗mid N := Image(M ?! N →M ?∗ N).

for any pair of objects M,N in Parith.

Proposition D.6.1. If M and N are ι-pure of weights m and n respectively, then M ∗mid N is
ι-pure of weight m+ n.

Proof. Our argument is essentially that of [Kat12, Ch. 4]. On one hand, M �N is ι-pure of weight
m + n on Gm × Gm, hence [Del80, 3.3.1] and Proposition D.3.1 imply M ?! N and its perverse
quotient M ∗mid N are ι-mixed of weight m + n. On the other hand, DM and DN are ι-pure of
weights m and n respectively, and

D(M ∗mid N) = Image(D(M ?∗ N)→ D(M ?! N))

= Image(DM ?! DN → DM ?∗ DN) = DM ∗mid DN
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hence D(M ∗midN) is ι-mixed weights ≤ m+n (cf. [Del80, 6.2]). Thus M ∗midN is ι-pure of weight
m+ n as claimed. �

D.7. The category Tann(Ḡm, Q̄`). Gabber and Loeser defined an object M in Perv(Ḡm, Q̄`) to
be negligible iff its Euler characteristic χ(Ḡm,M) vanishes (see [GL96, pg. 529]), or equivalently, it
is isomorphic to a successive extension of shifted Kummer sheaves Lρ[1] (cf. [GL96, 3.5.3]). They
showed that the full subcategory Negl(Ḡm, Q̄`) of Perv(Ḡm, Q̄`) whose objects are the negligible
sheaves is a thick subcategory of the abelian category (see [GL96, 3.5.2]), and thus one can speak
of the quotient category

Tann(Ḡm, Q̄`) := Perv(Ḡm, Q̄`)/Negl(Ḡm, Q̄`).

They then proceeded to show that Tann(Ḡm, Q̄`) is a neutral Tannakian category (see [GL96, 3.7.5]
and [DMOS82, II.2.19]).

Theorem D.7.1. The composite map P → Perv(Ḡm, Q̄`)→ Tann(Ḡm, Q̄`) induces an equivalence
of categories such that:

(i) middle convolution on P induces a tensor product ⊗ on Tann(Ḡm, Q̄`);

(ii) the unit object 1 corresponds to the skyscraper sheaf i∗Q̄` for i : {1} → Ḡm the inclusion;

(iii) the dual M∨ of an object M is the object [x 7→ 1/x]∗DM ;

(iv) the dimension dim(M) of an object M is χ(Ḡm,M);

(v) a fiber functor is M 7→ H0(Ā1
u, j0!M) for j0 : Gm → A1

u the inclusion.

See [GL96, 3.7.2] and [Kat12, Ch. 2 and Ch. 3].

D.8. The category Tann(Gm, Q̄`). Let Negl(Gm, Q̄`) be the full subcategory of Perv(Gm, Q̄`)
whose objects M are those for which M̄ lies in Negl(Ḡm, Q̄`), and let

Tann(Gm, Q̄`) := Perv(Gm, Q̄`)/Negl(Gm, Q̄`).

Like Tann(Ḡm, Q̄`), the quotient category is an abelian category and even a neutral Tannakian
category with tensor product ⊗ given by middle convolution. Moreover, the “extension of scalars”
functor induces a functor

Tann(Gm, Q̄`)→ Tann(Ḡm, Q̄`)

which also call the “extension of scalars” functor.

Proposition D.8.1. Suppose M,N ∈ Tann(Gm, Q̄`) are ι-pure of weights m and n respectively.
Then M∨, N∨, and M ⊗N are ι-pure of weights m, n, and m+ n respectively.

Proof. The Verdier duals DM and DN are ι-pure of weights m and n respectively, hence so are the
Tannakian duals M∨ = [x 7→ 1/x]∗DM and N∨ = [x 7→ 1/x]∗DN . Moreover, Proposition D.6.1
implies that M ⊗N = M ∗mid N is ι-pure of weight m+ n. �

D.9. Semisimple abelian categories. We say that M is simple iff the only subobjects N ⊆ M
in C are isomorphic to 0 or M . More generally, we say that M is semisimple iff it is isomorphic to a
finite direct sum N1⊕· · ·⊕Nm of simple subobjects N1, . . . , Nm ⊆M . We say that C is semisimple
iff each of its objects is semisimple.

Proposition D.9.1. If M ∈ Tann(Gm, Q̄`) is ι-pure of weight zero, then 〈M̄〉 is semisimple.

Proof. If N1, N2 ∈ Tann(Gm, Q̄`) are ι-pure of weight zero, then so is N1 ⊕N2. Therefore Propo-
sition D.6.1 implies that T a,b(M) is pure of weight zero, for every a, b ≥ 0, and [BBD82, 5.3.8]
implies that T a,b(M̄) is semisimple. �
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D.10. Tannakian monodromy group. Let k be an algebraically closed field of characteristic
zero and Veck be the category of finite-dimensional vector spaces over k. It is well known that the
latter yields a rigid abelian tensor category (Veck,⊗) with respect to the usual operators ⊕ and ⊗
of vector spaces and with unit object 1 = k.

Let (C,⊗) be a neutral Tannakian category over k. Thus (C,⊗) is a rigid abelian tensor category
whose unit object 1 satisfies k = End(1) and for which there exists a fiber functor ω, that is, an exact
faithful k-linear tensor functor ω : C → Veck. For example, Veck is a neutral Tannakian category
and the identity functor Veck → Veck is a fiber functor. More generall, given an affine group
scheme G over k, the category Repk(G) of linear representations of G on finite-dimensional k-vector
spaces yields a neutral Tannakian category (Repk(G),⊗), and the forgetful functor Repk(G) →
Veck is a fiber functor.

Given an object M of C, its dual M∨, and non-negative integers a, b, let

T a,b(M) := M⊗a ⊕ (M∨)⊗b

and let 〈M〉 be the full tensor subcategory of C whose objects consist of all subobjects of T a,b(M)
for all a, b ≥ 0. For each automorphism γ ∈ AutC(M), let γ∨ ∈ AutC(M

∨) be the corresponding
dual automorphism and T a,b(γ) ∈ AutC(T

a,b(M)) be the induced automorphism.
Let Algk be the category of k-algebras and Set be the category of sets. Given a pair ω1, ω2 of

fiber functors C → Veck and an object M in C, one can define a functor

Isom⊗(ω1|M,ω2|M) : Algk → Set

by sending a k-algebra R to the set

{ γ ∈ IsomR(ω1(M)R, ω2(M)R) : T a,b(γ)(ω1(N)) ⊆ ω2(N) for all a, b ≥ 0 and N ⊆ T a,b(M) }

where ωi(M)R = ωi(M)⊗k R and

IsomR(ω1(M)R, ω2(M)R) = { γ ∈ HomR(ω1(M)R, ω2(M)R) : γ is invertible }.

Similarly, given a single fiber functor ω : C → Veck and object M in C, one can define a functor

Aut⊗(ω|M) : Algk → Set

as the functor Isom⊗(ω|M,ω|M).

Theorem D.10.1. Let ω1, ω2 be fiber functors C → Veck and M be an object of C.

(i) Aut⊗(ωi|M) is representable by an algebraic group scheme Gωi|M over k;

(ii) if 〈M〉 is semisimple, then Gωi|M is reductive;

(iii) Isom⊗(ω1|M,ω2|M) is represented by an affine scheme over k which is a Gω1|M -torsor;

See [DMOS82, II.2.11, II.2.20, II.2.28, and II.3.2].
We call the group scheme Gωi|M in the theorem the Tannakian monodromy group of 〈M〉 with

respect to ωi.

Theorem D.10.2. Let ω : Perv(Ḡm, Q̄`)→ Veck be a fiber functor over F̄q and M ∈ Perv(Gm, Q̄`).
If M is pure of weight zero, then Gω|M̄ is reductive.

Proof. This follows from Proposition D.9.1 and Theorem D.10.1.ii. �
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D.11. Geometric versus arithmetic monodromy. For every object M in Tann(Gm, Q̄`) and all
integers a, b ≥ 0, the “extension of scalars” functor sends a subobject N ⊆ T a,b(M) to a subobject
N̄ ⊆ T a,b(M̄). Moreover, composing the functor with a fiber functor ω on Tann(Ḡm, Q̄`) yields a
fiber functor on Tann(Gm, Q̄`) which we also denote ω. Thus there is a natural transformation

Aut⊗(ω|M̄)→ Aut⊗(ω|M)

and a corresponding monomorphism of Tannakian monodromy groups

Gω|M̄ → Gω|M .

We call Gω|M̄ and Gω|M the geometric and arithmetic Tannakian monodromy groups of M with
respect to ω respectively.

Proposition D.11.1. Suppose M is in Tann(Gm/Fq, Q̄`) and is pure of weight zero.

(i) Gω|M̄ is a normal subgroup of Gω|M

(ii) If M is arithmetically semisimple, then Gω|M/Gω|M̄ is a torus, and thus Gω|M is reductive.

Proof. Proposition D.9.1 implies that M̄ is semisimple, so part (1) follows from [Kat12, Th. 6.1].
Therefore we can speak of the quotient Gω|M/Gω|M̄ , and [Kat12, Lem. 7.1] implies it is a quotient
of M is arithmetically semisimple. Moreover, Proposition D.10.2 implies that Gω|M̄ is reductive,

so part (2) follows by observing that the extension of a torus by a reductive group is reductive. �

D.12. Frobenius element. Let ω be a fiber functor Tann(Ḡm, Q̄`)→ Veck, let E/Fq be a finite
extension, and let M be in Tann(Gm/E, Q̄`). The geometric Frobenius element of Gal(F̄q/E)
induces a well-defined automorphism φE of M̄ . By applying ω, one obtains a well-defined k-linear
automorphism of ω(M̄), that is, an element of GL(ω(M̄)) = GL(ω(M)). It is even an element of
Gω|M since, for every N ⊆ T a,b(M) and a, b ≥ 0, one has

N̄ = T a,b(φE)(N̄) ⊆ T a,b(M̄)

and thus

ω(N̄) = T a,b(φE)(ω(N̄)) ⊆ ω(T a,b(M̄)) = T a,b(ω(M)).

We call ω(φE) the geometric Frobenius element of Gω|M .

D.13. Frobenius conjugacy classes. Let ω1, ω2 be fiber functors Tann(Ḡm, Q̄`) → Veck, let
M be an element of Tann(Gm, Q̄`), and let π be an element of Isom⊗(ω1|M,ω2|M)(k). Then
Theorem D.10.1.iii implies that the map g 7→ πg induces a bijection

Gω1|M → Isom⊗(ω1|M,ω2|M).

Moreover, the map g2 7→ gπ2 = π−1g2π induces an isomorphism Gω2|M → Gω1|M . While the map is
not canonical (since π is not), the conjugacy class

Frobω2|M = {ω2(φ)πg1 : g1 ∈ Gω1|M (k) } ⊂ Gω1|M (k)

is well defined. We call it the geometric Frobenius conjugacy class of ω2|M in Gω1|M .
For each finite extension E/Fq and each character ρ ∈ ΦE(u), let Lρ be the corresponding

Kummer sheaf on Gm over E and ωρ : Tann(Ḡm, Q̄`)→ Veck be the functor given by

M 7→ H0(Ā1
u, j0!(M ⊗ Lρ)).

It is a fiber functor by [Kat12, 3.2], and ω1 is the fiber functor of Theorem D.7.1.v. We write

FrobE,ρ ⊂ Gω1|M

for the corresponding geometric Frobenius conjugacy class of ωρ|ME where ME = M ×Fq E.
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Let m = dim(ωρ(M)) and n ∈ {0, 1, . . . ,m}. We say that ωρ(M) is mixed of weights w1, . . . , wm
iff there exists an eigenvector tuple α = (α1, . . . , αm) ∈ (Q̄×` )m of any element of FrobE,ρ such that
α ∈ (Q̄×)m and such that

|ι(αi)|2 = (1/|E|)wi for 1 ≤ i ≤ m
for every field embedding ι : Q̄→ C. We also say that ωρ(M) is mixed of non-zero weights w1, . . . , wn
iff it is mixed of weights w1, . . . , wm with wn+1 = · · · = wm = 0.

D.14. Monodromy for pure middle-extension sheaves. Let U ⊆ Gm be a dense Zariski open
subset over Fq. Let θ : π1(U) → GL(W ) be a continuous representation to a finite-dimensional
Q̄`-vector space W and F be the restriction to Gm of the associated middle-extension sheaf ME(θ)
on P1

u. Suppose that θ is pointwise pure of weight w so that M = F((1 +w)/2)[1] is pure of weight
zero. Suppose moreover that θ is geometrically simple and that it does not factor through the
composed quotient π1(U)� π1(Gm)� πt

1(Gm) so that M lies in Parith.
Let Φ(u) be the dual of Γ(u) = (Fq[u]/uFq[u])× (cf. §10.2). We define the geometric and arith-

metic Tannakian monodromy groups of (the Mellin transformation of) θ to be

Ggeom(θ,Φ(u)) := Gω1|M̄ , Garith(θ,Φ(u)) := Gω1|M .

For u = 0,∞, let W (u) denote W regarded as an I(u)-module, and let W (u)unip be the maximal
submodule of W (u) where I(u) acts unipotently. Moreover, let eu,1, . . . , eu,du be positive integers
integers satisfying

W (u)unip ' U(eu,1)⊕ · · · ⊕ U(eu,du)

as I(u)-modules where U(e) denotes the irreducible e-dimensional I(u)-module on which I(u) acts
unipotently.

Proposition D.14.1.

(i) The groups Ggeom(θ,Φ(u)) and Garith(θ,Φ(u)) are reductive, and there is an exact sequence

1→ Ggeom(θ,Φ(u))→ Garith(θ,Φ(u))→ T → 1

for some torus T over Q̄`.

(ii) For each finite extension E/Fq and each α ∈ ΦE(u), the stalk ωρ(M) is mixed of non-zero
weights −e0,1, . . . ,−e0,d0 , e∞,1, . . . , e∞,d∞.

Proof. Part (1) follows from Proposition D.11.1, and part (2) follows from [Kat12, Th. 16.1]. �
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