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Abstract

Background: Antimicrobial resistance (AMR) poses a colossal threat to global health and incurs high economic
costs to society. Economic evaluations of antimicrobials and interventions such as diagnostics and vaccines that
affect their consumption rarely include the costs of AMR, resulting in sub-optimal policy recommendations. We
estimate the economic cost of AMR per antibiotic consumed, stratified by drug class and national income level.

Methods: The model is comprised of three components: correlation coefficients between human antibiotic
consumption and subsequent resistance; the economic costs of AMR for five key pathogens; and consumption data
for antibiotic classes driving resistance in these organisms. These were used to calculate the economic cost of AMR
per antibiotic consumed for different drug classes, using data from Thailand and the United States (US) to represent
low/middle and high-income countries.

Results: The correlation coefficients between consumption of antibiotics that drive resistance in S. aureus, E. coli, K.
pneumoniae, A. baumanii, and P. aeruginosa and resistance rates were 0.37, 0.27, 0.35, 0.45, and 0.52, respectively.
The total economic cost of AMR due to resistance in these five pathogens was $0.5 billion and $2.9 billion in
Thailand and the US, respectively. The cost of AMR associated with the consumption of one standard unit (SU) of
antibiotics ranged from $0.1 for macrolides to $0.7 for quinolones, cephalosporins and broad-spectrum penicillins in
the Thai context. In the US context, the cost of AMR per SU of antibiotic consumed ranged from $0.1 for
carbapenems to $0.6 for quinolones, cephalosporins and broad spectrum penicillins.

Conclusion: The economic costs of AMR per antibiotic consumed were considerable, often exceeding their
purchase cost. Differences between Thailand and the US were apparent, corresponding with variation in the overall
burden of AMR and relative prevalence of different pathogens. Notwithstanding their limitations, use of these
estimates in economic evaluations can make better-informed policy recommendations regarding interventions that
affect antimicrobial consumption and those aimed specifically at reducing the burden of AMR.
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Background
Human antimicrobial consumption, whether or not clin-
ically warranted, is associated with propagation of anti-
microbial resistance (AMR) [1, 2]. This and other key
drivers of AMR are listed in Fig. 1, notably widespread
antibiotic use prophylactically and as growth promoters
in agriculture [3].
Treatment of resistant infections is associated with

higher costs for second line drugs, additional investiga-
tions, and longer hospitalisation [4]. Other indirect costs
associated with AMR include productivity losses due to
excess morbidity and premature mortality. These costs
can be conceptualised as a negative externality to anti-
microbial consumption accrued by all members of soci-
ety, which are not reflected in the market price of
antimicrobials [5, 6].
In addition to curative use in infectious diseases, anti-

microbials are widely used presumptively, in mass treat-
ment programmes (anti-helminths, antimalarials), and as
prophylactics in surgical procedures and alongside
immunocompromising treatments [2, 7]. Many other
healthcare interventions such as vaccinations, diagnos-
tics, and treatments for infectious diseases affect anti-
microbial consumption, and consequently increase or
decrease the risks of AMR. Economic evaluations of
such interventions, however, have failed to internalise

the potential costs of AMR into the analyses, leaving
policymakers to intuitively consider these alongside
more tangible costs and benefits in the evaluation [4, 8].
This can result in uninformed decision making, as the
cost of AMR is likely to be under- or over-estimated by
policymakers, if it is considered at all [4, 8, 9].
In 1996 Coast et al. argued that the omission of the

cost of AMR in economic evaluation is partly explained
by the challenges to its quantification [4], with extensive
uncertainties surrounding resistance mechanisms, pau-
city and poor quality of relevant data, and other meth-
odological challenges [5, 10]. The (mis)perception that
the impact of AMR will only be felt in future years might
also deter analysts from including them in the evaluation,
assuming policymakers operate with a myopic view of
health gains and costs. As confirmed in a recent review,
very few attempts have since been made to quantify the
externality of AMR [11].
Policymakers and key stakeholders, however, appear

increasingly concerned with AMR, with unprecedented
funding being allocated to interventions to mitigate its
impact. In late 2016 the UN General Assembly held a
special meeting on the topic, passing a unanimous reso-
lution from Member States committing to adopt such
measures [12]. Without enumerating the cost of AMR per
antimicrobial consumed, it will be difficult to determine

Fig. 1 Drivers and costs associated with antimicrobial resistance. Adapted: Holmes et al. [2] and McGowan [10]
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the allocative efficiency of these investments, and particu-
larly so in low/middle income countries (LMICs) with
more tangible causes of ill-health to invest in.
Therefore, despite the challenges, there is a clear need

for costing the negative externality of AMR that can be
affixed to the consumption of antimicrobials. The rare
occasions where this has been done indicate the import-
ance of such efforts. In a German hospital setting, for
example, the use of a single defined daily dose of a sec-
ond or third generation cephalosporin was associated
with €5 and €15 respectively in costs of AMR [6]. The
current analysis produced a menu of economic costs of
AMR per antibiotic consumed for a variety drug classes,
stratified into LMICs and high-income country settings.
The output can be applied in future economic evalua-
tions of interventions that involve or affect antibiotic
consumption.

Methods
Economic costs of resistance
The economic cost of AMR is narrowly defined as the
incremental cost of treating patients with resistant infec-
tions as compared with sensitive ones, and the indirect
productivity losses due to excess mortality attributable
to resistant infections. We therefore make a fundamental
conservative assumption that resistant infections replace,
rather than add to the burden of sensitive infections,
even though there are strong indications that for Methi-
cillin resistant Staphylococcus aureus (MRSA), for
instance, the burden is additive to that of Methicillin
sensitive Staphylococcus aureus (MSSA) [13]. We esti-
mate these direct and indirect costs for the following
key pathogens:

1. Staphylococcus aureus (S. aureus) resistant to
Oxacillin

2. Escherichia coli (E. coli) resistant to 3rd generation
cephalosporin

3. Klebsiella pneumoniae (K. pneumonia) resistant to
3rd generation cephalosporin

4. Acinetobacter baumanii (A. baumanii) resistant to
carbapenems

5. Pseudomonas aeruginosa (P. aeruginosa) resistant to
carbapenems

We focus our analysis on Thailand and the United
States as representatives of low/middle and high-income
country settings, respectively.

Total economic loss
This is captured through the addition of the direct and
indirect economic effects of AMR. The direct economic
cost refers to the direct medical cost attributable to the
treatment of a resistant infection as compared with the

costs of treating a susceptible strain of the pathogen,
and the indirect cost refers to the cost to society due to
productivity losses attributable to premature excess
deaths due to resistance.

Direct cost to the provider
We use the product of the number of resistant infections
due to each of the above organisms, and the direct
incremental medical cost attributable to resistance in the
respective infections (Table 1). The number of infections
and deaths per infection for the US was obtained from
the Centers for Disease Control and Prevention (CDC)
[14]. The unit cost per infection was obtained from a
study reporting the incremental cost of resistant bacter-
ial infections based on the Medical Expenditure Panel
Survey, with data available for 14 million bacterial infec-
tions of which 1.2 million were estimated to be antibiotic
resistant [15]. These costs were inflation adjusted to
2016 US$ using the US consumer price index [16].
Estimates for the number of resistant infections and

deaths in Thailand were available from two studies
deriving their estimates from hospital records. The first
report, published in 2012, estimated the number of AMR
deaths at 38,000 [17], but we opted for the more conserva-
tive estimates in a 2016 study reporting approximately
19,000 AMR attributable deaths annually [18]. We ob-
tained the unit cost per infection from the first of these
studies, which included only the costs for antibiotics. We
used an estimated excess length of stay (LoS) of 5 days for
all gram negative bacteria based on the excess LoS for re-
sistant E. coli infections [19] while for MRSA we assumed
no excess LoS as compared with MSSA [20]. We then ap-
plied a cost of $38 per bed-day in a secondary hospital in
Thailand to any excess LoS [21, 22]. Costs were adjusted
to 2016 US$ by converting to US$ at the year they were
reported, and inflation adjusted using the World Bank
Gross Domestic Product (GDP) deflator for Thailand.

Indirect cost
Mortality figures were converted into productivity losses
taking the human capital approach, by multiplying them
by an assumed ten productive life years lost per death,
based on a study of survival post intensive care unit
(ICU) admission in Thailand, which reported similar
results for high income settings [22], with a sensitivity
analysis of 5–20 productive years lost per death. The
number of years lost was then multiplied by GDP per
capita to generate the productivity losses per death. A
3% discount rate along with a 1% annual productive
growth rate was applied to these values.

Resistance modulating factor (RMf)
As illustrated in Fig. 1, human antimicrobial consump-
tion is one of a host of factors driving AMR, and
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different drug classes are implicated in propagating resist-
ance in different pathogens. The Resistance Modulating
factor (RMf) approximates the proportional contribution
of human antimicrobial consumption towards the total
cost of AMR. Correlation coefficients were calculated to
study the strength of the relationship between consump-
tion of antibiotic classes assumed to be implicated in driv-
ing resistance in each pathogen, and the rates of resistance
observed to their first line treatments. It was assumed that
drug classes that were implicated in driving resistance in
each pathogen (Table 2) did so equally [23, 24]. Data
points for consumption (from 2008 to 2014) and resist-
ance (from 2008 to 2015) were obtained from 44 countries
and included total consumption in both hospital and com-
munity settings [25].
The ecological association between the consumption

of antibiotics implicated in driving resistance and the
level of resistance was measured using Pearson’s correl-
ation coefficient, ρp for each pathogen p, considering the
correlation between average resistance rates from 2008
to 2015 and the average of antibiotic consumption
between 2008 and 2014. This is given by

covðRp;QpÞ
σRpσQp

ð1Þ

where Rp is the log transformed average annual measure
of resistance for pathogen p (defined as the proportion of
non-susceptible isolates), and Qp is the log-transformed
mean consumption of implicated antibiotics. The denomi-
nators represent corresponding standard deviations. The

lower and upper bounds of the 95% coefficient confidence
intervals (CI) were used in the sensitivity analysis.

Model for the economic cost of AMR per antibiotic
consumed
Putting together the costs of AMR, the RMf, and the
consumption of antibiotics that drive resistance in each
pathogen, we established the cost of AMR attributable
to the use of a Standard Unit (SU) and a full course of
eight antibiotic drug classes. One SU is a measure of
volume based on the smallest identifiable dose given to a
patient, dependent on the pharmaceutical form (a pill,
capsule, tablet or ampoule) [26]. The cost of AMR per
SU is thus calculated as.

cAMRd ¼
X ρp � DCp þ ICp

� �

Q
ð2Þ

where cAMR is the cost of AMR per standard unit of
antibiotic d consumed, DC the direct cost of treatment
and IC the indirect costs for each pathogen p, and Q is
the annual consumption of antibiotics assumed to be
implicated in driving resistance in the pathogen p. For
each drug d the costs on the right of the equation are
summed up for all pathogens in which it is implicated in
driving resistance, as shown in Eq. 2.
The resulting economic costs per SU of antibiotic con-

sumed in each pathogen were then aggregated to calculate
the cumulative economic cost per antibiotic consumed for
each drug class in each country, including only the infec-
tions in which the particular drug class was assumed to

Table 1 Incidence and mortality of resistant infections per 100,000, and the excess direct cost per resistant infection

Mortality per 100,000 Infections per 100,000 Direct medical costs per infection

Thailand [18] US [14] Thailand US Thailand (US$) [17] US (US$) [15]

S.aureus 4.1 3.5 29.5 25.2 1551 1415

E. coli 0.9 0.2 13.3 3.3 956 1415

K. pneumoniae 0.4 0.5 6.5 7.8 956 1415

A. baumanii 22.4 0.2 326.9 2.3 1749 1415

P.aeruginosa 0.4 0.1 6.1 2.1 1601 1415

TOTAL 28.2 4.6 382.3 40.7

Table 2 Drug classes implicated in increasing the risk of resistance in each organism

Organism (Resistance) Drug classes implicated for propagating the respective resistance

S.aureus (Oxacillin) Quinolones Cephalosporins BSPa NSPa Macrolides

E. coli (3GCa) Quinolones Cephalosporins Glycopeptides BSP Aminoglycoside Macrolides

K. pneumoniae (3GC) Quinolones Cephalosporins Glycopeptides BSP Aminoglycoside Carbapenem Macrolides

A. baumanii (Carbapenem) Quinolones Cephalosporins Glycopeptides BSP Aminoglycoside Carbapenem

P. aeruginosa (Carbapenem) Quinolones Cephalosporins Glycopeptides BSP Aminoglycoside Carbapenem
aBSP Broad Spectrum Penicillin, NSP Narrow spectrum penicillin, 3GC 3rd Generation Cephalosporin
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propagate resistance. For example, as quinolones are
assumed to drive resistance in all 5 pathogens the cost of
resistance per SU of quinolones would be the sum of the
cost of resistance shown in Eq. 2 for all 5 pathogens.
Model outputs are also presented in terms of the cost

of AMR per full course of treatment. While in reality
there will be much variation in the number of SUs per
course depending on the indication, patient age and
other factors, we use a pre-specified number of SU per
adult full course of antibiotics according to the British
National formulary (BNF) [27]. The number of SU per
full course ranged from 3 SU for a full course of macro-
lide antibiotics to 28 SU per full course of quinolones.
The number of SUs per course for all classes is pre-
sented in Additional file 1: Table S1.

Sensitivity analysis
The lower and the upper bound costs of AMR are calcu-
lated using the confidence intervals of the RMf and a
range of 5–20 productive life years assigned to each
excess death to calculate the indirect cost.
Data entry, verification, and analysis were done in

Microsoft Excel 2016. Calculation of the correlation
coefficients was done in R version 3.2.2 (R Foundation
for Statistical Computing, Vienna, Austria). A web inter-
face for the model where readers can vary parameter
estimates and test model assumptions was developed
using R-Shiny (RStudio, Boston, US) [28].

Results
The resistance modulating factor
As shown in Table 3, a positive relationship was con-
firmed between consumption of antibiotics assumed to
be implicated in resistance, and the average resistance
rates in all pathogens, with correlation coefficients ran-
ging from 0.27 in E. coli (p = 0.07) to 0.52 in P. aerginosa
(p = 0.0006).

Direct and indirect costs of AMR
The total economic cost of AMR due to drug resistance
in the five pathogens was $0.5 billion and $2.8 billion in
Thailand and the United States, respectively. This is
disaggregated into direct and the indirect costs for each
of the organisms in the two countries in Tables 4 and 5,

respectively. As an illustration, the direct and indirect
annual cost of AMR in Thailand due to MRSA was esti-
mated at $29 million and $151 million, respectively. After
adjusting for the relative contribution of human consump-
tion using the RMf, the direct and indirect economic loss
was estimated to be $11 million and $56 million.

Economic cost of AMR per antibiotic consumed
With the total economic cost of AMR for each pathogen
multiplied by its RMf in the numerator, and the
consumption data for the relevant drug classes in the
denominator, the economic cost of AMR of one SU of
antibiotic for each pathogen was calculated (Table 6).
Thus any antibiotic implicated in driving resistance in S.
aureus (Table 2) would have an economic cost of AMR
of $0.07 per SU in the Thai setting, and if a full course
of the same drug consisted of 10 units this would imply
a cost of $0.69 per full course.
As most antibiotics are assumed to drive resistance in

more than one infection, the costs need to be aggregated
for all relevant pathogens to obtain the cumulative cost
of AMR attributable to the consumption of one SU of that
antibiotic. For a broad spectrum penicillin that is assumed
to drive resistance in all pathogens, the estimated cost of
AMR would be $6.95 per course of 10 SU in Thailand.
The costs in Table 6 were therefore aggregated for each
drug class where it was assumed to drive resistance in
each of the organisms. Table 7 presents the cumulative
economic cost per SU and per full course by drug class.

Sensitivity analysis
The lower and the upper bound costs of AMR were
calculated using the confidence intervals of the RMf
(Table 3) and a range of 5–20 productive life years
assigned to each excess death for the indirect cost of
AMR. Table 8 shows the resulting range of economic
costs for a SU and a full course of antibiotic consumed
in Thailand and US. Hence, in Thailand, the best case
scenario would see a cost of AMR of $2.93 per course of
co-amoxiclav and the worst would be $32.16.

Discussion
Evidence-based policy draws on economic evaluation to
allocate resources most efficiently [29], but this is entirely

Table 3 Pearson’s correlation coefficient showing ecological associations between average consumption (2008–14) and
corresponding resistance (2008–15)

Organism / resistance Correlation coefficient (95% CI, p-values)

S. aureus resistant to oxacillin 0.37 (0.08–0.61, p = 0.016)

E. coli resistant to 3rd generation cephalosporin 0.27 (− 0.03–0.53, p = 0.07)

K. pneumoniae resistant to 3rd generation cephalosporin 0.35 (0.06–0.59, p = 0.019)

A. baumanii resistant to carbapenem 0.45 (0.15–0.68, p = 0.005)

P. aeruginosa resistant to carbapenem 0.52 (0.25–0.72, p = 0.0006)
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dependent on the inclusion of all pertinent costs and
benefits associated with interventions under consider-
ation. This is, to our knowledge, a first attempt at esti-
mating the costs of AMR per antibiotic consumed by
drug class and across national income brackets. We
chose simple and transparent methods and restricted
our assessment to the current burden of AMR, rather
than more uncertain future projections, and to tangible
factors including only direct medical costs and productiv-
ity losses due to AMR attributable deaths. Even within this
restrictive framework there is much uncertainty surround-
ing interactions between antibiotic consumption, develop-
ment of resistance, and its economic implications, but our
underlying assumptions and parameter estimates were
conservative.
The cost per SU of antibiotic differed between the US

and Thailand for several reasons. First, the burden of
AMR is considerably higher in Thailand, with a total of
28 AMR associated deaths per 100,000 as compared
with 4.6 per 100,000 in the US (Table 1). Furthermore,
the two countries had different epidemiological profiles,
such as a higher burden of Acinetobacter associated
mortality in Thailand as compared with the dominance
of MRSA in the US. There were also notable differences
in the cost data between the two countries; as the unit
costs per infection for Thailand were only available from
hospital settings, they tended to be higher than those in
the US, which included both hospital and community
settings. Other factors contributing to this difference are

the higher GDP per capita and lower per capita consump-
tion of antibiotics in the US.
The costs of AMR for drug classes also varied widely,

driven primarily by the degree to which they were as-
sumed to propagate resistance in the selected infections;
NSPs were assumed to drive resistance only in S. aureus,
while cephalosporins were implicated in resistance in all
pathogens. The costs per full course of antibiotics were
mostly determined by the number of SU per course,
which for glycopeptides is high - a full course of vanco-
mycin being 56 SU (four daily over 14 days) as com-
pared with three daily units for a course of azithromycin
(Additional file 1: Table S1).
Very few attempts have been made to quantify the cost

of AMR per antibiotic consumed and internalise them in
evaluations of interventions that involve or affect the use
of antimicrobials. A recent study by Oppong et al. was
one of the first attempts to do so in an evaluation focus-
ing on antibiotic treatment of respiratory infections,
demonstrating the decisive impact this had on outcomes
[30]. Their estimate for the cost of AMR, however,
assumed that resistance is driven exclusively by human
antimicrobial consumption and that consumption of all
drug classes contribute to resistance in all pathogens
equally. It also ignored the considerable differences in
the burden of resistance across countries, as apparent in
the much higher burden of AMR in Thailand compared
with that in the US. An earlier study evaluating the
cost-effectiveness of malaria rapid tests used a similarly

Table 4 Direct cost to the providers due to human antibiotic consumption in each resistant infection

Thailand United States

S.
aureus

E. coli K.
pneumoniae

A.
baumanii

P.
aeruginosa

S.
aureus

E. coli K.
pneumoniae

A.
baumanii

P.
aeruginosa

Total infections 18,725 11,116 15,239 36,553 6118 80,461 10,400 24,900 7300 6700

Cost per infection 1551 956 956 1749 1601 1415 1415 1415 1415 1415

Direct cost (million US$) 29.0 10.6 14.6 63.9 9.8 113.8 14.7 35.2 10.3 9.5

RMf 0.37 0.27 0.35 0.45 0.52 0.37 0.27 0.35 0.45 0.52

Direct cost due to human consumption
(million US$)

10.7 2.9 5.1 28.8 5.1 42.1 4.0 12.3 4.6 4.9

Table 5 Productivity losses due to excess deaths attributable to resistant infection (Indirect Cost)

Thailand United States

S.
aureus

E.
coli

K.
pneumoniae

A.
baumanii

P.
aeruginosa

S.
aureus

E.
coli

K.
pneumoniae

A.
baumanii

P.
aeruginosa

Excess deaths 2799 597 288 15,168 270 11,285 690 1620 500 440

GDP/capita (US$)a 5907 57,466

Indirect Cost (million US$) 150.5 32.1 15.5 815.3 14.5 5901.4 360.8 847.2 261.5 230.1

RMf 0.37 0.27 0.35 0.45 0.52 0.37 0.27 0.35 0.45 0.52

Indirect cost due to human consumption
(million US$)

55.7 8.7 5.4 366.9 7.6 2183.5 97.4 296.5 117.7 119.7

a Data from World Bank
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crude estimate for the cost of antimalarial resistance,
also showing the large impact this had in swaying results
and conclusions [31]. Elbasha, building on previous work
by Phelps [32] estimated the deadweight loss of resist-
ance due to overtreatment and found a higher cost of
AMR of $35 (2003) per course of amoxicillin in the US
context [33].
Several studies have explored the correlation between

antimicrobial consumption and resistance [34–36]. The
correlation coefficients in the current study are smaller
than prior estimates. For example, the coefficient for
resistance in E. coli in this analysis was 0.27 (Table 4) in
comparison to 0.74 from Goossens et al. [34]. This could
be explained by the latter using 14 European countries
in contrast to 44 countries from different regions in our
study, and more abundant data for European countries
that enabled correlating between the consumption and
resistance of specific drugs, rather than drug classes as
done here. The smaller coefficients imply a conservative
assessment of the cost of AMR attributable to human
antibiotic consumption.
Kaier et al. derived measures of association between

antibiotic consumption and resistance from a time-series
analysis using a multivariate regression model with differ-
ent drug classes [37]. This would be a better approach for
calculating the RMf, rather than the ecological associa-
tions used here. We were restricted, however, by having

only 10 years of consumption data and even sparser and
more heterogeneous resistance data.
There were many assumptions and limitations in the

analysis (see Additional file 1: Table S2). One key limita-
tion was the inclusion of a limited number of organisms,
while consumption of the same antibiotics could drive
resistance in other organisms with additional costs. The
Thai estimates also focused only on the burden of AMR
within hospital settings, excluding the possible excess
burden in primary care and the community. These and
other listed limitations result in a conservative estimate
of the economic costs of AMR in our model.
Taking the human capital approach to productivity

losses implies much higher estimates than would have
been derived using friction costs; given the context of
this analysis, trying to capture the full societal costs of
AMR, this was deemed appropriate. This is essentially
equivalent to the widespread use of GDP/capita as a
proxy for the ceiling ratio in cost-effectiveness analyses
to classify interventions as cost-effective.
The direct medical costs assigned to resistant infec-

tions were derived very differently in each country; the
US estimates were taken from a recent study providing a
national estimate of the incremental healthcare cost of
treating millions of patients with antibiotic sensitive and
resistant infections [15]. The Thai estimates used rudi-
mentary costing methods, largely relying on expert

Table 6 Cost per Standard Unit (SU) and full course antibiotic consumed per resistant organism

Thailand United States

S.
aureus

E.
coli

K.
pneumoniae

A.
baumanii

P.
aeruginosa

S.
aureus

E.
coli

K.
pneumoniae

A.
baumanii

P.
aeruginosa

Direct Cost (million US$) 11 3 5 29 5 42 4 12 5 5

Indirect Cost (million US$) 56 9 5 367 8 2184 97 297 118 120

Total economic loss (million
US$)

66 12 11 396 13 2226 101 309 122 125

Antibiotics consumed (million
SU)

965 774 778 683 683 4797 3867 4646 3888 3888

Direct cost per SU 0.01 0.00 0.01 0.04 0.01 0.01 0.00 0.00 0.00 0.00

Indirect Cost per SU 0.06 0.01 0.01 0.54 0.01 0.46 0.03 0.06 0.03 0.03

Cost per SU 0.07 0.01 0.01 0.58 0.02 0.46 0.03 0.07 0.03 0.03

Cost per full coursea 0.69 0.15 0.14 5.80 0.19 4.64 0.26 0.66 0.31 0.32
a Assuming a full course comprises of 10 standard units

Table 7 Cumulative cost per SU and per antibiotic course by drug class (US$)

Quinolones Cephalosporin Glycopeptides BSPa NSPa Carbapenem Aminoglycoside Macrolide

Thailand per SU 0.7 0.7 0.6 0.7 0.1 0.6 0.6 0.1

per course 19.5 9.7 35.1 10.4 2.8 12.8 12.5 0.3

US per SU 0.62 0.6 0.2 0.6 0.5 0.1 0.2 0.6

per course 17.4 8.7 8.7 9.3 18.6 2.7 3.1 1.7
a BSP Broad spectrum penicillin, NSP Narrow spectrum penicillin
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opinion to estimate the cost of antibiotics required to
treat resistant infections.
The selection of drug classes implicated in propagation

of resistance in the respective organisms were based on
limited available evidence [24]. This might explain some
apparent anomalies, like the relatively low costs for
NSPs, which were assumed to drive resistance only in S.
aureus. Another reason for this anomaly relates to the
entire framework of the analysis, whereby the cost of
AMR is approximated from its current (or recent) esti-
mated burden, rather than projections of what will hap-
pen if resistance to last line drugs, such as carbapenem,
were to spread, for which there are alarming early indi-
cations. Such an approach is arguably more relevant
than focusing on the present burden of AMR, but it re-
quires many more strong and contestable assumptions.
The data on consumption and resistance levels used to

derive the RMf were limited to 10 years and a causal re-
lationship was assumed. For many pathogens and types
of infections, however, this is not realistic as increasing
resistance could alter consumption patterns as patients
and physicians adapt their behaviour in order to provide
the best possible treatment in a changing environment
of resistance and therefore counteract the assumed
dose-response relationship.
These rudimentary estimates for the economic cost of

AMR per antibiotic consumed could be improved upon
in several ways in future work as better data become
available. In addition to addressing the above limitations,
the link between human antibiotic consumption and
resistance can be disaggregated into hospital vs. commu-
nity use. The model can be further extended to other or-
ganisms including parasites and viruses and their varying
distribution in different health sectors and geographical
locations (global/regional/country/hospital/community).

Conclusions
The estimates of the economic costs of AMR per anti-
biotic consumed in this analysis were high. Incorporation
of such estimates in economic evaluation of interventions

that affect the use of antibiotics will better portray their
true costs and benefits, and could act as a catalyst for
more efficient deployment of interventions to mitigate the
burden of AMR. We highlight the limitations of the
analysis to emphasise the need for further development of
the methods, and point to the notable differences in the
costs of AMR per antibiotic consumed between the two
countries and within the different drug classes to encour-
age their adaptation to other settings as relevant data
become available.
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