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Abstract: Although genome-wide association studies (GWAS) have identified several hundred loci
associated with autoimmune diseases, their mechanistic insights are still poorly understood. The
human genome is more complex than single nucleotide polymorphisms (SNPs) that are interrogated
by GWAS arrays. Apart from SNPs, it also comprises genetic variations such as insertions-deletions,
copy number variations, and somatic mosaicism. Although previous studies suggest that common
copy number variations do not play a major role in autoimmune disease risk, it is possible that certain
rare genetic variations with large effect sizes are relevant to autoimmunity. In addition, other layers
of regulations such as gene-gene interactions, epigenetic-determinants, gene and environmental
interactions also contribute to the heritability of autoimmune diseases. This review focuses on
discussing why studying these elements may allow us to gain a more comprehensive understanding
of the aetiology of complex autoimmune traits.

Keywords: complex loci; autoimmune diseases

1. Introduction

Autoimmune disease is a major human health burden, affecting 5% to 8% of the world’s
population. To date, more than 80 autoimmune diseases have been described [1]. For some of the
more common conditions, such as multiple sclerosis, Crohn’s disease, rheumatoid arthritis, and type 1
diabetes, increases in incidence and prevalence have been observed in westernised societies over the last
several decades [2–5]. Both genetic and environmental factors are thought to play roles in the initiations
and progression of autoimmunity. Environmental factors such as viral infection [6], nutrition [7],
gut dysbiosis [8] and in utero environment [9] have all been postulated to play a role but have been
difficult to confirm due to variations among individuals, populations and geographical areas [10–15].
In contrast, common genetic components of autoimmune diseases have been better characterised.

In the 1970s, studies of twins and first-degree relatives identified the most important genetic
risk attributed by the human leukocyte antigen (HLA) region [16–20]. In the subsequent decades,
candidate gene studies led to the discovery of several other predisposing loci for autoimmune diseases.
For example, variable number tandem repeat (VNTR) class I alleles upstream of the insulin gene were
associated with type 1 diabetes [21–23]; PTPN22 was found to be associated with rheumatoid arthritis,
type 1 diabetes, systemic lupus erythematosus, and Grave’s disease [24]; CTLA4 was associated with a
number of autoimmune conditions including autoimmune thyroid disease, type 1 diabetes, coeliac
disease [25]; and IL2RA was associated with type 1 diabetes, rheumatoid arthritis, and multiple
sclerosis [2,26,27]. The subsequent genome-wide association studies (GWAS) comparing affected cases
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with unrelated healthy individuals substantially increased the power of gene discovery analyses for
autoimmune diseases, which led to over 300 loci being identified [28]. GWAS improved our knowledge
of disease risk, but the specific design of GWAS does not allow consideration of other elements
potentially involved in disease susceptibility. This is because GWAS are based on common genetic
variants, specifically single nucleotide polymorphisms (SNPs). While the aetiologies of ‘complex
diseases’ are attributed by genetic and environmental components, as well as the interplay between
the both, genetic factors themselves are comprised of SNPs and genetic variations at many other
levels. In addition, phenomena such as gene-gene interactions (epistasis), and genetic-epigenetic
interactions increase the complexity of the genetic basis of human common diseases and traits. Recent
studies suggest that many causal variants trigger autoimmune responses in a cell-type specific and/or
cell-state specific manner. In this review, we discuss the roles of complex loci at genetic and epigenetic
levels in the aetiology of autoimmune diseases.

2. The Genome-Wide Association Studies Era

Genome-wide Association Studies were facilitated by advancing technology to conduct
high-throughput SNP analyses in very large case-control populations. For autoimmune diseases,
by identifying susceptible genetic variants, one can (a) help understand the underlying biological
pathways to inform the design of novel immune therapies; and (b) predict the risk of individuals
developing autoimmunity. One of the strengths of GWAS is its study design. The powerful
hypothesis-free, association mapping design of GWAS has enabled the identification of hundreds
of candidate genes strongly associated with human traits. Briefly, a GWAS is performed first by
genotyping a set of SNPs (often over 500 k SNPs) using commercial microarrays. Subsequently,
genotypes at the genome-wide level are imputed according to the haplotype structures provided by
reference panels. For example, based on the early HapMap phase 1–3 reference panel, the Wellcome
Trust Case Control Consortium published a number of GWAS for common autoimmune diseases such
as rheumatoid arthritis and type 1 diabetes [29]. The 2.5 million SNPs from the HapMap reference panel
only included the most common variants, with minor allele frequencies greater than 5% of the study
population [30]. The subsequent 1000 Genomes Project interrogated genotypes of nearly 40 million
variants, including 1.4 million insertions/deletion variants [31], which dramatically improved GWAS
coverage, allowing the identification of several novel autoimmune disease loci [32]. One of the
applications of GWAS results is the development of genetic risk score (GRS). Genetic risk score does
not aim to detect individual SNPs, but instead is an aggregate of genetic risk across the genome. It is
calculated by combining the effect sizes of multiple SNPs, weighted by the strength of each SNP [33].
Although GRS is not powerful enough to make clinical diagnosis at individual level [34], it has been
shown to be useful for patient stratification and risk prediction [35–38]. For example, in type 1 diabetes,
it was suggested that targeting the top 18% individuals of the general population with the highest
ranked GRS would capture 80% of future cases [39]. Given that the prevalence of type 1 diabetes is
0.4% in the general population, this will decrease the number of individuals that will need to be treated
to prevent one type 1 diabetes case from 250 to 50 [39].

3. Missing Heritability in Genome-Wide Association Studies

Narrow sense heritability (h2) is a term that defines the proportion of phenotypic variance that is
contributed by additive genetic variance [40]. It has been shown that GWAS tend to explain a smaller
fraction of h2 compared to those estimated from classical methods based on population data, such
as from the analysis of offspring and parental phenotypes, siblings or monozygotic and dizygotic
twins [41]. This gap is known as missing heritability [41]. Even in highly heritable conditions such
as type 1 diabetes and juvenile idiopathic arthritis (h2 up to 90%), SNP based h2 still falls short of
those reported from population estimates [41]. Missing heritability was originally thought to be partly
contributed by rare variants of the genome. To examine this hypothesis, Hunt et al. first performed
dense exon sequencing of 20 GWAS loci that exhibit shared susceptibilities to six common autoimmune
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diseases to identify putative rare variants and then conducted single-variant association analyses
among the 20 loci; their findings suggested that rare variants have a negligible impact on autoimmune
disease risk [42]. Thus, the components of missing heritability remain largely unknown and may
involve complex loci, gene-gene interactions and epigenetic regulations [43,44].

4. The Role of Complex Loci at Genetic Level

Complex loci include many types of genetic variations, such as insertion-deletion polymorphisms
(indels), VNTRs (including microsatellites and minisatellites), copy number variants (CNVs, with each
DNA fragment that is ~1 kb or larger) [45], long interspersed nuclear elements [46], short interspersed
nuclear elements, Alu repeats, somatic mosaicism, and cytogenetic abnormalities (including insertions,
duplications, translocations, inversions). There is evidence demonstrating functional effects on human
diseases caused by complex genetic variations of the genome [46,47]. One particular example is the
VNTR region upstream of the INS promoter, as it was one of the very first loci to be associated with type 1
diabetes [48]. Of the three subclasses of INS VNTR, class I homozygous alleles were predisposing (odds
ratio (OR) = 2.68) and class III alleles were dominantly protective (OR = 0.37) [21]. The predisposing class
I variants were associated with lower levels of INS mRNA expression in the thymus, implying impaired
tolerance induction of T-cells during thymic education [49]. Another example is the VNTR of the C4
(complement component 4), which has been associated with systemic lupus erythematosus. Systemic
lupus erythematosus is an autoimmune condition where deficiency in the clearance of apoptotic cells
and immune complexes is involved as part of the disease aetiology [50]. The protein product of C4
(C4A) plays a pivotal role in the activation of the classical and the lectin complement pathways that
lead to cytolysis or neutralisation of invading microbes, clearance of immune complexes and apoptotic
materials [51]. Low copy number of C4 VNTR was strongly associated with increased risk of systemic
lupus erythematosus and was coupled with lower levels of plasma C4A, whereas high copy number of
C4 was protective and was associated with higher levels of plasma C4A [51].

Due to the complexity of structural DNA elements, technical challenges exist to study them
directly in large-scale populations. A simple way to profile their associations in common diseases
is through tagged SNPs; for example, a given SNP in linkage disequilibrium with another genetic
variant, such as a VNTR or CNV, could capture the genetic variations and therefore be used as a
proxy. However, it is possible that not all of the structural elements are well-tagged by SNP arrays
used to conduct GWAS, and hence, they are not directly tested in GWAS for their associations with
autoimmune diseases. Sequencing studies showed that CNVs account for a major proportion of human
genetic polymorphism [52,53]. To assess whether CNVs can explain missing heritability of common
diseases, the Wellcome Trust Case Control Consortium employed custom arrays that interrogate
approximately 50% of all common CNVs (>5% frequency) and performed association analyses for
eight diseases, including bipolar disorder, breast cancer, coronary artery disease, Crohn’s disease,
hypertension, rheumatoid arthritis, type 1 diabetes and type 2 diabetes; over 3400 polymorphic CNVs
were surveyed [54]. Although the study identified three associated CNV loci—HLA for Crohn’s disease,
rheumatoid arthritis and type 1 diabetes; IRGM for Crohn’s disease; and TSPAN8 for type 2 diabetes,
all of which were tagged by SNPs from previous GWAS [54]. However, a limitation of this study
was that CNVs that were poorly assigned into distinct classes were eliminated from the analyses.
A subsequent study by Zanda et al. further tested 3410 previously unclustered and untagged CNVs
on their associations with type 1 diabetes using a family study design [55]. The authors observed
no convincing associations between untagged CNVs and type 1 diabetes. Therefore, data from both
studies led to the conclusion that common CNVs do not explain a major proportion of missing
heritability. If CNVs are involved in susceptibility to common autoimmune diseases, one would
imagine that they must be rare variants with large effect sizes. In fact, only 22% of rare CNVs (<1%
frequency) were tagged by at least one SNP, indicating that they would be interesting targets for
investigation [54]. Cooper et al. investigated whether rare CNVs could have a significant contribution
to type 1 diabetes risk [56]. In their study, 6808 type 1 diabetes and 9954 control individuals were
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compared; de novo rare CNV deletions (rDELs) were found more frequently in type 1 diabetes patients.
In addition, rare CNVs were divided into small (0–20 kb), medium (20–400 kb), and large (>400 kb)
groups; there was a greater proportion of large rDELs in type 1 diabetes patients (OR = 1.57). More
interestingly, very long CNVs were found in eleven type 1 diabetes cases and only one control (rDELs
> 3 Mb, OR = 15.60). These rDELs are enriched in genes that regulate immune function. Because of the
rarity of CNVs, the study had insufficient power and coverage. Nevertheless, these data still imply
that rare CNVs are potentially involved in the risk for type 1 diabetes, but it was estimated that over
30,000 cases and equivalent number of controls are required to detect rare CNVs with large effects
(ORs approximately 8) [56].

Another phenomenon that potentially contributes to missing heritability of autoimmune disease is
somatic mosaicism. Unlike being passed from parents or developed ‘de novo’ in sperm or egg, this type
of mutation occurs post-zygotically after the single cell stage, resulting in two genetically distinct
cell populations within an individual [57]. Somatic mosaicism can be found in monozygotic twins;
particularly, it was demonstrated in twins with neurological disorders [58], implying that it may play a
role in disease pathogenesis. Somatic mosaicism has also been described in a number of autoimmune
diseases. For example, de novo CNVs were previously found in the affected twins with primary
biliary cirrhosis of monozygotic twin pairs [59]. Another example is autoimmune lymphoproliferative
syndrome (ALPS), which is mainly characterised by the proliferation of CD4-/CD8- double negative
lymphocytes [60]. These double negative T cells are originated from activated single positive T cells that
had heterozygous somatic mutations of Fas, resulting in their resistance to apoptosis [61]. More rarely,
somatic mosaicism has been reported to associate with a combination of autoimmune diseases.
For example, a KRAS mutation was detected in T and B lymphocytes but not in natural killer cells
of a patient with multiple autoimmunity, including thrombocytopenia, recurrent Henoch-Schonlein
purpura and intestinal Behçet disease [62]. Further analyses are required to determine whether rare
genetic variations such as rDELs and somatic mosaicism have significant additional value to SNPs in
missing heritability of autoimmune diseases or if their effects are negligible. Other possible factors
explaining missing heritability may include inaccurate heritability estimates, study design limitations
of GWAS (such as sample size, type of genetic variants considered), non-additive genetic effects
(epistasis, gene and environment interaction), epigenetics and disease heterogeneity [43,63,64].

Genome-wide Association Studies are set out to detect the most associated signals within a given
genomic region. Interestingly, some regions such as the HLA locus demonstrate multiple association
signals with autoimmune diseases. To better define independent association signals, conditional
stepwise regression is often used. This was designed to ask the question whether a single variant could
best explain a trait and conditional on this single variant, whether any other variants explain additional
trait variance [65]. The international multiple histocompatibility complex and autoimmunity genetics
network performed conditional regression analyses on seven autoimmune disorders in the HLA
region [66]. For example, in systemic lupus erythematosus, the top associated signal was rs1269852,
a SNP located between TNXB and CREBL1 in chromosome 6, in strong linkage disequilibrium with
HLA-DRB1*0301. Conditioning on the top variant identified multiple secondary association signals
such as HLA-DRB1*1501, class I (between RNF39 and TRIM31), class II (HLA-DQB1-DQA2), and class III
(NOTCH4) HLA alleles. For Crohn’s disease, conditioning on the top signal HLA-DRB1*1101 identified
additional independent associations such as rs382259 (located near the NOTCH4 region), the class I
region (between HLA-B and MICA) and the DQA-DQB1-DQA2-DQB2 region. For multiple sclerosis,
conditional analysis revealed that apart from the top association DRB1*1501 (tagged by rs3135391),
HLA-B*4402 and HLA-C*0501 also appeared to have independent associations. Together, these data
demonstrate that the HLA region exhibits complex and multi-locus effect for autoimmune associations.

5. Identifying Candidate Causal Variants Using Fine Mapping

Genome-wide Association Studies signals highlight regions of associations, but the lead variants may not
be causal to disease phenotype. Identifying causal variants in regions associated with autoimmune diseases is
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a challenging task, often due to high linkage disequilibrium structure and multiple disease-causing variants
in relatively close proximity. Therefore, various fine-mapping strategies have been developed and we chose
IL2RA as an example to illustrate how fine-mapping strategies have helped to define candidate causal variants
for several autoimmune diseases. The IL2RA (CD25) is located on chromosome 10p15.1; it encodes a subunit
(IL-2Rα) of the receptor for the pro-inflammatory cytokine IL-2, which has been associated with a number
of autoimmune diseases including multiple sclerosis, rheumatoid arthritis, autoimmune thyroid disease,
and type 1 diabetes [2,27,67]. Upon stimulation of IL-2, IL-2 receptor signals to maintain the suppressive
functions of CD4+FOXP3+ regulatory T cells and facilitate effector and memory T cell differentiation [68].
The IL2RA region was initially found to be associated with type 1 diabetes using a multi-locus genetic
association test in 2005 [69]. Using conditional logistic regression as mentioned previously, Lowe et al.
fine-mapped the region covering IL2RA and its neighbouring gene RBM17, which led to the identification of
two loci independently associated with type 1 diabetes [70], each comprising a number of indistinguishable
SNPs. Group 1 is located in intron1 of IL2RA (marked by rs12722495, previously marked by rs41295061) and
Group 2 is located at the intergenic region between the 5′ of IL2RA and RBM17 (marked by rs11594656) [70].
Maier et al. later discovered an independent Group 3 signal in intron 1 of IL2RA, tagged by SNP rs2104286 [71].
Apart from type 1 diabetes, Group 3 is also associated with multiple sclerosis. Functionally, the protective
variant of the Group 1 SNP rs12722495 induces higher expression levels of CD25 on the surface of CD4+
memory T cells, potentially causing increased T cell activation in response to IL-2 stimulation. The protective
variant of Group 3 SNP rs2104286 was counterintuitively associated with a lower percentage of CD25+ cells
in CD4+ naïve fraction, suggesting a reduced likelihood of T cell activation [72].

The recent development of fine-mapping methods such as Bayesian stochastic search proved to
be more efficient in detecting multiple independent association signals. Unlike conditional logistic
regression, Bayesian stochastic search tests the question which sets of SNPs can best jointly explain
type 1 diabetes association. Wallace et al. applied this approach to re-analyse the IL2RA region in
2015. They showed that, instead of three, there are four groups of SNPs independently associated
with type 1 diabetes [65], with Group A SNPs located in the intron 1 of IL2RA (that is equivalent
to Group 1), Group C SNPs located in the intergenic region between IL2RA and RBM17 (equivalent
to Group 2), which replaced the previous Group 3 SNP, Group E SNPs located at the 5′ of RBM17,
and Group F SNPs resided in the 5′ of RBM17 to intron 2 of PFKFB3 (Figure 1) [65]. For multiple
sclerosis, the risk could be explained either by Group A and Group D SNPs (tagged by rs56382813)
jointly or by Group B SNP (rs2104286) alone.

Figure 1. Schematic representation of multiple independent associations at the IL2RA-RBM17-PFKFB3
region discovered using stepwise regression and Bayesian stochastic search that are associated with
both type 1 diabetes and multiple sclerosis. Group 1–3 single nucleotide polymorphisms that contribute
to type 1 diabetes were originally identified using stepwise regression. The later-developed Bayesian
stochastic search, however, identified four groups of SNPs (A, C, E, F) that jointly explain type 1
diabetes risk at the IL2RA locus; whereas for multiple sclerosis, the risk at this locus was explained by
Group A and D jointly, or by Group B SNPs alone. Figure was adapted and modified from [65].
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6. Epistasis in Autoimmune Diseases

Genes may not function in isolation. Gene–gene interactions (epistases) are major contributors
to autoimmune disease risk; a classical example is the HLA class II haplotypes. For example,
HLA-DRB1*1501-DQB1*0602 is the most susceptible haplotype for multiple sclerosis [73] and
HLA-DRB1*0301–DQB1*0201 is the most susceptible haplotype for type 1 diabetes [74]. A summary of
HLA class II haplotypes in autoimmune diseases is reviewed here [75]. Class II and class I interactions
also play a role in autoimmune disease risk. For instance, in type 1 diabetes patients, a combination of
HLA-A*24, DQA1*03, and DR9 has been associated with accelerated beta cell loss [76]. The interaction
between HLA-DR3/DR4 and class I A*03 allele demonstrated significant protective effect of clinical
progression to type 1 diabetes, whereas HLA-DR3/DR4 and class I B*39 interaction contributed
significantly to the progression from multiple islet autoantibody to type 1 diabetes [77]. HLA also
interact with non-HLA genes. For example, an increased risk of systemic lupus erythematosus
(OR = 1.19) was observed when CTLA4 (cytotoxic T lymphocyte antigen 4), a negative regulator of
T cell response interacts with SNPs rs3131379 and rs1270942 located in the HLA class III region [78].
Another similar example was reported in multiple sclerosis. A driver of increased risk in multiple
sclerosis is the soluble form of interleukin-7 receptor (IL-7R, encoded by IL7R). Exon 6 of IL7R interacts
with many proteins, one of them is encoded by the DDX39B that is located in the HLA region.
Galarza-Munoz et al. recently identified that a SNP rs2523506 within the DDX39B region reduces
DDX39B expression. More importantly, the authors showed a significant increased risk in multiple
sclerosis when rs2523506 interacts with a risk variant of IL7R (rs6897932). Carriers of risk alleles
of both SNPs increased soluble IL-7R expression, thereby increasing the disease risk [79]. Although
epistasis at the HLA region is readily detectable because HLA genes are the main susceptibility genes
for autoimmune diseases, interactions between HLA and non-HLA genes, as well as between two
non-HLA genes are difficult to observe due to the limited power at the current GWAS sample size. This
is mainly explained by two reasons. Firstly, there is limited evidence that epistasis between the HLA
and non-HLA genes, as well as between two non-HLA genes comprise a large fraction of total genetic
variation in autoimmune diseases. Secondly, in the additive effect model, the loss of information
between genotyped SNPs and causal variants is proportional to linkage disequilibrium (r2), but in
epistasis, the loss of information between the two is proportional to r4 [80]. Therefore, a much larger
sample size is necessary to detect epistasis than to detect the main effect in GWAS [81].

7. Epigenetic Regulation

Epigenetic mechanism is another layer of regulation that influences a gene function. Although
the Greek prefix ‘epi’ indicates an effect that is acting ‘on’ the genome, epigenotype can influence
autoimmune susceptibility in several ways, as illustrated in Figure 2. As shown in the first scenario in
Figure 2, epigenetic mechanisms can independently mediate genetic and environmental risk, which
subsequently lead to autoimmune disease. Perhaps the most well-studied epigenetic mechanisms
involve DNA methylation, histone modification, and long non-coding RNAs. DNA methylation
occurs at the cytosine-phosphate-guanine (CpG) residues; it has been shown that approximately
20% of DNA methylation variance is explained by additive genetic variance [82]. Single nucleotide
polymorphisms that are in close proximity to the CpG site (cis, <1 Mb centred on the SNP) as well
as SNPs that are far away from the CpG site (trans, >1 Mb centred on the SNP) can both influence
DNA methylation levels [82,83]. These SNPs are known as methylation quantitative trait loci (mQTLs).
Many early studies attempted to find mQTL associated DNA methylation changes by performing
epigenome-wide association analyses [84–86]. However, one needs to carefully interpret these results,
because it is difficult to discriminate causality (that DNA methylation is causally influencing a trait)
from reverse causation (that DNA methylation is a consequence of changes in gene expression), linkage
disequilibrium confounding (that causal variants and mQTLs are simply in linkage disequilibrium)
or from horizontal pleiotropy (that mQTLs alter DNA methylation and autoimmune diseases via
different mechanisms) [87]. Recent developments in statistical strategies such as causal inference
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test [88], Mendelian randomisation (MR) [89,90], and genetic co-localisation fine mapping [87] have
made such discriminations possible.

Figure 2. Schematic representation of three modes of actions where epigenetic regulations can take
place to contribute to autoimmune disease risk. Figure was adapted and modified from [91].

Liu and colleagues applied a causal inference test on a cohort of 354 rheumatoid arthritis patients
and 337 controls to investigate whether genetic risk of rheumatoid arthritis is mediated by DNA
methylation. They identified a large number of differentially methylated CpG sites within the HLA
region (535 SNP-CpG pairs) that potentially exhibit mediatory effect. A similar observation was made
at a non-HLA locus, within the Glutathione S-Transferase Alpha 2 (GSTA2) gene [92]. Other studies
using the same approach have found that DNA methylation potentially mediate the expression
of a number of genes in human islets, including HLA-DQB1, the main predisposing gene to type
1 diabetes [93]. In our recent work, we applied Mendelian Randomisation together with genetic
co-localisation fine-mapping to study whether DNA methylation mediates the genetic risk of type 1
diabetes. We identified a number of loci, including CTSH, PTPN2 and AFF3, where DNA methylation
is potentially on the causal pathway to type 1 diabetes [94]. Richardson et al. further extended
this statistical framework to systematically investigate the functional roles of DNA methylation in
hundreds of traits including many other autoimmune diseases [95]. DNA methylation appeared to
increase autoimmune disease risk in a number of susceptible loci, where inflammatory bowel disease
had the greatest number of DNA methylation mediated loci, followed by rheumatoid arthritis and
Crohn’s disease [96].

DNA methylation may also play a role in the female predominance observed in autoimmune
diseases [97]. Part of the reason for the female predominance was thought to be due to a high frequency
of skewed X-chromosome inactivation. In females, one copy of the X-chromosome was silenced by
DNA methylation whereas the expressed copy of X-chromosome was unmethylated. The choice of
which copy of X-chromosome to be silenced is random, which results in two distinct cell populations,
where 50% paternal X-chromosome genes are expressed in one cell population and 50% maternal
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X-chromosome genes are expressed in another. As a result, the dosage of proteins transcribed from
X-chromosomes is approximately equal between males (XY) and females (XY). However, not all
women have a 50:50 ratio of cells with one or the other X-chromosomes active. A deviation from
equal inactivation of each parental allele is known as skewing; for example, some alleles could be
inactivated in 70–80% cells and in extreme cases, in 90–95% cells. This may lead to an altered dosage of
proteins to be translated in some females. In peripheral blood mononuclear cells and multiple other
tissues, skewed X-chromosome inactivation has been observed more frequently in female patients
with autoimmune diseases [98,99]. It is considered that lowered expression of X-linked self-tolerance
genes in the thymus may lead to lack of exposure of self-antigens, subsequently leading to the escape
of autoreactive T cells.

In the second scenario, an epigenotype is thought to modulate a genetic/environmental
risk factor. A typical example of this is the regulation by long non-coding RNAs (lncRNAs).
Long non-coding RNAs are RNAs that exceed 200 nucleotides in length and they are broadly
classified into five subclasses: stand-alone lncRNAs (or large intergenic non-coding RNAs, lincRNAs),
natural antisense transcripts (NATs), pseudogenes-derived lncRNAs [100], long-intronic lncRNAs, and
promoter/enhancer-associated lncRNAs [101]. lncRNAs have been shown to involve in anti-viral
responses [102], T cell differentiation [103], and NFkB signalling [104]. Mirza et al. overlapped known
lncRNAs with susceptible variants for inflammatory bowel disease and type 1 diabetes based on their
physical locations in the genome. They identified over 2000 inflammatory bowel disease-associated
SNPs physically located within 468 lncRNAs and over 1000 type 1 diabetes SNPs within 247 lncRNAs;
many of them potentially disrupt the secondary structure of lncRNAs [105]. The authors therefore
hypothesised that some of the autoimmune disease associated SNPs can alter the expression and
function of lncRNAs, which subsequently influence disease related genes. This hypothesis was
systematically investigated using statistical approaches by Kumar et al. where the authors found
that disease associated expression quantitative trait loci (eQTLs) affect 112 out of 2140 lncRNAs in whole
blood [106]. Hrdlickova et al. mapped lncRNAs expressed in seven immune cell types (granulocytes,
monocytes, NK cells, B cells, memory T cells and naïve CD8+ cells) to susceptible loci in nine autoimmune
diseases [107]. They found that the proportion of lncRNAs expressed in autoimmune disease loci were
significantly higher than the proportion of lncRNAs expressed genome-wide; additionally, the expression
levels of lncRNAs in autoimmune disease loci were higher than that detected at the genome-wide
level [107]. More interestingly, lncRNAs overlapping the disease regions tend to be tissue-specific.
For example, inflammatory bowel disease associated lncRNAs are preferentially expressed in NK cells,
juvenile idiopathic arthritis associated lncRNAs are enriched in memory and CD8+ T cells [107].

The third scenario elucidates the most complicated situation, which is genetic-epigenetic
interaction. This type of interaction has been seen in many occasions involving enhancer regulations.
Enhancers are defined as cis-acting DNA sequences that can increase the transcription of genes. Ninety
eight percentage of enhancers are located in the non-coding regions of the genome, either upstream or
downstream of genes, or in introns. Enhancers can be identified using high-throughput sequencing
targeting specific markers such as H3 acetylated at lysine 27 (H3K27ac) and H3 monomethylated at
K4 (H3K4me1), which are chemical modifications of the histone proteins that wrap around DNA.
Their activities can also be specific to a tissue or a particular cell type, a time-point in life, or a unique
physiological state [108]. A recent study overlapped causal variants with histone marks in 21 common
autoimmune diseases showed that causal variants of a disease trait are enriched in enhancers specific
to disease-affecting tissues. For example, causal variants of Alzheimer’s disease are enriched in
enhancers in the brain; causal variants of type 1 diabetes are enriched in enhancers in lymphocytes as
well as in pancreatic islets [109]. In addition, a disproportionate number of enhancers respond to ex
vivo stimulation, reflected by increased H3K27Ac (marks active promoter and enhancer) signals and
non-coding RNA transcription upon immune cell activation [109].

A specific example of genetic-epigenetic interaction was previously described in Grave’s disease.
One hypothesis for the initiation of Grave’s disease is viral infection. Infection can lead to the
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recognition of auto-antigens via molecular mimicry, which further causes bystander activation of
auto-reactive T cells and global pro-inflammatory cytokine production [110–112]. To mimic the
consequence of viral infection, Stefan et al. treated human thyroid cells with pro-inflammatory
cytokines [113]. They observed that thyroid cells exerted significant changes of H3K4me1 signatures at
the intron1 of TSHR, which harbours a previously predicted causal variant, rs12101261, to Grave’s
disease. After pro-inflammatory cytokine treatment, rs12101261 was able to interact with histone
deacetylase and a transcription repressor PLZF, resulting in reduced TSHR expression and breakdown
of central tolerance [113].

An immediate problem of studying genetic-epigenetic interaction is that only 10–20% causal
variants were predicted to disrupt transcription factor binding motifs at the enhancer sites, 80–90%
causal variants function by modifying the non-classical regulatory sequence [109,114]. In addition,
the nature of stimulus-dependent enhancer interactions makes it challenging to robustly study them
in un-stimulated cells. The advances in Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)-Cas9 technologies enabled their screening and characterisation more readily in un-stimulated
cells. CRISPR activation (CRISPRa) utilises guide RNAs conjugated with a strong transcriptional
activator (i.e., VP64) to induce the expression of endogenously weakly expressed genes [115]. Simeonov
et al. recently used this approach to scan enhancers surrounding the CD69 and IL2RA [116]. They
identified a CRISPR responsive enhancer at the intronic region of IL2RA, and confirmed the ability of
the candidate causal variant rs61839660 (group A SNP) to disrupt this enhancer activity in a stimulus
dependent manner. Using mouse models, they subsequently showed that upon T cell stimulation,
this enhancer controls CD4 naïve T cell polarisation, as CD4+ naïve T cells in the enhancer deletion
mouse strain tend to favour a pro-inflammatory Th17 cell differentiation rather than T regulatory
cell differentiation [116]. Interestingly, enhancer disruption of IL2RA delayed its expression, which
was eventually recovered three days after T cell stimulation [116], implying that the induction of
autoimmunity could happen in a transient and tissue specific manner.

8. Conclusions

With GWAS studies, we have gained significant knowledge to broadly define autoimmune
disease-associated regions genome-wide. Although GWAS have their inherent limitations, it was a
big step forward, considering that the concept of autoimmunity was initially proposed during the
1940s [117] and the HLA associations were only first described in the 1970s. The challenge for the next
decade is to precisely characterise the functions of disease risk loci. With fast-growing profiling of the
genomic and epigenomic regulatory elements, as well as cutting edge bioinformatic and molecular
genetic tools available, we are in a unique position to study complex loci. Only by understanding the
complex and dynamic nature of autoimmune disease mechanisms, can we deliver truly translational
research that impact future clinical care.
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