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Replies to commentators on Accuracy and the Laws of
Credence

Richard Pettigrew
Richard.Pettigrew@bris.ac.uk

August 29, 2017

1 Reply to Joyce

Jim Joyce and I agree on many things: we agree on the conclusions of two of the main
accuracy-based arguments for epistemic norms for credences; and we agree on two of the
three main ingredients in those arguments. But we disagree on the third main ingredient, as
well as the method by which the ingredients are combined to produce their conclusions. For
me, an accuracy argument for a given epistemic norm has three ingredients: a specification
of the legitimate measures of inaccuracy, a decision-theoretic principle, and a mathematical
theorem. The mathematical theorem shows that, if we apply the decision-theoretic principle
when the options are different sets of doxastic attitudes towards a given set of propositions
and the utility function is one of the legitimate measures of accuracy for that sort of doxastic
attitude, then the epistemic norm follows. Joyce’s favoured versions of a given accuracy ar-
gument also has three ingredients: he agrees that it includes a specification of the legitimate
inaccuracy measures and he agrees that it includes a mathematical theorem; but instead
of a decision-theoretic principle, he takes it to include a principle concerning the notion of
evidential support. This principle has two components. The first component connects ev-
idential support and rationality; it says that, if c∗ is better supported than c by an agent’s
evidence, it is irrational for that agent to have c. The second component connects evidential
support and accuracy; it is specific to the epistemic norm to be justified. For instance, SUP-
PORTDom is the second component of the evidential support principle that appears in Joyce’s
favoured accuracy argument for Probabilism, whereas SUPPORTCh appears in his favoured
argument for the Principal Principle.

In his excellent remarks, Joyce raises two worries for my accuracy argument for Prob-
abilism, and one worry for my accuracy argument for the Principal Principle. Let me take
these in order.

The first two worries target my response to concerns about the sort of dominance rea-
soning used in Joyce’s original accuracy argument for Probabilism (Joyce, 1998). The first
concern was raised by Aaron Bronfman (ms.); the second is an extension of a concern orig-
inally raised by Alan Hájek (2008). I take these concerns to show that Joyce’s dominance
reasoning needs to be amended; Joyce maintains that they do not. In response to Bronf-
man’s objection, I strengthened the characterisation of legitimate inaccuracy measures —
appealing to Symmetry, I narrowed the field to just one, namely, the Brier score. Joyce rejects
the strengthened version, but holds that it’s unnecessary for the success of the argument. In
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response to Hájek’s objection, I weakened the dominance norm to which the argument ap-
peals. Joyce accepts the weakened norm since he accepts the original stronger version, but
he thinks the weakening is unnecessary.

Let’s consider the Bronfman objection first. According to the Bronfman objection, in
order to establish that a particular credence function c is irrational, it is not sufficient to
show that, for any legitimate inaccuracy measure I, there is a credence function cI that I-
dominates c; rather, you must show that there is a credence function c∗ that I-dominates c
relative to any legitimate inaccuracy measure I. And this Joyce’s argument does not do. Ac-
cording to Joyce, the Bronfman objection is plausible only if you accept Dominators, which
says that an agent with a dominated credence function is irrational and should rectify her
irrationality by moving to one of the dominating credence functions that is not itself dom-
inated. Joyce claims that Dominators is false, and so the Bronfman objection fails and my
solution to it is unnecessary. Yet I agree that Dominators is false. Whether or not it was
the basis of Bronfman’s original version of the objection, it is not the basis of the version I
present in Accuracy and the Laws of Credence (Pettigrew, 2016a, Chapter 5). Rather, my version
is based on a disjunctive syllogism. I start by asking what we mean when we say that the
legitimate accuracy measures are precisely the additive and continuous strictly proper ones.
I claim that we can answer this in one of three ways, which I label epistemicism, supervalua-
tionism, and subjectivism, adopting terminology from the literature on the semantics of vague
predicates. I claim that, whichever we choose, the argument fails. Therefore, if we take the
legitimate inaccuracy measures to be the additive and continuous strictly proper ones, the
argument fails.

Epistemicism says that there is, in fact, just one true inaccuracy measure, but we cannot
know what it is; we can know only that it is additive, continuous, and strictly proper. The
problem here is that, once we build the agent’s uncertainty about the true inaccuracy mea-
sure into the decision problem, there are non-probabilistic credence functions that are not
dominated, and so the accuracy argument for Probabilism fails. Consider, for instance, the
example of Phil (Pettigrew, 2016a, 69-71): cPhil(X) = 0.9 and cPhil(X) = 0.2. What’s more,
he is unsure whether the additive logarithmic score LA or the additive spherical score SA
is the one true inaccuracy measure. The set of credence functions that LA-dominate cPhil is
disjoint from the set that SA-dominates it (Pettigrew, 2016a, Figure 5.1). That is, no credence
function both SA-dominates and LA-dominates cPhil. Now, for Phil, there are four epistem-
ically possible worlds: X might be true or false, and the true inaccuracy measure might be
SA or LA. So the worlds are X & SA, X & SA, X & LA, and X & LA. Now, since no
credence function both SA-dominates and LA-dominates cPhil, there is no credence function
that is more accurate than cPhil at all four of these worlds. Thus, cPhil is not dominated. So,
if epistemicism about inaccuracy measures is correct, and the set of legitimate inaccuracy
measures includes LA and SA, the accuracy argument fails — many incoherent credence
functions are not in fact dominated. Phil’s is one of them.

Next, supervaluationism. This says that the concept of inaccuracy is not sufficiently rich
to determine a unique numerical measure. Rather, what is determinate is the ordering � of
pairs of credence functions and worlds by their inaccuracy: (c, w) � (c′, w′) iff c is at least
as inaccurate at w as c′ is at w′. The legitimate inaccuracy measures are then those such
that (c, w) � (c′, w′) iff, for any legitimate inaccuracy measure I, I(c, w) ≤ I(c′, w′). But
if that’s right, consider again Phil’s credence function cPhil from above. There is no c∗ that
I-dominates cPhil for each additive and continuous strictly proper scoring rule. So, if those
are the legitimate measures of inaccuracy, then there is no c∗ such that (c∗, w) ≺ (cPhil, w)
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for all worlds w. That is, in the sense that matters, cPhil isn’t domianted, for in this context
the dominance principle says that c is dominated iff there is c∗ such that (c∗, w) � (c, w)
for all w, and c is irrational if it is dominated. Thus, if supervaluationism about inaccuracy
measures is true, and if the legitimate inaccuracy measures are the additive and continuous
strictly proper ones, then the accuracy argument for Probabilism fails again.

Finally, subjectivism. On this view, the legitimate inaccuracy measures are the permis-
sible ones. Each agent must pick one and use that to measure inaccuracy; but which one
she chooses is up to her. Granted this, the accuracy argument succeeds. But it is too much
to grant. The demand that agents pick just one inaccuracy measure to represent the way
in which they value the accuracy of their credences is too strong. If any additive and con-
tinuous strictly proper inaccuracy measure is permissible, surely it is permissible to value
accuracy in a way that doesn’t tell between them.

This, then, is the version of the Bronfman objection that I favour. Its conclusion is this:
if the accuracy argument for Probabilism is to succeed, we must circumscribe the range of
legitimate inaccuracy measures narrowly enough that, for any non-probabilistic credence
function, there is an alternative credence function that I-dominates the first for every legiti-
mate measure I. Granted this, the Bronfman objection does not arise. I respond by imposing
the further constraint of Symmetry on the divergences that generate legitimate inaccuracy
measures, and that narrows the field to just one inaccuracy measure, namely, the Brier score.

Before we move to Joyce’s second objection, it’s worth noting that his own formulation
of the accuracy argument for Probabilism may well also be vulnerable to the Bronfman ob-
jection understood thus. Consider the particular principle of evidential support to which
Joyce appeals in his version of the argument:

SUPPORTDom If c∗ accuracy dominates c, then c∗ is better supported than c by
every consistent body of evidence.

First, suppose Joyce endorses supervaluationism about accuracy. Then, since there is no
credence function that I-dominates cPhil for all legitimate I, there is no credence function
that SUPPORTDom tells us is better supported than cPhil by every consistent body of evidence.
Thus, if we opt for supervaluationism, Joyce’s version of the accuracy argument for Proba-
bilism fails. Next, epistemicism. Here, the situation is less clear. Via SUPPORTDom, we can
know that there is some credence function that is better supported than cPhil, but we can-
not know which credence functions have this feature. Is this sufficient to show that cPhil is
irrational? I suspect that it is. So, in contrast with my decision-theoretic version of the ac-
curacy argument for Probabilism, Joyce’s version based on principles of evidential support
succeeds if epistemicism is true.

As we have seen, Joyce’s first objection questions the force of the Bronfman objection and
thus the necessity of introducing the stronger claim that the only legitimate inaccuracy mea-
sure is the Brier score in place of the weaker claim that all additive and continuous strictly
proper inaccuracy measures are legitimate. His second objection also questions the force of
an objection, namely, an extension of an objection that Alan Hájek (2008) raised against the
dominance principle to which Joyce appealed in his original version of the accuracy argu-
ment for Probabilism (Joyce, 1998). In the face of this objection, I weakened that principle.
Joyce maintains that the original principle holds.

Hájek’s original objection runs as follows: in order to establish Probabilism, it is not
sufficient to show that every credence function that violates it is dominated; you must show
further that every credence function that satisfies it is not. This is a particular instance of
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a general condition that Hájek wishes to impose on arguments for a given norm: it is not
sufficient to show that there is some Bad Thing that happens if you violate the norm; you
must also show that the Bad Thing does not happen if you satisfy it. As with Bronfman’s
objection, Joyce claims that Hájek’s objection must be based on Dominators: you should
think that Hájek’s condition on justification of norms is plausible only if you think that the
accuracy argument for Probabilism must be advice-giving — that is, only if you think that
it should tell you not only that you are irrational but also how to rectify that flaw. But
again, I agree with Joyce that Dominators is false. Whatever Hájek’s original motivation,
I weakened the dominance principle used in the accuracy argument for Probabilism not
because of Dominators, but because of examples from practical decision-making in which
Joyce’s dominance principle — you are irrational if you are dominated — seems to fail.

Joyce mentions the Name Your Fortune example that I discuss (Pettigrew, 2016a, 21). In
that example, every option is dominated. If Joyce’s dominance principle is correct, every
option here is irrational. That is, this is a rational dilemma. But I hold that there can be no
rational dilemmas. For me, being rational is doing as well as you can in the situations you
encounter. Sometimes the only options available in a situation are all flawed in certain ways.
That doesn’t mean that there is no way to do your best in this situation. It may just mean
that, as in Name Your Fortune, you do your best whichever option you pick. Joyce disagrees.
He bites the bullet and accepts the consequence of his dominance principle: every option in
Name Your Fortune is irrational. It’s not clear how to adjudicate this debate. Perhaps Joyce
and I are simply working with slightly different conceptions of rationality. However, I think
we can agree that it would be rather misleading to say that we had established Probabilism
if the accuracy case were like Name Your Fortune. If every credence function is dominated,
it is surely misleading to say that we’ve established Probabilism, which says that the non-
probabilistic credence functions are irrational. While literally correct, doing so would surely
violate the Gricean maxim of quantity. We would surely wish our accuracy argument to
establish not just that all non-probabilistic credence functions are dominated, but further
that no probabilistic credence function is dominated. That is Hájek’s demand.

Name Your Fortune motivates Hájek’s original objection to Joyce’s dominance principle
and his alternative dominance principle — you are irrational if you are dominated and there
are undominated alternatives. I offer a further example, Name Your Fortune∗, that I take to
motivate my further amendment — you are irrational if you are dominated by an alternative
that isn’t itself dominated. Let me reproduce the decision table for Name Your Fortune∗ here
— the possible worlds are w1 and w2; the options are o, o1, o2, . . . :

Name Your Fortune∗

o o1 o2 o3 o4 . . . ok . . .
w1 2 1 2 3 4 . . . k . . .
w2 2 1 2− 1

2 2− 1
4 2− 1

8 . . . 2− 1
2k−1 . . .

o is the only undominated option; each ok is dominated by ok+1. Thus, according to Joyce’s
original dominance principle and Hájek’s amendment, the only option not ruled irrational
is o. However, it seems that there would be nothing irrational about preferring o1,000,000 to
o — after all, the former will give either 1,000,000 utiles or just very slightly below 2 utiles,
while the latter gives 2 utiles for sure. Of course, Joyce might claim that o is also irrational
and that Name Your Fortune∗ is a rational dilemma, just like Name Your Fortune. But why?
Certainly not for dominance reasons. And, furthermore, o is rationalizable — that is, there is
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a probability assignment relative to which o maximizes expected utility, namely, one that as-
signs all of its probability to w2. And again, even if this is a rational dilemma, it would seem
misleading to say that we had established Probabilism if the accuracy case were like Name
Your Fortune∗ — that is, if all the non-probabilistic credence functions are dominated, and
thus irrational, while all the probabilistic credence function are not dominated, but nonethe-
less irrational for other reasons, it would be literally true but disingenuous to say that we
had established Probabilism.

Before we leave this point, let me note that Joyce’s own favoured formulation of the
accuracy argument for Probabilism, which appeals to a principle of evidential support rather
than a principle of decision theory, is also vulnerable to Hájek’s objection and my extension
of it. If, for every credence function, there is another that is better supported by every body of
evidence, then Joyce must say that they are all irrational; and again, it would be misleading
to say that we have established Probabilism — or at least this is not the sort of justification
of Probabilism that we sought.

Let me turn now to Joyce’s final objection. This targets not the accuracy argument for
Probabilism, but the accuracy argument for the Principal Principle. That argument uses the
same account of epistemic value as we use in the accuracy argument for Probabilism —
epistemic value is accuracy, and inaccuracy is measured by the Brier score. But it deploys
a different, stronger decision-theoretic principle — Chance Dominance instead of Undom-
inated Dominance. Whereas Undominated Dominance rules out an option as irrational if
there is an alternative that is guaranteed to be better (and no further alternative that is guar-
anteed to be better than that), Chance Dominance rules out an option as irrational if there is
an alternative that is guaranteed to be expected to be better by the objective chance function
(and no further alternative that is guaranteed to be expected to be better than that). Joyce raises
the circularity objection to this argument (Pettigrew, 2016a, Section 10.2). The objection runs
as follows: I appeal to Chance Dominance to establish the Principal Principle; but Chance
Dominance follows from the Principal Principle and Maximize Subjective Expected Utility;
and indeed deriving it from those two more basic principles is the only legitimate way to
justify it. Thus, my argument for the Principal Principle begs the question. As Joyce notes, I
consider this objection and provide two responses. Joyce considers these but rejects them.

First, I note that we might equally object to the accuracy argument for Probabilism that
Dominance follows from Probabilism and Maximize Subjective Expected Utility. Joyce re-
sponds that the cases are different. In the case of Dominance, Joyce claims, it follows from
Maximize Subjective Expected Utility alone, without any help from Probabilism. But I’m
not sure that’s true. After all, Maximize Subjective Expected Utility only holds as a norm
for probabilistically coherent agents. If my credence function is not a probability function,
it is not clear even how I calculate expectations, let alone whether I should try to maximize
the results of those calculations. Suppose I am deciding whether to take an umbrella or not
when I go out. The utility of each option is determined entirely by whether it is raining or
not — other features of the world don’t matter. Suppose I have credence 0.9 that it is raining
and 0.1 that it is not; but I also have credence 0.1 that it is raining and Theresa May is Prime
Minister, credence 0.1 that it is raining and Theresa May is not Prime Minister, credence 0.5
that it is not raining and Theresa May is Prime Minister, and credence 0.3 that it is not raining
and Theresa May is not Prime Minister. Then I can calculate the expected utility of taking
an umbrella relative to either of these two partitions; but since they do not cohere as Proba-
bilism demands, they will give different answers and likely recommend different courses of
action. Which am I to choose?
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Second, I note that Chance Dominance is a more basic principle than the Principal Prin-
ciple or Maximize Subjective Expected Utility. It applies to agents with no credences at all,
or imprecise credences, or incoherent credences. It is a basic principle of von Neumann and
Morgenstern’s original formulation of decision theory, which does not posit credence func-
tions for the agent (von Neumann & Morgenstern, 1947). Joyce says that, “when I know o∗

dominates o according to your desires, I do not need to know anything about your beliefs to
conclude that o is not your best choice”. But the same is true for Chance Dominance. Choos-
ing dominated options is wrong because, as Joyce says, “it commits one to incurring sure
losses or passing up sure gains”. Similarly, choosing chance dominated options is wrong be-
cause it commits one to incurring objective expected losses or passing up objective expected
gains.

I concede, of course, that there is nothing I can say to a sceptic who asks why we she
should care what the objective chance function thinks of her actions; the sceptic who won-
ders whats is so special about objective chance that it gets to dictate to her in this way. I could
try to point out that, if you choose against the recommendations of Chance Dominance, then
in the long run you will end up worse off with objective chance 1. But of course she might
simply reply that she doesn’t see why she should care what will happen in the long run with
chance 1. And there is nothing I can then say to that. But this shouldn’t undermine Chance
Dominance as a principle of rationality. It is just one that sits at normative bedrock.

2 Reply to Briggs

R. A. Briggs’ illuminating comments raise interesting problems for my formulation of domi-
nance reasoning and its application in the epistemic realm to the choice between alternative
credence functions. While I do not wish to adopt Briggs’ final proposal, I do agree that my
original formulation of this reasoning was mistaken and the problem Briggs raises demands
a solution. I try to give one here.

Briggs focusses particularly on a principle that I endorse, which they formulate as follows
(Pettigrew, 2016a, 23):

Rational Dominance If

(i) some o∗ strongly U-dominates o; and

(ii) o∗ is not ruled out as irrational;

then

(iii) o is irrational for any agent with utility function U.

They raise two problems for this principle. First: When I come to give the accuracy domi-
nance argument for Probabilism, I appeal not to Rational Dominance, but to an alternative
principle, which I call Immodest Dominance (Pettigrew, 2016a, 24):

Immodest Dominance Suppose I is a legitimate measure of inaccuracy. Then if

(i) some c∗ strongly I-dominates c; and

(ii) c∗ is not extremely I-modest;

then
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(iii) c is irrational.

And yet Immodest Dominance does not follow from Rational Dominance if you accept other
claims I make in the book. Put differently: given other commitments in the book, Rational
Dominance is not sufficient to establish Probabilism.

The problem is this: in Chapter 10, I argue that an agent is irrational if she violates (a
version of) the Principal Principle. But it is possible to violate that principle while still being
extremely I-modest — every probabilistic credence function is extremely I-modest, but not
all obey the Principal Principle. So the following seems possible: there is a non-probabilistic
credence function c such that

(i) c is strongly I-dominated by at least one probabilistic credence function;

(ii) all of the non-probabilistic credence functions that strongly I-dominate c are them-
selves strongly I-dominated;

(iii) all of the probabilistic credence functions that strongly I-dominate c are not extremely
I-modest;

(iv) all of the probabilistic credence functions that strongly I-dominate c violate the Princi-
pal Principle.

Now, in this situation, Immodest Dominance would rule c irrational, but Rational Domi-
nance would not. So, Rational Dominance would be insufficient to establish Probabilism.
And indeed Briggs identifies just such an example, namely, their Sophisticated Taj example
— Taj’s only probabilistic dominators violate the Principal Principle, and thus are irrational.
Figure 1 gives a closely related example that will prove useful below.

Brigg’s second objection to Rational Dominance turns on an ingenious parallel between
the Name Your Fortune case and Yablo’s paradox (Yablo, 1993). This parallel allows us to
see that, for certain decision problems — Name Your Fortune amongst them — Rational
Dominance is paradoxical. That is, there is no way to categorise the options in that deci-
sion problem as rational and irrational that is consistent with Rational Dominance (just as,
in Yablo’s paradox, there is no way to categorise the sentences as true and false that is con-
sistent).

How to respond to these objections? I will consider two possibilities and settle finally
on one that agrees with Briggs that Rational Dominance is incorrectly formulated. The first
response to Briggs’ objection bites the bullet in an effort to retain Rational Dominance. There
are two possibilities, we might say: we might accept that there is an accuracy-first, veritist-
friendly argument for the Principal Principle, perhaps of the sort outlined in Chapter 10, or
we might not.

First: Suppose that we don’t. Then, according to the veritist, there is nothing irrational
about violating the Principal Principle — for the veritist, facts about irrationality must be
grounded in and determined by facts about accuracy. So the probabilistic credence functions
that dominate Sophisticated Taj are not irrational, and so Sophisticated Taj is irrational by
the lights of Rational Dominance and we can establish Probabilism. And similarly for the
credence function c2 in Figure 1.

Second: Suppose we do think that there is an accuracy-first, veritist-friendly argument
for the Principal Principle. Then, while Sophisticated Taj is not ruled irrational by Rational
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vw2Heads

Tails

vw1

c∗

c2

c1

Figure 1: Suppose the only possible chance function is c∗, where c∗(Heads) = 0.7 and
c∗(Tails) = 0.3. Thus, the only credence function that satisfies the Principal Principle is
c∗. Now consider credence functions c1 and c2, where c1(Heads) = 0.85 and c1(Tails) = 0.45
and c2(Heads) = 0.7 and c2(Tails) = 0.6. Both are non-probabilistic. None of the dominators
of c2 satisfies the Principal Principle. But one of the dominators of c1 does, namely, c∗. Notice
that c1 is nearer to its nearest rational credence function (namely, c∗) than c2 is to its nearest
rational credence function (also, c∗).
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Dominance, she is ruled irrational by that argument, whatever it is. After all, the Princi-
pal Principle presupposes Probabilism — though we often state it simply as a constraint
on conditional probabilities (or expectations), those formulations only make sense and say
what we wish them to say if we assume Probabilism; the ratio of c(A & B) to c(B) doesn’t
represent an agent’s conditional credence in A on the supposition of B unless c is a proba-
bility function. Thus, any veritist argument for the Principal Principle must also establish
Probabilism. And indeed that is exactly what the chance dominance argument of Chapter
10 does. Thus, on this response to Briggs’ first objection, the accuracy dominance argument
doesn’t establish Probabilism in full generality. Rather, it shows that some non-probabilistic
credence functions are irrational, namely, those that are dominated by probabilistic credence
functions that satisfy the Principal Principle — e.g. c1 in Figure 1. But, for the rest, it does
not establish that they are irrational — that is established instead by the veritist argument
that establishes the Principal Principle and Probabilism together.

The problem with this response to Briggs, from my point of view, is that I would like
accuracy-first, veritist-friendly arguments for the laws of credence not just to establish that
it is irrational to violate those laws, but also to tell us what is wrong with doing so. That
is, those arguments should also give a reason for not violating the laws. But, on the re-
sponse proposed here, that would mean that some non-probabilistic credence functions are
irrational for one reason, and some are irrational for different reasons. Some are irrational be-
cause they are strongly dominated by probabilistic credence functions that satisfy the Princi-
pal Principle and Probabilism, while others are irrational because they are chance dominated
by such credence functions. And that seems wrong.

What’s more, since it is surely worse to be strongly dominated than merely chance dom-
inated, this solution entails that those credence functions that are only chance dominated by
a rational credence function are less irrational than those that are also strongly dominated
by a rational credence function. Thus, for instance, in Figure 1, c2 would be less irrational
than c1. Why? Well, c2 is strongly dominated only by credence functions that violate the
Principal Principle, but chance dominated by one that satisfies it (namely, c∗). Whereas c1
is strongly dominated by a credence function that satisfies the Principal Principle (namely,
c∗). Now, I do think that irrationality comes in degrees: it is less irrational to have 0.49 in a
proposition and 0.5 in its negation than to have 0.99 in the proposition and 1 in the negation,
for instance. But it doesn’t seem that an ordering based on whether a credence function is
only chance dominated or also strongly dominated is going to match our intuitions. After
all, it is usual to measure the irrationality of a credence function by the distance between it
and the nearest rational credence function. And, as we can see above, on this measure, c2 is
more irrational than c1.

So I think this solution won’t work. And indeed, independent of how effective it is as a
response to Briggs’ first objection to Rational Dominance, it has nothing to say to the second,
more pressing objection that the principle is in fact paradoxical for certain decision problems.

We move, then, to our second solution. To introduce this, let us reflect on why our deci-
sion principles — Rational Dominance, Immodest Dominance, Chance Dominance, etc. —
require clauses like (ii). The reason is that, when we rule a credence function irrational, we
make a criticism of it. In the strong dominance argument of Part I of the book, we criti-
cise a credence function that violates Probabilism on the grounds that there are alternatives
that are guaranteed to be strictly more accurate than it; in the chance dominance argument
in Chapter 10, we criticise a credence function that violates the Principal Principle on the
grounds that there are alternatives whose objective expected accuracy is guaranteed to be
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higher than it. Now, as Name Your Fortune shows, in order to criticise an option, it is not
sufficient to show that there is some option that is guaranteed to be better than it. If the
options that are guaranteed to be better than it are all also criticizable, the criticism seems
unfair. If you pick the integer 99 when God asks, and I point out that 100 would have been
better, it is reasonable for you to say that my criticism falls flat because 101 would have been
better than that.

That is what I tried to capture in Rational Dominance. But Briggs is right to say that my
attempt failed. Here is my diagnosis of the failure and my attempt to cure it. Look again at
Name Your Fortune. The reason it is unfair for me to criticise you for picking 99 is not that
any option guaranteed to be better than 99 is itself criticizable. It is that any such option is
criticizable in exactly the same way that 99 is criticizable. That is, any such option has exactly
the same flaw that 99 has, namely, that it is strongly dominated. It is this that makes my
criticism fall flat. It wouldn’t be unfair if those alternative options were also criticizable but
on the basis of a different flaw.

To see this, consider yet another variant on the Name Your Fortune case. There are count-
ably many options, o1, o2, . . .. And there are countably many worlds, w1, w2, . . .. Here is the
decision table:

Name Your Fortune+

o1 o2 o3 o4 o5 . . .
w1 1 2 2 2 2 . . .
w2 1 2 3 3 3 . . .
w3 1 2 3 4 4 . . .
w4 1 2 3 4 5 . . .

In this case, o1 is strongly dominated (by o2), but each of the rest is only weakly dominated (ok
is weakly dominated by ok+1, for instance, but not strongly dominated by any alternative). Is
o1 irrational? After all, it is strongly dominated, but each of its dominators has a flaw, namely,
that it is weakly dominated. This would be sufficient for Rational Dominance not rule it
irrational. But it seems to me that o1 is irrational. And the reason is that, while its dominators
are flawed, they have a different flaw from o1, namely, being weakly rather than strongly
dominated. And indeed their flaw seems less problematic. Being weakly dominated is less
irrational than being strongly dominated — after all, o2 can be probabilistically rationalised
by a probability function that places all its credence in w1. This suggests that, in order to
rule an option irrational, it is sufficient that they are strongly dominated, providing there is
a strong dominator that is not itself strongly dominated. This gives the following:

Strong Undominated Dominance If

(i) some o∗ strongly U-dominates o; and

(ii) o∗ is not itself strongly U-dominated;

then

(iii) o is irrational for an agent with utility function U.

And this is certainly sufficient to establish Probabilism, since it is stronger than Immodest
Dominance — that is, it rules out as irrational everything that Immodest Dominance does.
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Now, suppose we were only able to show that every non-probabilistic function is strongly
dominated by an option that is itself weakly dominated. That is, suppose the accuracy case
were like Name Your Fortune+ and we required something as strong as Strong Undomi-
nated Dominance to establish Probabilism. While we would be able to show that violating
Probabilism is irrational — just as picking option o1 in Name Your Fortune+ is irrational
— I think we would be disappointed with the result. It would seem a weak non-pragmatic
vindication of Probabilism to set alongside the pragmatic vindication provided by the Dutch
Book argument. Thus, when we learn that, in fact, each non-probabilistic credence function
has dominators that are not only not weakly dominated but not even extremely I-modest,
then we see that the criticism of non-probabilistic credence functions is much stronger.

This all suggests that what is responsible for the failure of Rational Dominance is that it
tries to combine two modes of assessment in a single principle. The first is categorical: it is
our attempt to categorise some credence functions as irrational and others as rational. The
second is graded: it is our attempt to measure how badly flawed certain credence functions
are. We do well to keep these two apart. Thus, the principles of rationality should say just
this:

• Strong Undominated Dominance An option is irrational if it is strongly dominated
by an option that is not itself strongly dominated

• Weak Undominated Dominance An option is irrational if it is weakly dominated by
an option that is not itself weakly dominated

• Chance Dominance An option is irrational if it is chance dominated by an option that
is not itself chance dominated.

• Minimax An option is irrational if it is worst-case dominated by an option that is not
itself worst-case dominated.

But we are also interested in how severe the criticism of a certain sort of credence function
is. Suppose S is a set of credence functions. We learn first that every credence function in
class S is strongly dominated. So far, we cannot rule out that the situation is like the original
Name Your Fortune case in which every option is strongly dominated. So we cannot even
conclude that having a credence function in S is irrational. Then we discover that all S-
functions are strongly dominated by credence functions that are not themselves strongly
dominated. Now we know that having a S-function is irrational, but we cannot rule out
that all the dominators all themselves weakly dominated. And if that’s the case, it’s not so
bad to have a S-function. Then we learn that all the S-functions are dominated by credence
functions that are not strongly or weakly dominated. This makes it look worse to have a S-
function. And finally we learn that each S-function is dominated by a probabilistic credence
function that is not strongly or weakly dominated and which in fact expects itself to be best
out of all credence functions. That makes it even worst to have a S-function. But none of
these further discoveries changes whether or not having a S-function is irrational. They just
tell us, once we know that it is irrational, just how flawed the irrational credence functions
are. An analogy: Consider an agent with utility function U, who is faced with two options,
A and B. First, she discovers that B strongly U-dominates A. Since there are only these two
options, B cannot then be strongly U-dominated itself, and so she knows that A is irrational.
But it might be that B’s utility is guaranteed to be around 0.000001 utiles greater than A; or
it might be that B’s utility is guaranteed to be at least 1,000,000 utilies greater than A. And if
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it’s the latter, then choosing A is a lot worse than if it’s the former. Similarly, it isn’t so bad
to have a credence function that is strongly dominated if all the dominators are themselves
weakly dominated; but it’s very bad to have a credence function that is strongly dominated
if there are dominators that expect themselves to be best.

Thus, I conclude that, in order to establish that violating Probabilism is irrational, it suf-
fices to show that any credence function that does so is strongly dominated by one that
isn’t itself strongly dominated — that is, Strong Undominated Dominance. But learning
that those strong dominators are not only not strongly dominated themselves, but also not
weakly dominated and not even extremely I-modest shows us just how bad it is, epistemi-
cally speaking, to violate Probabilism. And this shows how strong our argument is in favour
of Probabilism.

3 Reply to Kotzen

Kotzen’s comments are rich and fascinating, and I lack the space to do full justice to them
here. I have considered versions of some of them to some extent in work carried out since
Accuracy and the Laws of Credence was published. For instance, in (Pettigrew, 2016b), I con-
sider how we might extend the measures of inaccuracy used in ALC so that they allow us
to compare credence functions defined over different sets of propositions; in (Pettigrew, ta),
I offer my solution to the so-called trade-off objection posed by Greaves (2013); and in (Pet-
tigrew, ms), I explore how we might account for at least one further traditional epistemic
virtue, namely, the virtue of justification, in accuracy-only terms, though, as Kotzen points
out, there are many more such virtues still to accommodate or reject — knowledge, explana-
toriness, simplicity, to name only a few. In light of this, I will focus on only some of Kotzen’s
concerns; in particular, those that relate to the formal features of our inaccuracy measures.
But the others are important and deserve substantial treatment in their own right.

In ALC, I assume that the inaccuracy of a credence function at a world is its distance
from perfection (Perfectionism); I assume that the perfect credence function at a world is the
one that assigns maximal credence (i.e. 1) to all propositions that are true at that world and
minimal credence (i.e. 0) to all propositions that are false there (Alethic Vindication); and I
assume that distance from one credence function to another is measured by a divergence. The
class of divergences is a broader class of putative distance measures than the class of metrics.
Given a set X , a function D : X → [0, ∞] is a divergence on X iff D(x, y) ≥ 0 for all x, y in X ,
with equality iff x = y.1 A metric is a divergence that also satisfies two further conditions:

• Symmetry D(x, y) = D(y, x), for all x, y in X ;

• Triangle Inequality D(x, y) +D(y, z) ≥ D(x, z), for all x, y, z in X .

In fact, in response to Bronfman’s objection, I do narrow the field of legitimate inaccuracy
measures by arguing that the divergences that generate them should satisfy Symmetry. But
at no point do I assume the Triangle Inequality, and indeed the other properties of diver-
gences for which I argue — Divergence Additivity, Divergence Continuity, and Decomposi-
tion — are incompatible with it. Those properties exactly characterize the additive Bregman
divergences (Pettigrew, 2016a, Theorem 4.3.3); and it is possible to show that no Bregman

1Of course, we are most interested in the case in which X is the set of credence functions defined on a given
set of propositions.
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divergence satisfies the Triangle Inequality.2 However, as Kotzen notes, “the triangle in-
equality is quite plausible even for lots of non-physical distances; for example, I have a hard
time understanding a notion of distance between two colors in color-space, or two organ-
isms in gene-space, or two different companies in financial-valuation-space, if the relevant
notion of distance doesn’t obey the triangle inequality”. And he asks for “some more intu-
itive guidance here about how to think of an alleged notion of a proximity that violates the
triangle inequality”. I will try to provide that guidance here.

The first thing to note is that divergences that violate the triangle inequality are used to
measure non-physical distances in a diverse range of subjects. The Kullback-Leibler diver-
gence as well as other Bregman divergences are used in information theory (Grünwald &
Dawid, 2004; Banerjee et al., 2005), machine learning (Lafferty, 1999; Kivinen & Warmuth,
1999), and coding theory (Kullback, 1959) to measure the distance from one probability dis-
tribution to another; and the squared Euclidean distance divergence as well as other Breg-
man divergences are used in the theory of inequality measurement and mobility measure-
ment in economics to measure the distance from one income or welfare distribution to an-
other (D’Agostino & Dardanoni, 2009; Magdalou & Nock, 2011). However, the fact that
others do this is no argument that it is permissible to do it. So let me now try to motivate the
idea.

First, let’s see why we might not expect the divergences used in information theory to
measure the distance from one probability function to another to satisfy the Triangle Inequal-
ity. The standard measure is the Kullback-Leibler measure: if p, q are probability functions
defined on a partition {X1, . . . , Xn}, then

DKL(p, q) =
n

∑
i=1

p(Xi) log
p(Xi)

q(Xi)

And it is straightforward to see that this decomposes as follows:

DKL(p, q) =

(
−

n

∑
i=1

p(Xi) log q(Xi)

)
−
(
−

n

∑
i=1

p(Xi) log p(Xi)

)

Now, the first term on the right-hand side is known as the cross entropy from p to q, while the
second term is known as the entropy of p. Suppose I wish to communicate which event out
of X1, . . . , Xn occurs. And suppose I develop a coding that is optimised for the distribution q
— let’s call this a q-coding. Then the cross entropy from p to q is the expected number of bits
that would be required to identify the true element of the partition using that q-coding if the
true probability distribution were in fact p. The entropy of p is then the expected number
of bits required to identify the true element of the partition using a p-coding when p is in
fact the true distribution. Thus, the Kullback-Leibler divergence from p to q measures the

2A divergence D : [0, 1]n → [0, ∞] is an additive Bregman divergence iff there is a strictly convex and twice
differentiable function ϕ : [0, 1]→ [0, ∞] such that D(x, y) = ∑n

i=1 ϕ(xi)− ϕ(yi)− ϕ′(yi)(xi − yi). Now suppose
that D satisfies the Triangle Inequality. Then, for all 0 < a < b,[

ϕ(0)− ϕ(a)− ϕ′(a)(0− a)
]
+
[
ϕ(a)− ϕ(b)− ϕ′(b)(a− b)

]
≥
[
ϕ(0)− ϕ(b)− ϕ′(b)(0− b)

]
This entails ϕ′(b) ≥ ϕ′(c). So ϕ′ is monotone non-increasing, and thus either ϕ′ is constant or ϕ′ is strictly
decreasing over some interval in [0, 1]. If ϕ′ is constant, then ϕ is linear and not strictly convex. If ϕ′ is decreasing
over an interval, then there are points at which ϕ′′ is negative. But, since ϕ is strictly convex, ϕ′′ ≥ 0, which
gives a contradiction. 2
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expected difference between the number of bits required to communicate the outcome using
a q-coding and using a p-coding, when p is the true distribution. That is, it measures how
much less efficient p takes q-codings to be than p-codings.

With this explanation of the Kullback-Leibler divergence in hand, consider a failure of
the Triangle Inequality: there are probability distributions p, q, r such that the expected de-
crease in efficiency that results from using a r-coding instead of a p-coding by the lights of p is
greater than the sum of the expected decrease in efficiency that results from using a q-coding
instead of a p-coding by the lights of p and the expected decrease in efficiency that results from
using an r-coding instead of a q-coding by the lights of q. But, having spelt this out, it doesn’t
seem so unintuitive. The key point is this: expected decreases in efficiency are measured
by the lights of different probability functions in the three cases of interest. Thus, DKL(p, q) and
DKL(p, r) measure the expected decreases in efficiency by the lights of p, whereas DKL(q, r)
measures the expected decrease in efficiency by the lights of q. An analogy will help to make
the point clearer. It is as if we were to measure the distance from one person to another by
how much worse the first person expects the second one to be at singing. Khaled expects
Lori to be a little bit worse than him, giving a distance of 3, say; and Lori expects Maura to be
a little bit worse than her, giving another distance of 3, say; but Khaled expects Maura to be
much worse, giving a distance of 10, say. Thus, we have a violation of the triangle inequality.
And violations of the triangle inequality for Kullback-Leibler divergence arise for the same
reason. Indeed, I suspect that our intuitions about the Triangle Inequality arise because we
imagine that the standards by which the distance is measured remain fixed from one mea-
surement to another. But in the case of divergences like the Kullback-Leibler divergence, this
doesn’t happen. Of course, if we were to fix a single privileged probability function u and
were to measure the distance from p to q as the expected difference in efficiency that results
from using a q-coding instead of a p-coding by the lights of u, we would recover the Trian-
gle Inequality (and, indeed, Symmetry). But that isn’t the measure we want in information
theory.

Hopefully, this explains why the appropriate notion of distance between probability dis-
tributions in information theory violates the Triangle Inequality. But it doesn’t yet explain
why the appropriate notion of distance between credence functions in epistemology should
violate it. However, the following fact helps us to see the way. Suppose D is an additive
Bregman divergence; and let I be the additive and continuous strictly proper inaccuracy
measure generated by D: that is, I(c, w) = D(vw, c). Then the following holds (Pettigrew,
2016a, Theorem I.B.4): if c is a probabilistic credence function and c′ is a credence function,
then

D(c, c′) = ExpI(c
′|c)− ExpI(c|c)

That is, the divergence from c to c′ is the expected loss of accuracy in moving from c to c′

where the expectation is calculated by the lights of c. That is, D(c, c′) measures how much less
accurate c expects c′ to be than it expects itself to be. So, when we use any Bregman diver-
gence to measure the distance between credence functions it is analogous to when we use
Kullback-Leibler to measure distance between probability functions; and both are analogous
to when we use the singing-ability measure of distance between people introduced above.
Thus, the explanation for the failure of the triangle inequality is the same: the Bregman di-
vergence from one credence function to another measures the expected loss in inaccuracy
that occurs when we move from the first to the second; and, while the same inaccuracy mea-
sure is used throughout, the standpoint from which the expectation is calculated changes
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for different pairs of credence function; and so it is little surprise that the triangle inequality
fails.

So much for the Triangle Inequality. Kotzen’s second question about our inaccuracy
measures relates to their convexity.3 In his original paper, Joyce (1998) offered an argument
that legitimate inaccuracy measures are strictly convex. A little later, Patrick Maher (2002)
noted that, if it works at all, Joyce’s argument establishes only the weaker conclusion that
they should be weakly convex (Weak Convexity). But, as Kotzen points out, the argument
does seem to work, and so Joyce does seem to establish Weak Convexity. However, I don’t
assume that anywhere in ALC. Kotzen asks what happens if I do.

Of course, while I don’t assume Weak Convexity anywhere, I do argue for Symmetry,
and Symmetry entails that the only legitimate inaccuracy measure is the Brier score, which
is both weakly and strictly convex (Pettigrew, 2016a, Section 4.4). That is, Symmetry entails
Weak Convexity, and my favoured inaccuracy measure satisfies the conclusion that Joyce’s
argument does seem to establish. But my endorsement of Symmetry is tentative. I introduce
it in part because it is plausible in itself, but also in part because I take my version of the
Bronfman objection to show that, if the accuracy dominance argument for Probabilism is to
work, we must narrow the field of legitimate inaccuracy measures, and Symmetry does that
in a principled way. I take the Bronfman objection to show that the accuracy dominance
argument does not work if there are two legitimate inaccuracy measures I, I′ and some
non-probabilistic credence function c such that there is no probabilistic credence function c∗

that both I-dominates and I′-dominates c. Appealing to Symmetry solves this problem by
restricting the legitimate accuracy measures so severely that there cannot be two legitimate
inaccuracy measures at all — there is only one, and it is the Brier score. But that might seem
like using a sledgehammer to crack a nut.

Perhaps instead we might restrict the legitimate inaccuracy measures by adding Weak
Convexity instead of Symmetry to our other constraints? Interestingly, doing so does indeed
rule out one of the two inaccuracy measures that I use in my version of the Bronfman objec-
tion. In that version, I consider the example of Phil, who has credences cPhil(X) = 0.9 and
cPhil(X) = 0.2. And I note that there is no credence function at all that both LA-dominates
and SA-dominates cPhil, let alone a probabilistic one. But, while LA is strictly convex, SA
is not even weakly convex. And, as you can see from Figure 5.1 in ALC, it is this failure of
convexity that ensures that there is no overlap between the set of LA-dominators for cPhil
and the set of SA-dominators. This suggests the following conjecture: if we assume Weak
Convexity, the Bronfman objection disappears. The conjecture is given further support from
the fact that another natural way of illustrating the Bronfman objection is also resolved by
restricting to inaccuracy measures that are weakly convex. For 1 < α, let Dα be the Bregman
divergence generated by the strictly convex function ϕ(x) = xα, and let Iα be the inaccuracy
measure generated by Dα.4 Then for many 1 < α, α′, there is no probabilistic credence func-
tion c∗ that both Iα-dominates and Iα′-dominates cPhil. For instance, there is no probabilistic
credence function that I2-dominates and I3-dominates cPhil, and no probabilistic credence
function that I2-dominates and I

3
2 dominates cPhil.5

3Suppose I is an inaccuracy measure. Then I is weakly convex if, for 0 < α < 1,

I(αc + (1− α)c′, w) ≤ αI(c, w) + (1− α)I(c′, w)

I is strictly convex if the inequality is always strict.
4Thus, Iα(c, w) = ∑X∈F sα(vw(X), c(X)), where sα(0, x) = (α− 1)xα and sα(1, x) = 1− αxα−1 + (α− 1)xα.
5Suppose c is probabilistic. Then
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However, for 1 < α, Iα is weakly convex iff α = 2. Thus, if we restrict to only the weakly
convex inaccuracy measures, the instance of the Bronfman objection disappears again. Is
this generally the case? Or are there weakly convex inaccuracy measures I, I′ and non-
probabilistic c such that there is no probabilistic c∗ that I-dominates and I′-dominates c?
Unfortunately, the latter — that is, the conjecture from above is false. Let De be the Bregman
divergence generated by the strictly convex function ϕ(x) = 1

ex , and Ie the inaccuracy mea-
sure generated by De.6 Then there is no probabilistic credence function c∗ that Ie-dominates
and I2 dominates c.7 But Ie and I2 are both strictly convex.

Having said that, the following intriguing fact suggests that Weak Convexity might play
some role in an alternative resolution of the Bronfman objection; one that does not appeal to
anything as restrictive as Symmetry. Consider the following condition (Joyce, 2009, 274):

0/1-Symmetry If I is generated by the strictly proper scoring rule s, then s(0, x) =
s(1, 1− x).

This says that the inaccuracy of a credence is solely a function of the difference between that
credence and the omniscient credence. We can easily show that, for any I that is additive
and continuous and satisfies Weak Convexity and 0/1 Symmetry, any non-probabilistic cre-
dence function c defined on X and X is I-dominated by the particular credence function c†

defined as follows: c†(X) = c(X) + 1−(c(X)+c(X))
2 and c†(X) = c(X) + 1−(c(X)+c(X))

2 .8 How to
generalise this result is an open question. But it suggests a route to answering the Bronfman
objection that is more permissive than Symmetry.
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Hájek, A. (2008). Arguments For—Or Against—Probabilism? The British Journal for the Philosophy of
Science, 59(4), 793–819.

Joyce, J. M. (1998). A Nonpragmatic Vindication of Probabilism. Philosophy of Science, 65(4), 575–603.

Joyce, J. M. (2009). Accuracy and Coherence: Prospects for an Alethic Epistemology of Partial Belief.
In F. Huber, & C. Schmidt-Petri (Eds.) Degrees of Belief . Springer.

Kivinen, J., & Warmuth, M. K. (1999). Boosting as entropy projection. In COLT ‘99: Proceedings of the
twelfth annual conference on computational learning theory, (pp. 134–44).

Kullback, S. (1959). Information theory and Statistics. John Wiley & Sons.

Lafferty, J. (1999). Additive models, boosting, and inference for generalized divergences. In COLT
‘99: Proceedings of the twelfth annual conference on computational learning theory, (pp. 125–133).

Magdalou, B., & Nock, R. (2011). Income Distributions and Decomposable Divergence Measures.
Journal of Economic Theory, 146(6), 2440–2454.

Maher, P. (2002). Joyce’s Argument for Probabilism. Philosophy of Science, 69(1), 73–81.

Pettigrew, R. (2016a). Accuracy and the Laws of Credence. Oxford: Oxford University Press.

Pettigrew, R. (2016b). The population ethics of belief: in search of an epistemic Theory X. Noûs.
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