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Bayesian model-data synthesis with an
application to global Glacio-Isostatic
Adjustment

Z. Shaa,b, J. C. Rougiera,∗, M. Schumachera and J. L. Bambera

Summary: Glacial isostatic adjustment (GIA) is a crucial component in evaluating sea level change.

The GIA process has been simulated globally from various physical forward models and it can also be

measured locally at some GPS stations. In this paper we combine the physical model simulations and GPS

measurements in a Bayesian hierarchical modelling framework to update global GIA. In common with many

large-scale spatial modelling applications, there are two major challenges. One is the scale of the update,

which is too large for näıve Gaussian conditioning. The other is the need to represent non-stationarity in the

prior. We address the first challenge with the now well-established stochastic partial differential equations

(SPDE) and integrated nested Laplace approximation (INLA) approach. For non-stationary global process,

we propose two general models that accommodate commonly-seen geospatial patterns. We present and

compare the GIA result for the two models, alongside the default option of assuming stationarity.

Keywords: spatial statistics; non-stationarity; stochastic partial differential equations;

Bayesian hierarchical model; geophysical processes

1. INTRODUCTION

Glacial isostatic adjustment (GIA) is the slow viscous response of the solid Earth

(lithosphere) due to the unloading of ice-sheets that covered much of the global land surface

at the last glacial maximum (about 20 thousand years Before Present). At that time, North
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America was covered by an ice-sheet that was up to 4km thick and global mean sea level was

around 130 m lower than present due to the additional ice on land. The solid Earth response

to changes in ice loading has important implications for many geophysical processes. GIA

affects the Earth’s shape, gravity field and axis of rotation via redistribution of mantle

material. All of these changes, in turn, affect global sea level. To understand contemporary

changes in sea level it is necessary, therefore, to have a reliable estimate of GIA. In general,

this has been achieved using geophysical forward models (Guo et al., 2012). These forward

models require knowledge of past ice loading history and Earth structure (in particular lower

mantle viscosity) to estimate the lithospheric response. Both these quantities are relatively

poorly known. In addition, mantle viscosity varies laterally, which has been challenging

to incorporate into forward models of GIA (Peltier et al., 2015). As a consequence, large

uncertainties in the present-day global GIA signal exist, evidenced by a comparison of 14

forward model solutions, which show significant regional differences between them (Guo

et al., 2012), disagreeing even on the sign of vertical land motion in some areas.

This paper presents a model-data synthesis method based on Bayesian hierarchical

modelling (BHM, see, e.g., Banerjee et al., 2004; Cressie and Wikle, 2011) for updating

global GIA using global positioning system (GPS) data. The main feature of our approach is

to use observations to adjust a model-based solution (‘simulation’), by modelling explicitly

the discrepancy between the simulation and the true process. This approach follows a long

tradition in the field of computer experiments, in which such a discrepancy is a key part

of the statistical model linking simulations, reality, and observations (see, e.g., Kennedy

and O’Hagan, 2001; Craig et al., 2001; Goldstein and Rougier, 2004, 2009). In contrast, a

popular alternative is an approach in which the true process is modelled explicitly, and the

simulation and observations are both treated as measurements; see Rougier et al. (2013) and

the references therein, for the use of this approach in climate science. There are also hybrid

approaches, such as Zammit-Mangion et al. (2014).
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In spatial applications there are several advantages to modelling the discrepancy explicitly,

as opposed to modelling the underlying process. First, it is more defensible to treat the

discrepancy in a parsimonious way as an expectation-zero isotropic stochastic process. This

presumes that the physical model simulation gets most of the large-scale ‘non-stationary’

and spatial correlation features right, in which case the discrepancy concerns itself mainly

with smaller-scale local features. Second, the discrepancy is often the primary concern of

researchers, who are interested in where their simulation performs poorly, and how large

these regions are. Likewise, in comparing simulations, discrepancy maps can shed light on how

different representations of process components cause different types of error. Stationarity is

still a strong assumption, however, there will be situation where a non-stationary prior

process is more appropriate. We introduce two general approaches to model such non-

stationarity.

The outline of the paper is as follows. Section 2 summarizes the data, including forward

simulations and observations of GIA, as well as some prior information on GIA. Section 3

describes our general approach to synthesizing a simulated field and observations, and

the challenges of performing this operation at scale. We also review the stochastic partial

differential equation (SPDE) approach to exploiting the sparsity of Gaussian Markov random

fields (GMRF). Section 4 describes two different approaches to modelling non-stationary

prior beliefs, and some useful variants. Section 5 shows the result of applying our approach

to updating global GIA on a one degree map, and Section 6 is a brief conclusion.

2. DATA

In this paper, we model the GIA mean annual trend for the period 2005 to 2015. Over time-

intervals as short as decades, the trend can be treated as a time-invariant spatial process

and it is measured as the vertical land motion in mm/year. Our task is to assimilate the
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forward simulation and the GPS data into an updated assessment of GIA, with predictive

uncertainties.

The forward simulation we used is from the ICE6G-VM5 model (Peltier et al., 2015), which

we treat as our prior expectation of the GIA process. The ICE6G GIA solution is provided

on a standard one-degree longitude-latitude.

The GIA process, as the vertical land motion, can be observed geodetically from the GPS

stations (King et al., 2010). Therefore, we prepared our GPS data from a global network

of 4072 GPS stations for the same period (Schumacher et al., 2018). The GPS observations

are processed to include only the vertical bedrock movement so that the majority of non-

GIA effects and artefacts are removed. Then an annual trend is estimated for each station

to represent the observed vertical movement rate. The estimated standard errors of these

trends are used as GPS measurement errors.

One important feature of GIA is that although the process affects the entire earth surface,

there is negligible change in the middle of low latitude oceans. However, for various reasons,

most simulations from physical models have deviations from zero in these regions, and there

is little reliable GPS data available to correct these systematic errors. Therefore, to adjust

these errors in our model, we created “zero-GIA regions” based on a further 7 of the 14 GIA

solutions compared in Guo et al. (2012); other solutions are ignored since they are out-dated

or have obvious flaws. The zero-GIA regions are generated by the following procedure.

1. Calculate the ensemble means and standard errors for each 1 degree pixel from the eight

GIA simulations.

2. Retain the pixels that have values smaller than 0.3 mm/year, after exploring a few

different thresholds with our experts.

3. Identify and remove dubious pixels by setting threshold values for the ensemble standard

deviation. We remove pixels with standard deviations larger than 0.4 mm/year.
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4. Connect the remaining pixels into polygons and remove polygons that have area smaller

than 200 km2, which we regard as too small to be defined as a region.

[Figure 1 about here.]

Figure 1 shows the result of this procedure. We call the union of these polygons the

‘zero-region’ and the complement the ‘region of interest’. The zero-region contains most

of the ocean basins, plus some low-latitude lands, as expected. We also removed the GPS

observations inside the zero-region since they are less reliable. Thus, the final GPS dataset

contains 2515 observations, all inside the region of interest.

Finally, to incorporate our knowledge of the zero-region, we generate two sets of pseudo

observations, one with 50 observations spread evenly across the zero region and the other with

50 points evenly spaced on the boundaries of the zero regions. These pseudo observations are

set to be zero with an error of 0.1 mm/yr, which is about the same size as the smallest GPS

measurement errors. Although one may argue that using pseudo observations can introduce

bias in estimating the parameters, this is true only when there are a large number of them

with inappropriate values. In this application, the number is relatively small compared to

true observations. Moreover, there is also strong scientific support for the value chosen for

the pseudo-observations: if there were any reliable GPS measurements in these regions,

they should be very close to zero with tiny measurement error. Therefore, the effect on

the parameter estimation over the region of interest is rather small.

3. MODEL AND METHODS

3.1. The Bayesian model-data synthesis approach

The outline of our approach is easily stated, although, for computation at scale, the devil is

in the details. Without loss of generality, the process domain is taken to be the surface of the

Earth, denoted S2. The simulation and the true process are both functions S2 → R; we denote
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the simulation as m, with a lower-case letter because it is known, and the process as X, with

a capital letter because it is unknown. For clarity, we will refer to X throughout as the

‘latent process’. The stochastic process representing uncertainty about X is induced through

the specification of a stochastic process for the discrepancy X̃ := X −m. The observations

y := (y1, . . . , yn)T are measurements on known linear maps of X, possibly made with error.

The simulation/observations synthesis involves conditioning X̃ on y. After conditioning,

the updated discrepancy process X̃ | y can be summarised in terms of point values, areal

averages, or differences, as required, each quantified in terms of a posterior expectation,

with uncertainty summarized in terms of a posterior standard deviation. If necessary, the

latent process X can be reconstructed by adding m back to X̃ | y.

In this approach, the most demanding aspect is the specification of the stochastic process

for the discrepancy X̃. In contrast, the relationship between the latent process X and

the observations y is typically well-understood, and the observation error reasonably well-

quantified. We tackle the challenge of specifying a stochastic process for X̃ in two steps. First,

we treat X̃ as expectation-zero, isotropic, and Gaussian. These strong modelling assumptions

are very common in spatial statistics, but vary in their defensibility. In our approach, we

defend them on the basis that we are modelling the discrepancy between simulation and

latent process, for which we can expect the stochastic structure to be far simpler than the

approach where we are modelling the latent process explicitly. Essentially, we are placing

our faith in the simulation m, to have got the large-scale features of the latent process

about right. Second, we do not commit to a specific choice of expectation-zero, isotropic,

and Gaussian process, but allow its two parameters, the marginal variance σ2 and the range

parameter ρ to vary within some parametric family. We write θ := (σ2, ρ), and term these the

‘hyperparameters’. The marginal variance is the variance the process at any given location

s ∈ S2. The range parameter, also called correlation length, is the spatial distance at which

the process is almost uncorrelated, say correlation under 0.1.
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Now we can summarize our statistical model in the standard hierarchical form, starting at

the ‘top’, with the observation equation. We link each observation with the latent process

via a specified linear map Ai : S2 → R, so that

Yi = AiX + Ei, i = 1, . . . , n, (1)

where Ei is measurement error. Thus, the observations are modelled as

Y = AX + E, (2)

whereA := (A1, . . . ,An)T , and the measurement error vector E is treated as probabilistically

independent of X, and E ∼ Nn(0, Q−1
Y ), and QY is a known precision matrix, typically sparse

and often diagonal.

The linear map Ai encodes the ‘footprint’ of observation Yi, with spatial locations outside

this footprint not contributing to the value of Yi. In our GIA application, the GPS

observations are point measurements made at the known locations of the GPS stations.

Therefore, the footprint of each GPS observation is just a point. In other work we are

using measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite

(Luthcke et al., 2013), where each observation corresponds to a ‘mascon’, a known spatial

polygon, and we treat the GRACE observations as integrals over their mascons.

The latent process is modelled as

X = m+ X̃
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where the stochastic process X̃ is parametrized by the hyperparameters θ. After rearranging,

the final hierarchical form of the model is

Ỹ | X̃, θ ∼ Nn(AX̃,Q−1
Y ) (3a)

X̃ | θ ∼ GP(θ) (3b)

θ ∼ π (3c)

where Ỹ := Y −Am, ‘GP’ denotes an expectation-zero isotropic Gaussian process on S2,

and π is a prior distribution for the hyperparameters. In this formulation, the simulation m

is used to adjust the observation Y prior to update the discrepancy process X̃. If necessary,

the hyperparameters can be extended to include parameters for A and QY .

In this approach, we have the option to model the latent process as E(X;α, β) = α + βm

and to include α and β among the hyperparameters, possibly with strong priors, and this

has often been proposed in the computer experiment literature (e.g., Kennedy and O’Hagan,

2001). Our decision not to do so in this case is due to the strong belief that the simulation

m is suitable without modification as the prior expectation. The simulation m is itself a

product of a very complex modelling procedure designed to reflect both global and local

physical constraints, and our primary interest is in the local deviation between m and the

true latent process.

In most geophysical applications, the final output is usually in the form of a gridded map

or aggregation over predefined regions. To summarize the updated discrepancy process we

introduce additional known linear maps B := (B1, . . . ,Bm)T , for which Z̃ := BX̃ are the

quantities of interest. Figure 2 shows a graphical illustration of the model outline.

[Figure 2 about here.]

In the GIA application, we want to update the process on a one degree global map, therefore

B maps the point values within each pixel to the arithmetic mean. However we simplify this
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operation by using the centre of the pixel instead of the pixel average. This is because the

grid resolution is sufficiently large to ensure that there is little variation within each pixel.

Therefore, the linear operator Bi maps the point value of the GIA process at the same

location as the pixel centre as the predicted value of that grid.

Then the marginal posterior distribution for Z̃ factorizes as

p∗(z̃) =

∫
p∗(z̃, θ) dθ

=

∫
p(z̃ | ỹ ; θ) p(θ | ỹ) dθ.

(4)

The first term in the integrand is a standard Gaussian update (Rue and Held, 2005, Ch 2)

and will be discussed further below, in Section 3.2. The second term in (4) is unlikely to have

a closed-form expression. This type of integration can be approximated using the method

of Integrated Nested Laplacian Approximations (INLA, see Rue et al., 2009; Martins et al.,

2013).

3.2. Computational issues

We now review the challenge of computing p∗(z̃), and recent developments. Putting aside

the integration over θ, the challenge for computing (4) is that p(z̃ | ỹ ; θ) involves factorising

a k × k precision matrix, where k is the number of basis functions representing the latent

process X. This is the dominant cost as it requires O(k3) flops to compute. Current desktop

technology tends to be computationally expensive for k much larger than a thousand. This

is not nearly enough for some applications, particularly those where the latent process is

defined on the whole of the surface of the Earth. Long computing time is also a major

bottleneck during code development.

There are some simple work-arounds. Thinning or aggregating the observations down to less

than a thousand is one possibility. Another is splitting the update into separate regions, each

containing less than a thousand observations. These are valuable pragmatic approximations,
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but can be risky when the range parameter of the discrepancy is uncertain, because the value

of the range parameter affects the accuracy of thinning, aggregating, or splitting. Lindgren

et al. (2011, sec. 1) discuss other more technical approaches.

Therefore we look for a different type of approximation, which reduces the dominant cost

to below O(k3). Gaussian Markov random fields (GMRFs) are one answer. As discussed in

Rue and Held (2005), GMRFs defined on a finite-dimensional random vector can exploit

sparsity in the precision matrix. This sparsity is represented by an undirected graph where

the vertices are the elements of the vector, and the absence of an edge between two vertices

indicates a conditional independence, usually induced by a neighbourhood structure. The

difficulty of applying a GMRF approach directly is that S2 would need to be discretized into

a finite number of pixels. Having done this, though, the natural neighbourhood structure

would link pixels with a common boundary (a first-order neighbourhood scheme), for which

the computational cost of factorizing the precision matrix QXK
is O(k3/2). However, it is

not straightforward to configure the resulting precision matrix to approximate an isotropic

Gaussian process with variance and range parameters. It is also somewhat arbitrary to

pixelate the continuous domain S2, and wasteful to do so if some regions of S2 are more

interesting and more highly-observed than others.

The breakthrough came with Lindgren et al. (2011); see also Simpson et al. (2012), although

be warned that the notation in these two papers is at variance. Whittle (1954) had shown

that an isotropic Gaussian process with a Matérn covariance function arose as a solution to

a particular stochastic partial differential equation (SPDE). Lindgren et al. were able to use

this insight to construct a finite-dimensional approximation to a Matérn Gaussian process

for X̃ of the form

X̃(s) ≈
k∑

j=1

Wj ψj(s), (5)

in which the ψj are specified according to a triangulation of S2, which can be adapted to the
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needs of the application. Lindgren et al.’s particular choice of ψ as piecewise linear functions

induces a GMRF specification for the vector W := (W1, . . . ,Wk)T , with a sparse precision

matrix QW with a simple parametrization in terms of (σ2, ρ), where ρ is now interpreted as

the range parameter for a Matérn covariance function. Without this simple specification in

terms of the hyperparameters, most of the computational advantages would be lost. Lindgren

et al. (2011) and Simpson et al. (2012) show that the approximation error in (5) is O(h)

where h is a measure of the triangle size, such as the radius of the largest inscribed circle, or

the longest edge. Thus the hierarchical model from (3) becomes, under the approximation

in (5),

Ỹ |W, θ ∼ Nn(AW,Q−1
Y ) (6a)

W | θ ∼ Nk

(
0, Q−1

W (θ)
)

(6b)

θ ∼ π (6c)

where A is (n× k) with Aij := Ai ψj, and QW (θ) is a sparse precision matrix with a simple

parametrization in terms of θ = (σ2, ρ).

When combined with sparsity in QW , sparsity in A and QY (which is often diagonal)

implies sparsity in the precision matrix of W | {Y ; θ}, reducing the cost of conditioning from

O(k3) to something more like O(k3/2). Sparsity in A arises naturally when the observations

have small spatial footprints, because the ψj are localized in the triangulation, and thus

also have small spatial footprints. Any observation Yi whose footprint Ai does not overlap

ψj has Aij = 0. The interplay between the small footprints in A and the basis functions ψ

is discussed in more detail in Simpson et al. (2012, sec. 3.6). The more complex interplay

between A, B, and ψ is discussed in Zammit-Mangion and Rougier (2018).
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4. MODELLING NON-STATIONARITY

In many applications, the latent process is only locally stationary and this may also be

true for the discrepancies between the process and the simulations. The nature of the non-

stationarity in geophysical processes usually falls into one of two categories: (1) the process is

defined only on a subset of the domain; (2) prior knowledge of the process varies by region;

the latter usually arise from strong regional differences. The SPDE approach outlined in

Section 3.2 can be extended to non-stationary processes, notably those defined by regions

with different behaviours.

Before introducing the models for non-stationary processes, we need to consider the

triangulation for the SPDE approximation. Let the domain be partitioned as regions {Ωi}pi=1,

where we assume that the boundaries between the regions are made up of linear segments.

If we respect the boundaries by using their segments as triangle edges, then automatically-

generated triangulations can have short edges and sharp angles, which is inefficient. On the

other hand, if we triangulate the whole domain first in an efficient manner, and assign each

triangle to a region according to its centroid, then we distort the boundaries between regions,

and have less control over the resolution in each region.

The approach we adopt below is a compromise, in which we tolerate a small amount of

distortion in order to derive an efficient triangulation of the whole domain, and variable

resolution in the regions. We create a vertex set for each region (varying the resolution as

appropriate), and then merge these sets, to cover the entire domain. Then we re-triangulate

based on the vertices, to control for short edges and sharp angles. Finally, we assign each

triangle to a region according to its centroid, and in this way we distort the regions slightly. If

there is too much distortion we can modify the approach, for example by increasing resolution

near the boundaries. The R codes for triangulation and building the corresponding precision

matrices is based on Bakka et al. (2016) and more extended discussion can be found in

(Bakka, 2016, pp.96-116). The R script and functions that produce all the plots and results
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in this paper are included in the supplementary materials. We also provide a document with

detailed comments and instructions for using the functions and scripts. Figure 3 shows an

example of this approach to create a triangulation of the Earth with high resolution over the

oceans and low resolution over land.

[Figure 3 about here.]

4.1. Subset model

Some processes are defined only on particular regions. For example, sea level change is only

meaningful over the ocean and around the coastal regions. The domain of this process is

connected globally by the oceans but separated locally by the lands. For sea level changes

at any two points separated by land, their correlation is more likely to depend on the path

connecting the two points along the coastline rather than the Euclidean distance across the

land. Thus the land introduces non-stationarity.

In this case, it is natural to model the process only on the subset of interest, and we call this

approach the subset model. Denote by Ωs ⊂ S2 the subset of the domain where the process

is defined. The GMRF approximation of the process can be built in the same way as the

global stationary model using a triangulation over Ωs only. Then subset model retains the

same form as the BHM in (6).

The left panel of Figure 4 provides an illustration of the subset model on the plane. The

domain is a square with side length equal to 5. Suppose the process has a correlation length

equal to 2.5, then for an adequate finite element approximation, the maximum edge length

of the mesh triangles within the study region should be much smaller than 2.5: we choose

the maximum edge length to be 0.5. The process is defined over the whole square except for

the blank region Ω0 in the middle. Consider the correlation between two pairs of points AB

and AC as shown in the plot. The Euclidean distances between them are the same, so in

a stationary model they both have correlations around 0.61. However, in the subset model,
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the correlation between AB is smaller than 0.01, which reflects the fact that A and B are

separated by Ω0; informally, the path in this region is far longer. The correlation between

AC is 0.77. This is slightly higher than the stationary model (0.61) because after removing

Ω0, the rest of the triangles get more weights in building up the precision matrix.

[Figure 4 about here.]

It is possible to re-weight the parameters near the subset boundaries so that the parameter

stays the same in the entire region of interest. This can be done by introducing varying

parameter values near the boundaries, and falls into the class of partition models that are to

be introduced in the next subsection. To differentiate from the partition models, we keep the

parameters un-normalised in the subset model. In some applications, local variation of the

variance and correlation length may be desirable, for example, if the land acts as a reflecting

boundary for ocean processes.

4.2. Partition models

There are also processes which are well-defined over the whole domain, but which have

varying spatial characteristics. A typical example is an atmospheric process that shows very

different behaviours across the oceans, coasts and land. We propose partition models to

capture such spatial heterogeneity. First the domain is partitioned into p regions such as

oceans, coastal regions and land. As before, denote this partition by {Ωi}pi=1. Then there are

two approaches. The first is a decomposition of the process according to the region, hence we

call it a process partition model. The second uses a single process over the domain but varies

the hyperparameters according to the region, and therefore we call it a parameter partition

model.

In a process partition model, the process is decomposed into independent sub-processes

defined on each Ωi, i = 1, . . . , p. If each observation is associated with exactly one Ωi, then
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independence in the prior distributions for each Ωi implies independence in the posterior

distribution as well.

In contrast, the parameter partition model allows correlation between the regions in the

prior distribution, and therefore in the posterior distribution as well. The latent process over

the domain is modelled as a single Matérn Gaussian process, but the hyperparameters θ

become a function of the location s:

θ(s; θ1, . . . , θp) = θi, i : s ∈ Ωi. (7)

The parameter partition model takes exactly the same form as the global stationary model

in (6) but there are p sets of θi in the covariance function to be estimated. The precision

matrix for such locally stationary process is guaranteed to be positive-definite by the SPDE

construction (Lindgren et al., 2011). For numerical reason, though, it can be beneficial to

have the hyperparameters change smoothly across the boundary, and to increase the density

of the triangulation near the boundary.

The right panel of Figure 4 illustrates the spatial correlation in a parameter partition model.

The four points ABCD are the vertices of a square. Instead of removing Ω0 in the middle, we

assume the process has a correlation length ρ0 = 3 within this region, and ρs = 2.5 outside it,

as before. The resolution of the triangulation within this region can remain the same as the

outside region since the correlation length is longer; however we choose to use larger triangles

to reduce the computational cost. The correlation between AD is 0.61 and the correlation

between BC is 0.56. For AB and CD , which cross the boundary, the correlations are 0.60

and 0.59.

4.3. Constrained partition models

In the above examples, the partition of the spatial domain is determined by physical

boundaries. It is also possible to define the regions based on our knowledge and interests. In
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fact the latter is quite common as human activities and studies are not evenly distributed

over the Earth. Therefore we might be more certain about the behaviour of a process in

particular regions, and we can use this knowledge to our advantage, to reduce the number

of hyperparameters.

We consider one common case in more detail, which will also feature in the illustration

in Section 5. Consider a region where the process is known to high accuracy: for simplicity,

and without loss of generality, suppose the process is known to be near-zero throughout

the region, which we therefore term the ‘zero-region’, and denote as Ω0. We can use a

combination of hyperparameters and ‘pseudo-observations’ to enforce both the near-zero

value in Ω0, and also the continuity of the process across the boundary of Ω0. First, we set

the correlation length for Ω0, so that it is at least half the length of the longest diagonal. Then

we introduce pseudo-observations each with value zero and very small error, roughly equally-

spaced inside Ω0. When combined with the long correlation length for Ω0, conditioning on

these observations has the effect of constraining the process inside Ω0 to be near-zero, and

constraining the process just outside Ω0 to be close to zero. This holds regardless of the

variance for Ω0, and therefore a common variance hyperparameter can be used both inside

and outside Ω0.

This approach is more attractive than the alternative of only modelling the process outside

the zero-region, for two reasons. The first has already been noted: continuity across the

boundary of the zero-region. The second is that the zero-region is incorporated within the

inference, and does not have to be treated separately. This simplifies the code and the

packaging of results, and reduces the possibility of error. The additional cost of more vertices

is slight, because the triangulation in the zero-region can be low-resolution.
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5. APPLICATION TO GIA AND RESULTS

5.1. Outline of the calculation

First we need to generate the triangulation used in the GMRF representation of GIA through

the SPDE appraoch. The triangulation needs to have at least the same resolution as the

prediction required, and for efficiency the triangles should have similar sizes and shapes. The

final presentation of the updated GIA is on a one degreee map. The grid is non-regular in

shape because it has a pixel size of about 100 km at the equator and less than 10 km at

high latitude; therefore it does not have the same resolution globally. To achieve a uniform

representation of GIA, we generate an equal area lattice on the sphere using 30,000 Fibonacci

points (see, e.g., González, 2009) as the starting vertices. Euler’s formula then implies that

this gives about 60,000 triangles with an average spacing of 100 km. This is the desired

prediction resolution and the one degree map is projected from these triangle vertices.

Then we need to adjust the observations by the prior mean field m as explained after

(3). Thus, the ICE6G gridded values are mapped to the GPS station locations by linear

interpolation, and then subtracted from the corresponding GPS values. This gives values for

Ỹ in (3). We use INLA to update the discrepancy X̃ on the triangulation by conditioning on

Ỹ and integrating out the hyperparameters θ according to our prior given below in Section

5.2. The updated discrepancy field is then mapped back to the ICE6G grid, and the GIA

process is reconstructed by adding back the simulation m. The result is an object similar to a

GIA simulation, but representing the posterior expectation of GIA. Additionally, each pixel

in the result is accompanied by a measure of uncertainty, the predicted standard deviation.

Given the nature of our a priori non-stationarity, we prefer to use the constrained partition

model described in Section 4.3. For the zero-region, we choose a correlation length equal to

the diameter of the Earth, which is long enough for a sparse representation of the zero-

region and also keeps the precision matrix of the latent process from being singular. We
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use 50 pseudo-observations with an error of 0.1 mm/yr, which is about the same size as the

smallest GPS measurement errors, spread evenly through the zero-region.

By way of contrast, we also present two other approaches: modelling the process on

the entire Earth as a priori stationary, and modelling only the region of interest, as a

priori stationary. In the latter, we use 50 pseudo-observations spread evenly around the

boundary of the zero region, to enforce continuity. In all three approaches, there are just two

hyperparameters: the variance σ2 and the correlation length ρ.

5.2. Prior distribution for the hyperparameters

In our application, d = 2, the dimension of the domain, and we choose ν = 1, the smoothness

parameter of the Matérn covariance function. This implies α = 2, where α is a parameter of

the SPDE used to induce the precision matrix QW in (6). In the equations below we will use

these explicit values of d, ν, and α to simplify some expressions.

We use the R-INLA package for computation; see Lindgren and Rue (2015). This package

expects the Matérn hyperparameters (σ, ρ) to be specified in terms of the alternative

parameters (κ, τ), where

σ2 =
1

4π κ2 τ 2
, ρ =

√
8

κ
. (8)

Note that under this representation, ρ is the distance at which the correlation function has

fallen to about 0.13 rather than the commonly used values 0.05 and 0.1. R-INLA represents

the prior for (τ, κ) as

log κ = κ0 + a1 θ1 + a2 θ2 (9a)

log τ = τ0 + b1 θ1 + b2 θ2 (9b)

where all terms on the right-hand side bar are specified, and (θ1, θ2) is a Gaussian vector
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with specified expectation and precision. Thus we must convert our beliefs about (σ, ρ) into

values for (τ0, κ0), (a1, a2), (b1, b2), and the expectation and precision of (θ1, θ2), which are

modelled as log-normal.

Solving (8) in logs,

log κ

log τ

 =
1

2

 log 8

− log(4π)− log 8

+

 0 −1

−1 1

 log σ

log ρ

. (10)

This expression identifies the terms in (9), with θ1 = log σ and θ2 = log ρ.

We treat σ and ρ as a priori independent. Our starting point are prior expectations

E(σ) = 1.5 mm/yr and E(ρ) = 1000 km. When implemented in R-INLA, the distance between

any two points is represented by the great circle distance on a unit ball; hence ρ need to

be scaled by the Earth radius 6371 km, and becomes E(ρ) = 1000/6371 ≈ 0.16. For our

prior uncertainty, we set the prior standard deviations to be twice the prior expectations,

i.e. a coefficient of variation of 2. If logZ ∼ N(m, s2), then E(Z) = exp(m+ s2/2) and

CV(Z) =
√

exp(s2)− 1. Hence

E

θ1
θ2

 =

 log(1.5)− log
√

5

log(2000/6371)− log
√

5

 , V

θ1
θ2

 =

log 5 0

0 log 5

 , (11)

which together with (10) and (11) completes the specification of the prior distribution for

the hyperparameters.

5.3. Results

We present the results from the globally stationary model and the two approaches for

modelling non-stationarity: the subset model and the constrained parameter partition model.

Figure 5 shows the marginal posterior distributions for the two hyperparameters. Clear

differences between these marginal distributions indicate that our different ways of treating
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non-stationarity are practically as well as theoretically different; although these differences

will not necessarily translate into differences in the updated discrepancy.

[Figure 5 about here.]

Nevertheless, some clear differences are seen in the posterior expectation and standard

deviation, shown in Figures 5and 7. In the expectation, the two non-stationary models have

higher resolution features relative to the stationary model, e.g., in North America where

there are lots of GPS stations: this might reflect the shorter correlation lengths shown in the

right panel of Figure 5. As might be expected, there are larger differences in the standard

deviations. Comparing the two non-stationary models, the presence of an explicit zero-region

in the parameter partition model is marked by close-to-zero standard deviations inside the

zero-region, and larger standard deviations in the region of interest. The subset model has

an interesting ‘Gibbs effect’ of a ridge of slightly raised standard deviations just outside the

boundary of the zero region, which is completely absent from the parameter partition model.

[Figure 6 about here.]

[Figure 7 about here.]

Looking at both the expectation in Figure 6 and the standard deviation, we are much

happier presenting the results of the parameter partition model to geoscientists, than the

other two models.

6. CONCLUSION

In this paper we provide an update of the global GIA using a Bayesian hierarchical model that

synthesizes physical model output and imperfect GPS observations, over a spatial domain

in which the discrepancy between the model and the true GIA process has a systematic

component. We model the discrepancy with an isotropic Gaussian random field.
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In this application, we have also addressed two important challenges. First, the challenge

of large-scale computation, which is increasingly common in environmental statistics, where

many interesting questions concern global behaviour, and many interesting datasets are dense

and global in their coverage. We have provided a review of the key issues, and the benefits

of the SPDE approach proposed by Lindgren et al. (2011). This approach uses a bespoke

spatial triangulation, which can be adapted to the dataset and the needs of the inference.

Second, we have proposed a variety of methods for modelling non-stationarity. Non-

stationarity will often be a feature in practice, especially over very large spatial domains

which encompass several different types of region. In this paper we have used what we term

a ‘parameter partition’ model. We have used this model to impose a zero-region on the

update of GIA, which also involves the introduction of pseudo-observations. In forthcoming

work, where it is important to separate land and ocean effects, we will use what we term a

‘process partition’ model.

We have also provided practical guidance, including how to construct triangulations over

regions, and how to parameterize the prior distribution of the hyperparameters in the R-

INLA package.

The next step for us is the use of multiple latent processes, with more complex

observation operators. Some of these observations have large spatial footprints (e.g.,

gravitation measurements from the GRACE satellite), and, at their native resolution, non-

zero measurement error covariances. This combination of multiple processes and large

footprints will push our current computing resources to the limit, and likely require some

further approximations.
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Figure 1. The polygons where the GIA is very likely to be zero (coloured in blue).
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Figure 2. Framework of the Bayesian model-data synthesis method.
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Figure 3. Separating triangles over the land and oceans. Here we have used a lower resolution triangulation over the land.
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Figure 4. An example of GMRF approximation for non-stationary models. Left panel (subset model): the Euclidean distances of AB

and AC are the same and the two correlations are both 0.61 in the stationary model. However in the subset model, the correlation is

smaller than 0.1 for AB, and 0.77 for AC. Right panel (partition model): the shaded region in the middle has ρ0 = 3 and the outside

has ρs = 2.5. The four points ABCD are the vertices of a square. The correlation between AB is about 0.60, between AD is 0.61,

between BC is 0.56.
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Figure 5. Posterior distribution of the hyperparameters. Part of the region below the prior densities are shown as the grey polygons

in the plots.
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Figure 6. Predicted GIA mean field. From top to bottom are the predicted GIA mean field from the constrained partition model, the

subset model and the stationary model. The subset model has no prediction in the zero-region. All models performs similarly in the

region of interest but show difference in the zero-region and near the boundary.
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Figure 7. Predicted GIA uncertainty. The subset model has no prediction in the zero-region and thus no predicted uncertainties either.

The partition model shows much lower uncertainty in the zero-region as expected but the uncertainties are pushed in to the region with

less information and thus resulting higher uncertainties in the region of interest compared to the other models.
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