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1. Abstract 
 

Lack of long-term scientific land cover and erosional data impedes the development of sustainable land 
management plans to tackle land degradation and soil erosion problems in Tanzania. Using Landsat 
imagery, almost three decades of land cover change in the Lake Manyara catchment (1988-2016) was 
reconstructed. Data highlight that the major land cover types are highly dynamic and that there is a net 
conversion of natural or semi-natural land cover towards agricultural uses. Specifically, the biggest net 
declining cover types were found to be ‘bushland’, ‘seasonal grassland’ and ‘permanent savanna’, 
which have reduced by 8.7, 6.1 and 3.5 % respectively. In this context an erosion risk model, based on 
the ‘Revised Universal Soil Loss Equation’, was applied to evaluate how changing land cover has 
affected risk of surface soil erosion by water. Model outputs indicate that a lot of land conversion has 
occurred in areas that are naturally vulnerable due to topography, soil type and rainfall patterns, 
seriously increasing the soil erosion risk. The resulting output maps can be particularly useful in 
pinpointing potential areas of increased erosion risk underpinning targeted investigation and 
management action to support soil conservation for improved food and water security.  
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2. Introduction 
 

Tanzania is currently experiencing rapid changes in terms of economy, policy (Ponte, 2002) and 
population structure (FAO, 2014). However, there is concern that the socio-ecological responses to 
these changes are resulting into unsustainable use of the environment and natural resources (Maitima 
et al., 2009; Muyungi, 2007; Tengberg and Stocking, 1997). An ever increasing number of farmers are 
seeking land to establish agricultural operations, causing a marked shift  from natural vegetation 
towards agricultural land (FAO, 2014; Gibbs et al., 2010). This scramble for land is pushing farmers to 
areas less suitable for agriculture, without infrastructure and on steep slopes (Jayne et al., 2014; 
Odgaard, 2002). Furthermore, the main fuel source in Tanzania is wood and charcoal, causing 
exploitation of forests and woodlands (Hiemstra-van der Horst and Hovorka, 2009). Finally, the livestock 
numbers have more than doubled in the last 50 years (FAO, 2014), which combined with the reduced 
mobility of pastoralist communities is causing a massive increase in cattle densities on the pasture 
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lands, leading to overgrazing and trampling of the soil (Little, 1996; Ruttan et al., 1999). The previous 
described land use changes and -pressures increase the vulnerability of the soil to erosion, which has 
a wide range of detrimental impacts (Pimentel, 2006; Thornes, 1990).  First of all, the erosion mediated 
loss of soil and nutrients lowers the productivity of agricultural lands (Pimentel and Kounang, 1998), 
spiralling back to the agricultural production, food security and livelihoods of local people (Tengberg 
and Stocking, 1997). Second, the eroded soil causes siltation and eutrophication of river channels, 
lakes and reservoirs where they have a wide array of detrimental socio-economic and ecological 
impacts (Pimentel, 2006). Last of all, degradation of the unique Tanzanian ecosystems would be 
catastrophic for the biodiversity they harbour and ecosystem services they provide for the region 
(McClanahan and Young, 1996). Given that a large part of Tanzania’s economy is based on wildlife 
viewing and ecotourism, ecosystem degradation may directly impact the livelihoods of millions of people 
(Christie et al., 2014; Kahyarara and Mchallo, 2008). 

It is clear that economic and agricultural growth is essential to absorb the increasing population pressure 
in Tanzania, but at the same time that soil erosion driven by these pressures poses a major treat for 
the sustainability of this growth. There is a need for sustainable management plans to make sure 
development happens without compromising the soil- and water resource base (Lal, 2000; Maitima et 
al., 2009; Muyungi, 2007). However, the lack of long term scientific data about land cover change and 
erosion dynamics in Tanzania impedes the assessment of the sustainability of land use change. A 
possible solution to this issue can be the use of Landsat imagery to document the changes in land cover 
(Zhu and Woodcock, 2014). Vegetation is one of the most dynamic and anthropogenically-impacted 
factors controlling soil erosion (Thornes, 1990). However, the extent and impact of vegetation changes 
on the soil erosion dynamics depend on other less dynamic factors in the areas of change (Renard et 
al., 1997; Wischmeier and Smith, 1978). Hence, land cover reconstruction can form the base for erosion 
risk maps together with slope, soil and precipitation data (Leh et al., 2013; Vrieling, 2006). In this context, 
the goal of this study is to pinpoint locations for targeted land management interventions in order to 
combat soil erosion and land degradation, as well as safeguard food security, biodiversity and local 
livelihoods. In this contribution, we provide a new step-by-step methodology developed for assessing 
changes in surface erosion risk due to land cover changes in the Lake Manyara catchment. The 
observed changes and modelled results are discussed in their social, economic and environmental 
setting with attention to limitations and wider potential applications of this methodology. Herein we aim 
to provide a template for assessing changes in land cover- and surface erosion risk over the past 
decades in sub-Saharan Africa and other areas where there is lack of long-term land cover or soil 
erosion monitoring schemes.  

3. Material and methods 
 

All the input data and model outputs can be accessed online for reproductive purposes (Wynants, 2018). 

3.1 Study site 
 

The Lake Manyara area in the East African Rift System (EARS) region of Tanzania is characterised by 
distinct volcanic and tectonic topography and a high environmental diversity (African Wildlife Foundation, 
2003; Deus et al., 2013). It is also considered to be an important driver for development in northern 
Tanzania in terms of ecotourism, conservation, fisheries, (irrigation) agriculture and pastoralism. 
However, increasing socio-economic pressures impose serious threats for the ecosystem services 
needed to support its status as a system of high value (African Wildlife Foundation, 2003; Muyungi, 
2007; Ngana et al., 2004). The environmental diversity of the system together with the typical East-
African pressures makes this system an ideal natural laboratory in which to study soil erosion problems 
of the EARS. The exact Lake Manyara watershed was delineated using Digital Elevation Maps (DEMs) 



of the area (Farr et al., 2007) and the ‘Catchment Area’, ‘Channel network’ and ‘Watershed basins’ tools 
in QGIS 2.14.8,  following the hydrological analysis protocol (Olaya, 2014). Figure 1 shows the resulting 
detailed delineation of the total Lake Manyara catchment area and its location in Africa.  

 

Figure 1: Elevation map of the Lake Manyara catchment, located in Tanzania, with its major sub-basins and 
their river systems flowing towards the lake: a) Marera, b) Kirurumo, c) Mto Wa Mbu-Simba, d) Makuyuni, 
e) Tarangire, f) Dudumera, g) Magara and h) Endabash. 

3.2 Land cover classification 
 

Ortho-rectified and geometrically corrected Landsat images were obtained from USGS Earth Explorer 
and selected on the lack of interfering cloud cover. To highlight the effect of seasonal drying on 
vegetation, which is important regarding soil erosion dynamics (Kirkby, 1980), high quality images at 
the end of the dry season from two time periods were used. For the recent land cover we used ‘Landsat 
8’ files obtained on 22/10/2016 (east) and 16/02/2016 (west), while for the historic land cover we used 
‘Landsat 4-5’ files obtained on 01-10-1988 (east) and 15/02/1987 (west). These dates allowed us 
reconstruct almost three decades of land cover change in the area. During multiple ground-truthing 
campaigns, a comprehensive documentation of the land cover spectrum was attempted using geo-
tagged photos and field notes. The efforts focused close to accessible roads with additional on foot 
surveys in more remote areas. Overall with the knowledge gained from these campaigns, coupled with 
the available high resolution satellite imagery from Google Earth, sufficient information was available to 
delineate the major land cover types in the area and build signature files. These are prior land cover 
delineated areas representative for the catchment. The conversion of the Landsat imagery to a land 
cover classification was done using the supervised method in ArcMap, which is based on these expert-
build signature files. However, the biggest challenge with classifying the 1988 Landsat imagery was a 
lack of information on land cover or high resolution imagery for that period. The key solution for this was 



to select signature files with land cover delineation in areas where we more or less knew the land cover 
had remained stable (National parks, reserves, etc.) and/or to select areas where the land cover in 1988 
could be predicted with a high certainty (distinct land cover areas). To guarantee the most detailed 
classification, the land cover was split up into 23 groups, which could in turn be grouped into 11 major 
classes (Table 1). Even with the high amount of land cover classes, false classifications were 
unavoidable due to reflectance differences in the same cover type, which can be caused by other factors 
such as soil type or wetness. Vice versa, different cover types are potentially classified as one because 
of reflectance similarities. The last step in the land cover reconstruction was to visually detect and 
correct those false classifications, which was done by manually selecting the incorrect areas and giving 
them the right land cover class. Additionally the limited cloud cover classifications were replaced with 
the dominant surrounding land cover. Land cover change analysis was performed following Pontius Jr 
et al. (2004), accounting for the gross changes, net changes, persistence and swap.  

3.3 Erosion risk mapping and comparison 
 

Erosion risk modelling was performed using  ArcGIS’ ‘modelbuilder’  and is based on the Revised 
Universal Soil Loss Equation (Renard et al., 1997; Wischmeier and Smith, 1978), which calculates the 
mean annual soil loss rates by sheet and rill erosion by following equation: 
 

𝐸𝐸 = 𝑅𝑅 × 𝐿𝐿𝐿𝐿 × 𝐾𝐾 × 𝐶𝐶 × 𝑃𝑃      
                      

Where E: annual average soil loss (t ha-1 yr-1), R: rainfall erosivity factor (MJ mm ha-1 h-1 yr-1), K: soil 
erodibility factor (t ha h ha-1 MJ-1 mm-1), C: cover-management factor (dimensionless), LS: slope length 
and slope steepness factor (dimensionless), and P: support practices factor (dimensionless). The slope 
factor (LS) is a proxy for the soil erosion vulnerability of an area regarding the slope angle and length 
and its distribution in the catchment is shown in Figure 2a. For the calculation of LS in ArcGIS from the 
DEM (Farr et al., 2007) we used the LS-tool developed by Zhang et al. (2013), which is based on 
McCool et al. (1989) and Desmet and Govers (1996): 
 

𝐿𝐿𝐿𝐿 = 𝐿𝐿 × 𝐿𝐿  

𝐿𝐿𝑖𝑖𝑖𝑖−𝑖𝑖𝑖𝑖 =
 [(𝐴𝐴𝑖𝑖𝑖𝑖−𝑖𝑖𝑖𝑖 + 𝐷𝐷2)𝑚𝑚+1 −  �𝐴𝐴𝑖𝑖𝑖𝑖−𝑖𝑖𝑖𝑖�

𝑚𝑚+1

(𝐷𝐷𝑚𝑚+2) × �𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚� ×  (22.13)𝑚𝑚 
 

𝑚𝑚 =
𝛽𝛽

1 + 𝛽𝛽
 

𝛽𝛽 =
(sin𝜃𝜃)

[3 × (𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃)0.8 + 0.56] 

𝐿𝐿 = 10.8 × 𝑠𝑠𝑠𝑠 𝑠𝑠 𝜃𝜃 + 0.03 𝑠𝑠𝑖𝑖 𝜃𝜃 < 9% 
𝐿𝐿 = 16.8 × sin𝜃𝜃  − 0.05 𝑠𝑠𝑖𝑖 𝜃𝜃 > 9% 
 

Where: m is the variable length-slope exponent, 𝛽𝛽 is the ratio of rill vs. inter-rill erosion, 𝜃𝜃 is the slope 
angle, 𝐴𝐴𝑖𝑖𝑖𝑖−𝑖𝑖𝑖𝑖 is the contributing area at the inlet of the grid cell with coordinates (i,j) in m2, D = grid cell 
size (m) and Xij = (sinαij + cosαij). Flow accumulation was used as a proxy representing the contributing 
area for each cell (A). A threshold unit of 100000m2 was inserted as the point where flow accumulates 
into the river network and changes from hillslope surface erosion to riverine- or gully erosion.  
 
In terms of rainfall erosivity, the intensity and frequency of high intensity rainfall events are more 
predictive than the total rainfall amount. However, this information was not available for our study site. 
For East-Africa, however, there is a high correlation between the Kinetic energy of the high intensity 
storms and the mean annual precipitation, as almost all rainfall in the area happens in seasonal 



intensive events (Moore, 1979). The mean annual rainfall (MAR) data was obtained from the global 
“CHELSA” dataset (Karger et al., 2017), which is based on 34-year of climate data (1979-2013) 
combined with numerous other predictive inputs. Using Moore’s (1979) regressions, the kinetic energy 
of the rains (KE) and ultimately the rainfall erosivity factor (R) was calculated and is shown in Figure 2b.  
 

𝐾𝐾𝐸𝐸 = 3.96 × 𝑀𝑀𝐴𝐴𝑅𝑅 + 3122 
𝑅𝑅 = 17.02(0.029 × 𝐾𝐾𝐸𝐸 − 26.0) 
 

The soil erodibility factor was calculated from soil information obtained from the Harmonized world 
soil database (Nachtergaele et al., 2008), complemented with field information regarding soil texture, 
and organic carbon content.  With that information the basin was divided into 16 different soil regions, 
which could be split into 5 textural classes for the basin: Heavy clay, Clay, Clay loam, Sandy clay loam 
and Loam. Together with the topsoil organic carbon content (% of weight) of each region, this 
information was used to calculate the soil erodibility factor (Figure 2c) following the simplified table of 
Stewart et al. (1975), accounting for the conversion to SI units by multiplying with 0.1317.  

 

Figure 2: The model input maps of the a) dimensionless slope length and slope steepness factor LS, b) 
Rainfall erosivity factor R (in MJ mm ha-1 h-1 yr-1), and c) Soil erodibility factor K (in t ha h ha-1 MJ-1 mm-1). 

The cover-management factor reflects the effects of plant- and root cover and soil disturbing activities, 
which are included when giving the erosion vulnerability scores of different cover types (Wischmeier 
and Smith, 1978). It was opted to include the support practice factor in the cover-management factor. 
The risk scores per land cover type (displayed in Table 1) were chosen following field observations 
(Blake et al., 2018) and literature examples (Angima et al., 2003; Ligonja and Shrestha, 2015; Panagos 
et al., 2015; Renard et al., 1997). By giving each land cover type a cover-management score, maps of 
the C-factor were created for both 1988 (Figure 3a) and 2016 (Figure 3b). All of the previously described 
factor maps were subsequently used as input parameters for the RUSLE modelling and the resulting 
output provide an estimation of the annual soil loss rates by sheet and rill erosion in the Lake Manyara 
basin in 1988 (Figure 5a) and 2016 (Figure 5b). However, the ultimate goal of this study was not to 
estimate the soil loss quantities in the catchment, but to map the on-site changes in soil erosion risk.  
By subtracting the map of 2016 (E2016) with that of 1988 (E1988), a risk change map (∆E, Figure 5c) was 
obtained, which shows the spatial distribution of erosion risk increases and decreases in the Manyara 
catchment: 

∆𝐸𝐸 =  𝐸𝐸2016  −  𝐸𝐸1988 



Table 1: The selected land cover types, their broader classification and corresponding C-factor scores 

Land cover type Broad type C-factor Land cover type Broad type C-factor 
Highland forest Forest 0.05 Afroalpine grassland Permanent savanna 0.20 
Lowland forest Forest 0.05 Seasonal grassland Seasonal grassland 0.40 
Riverine forest Forest 0.05 Saline grassland Saline grassland 0.25 
Seasonal agriculture Agriculture 0.50 Wetland vegetation Wetland/Riparian veg. 0.03 
Highland agriculture Agriculture 0.35 Lake delta Wetland/Riparian veg. 0.03 
Grassy agriculture Agriculture 0.40 Riparian vegetation Wetland/Riparian veg. 0.03 
Irrigation agriculture Irrigation 0.25 Burned savanna Permanent savanna 0.20 
Bare agriculture Agriculture 0.60 Degraded  Bare 0.80 
Mosaic Mosaic 0.20 Bare Bare 0.80 
Bushland Bushland 0.15 Mud- and salt flats Water bodies 0 
Permanent savanna Permanent savanna 0.20 Water bodies Water bodies 0 
Floodplain grassland Permanent savanna 0.20 Clouds Surrounding cover / 

 

 

Figure 3: The dimensionless land cover erosivity factor input maps for a) 1988 and b) 2016. 

3.4 Land cover validation and model sensitivity analysis 
 

The land cover classification was validated by stratified randomised sampling, where the output raster 
was overlaid with 300 points, evenly spread per land cover class. For each point the classified cover 
type was checked with high resolution Google Earth images. Three possible validation types were 
possible: ‘Correct’, ‘False’ and ‘Grey’ because in some cases the actual cover was in an intermediate 
zone (for example between ‘permanent savanna’ and ‘bushland’). Subsequently, a sensitivity analysis 
was performed to test the model’s response to potential omission or commission errors in the model 
inputs. Following the literature description of the model input errors (Farr et al., 2007; Karger et al., 
2017; Nachtergaele et al., 2008), it was decided to test the model’s sensitivity for a 10% potential error 



to the slope-, soil- and precipitation data. This was done by creating a random raster with values ranging 
from 0.9 to 1.1 and multiplying it with the selected model parameter, while keeping the other parameters 
constant. For the sensitivity analysis to land cover errors, the results of the land cover validation was 
used. A raster was created, where the percentage of land cover found to be correctly classified was 
randomly translated to a percentage of cells given the value 0, the percentage of land cover found to 
be grey was randomly translated to a percentage of cells and given a value ranging from -0.05 to 0.05 
(as the errors are minor), and the percentage of land cover found to be classified falsely was randomly 
translated to a percentage of cells given a value ranging between -0.30 to 0.30 (as the errors are major). 
The resulting sensitivity analysed model outputs were subsequently compared with each other to 
assess the potential impact of errors on the results.  

4. Results and discussion 

4.1 Land cover changes 
 

The land cover changes are summarized visually in Figure 4 and numerically in Table 2. The cross-
tabulation with absolute values can be found in annex 1 and gives information about persistence and 
area of specific land cover types which are converted to others. The most distinctive trends are the net 
decreases in ‘bushland’, ‘permanent savanna’ and ‘seasonal grassland’, which would be traditionally 
used as common grazing areas for pastoralist. At the same time substantial net increases in ‘Agriculture’ 
and ‘Irrigation’ and a minor increase in ‘Mosaic’ can be observed. Another alarming shift is the 
substantial net increase in ‘bare/degraded land’, which is mostly limited to the Makuyuni sub-catchment 
and is largely caused by degradation of grazing lands. This development highlights the negative spiral 
of land degradation, as these bare lands will be even more vulnerable to soil erosion, hence degrade 
further. Other notable trends are the decrease in wetland coverage and the slight increase in ‘forest’ 
cover, the first being converted among others to irrigation agriculture and grazing areas and the latter 
probably due to a better protection of the forest reserves. The decrease in saline grassland is linked to 
the increase in the area of water bodies, which are dynamic and engulf parts of their surroundings in 
wet periods. 

Table 2: Percentages of the total catchment area (18372 km2) per land cover type in 1988 and 2016, the 
total gains, losses, gross changes, swap and net changes (- values have a net decrease).  
 

% 1988 % 2016 % Gain % Loss % Gross 
change 

% Swap % Net 
change 

Agriculture 10.7 24.8 16.7 2.6 19.4 5.3 14.1 
Bare/Degraded 0.4 2.0 1.8 0.2 2.0 0.4 1.6 
Bushland 26.2 17.6 6.4 15.1 21.5 12.8 -8.6 
Forest 6.8 7.0 1.4 1.1 2.5 2.3 0.2 
Irrigation 0.3 2.5 2.3 0.1 2.4 0.3 2.1 
Mosaic 1.2 1.7 0.7 0.2 0.9 0.5 0.5 
Permanent savanna 33.9 30.3 10.9 14.4 25.3 21.7 -3.5 
Saline grassland 1.7 1.5 0.8 1.0 1.9 1.6 -0.2 
Seasonal grassland 14.0 7.9 3.9 9.9 13.8 7.7 -6.1 
Water bodies 2.4 2.7 0.3 0.0 0.4 0.1 0.3 
Wetland/Riparian  2.4 2.1 1.6 1.9 3.6 3.2 -0.3 
 

Even though the net changes are already very distinct, the gross changes and swap between the 
different land cover types are much higher, indicating that the system is highly dynamic and that some 



land cover types have a low persistence. The highest percentages of swap are found between 
‘Permanent Savanna’, ‘Bushland’ and ‘Seasonal grassland’, which besides losing area to agriculture 
also shift between each other. However, the drivers behind previously described net and gross changes 
are not straightforward. Land cover change is driven by both environmental- and land use change, the 
latter in term is a result of complex social, political and economic transitions (Blake et al., 2018; Rohde 
and Hilhorst, 2001). 
Validation of the recent land cover classification described 89% of the random points as ’correct’, 7% 
as ‘grey’ and 4% as ‘false’. However, the accuracy of the classification differed between the classes 
and are summarised in Appendix 2. These results indicate that the land cover reconstruction 
methodology has a relatively high level of accuracy and is representative of the actual land cover 
dynamics in the Lake Manyara catchment. 
 

 

Figure 4: Land cover maps and percentages of land cover types derived from Landsat imagery of a) 1988 
and b) 2016.  

4.2 Erosion risk change 
 

Analysis of the spatial distribution of the erosion risk changes implies that there is no ubiquitous increase 
in erosion risk and there are also substantial areas showing risk decrease (Figure 5c). Over the entire 
catchment there is nonetheless a domination of increasing risk zones, which are grouped in spatially 
distinct areas representing erosion hotspots. Results indicate that a lot of the land conversion is 
happening in natural high risk areas, giving rise to spatially distinct areas of anthropogenically-enhanced 
surface erosion risk. This fits with the dominating research, stating that the effect of land cover change 
on soil erosion dynamics is highly dependent on the environment where the change occurs (Foley et 



al., 2005; Montgomery, 2007). Most of the protected areas are characterized by stable or decreasing 
erosion risk, highlighting the importance of land management (Appendix 3).  



 

 

Figure 5: Modelled output maps of the annual average soil loss E (in t ha-1 yr-1 or as qualitative proxy for 
erosion risk) for a) 1988 and b) 2016. With c) the predicted changes in erosion risk (Delta E) following land 
conversion between 1988 and 2016. In the green areas erosion risk has decreased, while in the red areas 
it has increased. 



Sensitivity analysis suggests that introducing errors in the separate factors had minor effects on the 
eventual quantitative predictions of the surface soil erosion risks, mostly affecting the outlier values. 
Regarding the spatial distribution of risk change, there was no observable effect when introducing error 
in any of the model inputs (Appendix 4). In conclusion, introducing errors in the model parameters thus 
only led to minor changes in the quantitative predictions and the spatial distribution of erosion hotspot 
zones remained similar. This observation is particularly promising, as the main goal of this study is to 
pinpoint hotspots of increased erosion risk. 

4.3 Limitations and possibilities  
 

There are numerous limitations with risk change modelling based on RUSLE and remotely sensed data 
(Claessens et al., 2008; Sepuru and Dube, 2018; Vrieling, 2006). One of these is the focus on surface 
erosion (interrill and rill erosion), and not accounting for other forms of erosion (e.g. streamline incision 
processes), which could be potential contributors to net soil export and land degradation in the Manyara 
catchment (Blake et al., 2018). It is thus important to acknowledge that this modelling only represents 
one aspect of the total soil erosion spectrum. Possibilities lie in the coupling of these models with models 
mapping vulnerability to other erosion processes (e.g. mass movements, gully-, riverine- and wind 
erosion), which would give a better representation of the total erosion vulnerability (Aksoy and Kavvas, 
2005). Another issue is that the erosion risk model is limited to predict on-site changes to vulnerability 
of soil erosion but is not suitable for studying catchment wide source-to-sink dynamics and hence overall 
delivery of material from a given area. Additionally, these risk maps do not account for sediment supply 
limitation and overland flow initiation dynamics, which are important factors for erosion dynamics as 
well. Combining this modelling approach with sediment tracing techniques is particularly promising as 
these can provide detailed information of source-to-sink dynamics in the catchment and confirm the 
proportional contribution (changes) of areas of high risk, thus validating the model (Owens et al., 2016). 
Further, the resolution of the data (30m) excludes the effects of microtopographic landforms such as 
terraces, which divide the hillslope in small plateaus and so decreases the slope angle and length. 
Moreover, the scoring process of land cover types arguably lacks the complex interaction of land cover 
with erosion. For example, overgrazing and trampling of rangelands due to overstocking would increase 
in erosion risk even though land cover remained stable. Another limitation in semi-arid areas is that the 
rainfall erosivity is based on the mean annual precipitation of a 30 year period and does not consider 
the potential effects of interannual variation in precipitation. This variability in rainfall is also tightly linked 
to vegetation dynamics, where a wet year following a dry year can create an extra high vulnerability of 
soil erosion, as the vegetation has desiccated and the C-factor would be higher (Kirkby, 1980). Last of 
all, Landsat images only can go back a couple of decades in time, which is not a very tangible baseline 
in the Lake Manyara area. Possibilities to extend the period of land cover reconstruction by using old 
colonial aerial photographs would permit assessment of baseline conditions to a transformative historic 
event such as the end of the Colonial period.  

5. Conclusions 
 

The land cover reconstruction approach to soil erosion risk assessment presented here provides an 
important framework within which to assess changing soil erosion risk to support land management 
decisions. Evaluation of land cover data in the present study offers strong evidence of large-scale 
conversion from natural or semi-natural cover to agricultural land. Much of this land conversion is 
happening in naturally vulnerable areas, giving rise to notable increases in erosion risk.  Quantitative 
estimation of soil loss can be a useful tool in smaller agricultural catchments but is less relevant for 
larger and diverse catchment such as Lake Manyara. In this regard, the strength of this approach lies 
in its mapping output, which provides a spatially qualitative proxy of erosion risk changes following land 



conversion. This information is particularly useful to pinpoint hotspot areas of increased risk which (1) 
support targeting these areas for more detailed investigation of controls on erosion processes and (2) 
guide stakeholders and policy makers in land management decisions of soil conservation measures 
and possible action.  
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7. Supplementary material  



Appendix 1: Cross-tabulation table with the absolute values (in km2) per land cover type of persistence (bold), transitions to other types, total area, losses and 
gains.   

Land cover type Bushland Agriculture Forest Wetland/ 
Riparian 

Permanent 
savanna 

Seasonal 
grassland 

Bare Saline 
grassland 

Water 
bodies 

Mosaic Irrigation Total area 
1988 

Loss 

Bushland 2052.6 977.5 133.1 51.9 1,175.4 217.5 33.0 15.9 0.7 30.0 131.8 4822.5 2766.7 
Agriculture 71.2 1474.0 27.6 21.8 98.5 67.6 39.9 7.2 1.2 34.3 116.3 1960.8 485.6 
Forest 56.5 54.7 1040.8 10.2 8.9 6.1 0.2 0.8 0.0 30.2 43.1 1252.9 210.8 
Wetland/Riparian  50.3 41.9 18.1 81.5 105.8 32.7 1.3 17.4 7.5 2.1 80.8 439.5 357.9 
Permanent 
savanna 

849.9 1,001.5 45.2 116.6 3573.9 358.7 144.4 64.8 0.5 25.2 40.4 6223.0 2647.3 

Seasonal 
grassland 

134.7 945.5 0.9 26.7 556.6 742.2 99.4 42.9 1.4 10.4 4.1 2566.0 1822.8 

Bare/Degraded 5.9 14.8 0.0 0.9 5.4 10.0 35.1 0.2 0.0 0.0 0.0 72.3 37.1 
Saline grassland 4.4 6.4 0.6 61.1 43.1 15.9 10.2 121.8 49.4 0.0 0.2 313.2 191.3 
Water bodies 0.1 0.6 0.1 6.1 0.1 0.0 0.0 0.2 429.0 0.0 0.0 436.3 7.2 
Mosaic 1.8 16.7 20.7 0.4 1.6 0.2 0.0 0.1 0.0 181.5 0.1 223.3 41.7 
Irrigation 3.2 11.0 5.9 2.4 0.1 2.3 0.1 0.9 0.0 0.2 36.2 62.2 26.0 
Total area 2016 3232.7 4547.2 1293.9 379.8 5571.5 1454.1 363.6 272.2 489.8 314.1 453.1 18372.0 

 

Gain 1178.1 3070.6 252.3 298.1 1995.5 711.1 328.4 150.3 60.8 132.4 416.8 
  

 

 

 



Appendix 2: Percentages of correct, unsure and false classification per land cover type. 

 

 

 

 

 

 

 

Appendix 3: Erosion risk change map (red is increase, green decrease) overlaid with protected areas and 
delineation of the different sub-catchments to highlight the effect of land management and the spatial 
variability of the risk change. 

Land cover type Correct (%) Grey (%) False (%) 
Permanent savanna 96.3 3.7 0 
Forest 100 0 0 
Agriculture 81.5 14.8 3.7 
Mosaic 92.6 7.4 0 
Wetland/Riparian 72.4 17.3 10.3 
Seasonal grassland 88.9 7.4 3.7 
Bushland 96.3 3.7 0 
Saline grassland 96.3 3.7 0 
Irrigation agriculture 85.2 14.8 0 
Bare/degraded land 71.5 7.1 21.4 
Water bodies 100 0 0 



 

Appendix 4: Sensitivity analysis of the model output with 10% random errors in the model inputs of a) the 
LS factor, b) R-factor and c) K-factor, while keeping the other factors stable, and d) the land cover error 
introduced in the C-factor.  Note the high similarity in spatial risk distribution. 
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