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Carbon nanotube-reinforced smart
composites for sensing freezing
temperature and deicing by self-heating

Sung-Hwan Jang1 and Yong-Lae Park2,3,4

Abstract
Carbon nanotube-reinforced polymer composites were fabricated by high shear mixing. The microstructure and the
electrical properties of the carbon nanotube–polymer composites were investigated by scanning electron microscopy and
electrical resistance measurement. We found that the carbon nanotube composites showed high electrical conductivity
(1.5 S m�1) at 7.0 wt% of carbon nanotubes, and the increase in thickness enhanced the electrical conductivity of the
composites. The multifunctional properties of the carbon nanotube composites were also investigated for use in sensing
the freezing temperature and also in deicing by self-heating. The results showed that the carbon nanotube–polymer
composites had high temperature sensitivity in the freezing temperature range from �5 to 5 C and an excellent heating
performance due to the Joule heating effect. The carbon nanotube composites are promising to be used as smart coating
materials for deicing by self-heating as well as by detection of the freezing temperature.
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Introduction

Smart composites have gained attention to a wide range of

industrial applications in the areas of civil, mechanical, and

aerospace engineering due to their potential in sensor-

integrated systems with simultaneous environmental sen-

sing, such as sensing of changes in strain, pressure, and

temperature. They also make it easy to construct a light-

weight structure integrated with various functionalities

without additional equipment.

Carbon-based materials, such as carbon nanotubes

(CNTs), carbon black, and graphene, have been widely

used as fillers in different types of matrices in order to

achieve smart composites.1–4 In particular, CNTs are one

of the promising materials that can provide excellent elec-

trical, thermal, and mechanical properties. Because

CNTs have much higher aspect ratios compared to other

carbon-based materials, a relatively small amount of CNTs

can make the composite electrically conductive.5–7 There-

fore, CNT-reinforced composites have been widely used

for different applications, such as structural components
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and sensing and heating elements.8–11 For example, Shindo

et al.12 have examined the electromechanical response of a

cracked CNT/polymer composite under tensile loading for

crack detection based on the relationship between the elec-

trical resistance and the crack length. Lee and Jeong13

synthesized a sulfonated poly(1,3,4-oxadiazole)/multi-

walled CNT composite film for a thermally stable high-

performance composite and showed high electric heating

efficiency.

In addition to strain sensing, composites reinforced

with carbon-based materials can be used as temperature

sensors and self-heating elements.14–18 These composites

belong to a type of electrical resistor that is sensitive to

temperature and can transform electrical energy to ther-

mal energy. For instance, Blasdel et al.19 have character-

ized a fabric, which consisted of multiwalled CNTs and

polypyrrole, for temperature sensing. They found that the

nanocomposite materials acted like a temperature detector

based on the resistance change that was linearly propor-

tional to temperature change. Galao et al.20 have investi-

gated carbon fiber-reinforced concrete for deicing

applications when used as a heating element although it

required relatively long heating time. However, the

abovementioned results were limited to a single function

that is either temperature sensing or heating.

In this study, we introduce CNT-reinforced composite

as a smart coating system that can be applied to civil

infrastructures for simultaneous sensing and actuation

by detecting the freezing temperature and by self-

heating, respectively. CNT-reinforced polymer compo-

sites with different CNT concentrations and film

thicknesses were fabricated by high shear mixing. Then,

influences of the film thickness and the CNT concentra-

tion on both the electrical conductivity and the tempera-

ture sensitivity were investigated. The self-heating

capability of the composites by Joule heating was also

examined. The results showed that CNT-reinforced poly-

mer composites have the ability to serve as a promising

smart coating material in civil infrastructures for sensing

the freezing temperature and deicing by self-heating

simultaneously in a cold weather.

Experiments

Materials

Multiwalled CNTs produced by thermal chemical vapor

deposition were obtained from Nanolab (Waltham, Mas-

sachusetts, USA), which showed an average length and a

diameter of 15.0 mm and 10.0 nm, respectively. For

matrix, polydimethylsiloxane (PDMS, Sylgard 184

Silicone Elastomer) consisting of a base elastomer

(part A) and a curing agent (part B) was purchased from

Dow Corning (Midland, Michigan, USA). All the mate-

rials were used as received.

Fabrication of CNT/PDMS composite films

CNT/PDMS composite films were fabricated by high

shear mixing. Different concentrations (approximately

0–10.0 wt%) of CNTs were carefully weighed with a

precision weight scale and directly mixed with part A

of the PDMS using a centrifugal mixer (ARE 301,

Thinky Corporation, Tokyo, Japan) at a rotation speed of

2200 r min�1 for 3 min. Part B of the PDMS was added into

the mixture with a weight ratio of 10:1 and then mixed

again using the same mixer for another 3 min. Then, the

mixture was painted layer by layer onto a glass substrate

with a brush, followed by degassing under vacuum for

20 min in order to eliminate the air bubbles captured in the

matrix that generally could cause low electrical conductiv-

ity than desired. This layer-by-layer process facilitates fab-

rication of multilayered CNT composite films, yielding

high electrical conductivity and high mechanical strength

due to the increased density of the CNT microstructure.

This process was repeated until the desired thickness or

the desired number of layers was achieved. Finally, the

mixture was cured at 100�C for 1 h in a convection oven.

Then, the cured CNT/PDMS composite films were left at

room temperature for further cooling and curing for a day.

Characterizations

The thickness of the CNT/PDMS composite film was mea-

sured by a digital caliper. The microstructure of the com-

posite film was observed using a scanning electron

microscopy (FEI Sirion 600, JEOL, Tokyo, Japan).

The electrical resistance of the composite was measured

by a two-point probe method using two different digital

multimeters at room temperature. The high resistance

above 109 Ω of the composites was measured by a high

resistance meter (Keithley 6517B, Solon, Ohio, USA),

whereas nominal resistance of the composites was mea-

sured by a precision multimeter (Fluke 8845A Everett,

Washington, USA). Then, the electrical conductivity of the

composite was calculated as s ¼ L=AR, where A and L are

the area and the length of the sample, respectively, and R is

the resistance. The temperature dependence of the electri-

cal properties was measured by placing the samples in a lab

freezer. A set of five specimens was used for each test to

evaluate the electrical properties.

For heating performance by Joule heating, a direct current

power supply (Sorensen XPH35-4D, San Diego, California,

USA) was used to provide heat by controlling the input vol-

tage. Figure 1(a) shows the experimental setup. Two pieces of

copper tape (25� 25 mm2) were attached to both ends of the

CNT composite film to be used as electrodes, and the input

voltage (approximately 0–50 V) was applied to the composite

to induce heat, creating uniform heat distribution, as shown in

Figure 1(b). A temperature profile was obtained using a digi-

tal thermocouple logger (SL500TC, Supco, Manasquan, New

Jersey, USA). In addition, thermal images of the samples
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during Joule heating were recorded using a thermal infrared

camera (FLIR A325sc LWIR Wilsonville, Oregon, USA) for

heat distribution.

For the defrosting performance, Joule heating was

applied to the CNT/PDMS composite films (7.0 wt% CNT

with 0.75 mm thickness) coated on a glass slide in the area

of 50 � 50 mm2. Then, the sample was immersed into a

water bath and frozen at �15�C in a refrigerator for 24 h to

clearly form the frost on the surface. The initial resistance

of the CNT/PDMS film was approximately 500 Ω, and a

voltage of 30 V was applied to the film to internally

increase the temperature by Joule heating.

Results and discussion

Electrical conductivity

Figure 2 shows the electrical conductivities of the CNT/

PDMS composite films as a function of CNT concentra-

tion. At low concentration, lower than 5.0 wt% of CNTs,

the composites showed no conductivity due to lack of con-

ductive networks of CNTs. The electrical conductivity of

the composites rapidly increased by six orders of magni-

tude when the CNT concentration reached 5.0 wt% based

on the increase in the CNT networks, as shown in Figure 3.

The percolation threshold is a region where the composites

transform from an insulator to a conductor through the

connected CNT networks, which has been observed in

the previous research.21–23 After the percolation threshold,

the electrical conductivity of the CNT/PDMS composite

films gradually increased approaching 1.5 S m�1 as the

CNT concentration increased. Based on our result, the

CNT/PDMS films showed high electrical conductivity at

7.0 wt% of CNTs. Therefore, the CNT concentration was

maintained at 7.0 wt% for further experiments.

Influence of films’ thickness on electrical conductivity

To check the influence of the film thickness on the electri-

cal property (i.e. resistance or conductivity) of CNT-

reinforced polymer composites, we prepared composite

films with different thicknesses of 7.0 wt% of CNTs using

the layer-by-layer fabrication. Figure 4 shows the resis-

tance and conductivity change of the CNT/PDMS compo-

site films as a function of thickness. As expected, the

resistance of the films significantly decreased as the

Figure 1. (a) Experimental setup for Joule heating and (b) uniform heat distribution of CNT/PDMS composite film. CNT: carbon
nanotube; PDMS: polydimethylsiloxane.

Figure 2. Electrical conductivity of CNT/PDMS composite films
with varied CNT concentrations. CNT: carbon nanotube; PDMS:
polydimethylsiloxane.
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thickness of the CNT/PDMS composite films increased.

The electrical conductivity of the film was calculated by

s ¼ L=AR based on the given resistance and different

thicknesses of the films. It was found that the electrical

conductivity showed a monotonic increase as the thickness

increased. The highest electrical conductivity was

1.25 S m�1 for the 1.1-mm-thick CNT film, which was

about 20 times higher than that of the 0.3-mm-thick CNT

film. The electrical conductivity of the CNT film is mostly

determined by the density of the conducting channels in a

random CNT network, which is expected to be proportional

to the concentration of low-resistance inter-tube junctions

formed by CNTs.24,25 By controlling the thickness by the

layer-by-layer fabrication, it was expected that higher den-

sity of the CNT networks could be achieved with an

increase of thickness, consequently, leading to an increase

of the electrical conductivity of CNT/PDMS films.

Detection of freezing temperature

The resistance change of the CNT/PDMS composite films

was investigated. Figure 5 shows that temperature

decreased from room temperature to �5�C for simulating

the weather during winter. All CNT/PDMS films with dif-

ferent thicknesses showed nonlinear electrical responses

with the given temperature changes and decrease in resis-

tance with temperature drops at certain rates, which is

called a negative temperature coefficient (NTC). NTC is

often reported in CNT-reinforced polymer composites,

which depends on several factors, such as the characteris-

tics of the polymer and the aspect ratio of CNTs.26–28

Figure 3. Microstructure of CNTs in the matrix. CNT: carbon
nanotube.

Figure 4. Resistance change and electrical conductivity of CNT/
PDMS composite films with varied thicknesses. CNT: carbon
nanotube; PDMS: polydimethylsiloxane.

Figure 5. Change in resistance of CNT/PDMS composite films as
a function of the temperature for different thicknesses. CNT:
carbon nanotube; PDMS: polydimethylsiloxane.

Figure 6. Temperature sensitivity of CNT/PDMS composite
films with varied thickness. CNT: carbon nanotube; PDMS:
polydimethylsiloxane.
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Therefore, NTC of the CNT/PDMS films can be used as a

metric of smart coating materials for detecting the freezing

temperature during winter.

Figure 6 shows the temperature sensitivity of the

CNT/PDMS films with different thicknesses at different

temperature ranges. The temperature sensitivity of the

CNT/PDMS film was calculated by D ¼ ðR� R RTÞ=T ,

where R is the resistance at a given temperature, R RT is

the resistance at room temperature, and T is the tem-

perature. The CNT/PDMS composite films showed

much higher temperature sensitivity in a small tempera-

ture range from �5�C to 5�C rather than in the normal

temperature range from 5�C to 22.5�C. Also, the influ-

ence of the thickness on the temperature sensitivity was

investigated using three different film thicknesses. The

sample with a low thickness (0.47 mm) showed the

highest temperature sensitivity (0.017 Ω �C�1) in the

range of the freezing temperature, which is almost

1.5 times and 18.9 times higher than that of the samples

with the coating thickness of 0.75 and 1.10 mm, respec-

tively. Therefore, by controlling the thickness of the

film, CNT/PDMS composite films can be used for

detecting the freezing temperature during winter based

on high temperature sensitivity in a small temperature

range.

Self-heating performance

To demonstrate the potential as a heating element, the self-

heating performance of the CNT/PDMS composite films

was characterized in terms of the temperature profile in

relation to the applied voltage. The power increased

according to P ¼ IV ¼ V 2=R, where V is the applied vol-

tage, I is the applied current, and R is the resistance of the

CNT film, which is converted to heat through Joule heating

effect.29–31 In this study, we prepared CNT/PDMS compo-

site films onto a glass slide with an area of 25 � 25 mm2

with different coating thicknesses by the layer-by-layer

fabrication. Then, different voltages were applied to the

specimens for 15 min.

Figure 7(a) shows the temperature profiles of the

0.47-mm-thick CNT/PDMS composite films. It was clearly

seen that the temperature of all the CNT/PDMS composite

Figure 7. Temperature profiles of CNT/PDMS composite films with varied input voltages: (a) 0.47-mm CNT film and (b) 1.10-mm
CNT film. CNT: carbon nanotube; PDMS: polydimethylsiloxane.

Figure 8. Analytical modeling for heating performance of CNT/
PDMS composite films. CNT: carbon nanotube; PDMS:
polydimethylsiloxane.

Table 1. Characteristics of heat model for CNT films with
different thicknesses.

Thickness of CNT films (mm)

Characteristics of heating model

tg q td

0.47 75 60 16.4
0.75 73 70 10.1
1.10 70 78 5.5

CNT: carbon nanotube.
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films increased with increased voltages due to Joule heat-

ing. Maximum temperatures of 27 and 35�C were obtained

at voltages of 30 and 40 V, respectively. Also, moderate

temperature increases such as 42�C were observed at a

higher voltage of 50 V. However, dramatic temperature

increase was observed in the 1.10-mm-thick CNT/PDMS

composite films, as shown in Figure 7(b). For instance, the

maximum temperature of over 110�C was obtained at

30 V, which is much higher than that of 0.45-mm-thick

CNT/PDMS film at the same voltage. This is attributed to

the high electrical conductivity of the thick CNT/PDMS

film supported by Figure 4. Moreover, the CNT films

were able to reach high temperature, such as 100�C, with-

out any change in resistance. Therefore, the CNT/PDMS

film with high thickness may be useful for providing more

heat at a relatively low voltage. In our experiments, the

temperature went up rapidly compared to other conven-

tional heating methods.32

The temperature evolution of the CNT/PDMS compo-

site films by Joule heating can be theoretically modeled,

which could be divided into different stages, such as

heating, equilibrium, and cooling, that can be shown with

the following equations33

T t � T i

T max � T i

¼ 1� e
� t

t g

� �
ð heating stageÞ ð1Þ

q ¼ P in

T max � T i

ð equilibrium stageÞ ð2Þ

T t � T i

T max � T i

¼ e
� t

t d

� �
ð cooling stageÞ ð3Þ

where Ti is the initial temperature, Tmax is the steady-

state maximum temperature, Tt is the arbitrary tempera-

ture at time tg which is the characteristic growth time

constant, q is the equilibrium heat, Pin is the applied

power, tf is the final temperature, and td is the charac-

teristic decay time constant. Figure 8 shows the compar-

ison between the analytical solution and the

experimental results from the 1.1-mm-thick CNT film

at 20 V. Table 1 presents the change in the characteris-

tics for the analytical model at each stage. Both tg and q

Figure 9. Defrost performance of CNT/PDMS composite film coated on glass. CNT: carbon nanotube; PDMS: polydimethylsiloxane.
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decreased, but td increased as the thickness of CNT/

PDMS composite film increases.

Figure 9 shows the defrost performance of the

CNT/PDMS composite films. The thickness of the ice on

the CNT film was about 5 mm, and the temperature was

�8.5�C. Then, the 30.0 V was applied to both electrodes of

the CNT/PDMS composite film. At 7 min of heating, the

amount of heat was initially observed at the interface of the

CNT/PMDS film and the electrode due to the higher elec-

trical conductivity of the electrode. Also, it is noted that the

nonuniform heat distribution during Joule heating attrib-

uted to different frost thicknesses. At 20 min of the heating,

it was clear that the frost on the CNT/PDMS film was

completely melted to water. Finally, Figure 10 shows the

resistance change of the CNT/PDMS composite films by

cyclic heating up to 30 cycles. All the CNT/PMDS films

showed stable resistance retention at 30 heating cycles.

Also, it was clearly seen that the CNT film showed stable

heat resistance at an even higher heating temperature

(approximately 100�C).

Conclusions

This study showed the feasibility of CNT-reinforced poly-

mer composites for smart coating systems capable of

detecting the freezing temperature and self-heating. Elec-

trically conductive CNT/PDMS composite films were fab-

ricated using a centrifugal mixing method. The results

confirmed that the electrical conductivity of the CNT/

PDMS composite films increased as both the CNT concen-

trations and the thickness of the film increased. It was also

shown that the nonlinear change in resistance of all CNT/

PDMS composite film samples was observed with decrease

of temperature. Moreover, the CNT/PDMS composite

films with a lower thickness showed a higher temperature

sensitivity in the freezing temperature range from �5 to

5�C. The self-heating performance of the CNT/PDMS

composite films was investigated by the Joule heating

effect. The thickness of the CNT/PMDS films significantly

affected the temperature profile when a constant voltage

was applied. The Joule heating effect was modeled using an

analytic solution to predict the temperature profile of the

CNT/PDMS composite films. Finally, we demonstrated the

defrost performance of the CNT/PDMS composite film

coated onto a glass slide which was covered with

5.0-mm-thick ice. The CNT/PDMS composite films suc-

cessfully melted the ice on the glass in a short period of

time. Therefore, we believe that CNT/PDMS composite

films have a potential in various types of smart coating

systems for detecting the freezing temperature and deicing

by self-heating in civil infrastructures.
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