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ABSTRACT A rapid and global emergence of azole resistance has been observed in the pathogenic fungus Aspergillus fumigatus
over the past decade. The dominant resistance mechanism appears to be of environmental origin and involves mutations in the
cyp51A gene, which encodes a protein targeted by triazole antifungal drugs. Whole-genome sequencing (WGS) was performed
for high-resolution single-nucleotide polymorphism (SNP) analysis of 24 A. fumigatus isolates, including azole-resistant and
susceptible clinical and environmental strains obtained from India, the Netherlands, and the United Kingdom, in order to assess
the utility of WGS for characterizing the alleles causing resistance. WGS analysis confirmed that TR34/L98H (a mutation com-
prising a tandem repeat [TR] of 34 bases in the promoter of the cyp51A gene and a leucine-to-histidine change at codon 98) is the
sole mechanism of azole resistance among the isolates tested in this panel of isolates. We used population genomic analysis and
showed that A. fumigatus was panmictic, with as much genetic diversity found within a country as is found between continents.
A striking exception to this was shown in India, where isolates are highly related despite being isolated from both clinical and
environmental sources across >1,000 km; this broad occurrence suggests a recent selective sweep of a highly fit genotype that is
associated with the TR34/L98H allele. We found that these sequenced isolates are all recombining, showing that azole-resistant
alleles are segregating into diverse genetic backgrounds. Our analysis delineates the fundamental population genetic parameters
that are needed to enable the use of genome-wide association studies to identify the contribution of SNP diversity to the genera-
tion and spread of azole resistance in this medically important fungus.

IMPORTANCE Resistance to azoles in the ubiquitous ascomycete fungus A. fumigatus was first reported from clinical isolates
collected in the United States during the late 1980s. Over the last decade, an increasing number of A. fumigatus isolates from the
clinic and from nature have been found to show resistance to azoles, suggesting that resistance is emerging through selection by
the widespread usage of agricultural azole antifungal compounds. Aspergillosis is an emerging clinical problem, with high rates
of treatment failures necessitating the development of new techniques for surveillance and for determining the genome-wide
basis of azole resistance in A. fumigatus.
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Fungal infections are increasingly recognized as a threat to hu-
man (1, 2), animal, and plant (3) populations. Aspergillus spe-

cies are ubiquitous, saprophytic fungi with airborne conidia that
grow on organic matter. Aspergillus fumigatus is the principal
causative agent of human aspergillosis, which can range from al-
lergic syndromes to invasive aspergillosis (IA), a life-threatening
infection in immunocompromised hosts. Profoundly neutro-
penic patients receiving chemotherapy or hematopoietic stem cell
or solid organ transplantation are at high risk of IA (4). Oral tria-
zole antifungal drugs (itraconazole, voriconazole, and posacona-
zole) are effective against A. fumigatus and remain the front-line

therapy in the management and prophylaxis of IA (5). However,
the emergence of azole resistance in A. fumigatus isolates from
Europe, Asia, the Middle East, and recently, Africa (6–8) is a global
and evolving public health problem (9), although surprisingly, the
United States seems to be exempt from this increase in azole re-
sistance (10). Treatment failure due to azole-resistant strains is a
major clinical concern in the management of patients with IA,
with high rates of patient mortality being observed (11–13).

The true prevalence of azole resistance in Aspergillus species is
largely unknown; however, frequencies of resistance varying be-
tween 0 and 6% have been determined for different clinical centers
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(14). Azole-resistant A. fumigatus strains have been isolated from
both azole-naive and -exposed patients, as well as broadly from
the natural environment in several countries. This has led to the
hypothesis that the widespread use of structurally similar azoles in
agriculture has led to increases in resistance in the clinical context
(9, 15, 16).

The molecular basis of resistance to triazoles in A. fumigatus
mainly involves point mutations at several codons in the cyp51A
gene, which encodes lanosterol 14-�-sterol demethylase, com-
bined with tandem repeats in the promoter region (17, 18). This
enzyme is required for the biosynthesis of ergosterol, an essential
component of the fungal cell membrane. Single-nucleotide poly-
morphisms (SNPs) in cyp51A cause structural alterations due to
amino acid substitutions. Numerous SNPs that confer increased
resistance to triazoles in vitro have been reported in this gene in
A. fumigatus (19–23). However, a predominant resistance muta-
tion, TR34/L98H, consists of a tandem repeat (TR) of 34 bases in
the promoter of the cyp51A gene and a leucine-to-histidine change
at codon 98 (24); this mutation is globally widespread in environ-
mental isolates of the fungus. Recently, a novel cyp51A-mediated
resistance mutation that leads to high-level voriconazole resis-
tance, TR46/Y121F/T289A, has been described as occurring in en-
vironmental and clinical isolates of A. fumigatus found in the
Netherlands (25), Belgium (26), Denmark (27), Germany (28),
Tanzania (7), and India (29).

Typing methods, such as multilocus sequence typing (MLST),
have fallen out of favor due to their low discriminatory power and
considerable cost (30); the Aspergillus fumigatus MLST database is
no longer curated, and higher-resolution methods are becoming
more widely accessible for the analysis of small eukaryotic ge-

nomes due to falling costs (31). Driven by rapid technological
advances, the application of whole-genome sequencing (WGS) to
type microbial genomes is increasingly used to improve patient
care (32–36). WGS is now positioned to become an essential pri-
mary platform for the management of antimicrobial resistance,
including detection and surveillance of emerging drug-resistant
microorganisms (33). While WGS is still a novel tool for the grow-
ing challenge of infectious diseases, broad applications of this
technology beyond bacterial and viral infections have been swiftly
embraced, and WGS has recently been used to study separate out-
breaks of human fungal infections using whole-genome SNP phy-
logenetic analysis (37–39). Therefore, WGS is now poised to over-
take other typing methods due to the high resolution of the data
generated and the relatively low labor and monetary costs.

In this study, we determined the genetic background upon
which cyp51A mutations occur by sequencing a diverse panel of
clinical and environmental isolates of this fungus, and by doing so,
we have demonstrated the utility of WGS to describe the evolu-
tionary processes that underpin the emergence of azole resistance
in A. fumigatus.

RESULTS
Species identification. Twenty-two isolates were evaluated in our
study (Table 1). The isolates were identified as A. fumigatus sensu
stricto based on either sequencing of the internal transcribed
spacer (ITS) region and amplification of parts of the �-tubulin
and calmodulin genes (for the eight isolates from India and eight
isolates from the Netherlands) or matrix-assisted laser desorption
ionization–time of flight mass spectrometry (MALDI-TOF MS)
(for the six isolates obtained from Leeds, United Kingdom). All

TABLE 1 Clinical and environmental isolates of A. fumigatus used in this study and details of alignments

Country, city Source
Yr of
isolation Collectora

Culture
reference

Triazole
resistanceb

No. of reads
aligned
(millions)

Depth of
coverage (�)

% of reference
genome coveredc

UK, Leeds Clinical 2012 R.C.B. 12-7505446 Resistant 51.9 174.1 94.4
UK, Leeds Clinical 2012 R.C.B. 12-7505220 Resistant 48.3 161.9 95.0
UK, Leeds Clinical 2009 R.C.B. 09-7500806 Susceptible 43.6 146.7 95.2
UK, Leeds Clinical 2012 R.C.B. 12-7504652 Susceptible 43.7 145.6 93.1
UK, Leeds Clinical 2012 R.C.B. 12-7504462 Susceptible 47.4 158.8 95.4
UK, Leeds Clinical 2012 R.C.B. 12-7505054 Susceptible 50.1 168.7 93.2
Netherlands, Nijmegen Clinical 2003 J.F.M. 08-12-12-13 Resistant 34.9 117.5 93.2
Netherlands, Nijmegen Clinical 2005 J.F.M. 08-36-03-25 Resistant 45.2 152.5 94.8
Netherlands, Nijmegen Clinical 2004 J.F.M. 08-31-08-91 Resistant 45.8 153.6 94.0
Netherlands, Berghem Environmental 2008 J.F.M. 08-19-02-61 Resistant 51.7 173.2 93.7
Netherlands, Berghem Environmental 2008 J.F.M. 08-19-02-30 Susceptible 44.5 150.1 94.8
Netherlands, Nijmegen Clinical 2010 J.F.M. 10-01-02-27 Resistant 46.5 155.9 94.5
Netherlands, Nijmegen Environmental 2008 J.F.M. 08-19-02-46 Resistant 48.6 163.1 93.8
Netherlands, Nijmegen Environmental 2008 J.F.M. 08-19-02-10 Resistant 51.8 173.6 93.5
India, Delhi Clinical 2009 A.C. Afu 942/09 Resistant 44.2 148.1 93.6
India, Delhi Clinical 2009 A.C. Afu 1042/09 Resistant 41.8 139.8 93.5
India, Delhi Clinical 2011 A.C. Afu 343/P/11 Resistant 38.4 128.9 94.8
India, Delhi Clinical 2012 A.C. Afu 591/12 Resistant 34.4 115.4 93.5
India, Delhi Environmental 2011 A.C. Afu 124/E11 Resistant 50 167.1 93.6
India, Bihar Environmental 2011 A.C. Afu 166/E11 Resistant 42.8 143.6 93.6
India, Bihar Environmental 2011 A.C. Afu 257/E11 Resistant 33.8 113.6 93.5
India, Delhi Environmental 2011 A.C. Afu 218/E11 Resistant 46.5 155.8 93.5
UK Clinical 1997 NCPF AF65 (NCPF 7097) Susceptible 57.5 192.8 95.1
UK Clinical 1993 NCPF AF293 (NCPF 7367) Susceptible 49.3 164.5 98.1
a R.C.B., Richard C. Barton; J.F.M., Jacques F. Meis, A.C., Anuradha Chowdhary; NCPF, National Collection of Pathogenic Fungi.
b Resistance to triazole antifungal drugs was defined as an itraconazole MIC of �2 mg/liter using CLSI broth microdilution methods.
c The AF293 genome was the reference genome for the number of reads aligned, the corresponding depth of coverage, and the percentage of the reference genome covered by reads.
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twenty-two isolates and two control strains (NCPF 7097/AF65
and NCPF 7367/AF293) were further analyzed using whole-
genome sequencing (WGS).

Antifungal susceptibility testing. Antifungal susceptibility
testing (Table 2) showed that 18 isolates had MICs above the es-
tablished epidemiological cutoff value for itraconazole (�2 mg/
liter). All of the wild-type isolates revealed low MICs for azole
antifungals.

Sequence analysis. All 24 genome sequences mapped to �92%
of the de novo AF293 reference genome with �100� coverage for
all isolates (average of 152.7�) (Table 1). The raw sequence reads
covered at least 93.1% of the AF293 reference genome for all iso-
lates (Table 1); 98.1% of the AF293 reference genome was covered
by sequence reads from the resequenced AF293 isolate. We found
that 73 SNPs were also called in the resequenced AF293 isolate
(data not shown), reflecting mutations due to repeated subculture
(40) or sequencing errors.

The normalized whole-genome depth of coverage was plotted
to observe any possible ploidy events (Fig. 1). While none of the 24
A. fumigatus isolates sequenced in this study displayed copy num-
ber variation (CNV) or chromosomal CNVs, large-scale deletions
in multiple chromosomes were observed. Surprisingly, deletions
of over 300,000 bp were seen in all isolates except AF293 and AF65
in both chromosomes 1 and 6, accounting for the losses of 129 and
124 genes, respectively. No enrichment for a particular biological
process or function was found for the genes deleted in either chro-
mosome. However, three genes within these deletions have known
functions associated with azole antifungals: Afu1g14330, an ABC
transporter involved in fluconazole transport; Afu1g14050, an
F-box protein whose transcript is induced by voriconazole; and
Afu6g10130, an uncharacterized open reading frame (ORF)
whose transcript is downregulated in response to voriconazole. A

smaller deletion of 60,000 bp was observed in chromosome 8 in all
isolates except 09-7500806, 12-7504652, 12-7504462, and AF65;
this deletion covered a region of the genome encoding 16 genes. As
for the other deletions, there was no enrichment for biological
process or function in this set of deleted genes.

SNP analysis. Among all 24 genomes, a total of 1,895,038 SNPs
were identified, 217,498 of which were common to one or more
isolates. All SNPs in cyp51A that caused a nonsynonymous amino
acid substitution are summarized in Table 2. The genomes of 16
itraconazole (ITC)-resistant isolates showed the presence of the
L98H substitution. The genomes of six azole-susceptible isolates
(09-7500806, 12-7504652, 12-7504462, 12-7505054, 08-19-02-30,
and AF65) and one control isolate, the AF293 reference genome,
had no such mutations. With the exception of L98H, the SNPs
detected in cyp51A, including F495I, K427E, S297T, E255D,
T248N, V172M, and Y46F, have previously been observed among
both azole-sensitive and -resistant A. fumigatus strains. As shown
by the data in Table 2, all 17 isolates for which the itraconazole
MICs were �4 mg/liter had the L98H amino acid substitution in
addition to the 34-base-pair nucleotide tandem repeat in their
promoter region that has been previously associated with itra-
conazole resistance. All of the isolates for which itraconazole MICs
were �1 mg/liter had a wild-type (i.e., that seen in reference strain
AF293) cyp51A amino acid sequence or had the Y46F, V172M,
T248N, E255D, S297T, K427E, and F495I amino acid substitu-
tions that were present in both fully susceptible and resistant
strains.

Phylogenetic analysis. The 24 genomes were analyzed by
whole-genome SNP phylogenetic analysis using RAxML (41).
Phylogenetic analysis showed all Indian isolates to be very highly
related to each other, much more so than isolates from the Neth-
erlands or the United Kingdom (Fig. 2); this is with the exception

TABLE 2 In vitro antifungal susceptibility profiles of A. fumigatus isolates and corresponding SNPs in cyp51A with nonsynonymous substitutions

Culture
reference

MIC (mg/liter) ofa: cyp51A amino acid substitution at position:
Resistance
markerITC VOR POS ISA CAS MFG AFG AMB F46 L98 M172 N248 D255 S297 E427 F495

12-7505446 �16 1 0.5 ND 0.125 �0.015 �0.015 0.25 Y H V T E S K F TR34/L98H
12-7505220 �16 1 0.5 ND 0.125 �0.015 �0.015 0.5 Y H V T E S K F TR34/L98H
09-7500806 1 0.25 0.06 ND 0.06 �0.015 �0.015 0.5 Y L V T E S K F None
12-7504652 1 0.5 0.25 ND 0.125 �0.015 �0.015 0.25 Y L V T E S K F None
12-7504462 0.5 0.125 0.06 ND 0.125 �0.015 �0.015 0.5 Y L V T E S K F None
12-7505054 0.5 0.5 0.06 ND 0.5 0.063 0.06 0.5 Y L V T E S K F None
08-12-12-13 �16 1 1 16 0.5 0.063 0.031 0.25 Y H V T E T K I TR34/L98H
08-36-03-25 �16 1 0.5 8 0.5 0.008 0.008 0.5 Y H V T E T K I TR34/L98H
08-31-08-91 �16 4 1 8 0.25 0.031 0.016 0.5 Y H V T E S K F TR34/L98H
08-19-02-61 �16 2 0.25 4 0.5 0.031 0.008 0.25 Y H V T E S K F TR34/L98H
08-19-02-30 0.25 0.5 0.06 0.5 0.5 0.016 0.016 0.5 Y L V T E S K F None
10-01-02-27 �16 4 0.5 4 0.5 0.016 0.016 0.5 Y H V T E S K F TR34/L98H
08-19-02-46 �16 4 0.5 4 0.5 0.016 0.016 0.5 Y H V T E S K F TR34/L98H
08-19-02-10 �16 2 0.5 4 0.5 0.031 0.016 0.25 Y H V T E S K F TR34/L98H
Afu 942/09 �16 2 2 8 0.125 �0.015 �0.015 0.25 Y H V T E S K F TR34/L98H
Afu 1042/09 �16 2 2 8 0.06 �0.015 �0.015 0.25 Y H V T E S K F TR34/L98H
Afu 343/P/11 �16 8 �8 �8 0.125 �0.015 �0.015 0.125 Y H V T E S K F TR34/L98H
Afu 591/12 �16 8 �8 2 0.25 �0.015 0.06 0.5 Y H V T E S K F TR34/L98H
Afu 124/E11 �16 8 1 8 0.06 �0.015 �0.015 0.125 Y H V T E S K F TR34/L98H
Afu 166/E11 16 16 2 8 ND ND ND ND Y H V T E S K F TR34/L98H
Afu 257/E11 �16 8 1 �8 0.125 �0.015 �0.015 0.125 Y H V T E S K F TR34/L98H
Afu 218/E11 �16 8 1 �8 0.125 �0.015 �0.015 0.125 Y H V T E S K F TR34/L98H
AF65 0.5 0.125 0.06 ND 0.125 �0.015 �0.015 0.5 Y L V T E S K F None
AF293 0.5 0.25 0.06 ND 0.125 �0.015 �0.015 0.25 F L M N D S E F None
a ITC, itraconazole; VOR, voriconazole; POS, posaconazole; ISA, isavuconazole; CAS, caspofungin; MFG, micafungin; AFG, anidulafungin; AMB, amphotericin B; ND, not done.
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of Afu 343/P/11, which is a clinical isolate and may have been
acquired somewhere other than India (for instance through mi-
grant working or tourism). Except for the tightly clustered isolates
from India, there was no discernible relationship between the geo-
graphical location and the genotype of the cultured isolate. The
phylogeny showed that clinical and environmental isolates were
genotypically indistinguishable. Furthermore, phylogenetic anal-
ysis was unable to discriminate between azole-resistant and azole-
susceptible strains, showing that the TR34/L98H allele occurs in
diverse genetic backgrounds for both clinical and environmental
isolates.

Genetic diversity. When compared against the reference iso-
late AF293, isolates from the Netherlands and the United King-
dom had 155,728 and 148,979 high-confidence SNPs, respec-
tively, whereas there were 83,447 high-confidence SNPs within the
Indian isolates. The average pairwise SNP diversity was higher in
isolates collected from the United Kingdom (27,914) and the
Netherlands (23,623) than in those from India (5,100), showing
that this population has less genetic diversity despite being col-
lected across a wider geographic range. Interestingly, 72,065 SNPs
were found to be common to all three countries, accounting for
86.36% of all Indian SNPs. However, as only ~2,500 SNPs (Ta-
ble 3) separate the main cluster of Indian isolates (excluding the
outlier Afu 343/P/11), it is clear that the Indian isolates are genet-

ically depauperate, manifesting less than 10% of the diversity seen
in Europe.

To evaluate the genetic divergence among populations,
Wright’s fixation indexes (FST) were calculated for pairs of popu-
lations. The pairwise FST value for the United Kingdom and the
Netherlands was zero, implying complete panmixis and inter-
breeding between these two populations. This finding of inter-
mixed diversity among these two populations is supported by
phylogenetic analysis (Fig. 2).

Pairwise FST values between Indian, United Kingdom, and
Netherlands populations showed that there was a pronounced
phylogeographic structure at the continental level, with an FST

value of 0.314 for India versus the Netherlands and an FST value of
0.381 for India versus the United Kingdom.

Recombination analysis. Population-wide recombination
rates were estimated for each population (defined as a single coun-
try) using the program LDhat (42), which identifies patterns of
linkage disequilibrium using Hudson’s composite likelihood
method. The interval method used in this study specifically esti-
mates a variable recombination rate using a Bayesian reversible-
jump Markov chain Monte Carlo method under a crossing-over
model. Evidence for the frequency of recombination in each pop-
ulation is presented in Fig. 3; the greater numbers of recombina-
tion hot spots in the United Kingdom and the Netherlands data

FIG 1 Circos (72) image of normalized whole-genome depth of coverage of all 24 A. fumigatus isolates (plotted as listed in the key), averaged over 10,000-bp
bins. Black circles mark the presence of the TR34/L98H mutation. Chromosomes 1 and 6 show large deletions spanning �300 kbp in most isolates, except AF65
and AF293, while chromosome 8 displays a 60-kbp deletion in all isolates except AF65, 09-7500806, 12-7504652, and 12-7504462.
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reflect the high genetic diversity (Fig. 3). Given the lower genetic
diversity observed in India (in terms of SNP numbers and also as
seen in the phylogenetic analysis in Fig. 2), we anticipated this data
set to be highly clonal, but on the contrary, the LDhat analysis
(Fig. 3) detected similar numbers of recombination hot spots for
the United Kingdom and the Netherlands, implying that the In-

dian data set is derived from isolates that are undergoing sexual or
parasexual recombination. Overall, the rate of recombination in
the Indian population (� � 0.0726/bp�1) was significantly higher
(calculated using a t test) than the recombination rates observed in
United Kingdom and Netherlands populations (� � 0.0070/bp�1

and � � 0.0104/bp�1, respectively).

FIG 2 Phylogenetic analysis of A. fumigatus isolates representing azole-resistant and -susceptible genotypes from India, the Netherlands, and the United
Kingdom. Bootstrap analysis was performed on WGST SNP data from 24 A. fumigatus genomes to generate an unrooted maximum-likelihood phylogeny, with
all branches supported to 87% or higher. Isolates are color coded according to country of origin (red, India; green, the Netherlands; blue, United Kingdom), and
environmental isolates are indicated by a tree symbol. Isolates marked with a black circle contain the TR34/L98H mutation in the cyp51A gene. Branch lengths
represent the numbers of SNPs between taxa.

TABLE 3 SNP differences between each Indian A. fumigatus isolate, shown as unique SNPs between isolates

Isolate

No. of SNP differences between isolate to left and:

Afu 942/09 Afu 1042/09 Afu 343/P/11 Afu 591/12 Afu 124/E11 Afu 166/E11 Afu 257/E11 Afu 218/E11

Afu 942/09 2207 21,150 3067 1954 2406 2928 2353
Afu 1042/09 2233 21,261 3232 2148 2625 3100 2617
Afu 343/P/11 5136 5221 5479 4861 5017 5491 4941
Afu 591/12 1943 2082 20,369 1484 1704 2401 1615
Afu 124/E11 2564 2732 21,485 3218 2383 3359 2331
Afu 166/E11 2371 2564 20,996 2793 1738 2950 1991
Afu 257/E11 1645 1791 20,222 2242 1466 1702 1623
Afu 218/E11 2539 2777 21,141 2925 1907 2212 3092
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In order to refute the existence of clonality in the Indian data
set, we estimated the index of association (IA) and the modified
statistic rBarD (73) to confirm the presence of recombination
within each population of this data set. We assumed that the null
hypothesis of no linkage disequilibrium and, therefore, no recom-
bination would not be rejected if the resulting values of both sta-
tistics were not significantly different from the distribution of val-
ues obtained from 999 resamplings. For all three populations
(India, United Kingdom, and the Netherlands), the null hypoth-
esis could not be rejected, implying no significant linkage among
loci, and we concluded, therefore, that all populations are recom-
bining.

PCR and mining of de novo assembly of sequence reads has
shown that both MAT1-1 and MAT1-2 loci are present in all pop-
ulations investigated here (Table 4). While a chi-square test
showed no significant difference in the frequency of either locus in
the United Kingdom and Netherlands populations, a bias was
observed in the Indian population, which contained significantly
fewer MAT1-2 idiomorphs (P � 0.0304).

DISCUSSION

To investigate the role whole-genome sequencing can play in the
detection of azole resistance in A. fumigatus, we sequenced the
genomes of 24 clinical and environmental isolates obtained from
India, the Netherlands, and the United Kingdom. In the present
study, we aimed to verify the applicability of using WGS to char-
acterize known mutations in the cyp51A locus and to determine
the genome-wide patterns of genetic diversity upon which these
mutations reside.

We were able to characterize the genotype of cyp51A for all
isolates in the study with high confidence. Of these, sixteen isolates
with itraconazole MICs of �4 mg/liter had the L98H amino acid
substitution accompanied by a characteristic 34-base-pair nucle-
otide tandem repeat in their promoter region. We did not detect
any amino acid substitutions associated with resistance in cyp51A
genes in the strains with itraconazole MICs of �1 mg/liter. Several
mutations specific to the cyp51A gene, such as substitutions at
codons G54, G138, P216, F219, M220, and G448, have also been
described as responsible for resistance to azoles in clinical isolates
of A. fumigatus (14–18), though none of these mutations were
present in our analyzed sample collection. Interestingly, and in
contrast with previous observations where all TR34/L98H muta-
tions are accompanied by a pair of amino acid substitutions,
S297T and F495I (44), only two of our 17 isolates with TR34/L98H
showed S297T and F495I substitutions. This suggests that intra-
genic recombination in cyp51A may have occurred to unlink these
mutations in this set of isolates. Whether or not this means that
there have been multiple origins of the TR34/L98H allele will re-

FIG 3 Recombination analysis, using LDhat interval (42), of A. fumigatus isolates from the United Kingdom, the Netherlands, and India. The black peaks
represent the recombination rate across the whole A. fumigatus genome, and the vertical red lines mark the chromosome boundaries.

TABLE 4 Distribution of MAT1-1 and MAT1-2 idiomorphs (mating
types) among isolates of A. fumigatus from three countries

Country

% (no. of isolates) with mating type

Chi-square valueMAT1-1 MAT1-2

United Kingdom 66.6 (4) 33.4 (2) 0.41
The Netherlands 62.5 (5) 37.5 (3) 0.47
India 87.5 (7) 12.5 (1) 0.034
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quire broader WGS surveys; however, the observation that this
pair of mutations has never been found unlinked to date suggests
that the probability of de novo origination for this allele is low to
nonexistent. In support of this interpretation, it is worth noting
that a novel environmental cyp51A-mediated resistance mecha-
nism (TR46/Y121F/T289A) was recently reported in the Nether-
lands (25), Belgium (26), Denmark (27), Germany (28), Tanzania
(7), and India (29), superimposed on a more homogenous genetic
background than TR34/L98H. This recently detected resistance
mechanism has been observed to rapidly increase in frequency in
Dutch hospitals and homes, where it is associated with voricona-
zole therapy failure (6, 25). Therefore, it appears that the contem-
porary rise in the frequency of TR34/L98H is not a unique event
and that the emergence of A. fumigatus isolates in nature showing
cyp51A-associated resistance alleles is an ongoing phenomenon.

Our demonstration of high levels of SNP diversity and a pan-
mictic population structure within the United Kingdom and
Netherlands is testament to the ability of this highly aerosolized
(airborne) fungus to passively disperse. Our findings suggest that
the TR34/L98H allele has existed long enough for the twin forces of
recombination and gene flow to homogenize the genetic back-
ground upon which it occurs in Europe. The short branch lengths
and high numbers of shared SNPs show that Indian isolates of
A. fumigatus are broadly similar to those in Europe. However, and
in sharp contrast, the Indian isolates show a far higher level of
relatedness, manifesting less than 10% of the genetic diversity that
is observed within the Netherlands and United Kingdom. While
we have not sampled enough of the population space to delineate
the full population structure and our collection is biased to iso-
lates that are azole resistant, the A. fumigatus isolates from India
that we sequenced were collected from locations separated by over
1,000 km. This suggests that there has been a recent expansion of
this genotype within India and it is likely not a coincidence that
these genotypes all contain the TR34/L98H allele. To further inves-
tigate the possibility that this allele has been introduced into the
Indian genetic background recently, further sampling and se-
quencing of both azole-resistant and azole-sensitive isolates from
this region are needed to clarify our finding.

There have been significant advances recently in our under-
standing of azole resistance mechanisms in other pathogenic
fungi, such as Candida albicans (45) and Cryptococcus neoformans
(46). In both species, aneuploidy for the chromosome bearing the
ERG11 gene has been reported and found to be integral to anti-
fungal resistance. We did not detect any chromosomal aneuploidy
or copy number variation for cyp51A or cyp51B, the ortholog of
ERG11, in any of the A. fumigatus isolates investigated here. How-
ever, we did detect large deletions in chromosomes 1, 6, and 8
in many of the isolates (Fig. 1). Analyzing the gene content of
the deleted regions revealed two genes in chromosome 1
(Afu1g14330, an ABC transporter, and Afu1g14050, encoding an
F-box protein) and one gene in chromosome 6 (Afu6g10130, un-
characterized but downregulated in response to voriconazole)
that had a known function associated with azole antifungals.
However, given the large-scale nature of the deletions (both over
300,000 bp in size), we do not believe that these deletions are part
of an evolutionary process that is enabling A. fumigatus to evolve
resistance to azole antifungals. Indeed, we see no deletions specific
to either azole-sensitive or azole-resistant isolates, suggesting that
these deletions occurred in response to a different process. Dele-

tions on this scale have not previously been reported in A. fumiga-
tus, representing an opportunity for further investigation.

While most mutations in azole-resistant A. fumigatus isolates
were single nucleotide substitutions in the target gene (cyp51A),
mutations at other genes have been reported as conferring resis-
tance to azoles in this fungus. Furthermore, other resistance
mechanisms could be responsible for azole resistance in A. fu-
migatus. The non-cyp51A-mediated resistance can potentially be
explained by alternative resistance mechanisms that have been
described previously, including (i) higher basal expression of the
cdr1B efflux transporter (47), (ii) a mutation in the CCAAT-
binding transcription factor complex subunit HapE (48), which
was not seen in our data, and (iii) high cyp51B expression (49). A
recent publication reported drug resistance due to RNA interfer-
ence (RNAi)-dependent epimutations in Mucor circinelloides
(50); we found five orthologs of genes involved in the RNAi path-
way in Aspergillus nidulans, Cryptococcus neoformans, and Schizo-
saccharomyces pombe present in A. fumigatus isolate 09-7500806.
These five genes (Afu3g11010, Afu8g05280, Afu5g11790,
Afu4g02930, and Afu5g11440) all had protein domains associated
with RNA silencing: PIWI and PAZ domains were present in both
Afu3g11010 and Afu8g05280, Dicer domains were present in both
Afu5g11790 and Afu4g02930, and a domain for Argonaute small
interfering RNA (siRNA) chaperone complex subunit Arb1 was
present in Afu5g11440. Transcriptome profiling has revealed that
all five genes are expressed in A. fumigatus A1163 (51). While these
five genes do not represent the full RNAi pathway, we believe that
epigenetic regulation could be involved in mediating antifungal
drug resistance within A. fumigatus.

The limited set of mutations in cyp51A conferring resistance
makes them relatively simple targets for molecular detection be-
cause their roles in resistance are known a priori. However, the
evolution of novel azole resistance mechanisms, such as has been
seen for TR46/Y121F/T289A and cdr1B, makes the detection of
these “known unknowns” much more challenging. As our
method captures the entirety of SNP diversity for each isolate of
A. fumigatus, it is theoretically possible to determine the contri-
bution of each nucleotide in the genome to the generation of the
resistance phenotype within the framework of a genome-wide as-
sociation study (GWAS). This “hypothesis-free” approach will ul-
timately extend the WGS-enabled description of known muta-
tions, such as those reported here, to describe the full suite of drug
resistance alleles and their epistatic interactions that occur in
A. fumigatus. However, before this ambition is realized, significant
hurdles need to be addressed. Most fundamentally, a description
of the genome-wide global population structure of A. fumigatus
needs to be undertaken in order to delineate the essential popula-
tion parameters that underpin a GWAS; namely, the extent of
population genetic structure and genome-wide rates of linkage
disequilibrium. From the limited set of isolates that we sequenced,
it is already evident that genome-wide recombination occurs and
that SNPs are shared across the United Kingdom, the Netherlands,
and India, as well as within these countries. This is an encouraging
finding, especially as mixed-model GWAS frameworks are now
being used and shown to perform well when handling structured
populations by estimating the phenotypic covariance due to ge-
netic relatedness (43). Although GWAS has not yet been broadly
applied to microbial populations, a recent study by Sheppard et al.
(53) illustrated the requirement for novel techniques in order to
take these population genetic variables into account, and similar
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approaches are likely amenable to analyzing fungal genome-wide
SNP datasets such as we have described here.

We have shown the population of A. fumigatus to be broadly
panmictic and recombinogenic, a phenomenon that has been pre-
viously observed and confirmed by independent groups (54–57).
The process of recombination is expected to accelerate adaptation
to novel environmental conditions, as has previously been de-
scribed in the related nonpathogenic fungus Aspergillus nidulans
(52). Furthermore, while there were fewer recombination hot
spots observed within the Indian population, the genome-wide
population recombination rate was higher than that seen in the
United Kingdom and the Netherlands. Seven of eight Indian iso-
lates were typed as being MAT1-1, with the chi-square test show-
ing that this bias is statistically significant. Together, these findings
provide tentative evidence that an outcrossing event may have
resulted in the origin of the Indian genotypic cluster, and it is
worth speculating that the resulting MAT1-1 TR34/L98 progeny
are undergoing a rapid selective sweep by virtue of being highly fit.
Clustered sexually recombining neighborhoods have previously
been described in a related pathogenic fungus, Talaromyces (Pen-
icillium) marneffei (58), suggesting that this type of fungal popu-
lation structure may be more common than previously recog-
nized. Whether our findings reflect the process of natural selection
in A. fumigatus populations in response to the widespread use of
agricultural azoles in Europe and India remains to be seen; how-
ever, the genomic approaches that we have detailed here will
clearly underpin future research to decipher the population struc-
ture of A. fumigatus and map the future evolutionary trajectory of
clinically relevant phenotypes.

MATERIALS AND METHODS
Isolates. Twenty-four A. fumigatus isolates representing three geograph-
ical locations were included in the analysis (Table 1). Six clinical isolates,
12-7505446, 12-7505220, 09-7500806, 12-7504652, 12-7504462, and 12-
7505054, were obtained from the Mycology Reference Centre, Leeds
Teaching Hospitals National Health Service Trust, Leeds, United King-
dom. The eight isolates from the Netherlands included four clinical iso-
lates (08-12-12-13, 08-36-03-25, 08-31-08-91, and 10-01-02-27) and four
environmental soil isolates (08-19-02-61, 08-19-02-30, 08-19-02-46, and
08-19-02-10). Of the eight Indian isolates included in this study, four were
clinical (Afu 942/09, Afu 1042/09, Afu 343/P/11, and Afu 591/12) and the
remaining four (Afu 124/E11, Afu 166/E11, Afu 257/E11, and Afu 218/
E11) originated from environmental soil sources. Additionally, the fol-
lowing two control isolates were included for comparison. (i) AF293
(NCPF 7367; National Collection of Pathogenic Fungi at Mycology Ref-
erence Laboratory, Public Health England, Bristol, United Kingdom) is a
clinical isolate initially cultured in 1993 from lung tissue of a neutropenic
patient with invasive aspergillosis in the United Kingdom; the whole-
genome sequence of this strain was published in 2005 by Nierman et al.
(59). (ii) AF65 is a clinical isolate originally cultured from a lung biopsy
specimen from a patient with acute leukemia; this isolate was deposited at
the NCPF in 1994 under accession number NCPF 7097 (60).

Aspergillus fumigatus identification All 24 isolates were identified by
macroscopic and microscopic morphological characteristics as A. fumiga-
tus species complex; growth at 50°C differentiated A. fumigatus from
Aspergillus lentulus. Six strains from Leeds, United Kingdom, were further
identified by matrix-assisted laser desorption ionization–time of flight
mass spectrometry (MALDI-TOF MS), using a Bruker Daltonics Bio-
Typer (Bruker, Bremen, Germany). All of the A. fumigatus isolates ob-
tained from the Netherlands (n � 8) and India (n � 8) were previously
described as A. fumigatus by sequencing of the internal transcribed spacer
(ITS) region. In addition, the presence of any cryptic species within Asper-

gillus section Fumigati among these isolates was previously excluded by
amplification of parts of the �-tubulin and calmodulin genes (61).

Antifungal susceptibility testing. The in vitro antifungal susceptibil-
ity profiles of triazole antifungal drugs, determined according to the CLSI
M38-A2 broth microdilution method (62), were previously described and
published for isolates from India and the Netherlands (61). MICs were
interpreted based on proposed breakpoints (63). For six isolates, the MICs
of itraconazole were primarily determined at Mycology Reference Centre,
Leeds, United Kingdom, using E test strips (bioMérieux, Marcy l’Etoile,
France) on RPMI 1640 agar supplemented with 2% glucose, according to
the manufacturer’s instructions, and the results were interpreted as de-
scribed by Pfaller et al. (64). To ensure consistency of results, MICs for all
24 isolates were further confirmed using the CLSI M38-A2 broth microdi-
lution method.

Conidial harvest. All fungal isolates were subcultured on potato dex-
trose agar (PDA) plates and incubated at 35°C for 5 days until sporulation.
Stock conidial suspensions were prepared by washing the surface of the
PDA plates with 10 ml of sterile water containing 0.05% Tween 20. The
conidial suspensions were filtered using Miracloth (EMD Chemicals, San
Diego, CA, United States) to remove fungal hyphae, transferred to 50-ml
sterile conical tubes, and centrifuged at maximum speed (10,000 � g) for
10 min. The supernatants were discarded, and the pellets were resus-
pended in 5 ml of sterile distilled water. The concentrations of the sus-
pended conidial stocks were determined by counting the conidia using a
hemocytometer chamber at �400 magnification. Harvested conidia at
concentrations of 2 � 108/ml were subjected to DNA extraction.

DNA extraction and quality assessment. High-molecular-weight
DNA was extracted with an optimized MasterPure yeast DNA purification
kit (Epicentre Biotechnologies, Cambridge, United Kingdom) with an
additional bead-beating step included. Harvested conidia were homoge-
nized using 1.0-mm-diameter zirconia/silica beads (BioSpec Products,
Bartlesville, OK) in a FastPrep-24 system (MP Biomedicals, Solon, OH) at
4.5 m/s for 45 s. Genomic DNA (gDNA) was quantified using a Qubit 2.0
fluorometer and dsDNA BR (double-stranded DNA, broad-range) assay
kit (Life Technologies, Carlsbad, CA). Quality control of extracted gDNA
samples prior to library preparation was performed using the TapeStation
2200 system (Agilent, Santa Clara, CA) and gDNA ScreenTape assays.
Purified gDNAs were stored at �20°C until further use.

Mutation screening. Isolates were screened for the presence of a tan-
dem repeat insertion in the promoter region of the cyp51A gene, as well as
for the presence of the common mutations (e.g., L98H, G54, and M220),
by using a mixed-format real-time PCR as previously described (10).

Library preparation. Genomic DNA libraries were constructed ac-
cording to protocols provided by Illumina (TruSeq Nano DNA Sample
Preparation Guide) with the TruSeq Nano kit (Illumina, San Diego, CA).
Briefly, gDNA was sheared into 350-base-pair fragments using an S220
ultrasonicator (Covaris, Woburn, MA) and AFA fiber Snap-Cap micro-
Tubes, followed by end repair and solid-phase reversible immobilization
(SPRI) bead-based size selection. The final libraries were quality con-
trolled on the TapeStation 2200 system (Agilent) with D1K ScreenTape
assays (Agilent) and quantified with quantitative PCR (qPCR) on an Ap-
plied Biosystems 7300 instrument (Life Technologies) using the Kapa
library quantification kit (Kapa Biosciences, Boston, MA). DNA libraries
were normalized to 10 nM, and randomized indexed samples were pooled
into three libraries of 8 samples.

Illumina whole-genome sequencing. Prepared whole-genome librar-
ies (n � 24) were sequenced on three lanes of the same flow cell using a
HiSeq 2500 sequencer (Illumina) at Medical Research Council Clinical
Genomics Centre, Imperial College London, Hammersmith, United
Kingdom, generating 100-bp paired-end reads in high-output mode. All
raw reads and relevant information in this study have been submitted to
the European Nucleotide Archive under project accession number
PRJEB8623.

Alignment. Raw Illumina WGS reads were quality checked using
FastQC (version 0.10.1; Babraham Institute) and aligned against the
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AF293 reference genome (59) using the short-read alignment component
(aln) of the Burrows-Wheeler Aligner (BWA) alignment tool (65) with a
quality threshold of 15. Duplicate reads were marked using Picard (ver-
sion 1.112).

Identification of SNPs. Single-nucleotide polymorphism (SNP) de-
tection was conducted using UnifiedGenotyper from the Genome Analy-
sis Toolkit (GATK) package (66, 67). To ensure high confidence in the
SNPs called, variants were filtered according to whether they were present
in 80% of reads, the mapping quality, and the depth of coverage at each
base to provide a list of high-confidence variants, as described in Rhodes et
al. (31). SNPs in cyp51A were mapped using VCF-annotator (Broad In-
stitute, Cambridge, MA).

Identification of tandem repeat sequences. Whole-genome sequence
reads for each isolate were used as the input for de novo assembly using
SPAdes 3.1.1 (68). The resulting fasta file was mined for the tandem repeat
sequences.

Phylogenetic analysis. Whole-genome SNP data were converted into
relaxed interleaved Phylip format. Maximum-likelihood trees were con-
structed using RAxML (41) and visualized in FigTree version 1.4.0 (http://
tree.bio.ed.ac.uk/software/figtree/). The rapid bootstrap algorithm was
used to bootstrap all phylogenies using 100 replicates.

Analysis of gene diversity. Three groups, comprising 6 isolates from
the United Kingdom, 8 isolates from the Netherlands, and 8 isolates from
India, were formed for the purpose of analyzing genetic diversity. The
fixation statistic FST was calculated between each population pair using
the package BEDASSLE (69) for R (70).

Recombination analysis. Two statistics commonly used for describ-
ing linkage disequilibrium, the index of association (IA) and rBarD, were
estimated using Poppr 1.1.2 (71) for the statistical software R (70), using
999 resamplings of data under the null hypothesis of recombination. Only
variant sites unique to each population (defined by country) were consid-
ered.

The interval program of the LDhat version 2.2 package (42) was also
used to estimate population-scale recombination rates using SNP data for
all 8 chromosomes of A. fumigatus, partitioned by their country of original
isolation. The program was executed for 2 million iterations with sam-
pling every 200 iterations after a 20,000-iteration burn-in period (as rec-
ommended in the user manual [http://ldhat.sourceforge.net/manual-
.pdf]). The output was summarized using LDhat stat.
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Volume 6, issue 3, doi: 10.1128/mBio.00536-15. Figure 1 incorrectly displayed the location of the TR34/L98H mutation in gene
cyp51a. The revised Fig. 1 (below) shows the correct location.
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FIG 1 Circos (72) image of normalized whole-genome depth of coverage of all 24 A. fumigatus isolates (plotted as
listed in the key), averaged over 10,000-bp bins. Black circles mark the presence of the TR34/L98H mutation. Chro-
mosomes 1 and 6 show large deletions spanning �300 kbp in most isolates, except AF65 and AF293, while chromo-
some 8 displays a 60-kbp deletion in all isolates except AF65, 09-7500806, 12-7504652, and 12-7504462.
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