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Abstract—Appropriately combining mental practice (MP) and
physical practice (PP) in a post-stroke rehabilitation is critical
for ensuring substantially positive rehabilitation outcome. Here
we present a rehabilitation protocol incorporating a separate
active PP stage followed by MP stage, using a hand exoskeleton
and brain-computer interface (BCI). The PP stage was medi-
ated by a force sensor feedback based assist-as-needed control
strategy, whereas the MP stage provided BCI based multimodal
neurofeedback combining anthropomorphic visual feedback and
proprioceptive feedback of the impaired hand extension attempt.
A 6 week long clinical trial was conducted on 4 hemiparetic
stroke patients (screened out of 16) with left hand disability. The
primary outcome, motor functional recovery, was measured in
terms of changes in Grip-Strength (GS) and Action Research
Arm Test (ARAT) scores; whereas the secondary outcome,
usability of the system, was measured in terms of changes in
mood, fatigue and motivation on a visual-analog-scale (VAS). A
positive rehabilitative outcome was found as the group mean
changes from the baseline in the GS and ARAT were +6.38 kg
and +5.66 accordingly. The VAS scale measurements also showed
betterment in mood (-1.38), increased motivation (+2.10) and
reduced fatigue (-0.98) as compared to the baseline. Thus the
proposed neurorehabilitation protocol is found to be promising
both in terms of clinical effectiveness and usability.

Index Terms—BCI, EEG, Exoskeleton, Neurofeedback, Neu-
rorehabilitation, Stroke.

I. INTRODUCTION

Globally over 80% of the stroke survivors suffer from some
form of disability out of which 85% may have serious upper-
limb movement deficits [1]. Although there remains a good
chance of recovery in the first few months after stroke [2], but
after 6 months post-stroke 65% of them suffer from permanent
disability of the affected limb leading to degraded quality of
life [3]. The clinical effectiveness of conventional therapies
is limited by their passive nature, especially for the hand
function, which is considered to be the most difficult prob-
lem for stroke rehabilitation [4]. Therefore new intervention
techniques are being extensively explored.
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Since it has been found that the similar neuro-muscular
structures are associated with the physical practice and the
kinesthetic imagery of the same motor activity, brain-computer
interface (BCI) has become an essential means for designing
advanced neurorehabilitation techniques [5]. The transition
from assistive to rehabilitative use of BCI requires special
focus on the reinforcement of the brain-networks related with
the long-term restoration of the lost motor functions [6],
such as contralateral connectivity between the primary and
somatosensory motor cortex [7]. In this regard the BCI based
synchronous cortical and peripheral stimulation have been
found to be very effective to enhance corticospinal excitabil-
ity [8]. It facilitates the patient to directly observe the ongoing
cortical activity in terms of contingent visual or orthotic
feedback [9], [10]. In a controlled study Naros et al. [11]
established the effectiveness of contingent neurofeedback.
Indeed, the contingent proprioceptive feedback was found to
be more effective than the visual feedback for motor skill
learning [12].

Systematic controlled trials have shown that BCI along with
robotic therapy yielded better performance than conventional
robotic therapy in terms of motor recovery outcomes [13],
[14], [15]. A BCI based training with discrete movement
feedback of a virtual hand was also found to be feasible and
tolerable for the stroke patients [16]. A functional electrical
stimulus (FES) has been used as an orthotic feedback, trig-
gered by BCI, which has shown significant recovery in index
finger extension [17]. A broad review of studies conducted
on upper limb rehabilitation for the last few decades have
shown that mental practice (MP) in conjunction with the
physical practice (PP) is an essential criterion for functional
recovery [18]. However the key issue always remained in
finding out ways to integrate this strategy in neurorehabil-
itation [19]. Buch et al. conducted clinical trials on eight
stroke patients with chronic hand plegia wherein they were
given a BCI triggered orthotic feedback, but it yielded no
significant functional recovery [20]. In another study Ramos-
Murguialday et al. have found significantly higher motor
recovery in case of BCI based contingent exoskeleton feedback
compared to random exoskeleton feedback [21]. Ang et al.
compared different rehabilitation strategies involving both MP
and PP to prove that BCI based concomitant robotic feedback
has more promising outcome rather than simply BCI triggered
sensorimotor feedback [19]. Prasad et al. have also found that
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Fig. 1. An overview of the EEG-based BCI supported neurorehabilitation system. The selected EEG channel distribution is marked in red colour and shown
in the upper left corner, and a participant undergoing the experimentation is shown in the bottom left corner. The top right and bottom right sections of the
figure are showing the different components of the BCI calibration phase and the online feedback generation phase.

the combination of MP and PP is a feasible rehabilitation
protocol, as significant improvement in action research arm
test (ARAT) measurement was observed between pre and post
intervention [22].

The multimodal feedback comprising of different combina-
tions of visual, auditory and proprioceptive means, happens
to be more encouraging for the patients, leading to improved
performance [23], [24]. Darvishi et al. also found it important
to design optimal feedback update interval (FUI) for better
rehabilitative outcome during their clinical study on stroke
patients [25]. The strategy of attempting a movement rather
than only imagining has been suggested by many researchers
as it helps subjects to focus more on the movement they are
imagining which in-turn improves the BCI performance [26],
[1].

Most of the aforementioned studies thus either dealt with
PP only or they used BCI driven MP with or without the
exoskeleton. As these studies reported some sort of motor
recovery using either of these two techniques, researchers
went on comparing them ([13]) or combining them ([22]) to
test their effectiveness on various aspects. Another key issue
apart from testing the clinical efficacy is the usability of these
neurorehabilitation paradigms which is mostly not reported
except in case of Morone et al. [16] and Prasad et al. [22].
A large scale clinical trial by Ang et al. [19] compared the
effect of BCI triggered feedback to the concomitant feedback
using exoskeletons although no separate PP stage was there in
that study. The work of Prasad et al.[22] included separate PP,

although the PP stage was manual, having no active robotic
assistance and MP part had only BCI based visual feedback
in terms of a computer-game. The novelty of the current study
lies not only in adding a separate hand-exoskeleton assisted
active PP stage before the BCI driven hand-exoskeleton based
MP stage, but in investigating both the clinical effectiveness
and the usability of the system. Additionally, it provided
both the anthropomorphic visual and proprioceptive neuro-
feedback, while most of the previous studies used either of
these. Thus in terms of combining all the key elements of a
neurorehabilitation protocol (which are distributed in various
previous studies) and testing both the clinical effectiveness and
usability, the current study has a novel contribution in line with
the state-of-the-art neurorehabilitation research.

Industry 4.0 focuses on enhancing automation employing
cyber physical systems that can automate processes and mon-
itor physical processes and take decisions using Internet-of-
Things (IoT) and Artificial Intelligence (AI) over the internet.
The current study has the inherent potential to align the field of
neurorehabilitation with the industry 4.0 architecture. First it
automates the manual rehabilitation therapy using sensor based
observation of user’s physical/mental engagement during the
therapeutic process and helps the user carrying out exercise
with a robotic device. Second, the system is designed as a
GUI based operating interface with an MS-access database, so
that it can facilitate remote monitoring, as well as evaluation
of the rehabilitation progress while connected to the internet.

Clinical trials were conducted for 12 to 16 sessions (over
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the span of 6 weeks, i.e. 2−3 sessions/week) on 4 hemiparetic
stroke patients with partial disability in finger movements.
ARAT and grip-strength (GS) of the affected hand were mea-
sured to assess their functional recovery. The mood, fatigue,
and motivation were also measured by a 10 cm visual analog
scale (VAS) as part of usability studies. The results suggest
that the proposed rehabilitation system has a great potential
to be a clinically effective and usable solution for post-stroke
hand function recovery.

II. METHODS AND MATERIALS

A. Participant recruitment

The inclusion criteria for the of the patients were as follows.
Male and female post-stroke volunteers, in the age group of
18-80 years, having movement disability in at least one of their
hands due to stroke and having normal or corrected to normal
vision (e.g. normal vision by using glasses) were considered
for the study. The participants should be no less than 6 months
post-stroke since the first episode of stroke: This is to ensure
the stage of fast spontaneous recovery has finished. They
should be able to follow two-part spoken or written commands:
This is to ensure stroke survivors can provide informed consent
and also to ensure they will be able to comply with therapy.
The patients were excluded from the study if they have a
progressive neurological condition, any serious medical or
psychological diseases which are likely to seriously affect their
ability to continue with experimentation or they are known to
suffer from epilepsy. The patients’ gross cognitive impairment
or disorientation were tested using Hodgekinson Mini-Mental
State Examination (HMMSE), and those who scored <7 were
excluded. The presence of moderate to high muscle spasticity
and/or tremor in hand was also set as an exclusion criteria.
No BCI screening was performed during the recruitment of
the patients. We have confirmed from the testimonials of
the patients that they stopped recovering after 2-3 months
poststroke and they were not going through any kind of
physiotherapy in parallel during the clinical trial period. The
study was approved by the ethics committee of Indian Institute
of Technology (IIT) Kanpur, India (IITK/IEC/2016-17/8) and
the subjects gave their written consent before the trials. The
trial is registered with CTRI and is assigned a registration
number: CTRI/2018/05/013876.

Patients were recruited from the Kanpur district of In-
dia. Their demographics are shown in Table I. As per the
”CONSORT” flow-diagram the outline of the clinical trial is
reported as follows. During the enrollment of the trial a total
of 16 patients were assessed for eligibility out of which 11
patients were excluded for various reasons such as, 10 of them
didn’t meet the inclusion criteria, and 1 of them declined to
participate due to long travel time from home to the centre.
Although 5 patients were selected initially and received the
allocated intervention, one of them discontinued intervention
after 2 trials due to some personal reasons and hence excluded
from analysis. Thus analysis was done for the rest of the
4 participants who completed a minimum of 12 therapeutic
sessions as per the allocated intervention.

B. Experimental protocol

To ensure sufficient dose it has been suggested to go for
six weeks of therapy with three sessions per week to expect
any positive outcome [27]. In line with this recommendation,
participants underwent a total of 12 to 16 therapy sessions
spanned over 6 weeks with 2-3 sessions per week. In a session
for the first 30 min, the participants did PP with a hand
exoskeleton attached to their affected hand. The exoskeleton
was operated in assist-as-needed mode to perform repetitive
flexion and extension motion of their thumb, index and middle
fingers. This was followed by 16 min of BCI calibration time
before entering into the actual MP phase, which continued
further for another 30 min. The BCI calibration phase was
composed of two runs of 40 trials each equally divided
between left hand and right hand motor tasks. The objective
during the MP phase is to perform left or right hand finger
extension attempts according to random cues provided on the
computer screen.

Although a large section of the BCI systems for rehabili-
tative use are based on motor imagery without overt move-
ment [28], patients have compromised ability for brain-wave
modulations related to the motor-task, leading to improper
neurofeedback, which in turn induces frustration among the
patients and further degradation of the performance [29].
As a motor imagery is often found to be less natural and
hence difficult for the patient to perform, resulting in less
distinguishable features [26], the participants were advised
to attempt the movement. To be specific, the patients were
instructed to repetitively attempt the movement with a pace as
slow as possible until a single trial is over. The experimental
paradigm and the neurofeedback along with timing diagram of
the trials are depicted in Fig. 1 and Fig. 2 respectively. The BCI
calibration needed approximately 16 min to complete. The MP
was composed of 3 runs of BCI based neurofeedback, each
consisting of 40 trials. There was 2.5 min of break period after
each run of the feedback phase.

C. System overview and data acquisition

The current sources associated with the finger movement are
found to be in the frontal medial and parietal regions of the
brain as revealed by the joint fMRI and EEG studies [30]. The
EEG channel description can be found in Fig. 1. The sampling
rate for data acquisition was 512 Hz. The signals were band-
pass filtered between 0.1 to 100 Hz and notch filtered at 50
Hz. The study used the bio-signal amplifier g.USBamp (g.tec,
Graz, Austria), along with active ring electrodes (g.LADYbird
having sintered Ag/AgCl crown) attached to the EEG cap
(g.GAMMAcap). The reference electrode was linked to left
earlobe. An in-house GUI supported software developed in
MATLAB/SIMULINKTM platform was used for processing
the EEG signal and generating neurofeedback.

The hand exoskeleton used to facilitate the exercise of the
impaired hand was built in-house which provides flexion and
extension motion to the thumb, index and middle fingers. The
index and middle fingers are coupled together and are driven
by a four-bar mechanism. The thumb is driven by another
separate four-bar linkage. The mechanisms are actuated by
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Fig. 2. The timing diagram and neurofeedback modalities. The feedback starts at 4.5 s and it has 8 instants of feedback generation at every 0.5 s up to 8 s.
Each instant with time stamp is represented below the timing diagram. The first row from the top is the sequences of exoskeleton actuation and the next row
is showing the frame of the stop motion video. Both the feedback modalities go from fully closed at the beginning to fully opened position at the end if all
the time points are classified correctly, otherwise the frame and the actuation sequence vary accordingly.

TABLE I
BASELINE DEMOGRAPHICS OF THE PARTICIPATED PATIENTS

Subject ID Age Gender Impaired side Dominant side Time Since Stroke (months) *HMMS GS ARAT
P01 48 M Left Right 8 10/10 9.4 26
P02 24 M Left Right 8 10/10 7 9
P03 45 F Left Right 6 10/10 3 3
P04 62 F Left Right 6 10/10 3.5 31

Mean± Std 44.75±15.69 7±1.15 5.72±3.03 17.25±13.38
*HMMS: Hodgekinson’s mini-mental state test

high torque servo motors in a position control mode. The
exoskeleton was fabricated using nylon based material to make
it light weight, flexible and portable. All the safety precautions
were taken while using it on the stroke patients so that it was
comfortable to wear and did not apply unnecessary force on
the fingers. The entire system is portable and suitable for a
quick installation in any place outside the lab environment,
such as in a hospital.

D. Physical practice (PP)

The PP was carried out with the help of the hand ex-
oskeleton attached to the patients’ impaired hand and the
unimpaired hand rested freely. Participants were instructed to
perform 10 repetitions of the flexion and extension motion of
their fingers alternatively using their impaired and unimpaired
hands. For example, 10 flexion and extension first with the
impaired hand, followed by 10 flexion and extension using

unimpaired hand and so on. In order to encourage the patients
in using their residual muscle strength, the exoskeleton was
operated in assist-as-needed mode. This was done using force
sensitive resistors (FSRs) attached on to the point of contact
between the finger tips and finger caps, of the exoskeleton
end-effector as shown in Fig. 3. The FSRs can sense the
forces applied by the fingers in the flexion or extension
direction and convert them into exoskeleton motion using an
impedance control approach. Generally, patients don’t have
the full range of motion in their fingers and often fail to exert
any force by their fingertips. In such situations, the exoskeleton
controller simply moves the finger in the required direction at a
predefined constant velocity. Apart from this, there are also the
cases where a patient tends to exert the force in the opposite
direction during an extension motion due to spasticity. To deal
with such scenarios the exoskeleton controller keeps track
of the movement phase (i.e. flexion or extension) and only
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Fig. 3. The exoskeleton worn by the user is shown in the right side of the
figure while the enlarged view of the finger insert showing the force sensitive
resistors attached inside is shown in the left side of the figure.

considers the forces which are in accordance with the phase.
The controller updates the phase information only after an
ongoing motion (flexion/extension) is completed. This strategy
prevents the patients to depend fully on external assistance
which is essential for motor skill learning according to the
guidance hypothesis [31].

E. Multimodal neurofeedback during MP

The multimodal neurofeedback comprises of twin modes of
visual and proprioceptive feedback, as discussed below:

1) Visual feedback: In order for a neurofeedback to be
biologically relevant and intuitive, Folds et al. [32] have shown
the utility of a stop motion video of a hand grasping action and
demonstrated that the grasp aperture can be controlled by an
MEG based BCI system, leading to significant improvement
in the SMR modulation of three spinal cord injury (SCI)
patients. In the current study we also have implemented a
similar visual feedback mechanism consisting of a stop motion
video to visualize the finger extension motion. The aperture of
the fingers was divided into 8 steps between 0 to 100%. The
0% corresponds to fully closed position and 100% corresponds
to fully open position; rest of the steps are divided evenly. The
EEG classifier generates output at steps of 0.5 s from 4.5 s to
8 s of the trial duration. Upon every successful classification
of the finger the aperture opens by 1 more step. Thus if it
correctly classifies at all the 8 time points that means the
finger aperture will open 100% and if only half of them are
classified correctly then 50%. As long as the classifier fails to
detect the correct class, the video stays at the current frame.
Thus the visual feedback is aimed at engaging the patient’s
focus throughout the trial period and encouraging him/her put
more and more effort which is quintessential for motor skill
learning. The gradual extension of the virtual finger during the
neurofeedback period is shown frame by frame in Fig. 2.

2) Proprioceptive feedback: Proprioceptive feedback is re-
lated to feeling the movement of different body parts. It can
thus carry the sensory information generated by the paretic
limb movement and help recruit the motor areas around the
lesion resulting in functional recovery and improved BCI
performance [33]. Here, we have used the three-finger hand
exoskeleton for giving proprioceptive feedback of the patients’
thumb, index and middle finger extension motion. The move-
ment of the exoskeleton is coupled with the visual feedback,

which in turn depends on the classifier output as explained
earlier. Fig. 2 shows the exoskeleton movement during a BCI
trial alongside the visual feedback.

F. Signal processing method

1) Feature extraction: It is known that the ipsilateral
enhancement of the lower β rhythm and contra-lateral at-
tenuation of the µ rhythm are normally related to motor
execution as well as motor imagery [22] and are represented
by neuro-physiological phenomena of event-related synchro-
nization (ERS) and desynchronization (ERD). Therefore the
temporal filtering of the EEG signals were done in two
passbands of [8-12] Hz (µ band) and [16-24] Hz (β band),
as they were empirically found to generate relatively stable
ERD/ERS patterns [34].

The spatial filters were computed using common spatial
patterns (CSP) algorithm, which is used to maximize the
discrimination between two classes [35]. The data covariance
matrices from the two different classes are diagonalized si-
multaneously to define the spatial patterns [36]. The CSP
algorithm carries out a supervised decomposition of signals
which is parameterized by a matrix W ∈ RC×C (C: number
of channels). This matrix is used to project the original sensor
space E ∈ Rc into the surrogate sensor space Z ∈ Rc.
The spatial filter maximizes the difference in variance of the
two classes of EEG signals. A small number of spatially
filtered signals are used as features for classification purposes.
Generally m first and m last rows of Z are selected, i.e. Zt,
where t ∈ {1 . . . 2m}. The feature vector xt is thus computed
using the log-variance of Zt.

2) Classifier design: The features were extracted from dif-
ferent time points over the trial length after the cue appearance.
We have calculated CSP features at 8 time points from 4.5
s to 8 s, along the trial length with a time step of 0.5 s
(i.e. at 4.5 s, 5 s, 5.5 s, 6 s, 6.5 s, 7 s, 7.5 s, and 8 s).
For each time point the data of the previous 1.5 s (i.e. 768
samples) were considered for CSP feature calculation. After
performing the temporal and spatial filtering, and taking the
log variance using, we obtain a two-element feature vector
for each frequency band µ and β. Thus from two different
frequency bands (i.e. µ and β) we get four elements which
form the feature vector of 1 × 4 dimension at a single time
point. Similarly the features were calculated from all the 80
trials (spanning two runs of 40 trials), divided into two classes
for the BCI calibration phase. An SVM classifier model was
trained with these features using a linear kernel. Here we have
trained 8 different classifier models for 8 time points. The
calibration was participant specific and it was done in each
session before the feedback phase. In the feedback phase, the
classifier used these different classifier models to predict the
left hand and right hand classes at each time point within a
trial. On each successful prediction a counter, (initialized to 0
at the beginning of each trial) is incremented by 1, and thus
drives the contingent visual and exoskeleton feedback step by
step.
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Fig. 4. The change in the CA through the therapy sessions.

G. Rehabilitation outcome measures

The rehabilitation outcomes were measured using Grip
Strength (GS) and Action Research Arm Test (ARAT), as
their incremental changes were found to have significantly
larger correlation with the variations in ERD/ERS for all
the participants in our previous study [22]. Grip strength
measurement using dynamometer (CamryTM Electronic Hand
Dynamometer) is a standard technique of assessing the muscle
strength of an individual after stroke. ARAT measurement,
introduced by Lyle et al. [37] is also a reliable way of testing
the upper-limb functionality by checking the grasp, grip, pinch
and gross-movement activities. The apparatus used for the
test are blocks of wood of different sizes, sharpening stone,
cricket ball, glass and jar of water, hollow tubes of different
height and thickness, washers, ball bearings, and marbles of
different dimensions. The total score associated with the test
is 57 which is distributed among different tasks with different
apparatus listed above, where each task is scored between 0
and 3. All tests were administered under the supervision of
an occupational therapist stationed at the hospital where the
clinical trials were conducted.

H. Usability measures

The usability of the proposed rehabilitation system was
analysed in terms of the 10 cm visual analogue scale (VAS)
scores of fatigue, mood, and motivation of the participants
during each therapy session. For fatigue level, 0 cm in the VAS
scale was marked as ‘No fatigue’ , while 10 cm was marked
as ‘Worst fatigue imaginable’. For mood ‘Lively mood’ was
marked at 0 cm while ‘Worst mood’ was marked at 10 cm. In
the motivation VAS scale ‘Mastery Confidence, I am looking
forward for the task’ was marked at 10 cm while ‘Anxiety
about failing the task’ was marked at 0 cm. The qualitative
comments about the usability of the hand exoskeleton were
also recorded using standard questionnaire.

III. RESULTS

The results are presented to support the primary and
secondary objectives of the study. To support the primary

Fig. 5. The last vs. first session changes in scalp topoplots for (a) left hand
task in Mu band, (b) right hand task in Mu band, (c) left hand task in Beta
band, (d) right hand task in Beta band

objective of the study, which is to test the possible clinical
effectiveness of the proposed neurorehabilitation protocol, the
essential measures are obviously the motor recovery outcomes
such as GS and ARAT scores. However, it is also important to
see the changes in the BCI performance and the neurophysio-
logical effects in terms of scalp topoplots of EEG band powers
during the therapy, so as to support the rehabilitative outcomes
as this is a single arm study without a control group. Finding
relation between the individual BCI performance and the GS
and ARAT measures could also be a verifier for a possible
clinical effect. These results are presented in this section
to support the primary objective. Moreover, the secondary
objective, which is to test the usability of the system is reported
by the VAS scale measurements of the mood, motivation and
fatigue.

A. Results Related to the Primary Outcome

1) The BCI Performance and the Neurophysiological Effect:
The performance of the rehabilitation system was evaluated
based on the BCI classification accuracy (CA). For calculating
the CA for each session we averaged the CA calculated at
all 8 time points along the trial length. The average CAs
thus calculated for each participant for all the sessions are
plotted in Fig. 4. The graph shows an increasing trend in
accuracy for all the participants. we have calculated paired
t-test (which is commonly used in pre and post observations
on the same subjects) to compare the accuracies of the last
vs. first session across all the participants, which shows that
the accuracy improvement is statistically significant at the p
< 0.05 level (p = 0.0120). The CA averaged over all the
sessions was found to be 81.45 ± 8.12%, 70.21 ± 4.43%,
76.88 ± 4.49%, and 74.55 ± 4.35% for P01, P02, P03 and
P04 respectively. This shows that performance of the BCI
meets the recommended minimum accuracy level of 70% for
controlling an external device [38]. A group mean change of
+18.05 was also observed between first and last session. The
µ and β band ERD/ERS topoplots are also shown in Fig. 5
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to highlight the changes in the brain activity in first and last
session. The ERD/ERS has been measured using (1).

ERD/ERSch
b =

Eb
task

Eb
ref

(1)

where, b is the band (µ or β) and ch is the EEG channel. If
the ratio ERD/ERS is less than 1 then ERD occurs and if it is
greater than 1 then it is ERS. In the current study the reference
time window was fixed between 2 s to 2.5 s within a trial. In
order to discuss more specifically about the EEG channels and
frequency bands, whoose modulations changed in the course
of the clinical trial, Fig. 5(a-d) has been depicted. Due to space
limitations we have shown the topoplots based on the grand
averages of ERD/ERS across all the participants, rather than
showing the participant specific changes. The mu band scalp
topoplot is shown in Fig. 5(a), which showed significantly
(p<0.05) enhanced ERD (last vs. first) in C4 and CP4 channels
in the ipsilesional primary and somatosensory motor cortex
during left hand (the impaired side) task. In harmony with
the previous findings [39], significantly (p<0.05) increased
ipsilesional beta desynchronization (last vs. first) can also
be located in the same C4 and CP4 channel locations from
Fig. 5(c). The level of ERD in beta at C4 and CP4 were also
found to be greater(p<0.05) than the corresponding mu ERD
indicating the relevance of beta band in motor skill learning
as reported in the previous studies [40]. During right hand
task the significantly (p<0.05) enhanced mu band ERD can be
seen at the contralesional CP3 and P3 locations(see Fig. 5(b)),
whereas significant (p<0.05) beta ERD increment can be
found in contralesional C3 and FC3(see Fig. 5(d)), when
compared between the last vs. first session. The increased ERD
also contributed to the segregation of the CSP features between
left and right hand tasks, which led to the enhancement in the
in the classification accuracy.

2) Rehabilitation Outcome Measures: Rehabilitation
outcome was measured using GS and ARAT scores on the
impaired hand (i.e. left hand). Variations in GS and ARAT
starting from the baseline at the commencement of the first
session to the end session are shown in Fig. 6.(a) and Fig.
6.(b) respectively. As shown in Fig. 6.(a), all the participants
were able to increase their GS through the therapy sessions
with a group mean change of +6.38 kg, although due to small
sample size the paired t-test yielded a p-value= 0.06, which
was greater required level of p-value< 0.05 for statistical
significance. Substantial changes in the ARAT scores were
also found for all the participants as shown in Fig. 6.(b), with
a statistically significant (p-value< 0.05) group mean change
of +5.66.

Pearson’s correlation coefficients between CA vs. GS, and
CA vs. ARAT are also shown in Fig. 6.(c), to show the
effect of BCI performance on rehabilitation outcomes. The
correlation has been calculated by considering CA, GS and
ARAT measures as a time-series of length equals to the num-
ber times the outcome measures were taken. As the GS and
ARAT measurements are taken on each alternative sessions,
the CA values corresponding to those sessions are considered

while calculating the correlation. The correlation coefficients
between CA and GS were 0.79, 0.92, 0.84, and 0.96 for P01,
P02, P03, and P04 respectively, while the correlation coeffi-
cients between CA and ARAT were 0.82, 0.98, 0.90, and 0.98
respectively. The correlations were statistically significant with
p value< 0.01. Thus both the outcome measures were strongly
correlated with the CA. It is to be noted that although the BCI
performance and motor-outcome measures significantly corre-
lated individually(intra-participant), the correlations were not
significant while considering it across the participants(inter-
participant), i.e. correlating first and last session differences
of CA vs. the GS and ARAT measures.

B. Results Related to the Secondary Outcome

The dependency between VAS scores and CA results were
obtained by calculating the individual CA percentile rank (0-
1) and then matching it with VAS scores in four inter-quartile
ranges. For each quartile the mean and standard deviation of
the CA percentile ranks were calculated [22]. The variation
of the fatigue, mood, and motivation VAS scores through the
therapy sessions are shown in Fig. 7. The group mean changes
for fatigue, mood, and motivation were observed to be −0.98,
−1.38 and +2.10. Although the group mean change of fatigue
is indicating only a slight decrease, which may not be very
significant but at least the fact that the intervention didn’t
increase the fatigue level is a positive aspect of the study as
one of the previous clinical trial reported moderate increase in
fatigue level [22]. Moreover, reductions in the group mean of
the mood VAS score and an increase in motivation VAS score
were found during the trials, which means that both the mood
and the motivation level of the participants improved.

IV. DISCUSSION

A. Comparison of the BCI Performance

As compared to an earlier study consisting of PP without
exoskeleton and MP [22], wherein the average classification
accuracy of the BCI was in the range 60−75%, a much higher
accuracy in the range 70−81% was obtained. Unlike, the study
in [22], all the participants were able to increase their BCI
performance as the therapy session progressed. Many factors
may have contributed to this outcome including the use of
intuitive and multimodal neurofeedback mechanisms, the use
of spatial filtering and increased number of EEG channels etc.,
although the scope of such speculations are limited by the lack
of control groups. Particularly, the anthropomorphic feedback
strategies are generally more engaging and intuitive for the
participants which put the mirror neuron system into action,
leading to stronger SMR activations [41]. Earlier studies also
indicated that the contingent visual and proprioceptive feed-
back maximizes the information about the correctness of the
BCI control [33], which could help the user streamline his/her
actions during the BCI task, leading to improved performance.
It is to be noted that once the EEG classifier was built after the
calibration stage no adaptation was done in the online feedback
generation stage; however the calibration was done for every
session separately. Therefore, the improvement in the accuracy
depended on the participants’ ability to generate distinctive
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Fig. 6. Changes in the GS and ARAT through the therapy sessions and their correlation with the CA, (a) Change in the GS through the therapy sessions, (b)
Change in the ARAT through the therapy sessions, (c) Correlation between (CA and GS), and (CA and ARAT).

Fig. 7. VAS scores through the sessions, (a) fatigue, (b) mood, (c) motivation.

EEG patterns for left and right hand tasks. Indeed, we didn’t
force the patients to generate a predefined pattern as done in
the fixed model based operant conditioning; rather they were
asked to focus on the motor task as much as possible, and the
rest of the job was taken care by the CSP feature extraction and
SVM based classification at the calibration stage for subject-
specific modeling. It is worth mentioning that although several
algorithms for classifying the brain signals are tried and tested
by various research groups, as in the case of BCI competition
IV datasets [42], CSP based features extration is the most
popular among the winners [43], [44]. In a recent study, Ang
et al. [45] reported a clinical trial on 6 stroke patients with
an average online feedback accuracy of 69.5%. However, an
adaptive strategy employed during offline analysis of data
improved the accuracy by 12%. The classification accuracies
are also in keeping with a recently conducted large clinical
study, where 60% of the participants achieved more than 70%
accuracy [19].

B. Comparison of the Motor Recovery Measures

As compared to the average baseline score of 5.73 kg,
participants were able to attain an increase 6.38 kg on an
average which is a 111.49% improvement, while approxi-
mately 20% increment was reported in the earlier study [22].
Bundy et al. [46] also used similar intervention (BCI based
Hand exoskeleton), without the active PP part, where the

average improvement in GS was found to be 22.64% (a
change of 1.51 kg, over a baseline of 6.67 kg). In a recent
study, the minimal clinically important difference (MCID) of
GS was determined to be 19.5% of the initial value [47],
which means the average improvement in GS in this case far
exceeded the MCID limit. To ensure that increment in the
GS is not due to increased spasticity, the spasticity level was
regularly monitored by the occupational therapist. Moreover,
the increment in ARAT scores requires both extension and
flexion capabilities of a hand for grasping objects which also
ensures that the spasticity level was not increased.

The average improvement in the ARAT score was 5.66
from the average baseline measurement of 17.25, which is
a 32.81% improvement. A study conducted by Darvishi et
al.[25] achieved 36% improvement in ARAT, whereas Bundy
et al. [46] reported an average improvement in ARAT of
46.27% (i.e. increase of 6.2 over a baseline 13.4). In the
current study only one out of 4 participants achieved ARAT
improvement beyond MCID limit of 5.7, while in [22] and [46]
it was 2 out of 5 and 6 out of 10 respectively. However, the
percentage of average improvement in ARAT was comparable
to the existing studies [22], [25], [46] and also very close to
the MCID limit.

A few randomized controlled trials were also conducted
for BCI based hand functional recovery, reporting better im-
provements compared to other rehabilitative paradigms. Ang



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, MONTH 2018 9

et al. [48] conducted three-arm control trials to compare the
effect of MI-BCI based haptic feedback with the only haptic
feedback and conventional therapist assisted manual therapy
and found significantly higher improvement in Fugl Meyer
Assessment (FMA) in the MI-BCI based haptic feedback
condition as compared to the other conditions. BCI based MI
training was also proved effective as compared to the without
BCI MI training in a controlled study by Pichiorri et al. [49]
using anthropomorphic visual feedback of a virtual hand.

There is also a critical question often debated whether the
BCI performance has any role to play in motor recovery. Some
studies indicated that functional improvements in patients are
associated with the classification accuracy of the BCI [50]. In
the current clinical study also we found strong intra-participant
correlation between the BCI CA and the motor recovery
measures GS and ARAT. Although [46] found significant inter-
participant correlation between BCI performance and motor-
outcome also, in our study this was not significant. There
could be two possible explanations for this result: first is the
smaller participant number (total 4 participants) as compared
to [46](total 10 participants); second possibility could be that
the influence of BCI performance on motor-outcome may
suffer from inter-subject variability.

C. Advantages and Limitations

The main advantage of the proposed neurorehabilitation
protocol is that the manual PP strategy was replaced by a hand
exoskeleton based assist-as-needed control, which enriches
patients engagement with the task. Also, the neurofeedback
during BCI based MP has been improvised by the use of
anthropomorphic visual and exoskeleton based proprioceptive
feedback. Moreover, the human therapist can intervene in
the rehabilitation process by setting different parameters in
order to adjust the difficulty level of the physical and mental
practice according to the recovery of the patients. This leads
to more personalization of the therapeutic process, which is
one of the major aspects of Industry 4.0 based healthcare.
Thus the proposed neurorehabilitation system can be thought
of as a prospective mode of tele-rehabilitation. The study also
proposes a solution to the problem of shortage of expert human
therapists needed for providing effective and personalized
neurorehabilitation care, which is an emerging crisis for the
ageing world population.

The current study is limited by small patient population, as
to draw a statistical significance test for the recovery measures
requires a larger group. Also, it would have been interesting
to compare the effectiveness of the proposed MP+PP with
exoskeleton paradigm, with other paradigms such as MP
without PP or vice versa, or PP/MP without exoskeleton,
which is not possible due to the lack of control groups. These
issues will be catered in our future studies.

V. CONCLUSION

The pilot trial presented in this paper introduces a novel
neurorehabilitation protocol incorporating a separate active
hand exoskeleton based PP followed by BCI based MP with
multimodal neurofeedback. The idea is to investigate the

consequence of combining key neurorehabilitative features
such as hand-exoskeleton based active PP, and contingent
anthropomorphic visual and proprioceptive feedback. The im-
provement in BCI performance along with positive motor-
recovery and mental state outcome measures show that the
proposed neurorehabilitation protocol has a great potential to
be a clinically effective and usable solution for hand functional
recovery, although it needs further validation conducting con-
trolled trials on large patient cohort.
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R. Leeb, J. Millán, and A. Kübler, “The effect of multimodal and en-
riched feedback on SMR-BCI performance,” Clinical Neurophysiology,
vol. 127, no. 1, pp. 490–498, 2016.

[24] M. Mihara, N. Hattori, M. Hatakenaka, H. Yagura, T. Kawano, T. Hino,
and I. Miyai, “Near-infrared spectroscopy-mediated neurofeedback en-
hances efficacy of motor imagery-based training in poststroke victims:
A pilot study,” Stroke, vol. 44, no. 4, pp. 1091–1098, 2013.

[25] S. Darvishi, M. Ridding, B. Hordacre, D. Abbott, and M. Baumert,
“Investigating the impact of feedback update interval on the efficacy
of restorative brain-computer interfaces,” Royal Society Open Science,
vol. 4, no. 8, p. 170660, 2017.

[26] Y. Blokland, L. Spyrou, D. Thijssen, T. Eijsvogels, W. Colier, M. Floor-
Westerdijk, R. Vlek, J. Bruhn, and J. Farquhar, “Combined EEG-fNIRS
decoding of motor attempt and imagery for brain switch control: An
offline study in patients with tetraplegia,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 22, no. 2, pp. 222–229,
2014.

[27] K. K. Ang, C. Guan, K. S. G. Chua, B. T. Ang, C. W. K. Kuah, C. Wang,
K. S. Phua, Z. Y. Chin, H. Zhang, and K. S. G. Ghua, “Clinical study
of neurorehabilitation in stroke using EEG based motor imagery brain-
computer interface with robotic feedback,” Proceedings of the 32nd
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, vol. 2010, pp. 5549–5552, 2010.

[28] A. Gharabaghi, “What turns assistive into restorative brain-machine
interfaces?” Frontiers in Neuroscience, vol. 10, p. 456, 2016. [Online].
Available: https://www.frontiersin.org/article/10.3389/fnins.2016.00456

[29] R. Bauer and A. Gharabaghi, “Constraints and adaptation of
closed-loop neuroprosthetics for functional restoration,” Frontiers

in Neuroscience, vol. 11, p. 111, 2017. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2017.00111

[30] T. Ball, A. Schreiber, B. Feige, M. Wagner, C. H. Lücking, and
R. Kristeva-Feige, “The role of higher-order motor areas in voluntary
movement as revealed by high-resolution EEG and fMRI.” NeuroImage,
vol. 10, no. 6, pp. 682–94, 1999.

[31] C. Obayashi, T. Tamei, and T. Shibata, “Assist-as-needed robotic trainer
based on reinforcement learning and its application to dart-throwing,”
Neural Networks, vol. 53, pp. 52–60, 2014.

[32] S. T. Foldes, D. J. Weber, and J. L. Collinger, “MEG-based neu-
rofeedback for hand rehabilitation.” Journal of neuroengineering and
rehabilitation, vol. 12, no. 1, p. 85, 2015.

[33] A. Ramos-Murguialday, M. Schürholz, V. Caggiano, M. Wildgruber,
A. Caria, E. M. Hammer, S. Halder, and N. Birbaumer, “Proprioceptive
Feedback and Brain Computer Interface (BCI) Based Neuroprostheses,”
PLoS ONE, vol. 7, no. 10, 2012.

[34] H. Raza, H. Cecotti, and G. Prasad, “Optimising Frequency Band
Selection with Forward-Addition and Backward-Elimination Algorithms
in EEG-based Brain-Computer Interfaces,” in 2015 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2015, pp. 1–7.

[35] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. R. Müller,
“Optimizing spatial filters for robust EEG single-trial analysis,” IEEE
Signal Processing Magazine, vol. 25, no. 1, pp. 41–56, 2008.

[36] C. Park, C. C. Took, S. Member, and D. P. Mandic, “Augmented
complex common spatial patterns for classification of noncircular eeg
from motor imagery tasks,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 22, no. 1, pp. 1–10, 2014.

[37] R. C. Lyle, “A performance test for assessment of upper limb function
in physical rehabilitation treatment and research,” International Journal
of Rehabilitation Research, vol. 4, no. 4, pp. 483–492, 1981.

[38] C. Vidaurre and B. Blankertz, “Towards a cure for BCI illiteracy,” Brain
Topography, vol. 23, no. 2, pp. 194–198, 2010.

[39] P. Belardinelli, L. Laer, E. Ortiz, C. Braun, and A. Gharabaghi,
“Plasticity of premotor cortico-muscular coherence in severely
impaired stroke patients with hand paralysis,” NeuroImage:
Clinical, vol. 14, pp. 726 – 733, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2213158217300657

[40] F. Khademi, V. Royter, and A. Gharabaghi, “Distinct beta-band
oscillatory circuits underlie corticospinal gain modulation,” Cerebral
Cortex, vol. 28, no. 4, pp. 1502–1515, 2018. [Online]. Available:
http://dx.doi.org/10.1093/cercor/bhy016

[41] G. Buccino, A. Solodkin, and S. L. Small, “Functions of the mirror
neuron system: implications for neurorehabilitation.” Cognitive and
Behavioral Neurology, vol. 19, no. 1, pp. 55–63, 2006.

[42] M. Tangermann et al., “Review of the bci competition iv,”
Frontiers in Neuroscience, vol. 6, p. 55, 2012. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2012.00055

[43] H. Zhang, C. Guan, K. K. Ang, and Z. Y. Chin, “Bci
competition iv data set i: Learning discriminative patterns
for self-paced eeg-based motor imagery detection,” Frontiers
in Neuroscience, vol. 6, p. 7, 2012. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2012.00007

[44] K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, “Filter Bank
Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a
and 2b,” Frontiers in neuroscience, vol. 6, p. 39, jan 2012.

[45] K. K. Ang and C. Guan, “Eeg-based strategies to detect motor imagery
for control and rehabilitation,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 25, no. 4, pp. 392–401, April 2017.

[46] D. T. Bundy et al., “Contralesional brain–computer interface control of
a powered exoskeleton for motor recovery in chronic stroke survivors,”
Stroke, 2017.

[47] J. K. Kim, M. G. Park, and S. J. Shin, “What is the minimum
clinically important difference in grip strength?” Clinical Orthopaedics
and Related Research, vol. 472, no. 8, pp. 2536–2541, 2014.

[48] K. K. Ang et al., “Brain-computer interface-based robotic end effector
system for wrist and hand rehabilitation: results of a three-armed
randomized controlled trial for chronic stroke,” Frontiers in Neuroengi-
neering, vol. 7, p. 30, 2014.

[49] F. Pichiorri et al., “Braincomputer interface boosts motor imagery
practice during stroke recovery,” Ann Neurol., vol. 77, pp. 851–865,
2015.

[50] S. Ruiz, S. Lee, S. R. Soekadar, A. Caria, R. Veit, T. Kircher,
N. Birbaumer, and R. Sitaram, “Acquired self-control of insula cor-
tex modulates emotion recognition and brain network connectivity in
schizophrenia,” Human Brain Mapping, vol. 34, no. 1, pp. 200–212,
2013.


