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Abstract—Automatic gesture recognition (AGR) is investigated as 
an effortless human-machine interaction method, potentially 
applied in many industrial sectors. When using surface 
electromyogram (sEMG) for AGR, i.e. myoelectric control, a 
minimum of four EMG channels are required. However, in 
practical applications, fewer number of electrodes is always 
preferred, particularly for mobile and wearable applications. No 
published research focused on how to improve the performance of 
a myoelectric system with only two sEMG channels. In this study, 
we presented a systematic investigation to fill this gap. 
Specifically, we demonstrated that through spatial filtering and 
electrode position optimization, the myoelectric control 
performance was significantly improved (p < 0.05) and similar to 
that with four electrodes. Further, we found a significant 
correlation between offline and online performance metrics in the 
two-channel system, indicating that offline performance was 
transferable to online performance, highly relevant for algorithm 
development for sEMG-based AGR applications. 

Index Terms—Automatic gesture recognition, myoelectric 
control, pattern recognition, electromyogram (EMG) 

I. INTRODUCTION

UTOMATIC gesture recognition (AGR) provides humans a
convenient, natural way to interact with electronics and 

industrial equipment. Compared to the traditional button-based 
method (physical or virtual), AGR is simple and effortless, easy 
to be integrated into mobile and wearable devices. Recent 
studies demonstrated that AGR could be paired with the 
emerging virtual or augmented reality technology to enhance 
user experiences [1]. Currently, AGR is mainly applied in the 
field of rehabilitation engineering, such as assisting stroke 
patients with powered exoskeleton control [2], facilitating 
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communication of the deaf and mute with sign language 
interpretation [3], and the most common scenario, providing 
the amputees intuitive and effortless control of the advanced 
upper-limb prosthesis [4] [5]. Meanwhile, the applications in a 
boarder range of industry sectors are also being explored [6] 
[7], with successful commerical products available for 
non-medical applications [8] [9]. 

Surface electromyogram (sEMG) signal is the electrical 
manifestation of functioning muscle contractions, detected 
noninvasively over the skin surface [5]. As rich gesture-related 
neural information contained within, sEMG signals are usually 
used as a control source for AGR, termed as myoelectric 
control. In the traditional setting, the electrodes for signal 
collection are attached around the forearm, on the top of the 
muscle bellies. Recently, comparable classification results were 
obtained with the electrodes attached on the wrist, expanding 
the application scenario of myoelectric control [10].  

In most myoelectric control studies, pattern recognition (PR) 
framework were employed from the assumption that the signal 
pattern of one gesture would be repeatable with the given 
settings, and distinctive from that of other gestures. Promising 
results were obtained from PR-based myoelectric control with 
advanced algorithms in feature extraction [11][12], 
classification [13][14], and effective experiment setups 
(optimal electrode configuration [15], brain stimulation [16] 
and user training [17]). Among these factors, physical channel 
number was a crucial one for the performance of PR-based 
myoelectric control scheme. In general, the recognition 
performance increased with the increasing number of channels, 
for the collection of addition information about more muscle 
contractions with enlarged detection area [15]. The common 
number of channels in PR-based myoelectric control was from 
four to eight, achieving the offline classification accuracy 
around 95%  [18]. Recently, promising results with respect to 
system robustness were obtained from the use of high density 
(HD) grids (around hundreds of monopolar electrodes) 
[12][19].  

However, for myoelectric control, few studies addressed the 
scheme with a small number of sEMG channels, such as two 
channels employed in the most commercial powered prostheses 
[5]. From the perspective of the practical application, the 
number of channels was required as few as possible. 
Decreasing the number of physical channels would reduce the 
complexity of the system, making it easy to deploy, as well as 
reduce the power consumption and extend the operation time of 
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the system. These features were favorable for many industrial 
applications, especially the mobile and wearable devices, 
indicating a big potential market for myoelectric control. 
Though decreasing the number of channels benefited the 
practical application, from the perspective of control 
performance, the small number of channels would reduce the 
amount of muscular information that could be extracted, 
leading to the deterioration of the classification accuracy. As 
such, how to extract the effective information from the limited 
sources and maintain the performance was the key to the 
PR-based myoelectric control system with a small number of 
channels.  

It was reported that spatial information of myoelectric 
signals was important for gesture recognition [15][20]. In this 
study, we focused on the case of two physical channels, and 
proposed to enhance its spatial information from two aspects, 
optimizing the electrode position and applying a spatial filter. 
Previous studies indicated that the positions of the electrodes 
was not a critical factor for PR-based myoelectric control when 
a sufficient number of electrodes was available (usually more 
than four electrodes) [21]. However, in the case of two 
channels, the results would be different because of the limited 
spatial coverage, in which case the optimization of electrode 
position might be essential for effective myoelectric control. 
On the other hand, various spatial filters were developed to 
improve myoelectric control accuracy and robustness by 
separating the information with respect to different gestures 
[19][20]. However, most of them required a large number of 
channels. This study proposed to use a simple spatial filter 
specifically for a small number of channels, i.e. creating two 
virtual channels (VC) from two physical channels. We intended 
to demonstrate that, through the combination of the optimal 
electrode position and VC technique, PR-based myoelectric 
control performance with two channels can be enhanced. In 
addition, the correlation between online and offline 
performance metrics was investigated in PR-based control 
scheme. The outcome of this study would be beneficial for the 
practical use of myoelectric control interface, as well as its 
algorithm development. 

II. METHOD 

A. Subjects 
Eight able-bodied subjects (seven males and one female, 

aged from 20 to 30 years old) participated in the study. Before 
the experiment, the informed consent was obtained from all the 

subjects. The experiment procedures were in accordance with 
the Declaration of Helsinki. 

B. Offline Experiment Protocol 
The subject seated naturally, extending the arm toward the 

ground. Six surface monopolar electrodes were placed around 
the forearm, roughly equidistant from each other and 
approximately 4 cm to the elbow crease (Fig. 1). Before 
attaching the electrodes, the skin area was cleaned with alcohol 
and conductive gel to minimize the electrode-skin impedance 
and increase the signal quality. Data from six hand and wrist 
gestures, in addition to the resting class, were collected in this 
study: hand close, hand open, wrist flexion, wrist extension, 
pronation, and supination. During the data collection, the 
subjects were asked to follow the gesture displayed in a monitor 
in front of them. The contraction of each gesture was held for 5 
s (a trial), followed by a 5-s resting period, after which the next 
contraction (trial) was performed. In one run, each gesture was 
performed once and its order was randomized. There was a 30-s 
rest between two runs to avoid fatigue. For each subject, five 
runs of data were collected by a commercial bio-signal 
amplifier (g.USBamp, g.Tec Medical Engineering, Austria) 
with the signal band-pass filtered at 20 to 450 Hz and sampled 
at 1200 Hz.  

C. Online Experiment Protocol 
The online experiment, a control task adapted from [22], 

followed immediately after the subject finished the offline data 
collection. It was designed to mimic the practical control 
scenario for the evaluation of the proposed method. In the 
experiment, the subject was introduced to a virtual environment 
(Fig. 2), where the movement of a virtual arrow was associated 
to the hand and wrist gestures of the subject. The left/right 
movement of the arrow represented wrist flexion/extension; the 
clockwise/counter-clockwise movement of the arrow 
represented wrist supination/pronation. The increase/decrease 
of the arrow length represented hand open/close. The speed of 
the arrow was fixed. Before the test, the subject was instructed 
to be familiar with the system with the classifier calibrated by 
the offline data of all the six channels. During the test, the 
subject was asked to move the arrow to the intended target 
within the tolerance of each direction. Twenty targets were 
presented to the subject in one session. The targets were the 
same across different sessions, but the sequence of the targets 
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Fig. 1.  Cross-sectional view of the placement of six sEMG electrodes. The 
number represents the position where the electrode is placed. 
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Fig. 2.  Interface of online test system. Left-right movements of the arrow is 
associated to wrist flexion and extension. Rotational movement of the arrow is 
associated to supination and pronation. Change of the arrow length is 
associated to hand close and open. A representative target is displayed, and the 
dash line represents the range of the tolerance. 
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within one session was randomized. 

D. Data Processing 
Acquired EMG signals were segmented into 200-ms analysis 

windows, with an overlap of 150 ms, resulting in a simulated 
50-ms decision stream. The state-of-the-art time domain (TD) 
feature sets [23], consisting of mean absolute value (MAV), 
sign slope change (SSC), zero crossing (ZC), and waveform 
length (WL), were extracted from each window. The extracted 
feature vectors were fed to the classifier for recognition. Linear 
discriminant analysis (LDA) was chosen as the classifier for its 
low computation cost and comparable performance to other 
complex classifiers [4]. 

Two approaches were taken to exploit the spatial 
information: electrode position optimization and the inclusion 
of VC. For the effect of electrode position, all possible fifteen 
combinations out of the six electrodes were considered in this 
study. Meanwhile, two VCs were formed by making either the 
average of or the difference between two real channels, 

V1(t) = (R1(t) +R2(t))=2 

V2(t) = (R1(t)¡R2(t))=2 

where R1(t) and R2(t) are the two recorded sEMG signals at 
time t, and V1(t) and V2(t) represent the two VCs. Subsequent 
feature extraction and classification tasks were then performed 
with these two new channels.  

The objective of this study is to investigate if the 
combination of electrode position optimization and VC 
embedment could improve the myoelectric control 
performance with only two channels. For this purpose, in 
offline data analysis, we compared the performance of all the 
fifteen electrode combinations under two conditions: without 
VC and with VC, by classification error rate. A five-fold 
cross-validation was used, where training and testing data were 
four runs and one run, respectively. Based on the results of 
offline analysis, three electrode subsets were selected, the 
subset with the biggest error rate of the group without VC 
(worst subset, WS), the subset with the lowest error rate of the 
group without VC (optimal subset, OS), and the subset with the 
lowest error rate of the group with VC (optimal VC subset, 

OVS). Subsequently, four cases were tested in online 
experiment to investigate the improvement of online 
controllability from the combination of optimal electrode and 
VC: 1) WS without VC in the following algorithm, 2) OVS 
without VC in the following algorithm, 3) OS without VC in 
the following algorithm, 4) OVS with VC in the following 
algorithm. The online performance was assessed by the 
trajectories of the tip of the arrow and the duration of the arrow 
movement. Four indices were used to quantify the 
performance: completion rate, completion time, overshoot, and 
efficiency coefficient (Table I). A target was considered 
completed when the subject successfully moved and kept the 
arrow within the intended tolerance within 20 s. The tolerance 
range in each direction was corresponded to three analysis 
window steps, which is 150 ms. 

E. Statistical Analysis 
To test the effectiveness of the proposed method, for offline 

performance, a two-way repeated-measure analysis of variance 
(ANOVA) was conducted on the error rates. The two factors 
were positions of the two electrodes (fifteen combinations) and 
VC (with or without VC). The main purpose of this ANOVA 
was to investigate if the inclusion of VC could improve the 
classification performance with two electrodes, as it was 
expected that the positions of the electrodes would affect 
classification performance. Further, a one-way 
repeated-measure ANOVA was conducted on error rates to 

TABLE I 
ONLINE PERFORMANCE METRICS 

Metric Description 

Completion 
Rate 

the number of completed tasks over the total number 
of attempted tasks 

Completion 
Time  

the time it took the subject to complete the 
successful attempt 

Overshoot 
the number of occurrences that the tip of the arrow 
passed through the target before the dwelling time 
was reached 

Efficiency 
Coefficient 

the ratio between the length of the optimal path from 
the initial point to the target and the actual trajectory 
realized (a value of 100% indicates a perfect 
execution) 

 
 

 
Fig. 3. Error rates of two algorithms (without and with VC) with different electrode positions. The error rates are averaged across subjects. The tick label of 
horizontal axis displays the positions of two electrodes. The circle represents the cross-sectional view of the arm. The letter U and R indicate the position of ulnar 
and radius, respectively. The black dot represents the positions of the two electrodes used. The last column of each figure represents the error rates averaged across 
the electrode combination and the subject. 
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compare the performances of four methods mentioned Section 
II (D). A paired t-test was conducted to compare the 
performance of the proposed method, OVS with VC, with that 
using four electrodes (averaged across the combinations). For 
the online performance, a two-way repeated-measure ANOVA 
was conducted on efficiency coefficient to investigate if there 
was significant difference between three methods. The method 
with WS without VC was excluded because the number of 
successful targets in this case was too poor: on average only 
one-third of the other three. The two factors were targets (20 
levels for 20 different targets in one session) and methods. The 
other three metrics, completion rate, completion time and 
overshoot, were not considered for their skewed distributions 
caused by the limit they had. In all the ANOVA models, subject 
was regarded as a random factor. If significant interaction 
between two factors was detected, the focused ANOVA would 
be performed with the fixed level of one factor. If significant 
difference was detected for the main factor, Turkey comparison 
was performed. The significance level was set to 0.05 for all the 
tests. 

III. RESULTS 

A. Offline Performance 
The offline classification error rates varied among different 

electrode combinations (Fig. 3). The performance of the 
algorithm with VC was better than that without VC on all the 
electrode combinations. The error rate averaged across the 
electrode combinations was 17.51 ± 2.81% without VC, and 
10.15 ± 1.60% with VC. The statistical analysis showed that 
there was no significant interaction between the factors of 
electrode position and VC. The inclusion of VC significantly 
decreased the classification errors (p < 0.001) regardless of the 
electrode position. 

The selected electrode subsets, WS, OVS and OS, were 
identified from each subject. The results of the four methods, 
generated from these subsets (as explained in Section II (D)), 
were presented in Fig. 4. The combination of optimal electrode 

position and VC embedment, OVS with VC, obtained the 
lowest error rate (6.69 ± 5.58%), while the unoptimized 
electrode placement without VC, WS without VC, obtained the 
highest error rate (24.71 ± 7.45%). The error rates between the 
other two methods, OVS without VC and OS without VC, were 
close. It was indicated in the subsequent statistical analysis that 
there was significant difference among the methods (p < 0.001). 
Post-hoc comparison showed that the error rate of the proposed 
method, OVS with VC, was significantly lower than the error 
rates of the other three, while the error rates of the two methods, 
OVS without VC and OS without VC, were significantly lower 
than that of WS without VC. There were no significant 
difference between OVS without VC and OS without VC.  

In addition, to compare the proposed method with the 
traditional myoelectric control algorithm, the classification 
error averaged across the combination of four out of six 
electrodes (fifteen combinations) was calculated, 6.49 ± 3.9 %. 
The statistical analysis indicated that there was no significant 
difference between the performance of four electrodes and the 
proposed method, OVS with VC. 

 

Fig. 4.  Comparison of error rates of four methods. The tick label of horizontal 
axis, WS, OVS, OS, and OVS with VC, represents the classification method 
using TD feature and LDA classifier with electrode subset WS without VC, 
with electrode subset OVS without VC, with electrode subset OS without VC, 
and with electrode subset OVS with VC. The results are averaged across 
subjects. Star denotes the significant difference between two compared 
methods (p < 0.05). 

 
                          (a)                                                      (b)               

 
                         (c)                                                      (d)                            

Fig. 5. Summary of online performance metrics, completion rate (a), 
completion time (b), overshoot (c), and efficiency coefficient (d). The tick 
label of horizontal axis, WS, OVS, OS, and OVS with VC, represents the 
classification method using TD feature and LDA classifier with electrode 
subset WS without VC, with electrode subset OVS without VC, with electrode 
subset OS without VC, and with electrode subset OVS with VC. The results 
are averaged across subjects. Star denotes the significant difference between 
two compared methods (p < 0.05). The method, WS without VC, is excluded 
in the statistical analysis for the insufficient number of successfully targets. 
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B. Online Performance 
For all the subjects, the proposed method, OVS with VC, 

performed better than the other three methods in three online 
performance metrics (Fig. 5), completion rate, completion time 
and efficiency coefficient. For the four evaluated methods, WS 
without VC, OVS without VC, OS without VC, OVS with VC , 
their completion rate was 37.86 ± 28.99%, 89.38 ± 9.43%, 
90.63 ± 11.16%, and 93.75 ± 7.44%, respectively. Similarly, 
the completion time was 10.43 ± 2.24 s, 10.52 ± 1.07 s, 10.60 ± 
1.24 s and 9.75 ± 0.91 s, and efficiency coefficient was 46.67 ± 
11.90%, 55.16 ± 6.37 %, 55.65 ± 7.50% and 61.63.95 ± 
10.25%. As for the fourth metric, overshoot, its trend was 
different from the other three. OVS with VC (0.50 ± 0.36) was 
inferior to OS without VC (0.47 ± 0.26), comparable to WS 
without VC (0.49 ± 0.57), and superior to OVS without VC 
(0.53 ± 0.47). The statistical analysis for efficiency coefficient 
indicated that there was no significant correlation between the 
two factors, targets and methods. Post-hoc comparison found 
that the value of OVS with VC was significantly higher than the 
values of the other two methods. 

C. Optimal Electrode Combination 
In order to compare the optimal electrode position between 

the methods with and without VC in discriminating the six 
gestures of interest, the top five performances with the lowest 
classification error rates were selected from the two methods, 
OS without VC and OVS with VC, respectively. The 
frequencies of all the channel combinations were counted and 
presented in Fig. 6. It was indicated that the optimal electrode 

combinations were similar between two methods. The two 
electrodes were mostly distant from each other, and one of the 
two was close to the ulnar bone. The electrode combination, 
one located in the third column from left to right, and the other 
locating in the fifth row from upper to down, performed well in 
both scenarios. 

D. Correlation between Online and Offline Metrics  
Pearson correlation coefficient (r) was performed between 

error rates (offline) of each method from each subject and the 
corresponding four online performance metrics. The results are 
presented in the scatter plots in Fig. 7, and summarized in Table 
II. The linear correlation was relatively strong for completion 
rate, and weak for the other three metrics. The highest r-value 
was 0.94 on completion rate for the method OS without VC. 
The significance was only detected on completion rate for the 
method OVS without VC and OS without VC. The p-value of 
completion rate was smaller than that of the other three metrics 
with the same method.  

IV. DISCUSSION 

A. Effectiveness of Spatial Information 
In this study, spatial information contained in a two-channel 

sEMG was exploited through two simple yet effective 
approaches: optimizing the electrode position and embedding 
two VCs. The optimization of electrode position was not 
essential when a sufficiently large number of electrodes were 
provided. The signal collected by one surface electrode did not 

TABLE II 
SUMMARY OF CORRELATION ANALYSIS BETWEEN ERROR RATE AND 

FOUR ONLINE PERFORMANCE METRICS 

 

Completion 
Rate 

Completion 
Time Overshoot Path 

Efficiency 

r p r p r p r p 

WS 0.67 0.09 0.17 0.71 0.28 0.55 0.10 0.84 

OVS  0.72 0.04 0.21 0.63 0.01 0.97 0.11 0.79 

OS 0.94 0.00 0.58 0.13 0.04 0.93 0.18 0.66 
OVS with 
VC 0.44 0.28 0.17 0.70 0.05 0.90 0.05 0.92 

 

 

                 (a)                                                       (b) 

Fig. 6.  Occurrence of the electrode combination in top five lowest error rates 
for the method using TD feature and LDA classifier with electrode subset OS 
without VC (a), and with electrode subset OVS with VC (b). The circle at the 
tickle label represents the cross-sectional view of the arm. The letter U and R 
represents the position of ulnar and radius.  The black dot represents the 
electrode position. 

 
                          (a)                                                      (b)               

 
                         (c)                                                      (d)                            

Fig. 7.  Correlation between offline performance metrics, classification error, 
and the 4 online performance metrics, completion rate (a), completion time 
(b), overshoot (c), and efficiency coefficient (d). Each data point corresponds 
to the result from one subject. The classification error is the value averaged 
over the cross validation, and the value of online performance metrics is 
averaged over all successful trials performed by the subject using that method.  
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only include the muscle activities underlying the electrode site, 
but also include those from the surrounding areas [21], which 
was referred as cross talk. This characteristic enlarged the 
detection area of the surface electrode, i.e. the activity of the 
targeted muscle could be detected by the electrode in its 
vicinity. With the help of cross talk, when a large number of 
electrodes were adopted, the total detection area of the system 
would be large enough to collect a great amount of information, 
including the effective information for gesture recognition, 
regardless of whether the electrodes were positioned on the 
targeted muscle or not. When the number of electrodes 
decreased, the total detection area of the system was reduced, as 
well as the amount of information detected. As such, to 
maintain the recognition performance, the limited electrodes 
should be optimally placed to collect the most effective 
information. The necessity of electrode position optimization 
with a small number of electrodes was confirmed by the 
performance difference between the scenarios of OS and WS. 
No matter online or offline, the performance of the method with 
the electrode subset OS was significantly better than the 
performance of the method with the electrode subset WS. As 
indicated in Fig. 6, the most common electrode combination 
was the pair located on the two sides of the forearm, opposite to 
each other. One was around the extensor carpi radialis, and 
another was around the flexor carpi ulnaris and flexor 
digitorum communis.  

The simple VC algorithm was proposed to further exploit 
spatial information to improve myoelectric control 
performance. The embedment of VC in myoelectric signals 
could be regarded as the product of raw signals and the matrix, 
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such format was used in some other myoelectric studies, where 
the matrix could be obtained with the optimization of training 
data [19], or dimension reduction algorithms [24], and operated 
on features.  High accuracy and robustness were achieved with 
these algorithms in myoelectric control. However, most of 
these algorithms were not designed for the limited channel 
case, where the dimension of the original data was low. In this 
study, a fixed matrix was used to extend the dimension of 
output. When the subsequent feature extracted was linear, its 
effect might be limited for the features from the VC could be 
obtained by linear operations of the features from the physical 
channels. When the feature extracted was nonlinear, the 
features from VC contained information from both physical 
channels and could not be replicated from the features of these 
channels. The additional information extracted from VC 
provided the performance improvement of PR-based 
myoelectric control. As the features in TD were all nonlinear, 
the effect of the algorithm was significant. 

When considering the top five optimal subsets, the electrode 
combinations for two methods, OS without VC and OVS with 
VC, were similar. This similarity indicated that the inclusion of 
VC didn’t change the sets of original optimal electrode 
positions. Therefore, the benefits of these two methods: optimal 

electrode position and VC, could be combined (OVS with VC), 
achieving classification performance similar to the traditional 
configuration of four electrodes (p < 0.05). This indicated that 
the number of channels was not conclusive for the recognition 
performance. In fact, the relationship between the number of 
electrodes and recognition performance was a complicated 
topic for myoelectric control, addressing the factors such as the 
electrode position [15], size and orientation [25]. The effect of 
the number of channels on the proposed methods will be 
investigated in future studies. 

As mentioned above, the aim of the electrode optimization 
and VC embedment was to collect and extract more effective 
information with limited resources. As mentioned above, the 
aim of the electrode optimization and VC embedment was to 
collect and extract more effective information with limited 
resources. If a larger number of channels was adopted, the 
amount of information it captured would be sufficient to 
decipher the gestures, and the classification performance would 
be already high, such that the effect of the proposed method 
might not as effective as that on the two-channel system.  The 
six hand and wrist gestures were selected for their high 
recognition accuracy [18], making them more likely to be 
adopted in practical application. However, the proposed 
method was not developed based on one specific gesture. As 
such, it was also applicable to the recognition of other gestures, 
such as those involving finger motions. However, further 
investigation would be required to fully understand if the 
proposed methods were beneficial in recognizing finger 
motions. 

Robustness has been identified as one of the key limitations 
of current state-of-the-art in myoelectric control [26]. There 
were many factors against which myoelectric control 
algorithms need to be robust, such as muscle fatigue, electrode 
shift, and arm position change. All these factors would change 
the characteristics of the input signal, resulting inconsistency 
between training data and testing data, subsequently 
degradation in system performance. Many methods were 
proposed to make the system robust against these factors, and 
most of them focused on the selection of feature sets [12][27] 
and classifier [13][14] . As the proposed methods are part of the 
system acquisition setting and data preprocessing, upstreaming 
to features and classifier, it is quite possible that they can be 
combined with the effective features and classifiers to further 
improve the system robustness and overall system 
performance. 

B. Relationship between online and offline metrics 
Relationship between online and offline metrics was still an 

open question for myoelectric control studies. Previous studies 
reported that the good performance in offline metrics was not 
necessarily mapped to the good performance in online metrics 
with simultaneous and proportional myoelectric control scheme 
[22], where instead of the discrete value, the single gesture, the 
continuous value, the angle or the torque of the finger and wrist 
joint, was predicted. The difference between offline and online 
test was the feedback provided to the subject in the online 
scenario. In offline scenario, there was no feedback provided to 
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the subject. While in online scenario, the subject would receive 
real-time feedback and adjust their movements according to the 
feedback to achieve the desired outcome. This was not possible 
in the offline scenario. In addition, through the interaction with 
the system, the subject could be adapted to the control scheme 
in online scenario. As such, the online scenario was more 
complex than the offline scenario. 

In this study, high linear correlation was observed between 
offline classification error rate and online completion rate. 
Further, for the methods OS without VC and OVS without VC, 
the statistical significance was detected. However, the 
correlations between the error rate and the other three metrics 
were weak and insignificant. We speculated that this was 
caused by the insufficient feedback provided by the PR-based 
myoelectric control scheme. Compared to the simultaneous and 
proportional control scheme, the feedback of PR-based control 
scheme was discrete, not continuous, which limited the 
adaptability of the subject [28]. As such, the effect of feedback 
was mitigated, and the completion rate was correlated to the 
classification error rate. This indicated that the correlation 
between offline and online performance for PR-based 
myoelectric control scheme was stronger than that for 
simultaneous and proportional myoelectric control scheme. On 
the other hand, as only successful trials were accounted, of 
which most go smoothly without long time in modulating 
muscle contractions, the correlation between completion time 
and error rate was weak, as well as between efficiency 
coefficient and error rate. For the overshoot, it was correlated 
with the transition between the active gesture and the rest state, 
which was not fully reflected on error rate. In addition, for the 
method WS without VC and OVS with VC, the values of the 
coefficient on completion rate were relatively low and 
insignificant. As displayed in Fig. 7(a), most samples of OVS 
with VC gathered at the left upper corner, where the value of 
completion rate was close to 100%, while the samples of WS 
were in the right bottom part of the figure, where the error rate 
exceeded 20%. It indicated that when the error rates were too 
low or too high, its change had limited effect on the 
improvement of the online performance. 

The significant correlation between online completion rate 
and offline classification accuracy within the range of around 
10% to 20% would simplify the test of the advanced algorithms 
for myoelectric control. As online test was much closer to the 
scenario of the real-world application, its results were more 
important than the results of offline test. However, the cost of 
offline test was normally much lower than that of online test, 
and algorithm optimization can be performed much faster in 
offline. Online testing and optimization is time and resource 
intensive, consequently costly. The significant correlation 
between online and offline results found in this study, indicate 
that the offline performance is transferable to online 
performance, allowing algorithm optimization to be done 
offline, which will significantly improve algorithm 
development efficiency.  

V. CONCLUSION 
This study focused on enhancing the performance of 

myoelectric control using only two channels, which has 
potential for mobile and wearable application scenarios, 
beyond prosthesis control. The experiments indicated that the 
proposed method, combination of electrode position 
optimization and VC embedment, significantly improve system 
performance, and it was comparable to that of the traditional 
method with four electrodes. In addition, strong linear 
correlation was found between the offline and online 
performance metrics, error rate and completion rate. The 
performance correlation between online and offline would 
improve the efficiency of the algorithm development. 
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