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The physical origin of the dark energy that causes the accelerated expansion rate of the Universe is one of
the major open questions of cosmology. One set of theories postulates the existence of a self-interacting
scalar field for dark energy coupling to matter. In the chameleon dark energy theory, this coupling induces a
screening mechanism such that the field amplitude is nonzero in empty space but is greatly suppressed in
regions of terrestrial matter density. However measurements performed under appropriate vacuum
conditions can enable the chameleon field to appear in the apparatus, where it can be subjected to
laboratory experiments. Here we report the most stringent upper bound on the free neutron-chameleon
coupling in the strongly coupled limit of the chameleon theory using neutron interferometric techniques.
Our experiment sought the chameleon field through the relative phase shift it would induce along one of the
neutron paths inside a perfect crystal neutron interferometer. The amplitude of the chameleon field was
actively modulated by varying the millibar pressures inside a dual-chamber aluminum cell. We report a
95% confidence level upper bound on the neutron-chameleon coupling β ranging from β < 4.7 × 106 for a
Ratra-Peebles index of n ¼ 1 in the nonlinear scalar field potential to β < 2.4 × 107 for n ¼ 6, one order of
magnitude more sensitive than the most recent free neutron limit for intermediate n. Similar experiments
can explore the full parameter range for chameleon dark energy in the foreseeable future.
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I. INTRODUCTION

The discovery of the accelerated expansion of the
Universe [1,2] in combination with other cosmological
observations implies that a component of the Universe
called dark energy constitutes about 70% of the energy
density of the universe. This original work has been
confirmed by more sensitive observations [3–6]. It is
known that a contribution to the vacuum energy density
acts like a negative pressure in Einstein’s field equations,
and since pressure gravitates it can cause the expansion of
the Universe to accelerate. There is no consensus on the
nature and physical origin of dark energy, and most of the
proposed research in this area consists of astronomical

observations to more precisely characterize its effects on
the Universe’s expansion rate and other cosmological and
astronomical observables. However there is an interesting
subset of ideas for the origin of dark energy that can be
addressed in laboratory experiments. One set of such ideas
postulates that dark energy is due to a scalar field ϕ that
adopts a nonzero value in the vacuum of outer space. For
this scalar field to evolve into the dark energy seen today,
one must postulate a self-interaction and dynamical screen-
ing mechanism to explain why it has not been observed in
previous precision gravitational measurements.
In this paper we specifically address a particular example

of such a screened scalar field called the chameleon field
[7–10]. The chameleon field has a nonlinear potential of the
form VðϕÞ ¼ Λ4 þ Λ4þn

ϕn [11] with n being the Ratra-Peebles
index and Λ ¼ 2.4 meV based on the acceleration rate of
the Universe expansion. Additionally, it has an extra term
that couples to matter field AðϕÞ ¼ β

MPL
ϕ, where β is a
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dimensionless coupling to matter and MPL is the reduced
Planck mass. So the effective potential takes the form
VeffðϕÞ ¼ VðϕÞ þ AðϕÞρ. The appearance of the local
matter density ρ in the effective potential makes the

effective mass m2
eff ∼ nðnþ 1ÞΛ−4þn

1þnð βρ
nMPL

Þnþ2
nþ1 of the cha-

meleon field density dependent, allowing the chameleon to
evade many of the existing experimental tests of gravity.
This also causes the chameleon field to be highly sup-
pressed in the presence of even the modestly low matter
density environment present in most terrestrial lab experi-
ments where the effective mass is extremely heavy, thus
further escaping detection. As a result, the chameleon field,
along with a range of similar theories, has yet to be ruled
out by experiment. A very extensive review of the chame-
leon field within the broader context of modified gravity
theories has appeared recently [12].
This paper presents the result of a recent experiment

using a perfect crystal neutron interferometer to place a
limit on the chameleon field’s coupling to matter β and does
so in a particularly direct, transparent manner. We actively
modulate the amplitude of the chameleon scalar field in a
gas cell in one arm of our interferometer and exploit the
unique ability of neutrons to coherently penetrate the cell
wall and access the phase shift from the neutron-chameleon
coupling. This research activity brings together several
physics subfields (gravitational physics, atomic physics,
and condensed matter physics) and in the neutron case
employs centralized user facilities constructed mainly for
material science studies, thereby involving an uncommon
diversity of scientific research techniques and environments
in the quest to experimentally address what is perhaps the
most exciting issue in cosmology.
In the regime of small matter coupling β the best

laboratory constraints on chameleons over a wide range
of n come from laboratory tests of the inverse square law of
gravity with sensitivity at the 100 micron dark energy scale
[13]. Experimental tests of the gravitational inverse square
law operating over other distance regimes, such as those
designed originally to measure the Casimir interaction, can
also constrain β. The sensitivity of a force sensor specially
designed to search for chameleons has recently been
analyzed [14].
In the regime of large β techniques that employ two large

masses start to become insensitive because both the source
and sink of the chameleon field emanate only from a thin
region of the surface of the objects due to the nonlinear
chameleon self shielding, and it is therefore preferable in
this regime to employ test particles whose presence does
not suppress the chameleon field. Neutron and atom
interferometry can be used to search for the possible
existence of chameleon and related scalar fields in this
strongly coupled chameleon regime since these probes do
not locally suppress the chameleon field.
Slow neutrons can be used to perform sensitive searches

for dark energy scalar fields [15]. The fact that neutron

experiments are a sensitive method to probe chameleon
fields was pointed out by [16] in the context of an analysis
of measurements on the quantum states of bouncing
ultracold neutrons. The disturbance of the chameleon field
near the surface of the flat neutron mirror employed in these
measurements modifies the neutron bound state energies
and wave functions as well as the relative phase of coherent
superpositions of the neutron gravitational bound states.
Recent experiments conducted in this system [17] have
been used to constrain chameleon fields, and elaborations
of this method are in principle capable of much greater
sensitivity. Other neutron tests involving an apparatus used
to test the weak equivalence principle for free neutrons [18]
and a Lloyd’s mirror type of neutron interferometer [19]
have also been proposed. A recent review of calculations
performed to search for dark energy of various types using
neutrons, laboratory experiments to search for Casimir
forces, and gravitational inverse square law violations has
recently appeared [20].
Calculations that showed that atoms can feel an

unscreened chameleon field [21] have encouraged experi-
ments to search for chameleons using atom interferometry.
The first result of an atom interferometry experiment
conducted to search for chameleons has appeared very
recently [22]. This experiment looked for a phase shift in a
cesium atom interferometer operated in ultrahigh vacuum
(UHV) near a spherical mass that can be a source of a
chameleon field. Already the constraints on the coupling β
from this atom interferometry experiment are quite strong.
The prospects for further improvement in the atom inter-
ferometry experiments are very encouraging [23,24].
As the chameleon fields must couple directly to mass to be

relevant for the observed Universe expansion acceleration,
other possible chameleon probes such as photons possess a
more model-dependent coupling to these dark energy scalar
fields. Strong experimental constraints on chameleon-photon
couplings already exist. Examples of photon-based searches
for chameleons include the GammeV CHameleon Afterglow
SEarch experiment [25], the Axion Dark Matter eXperiment
[26], a search for chameleon particles created via photon-
chameleon oscillations within a magnetic field [27], and the
Cern Axion Solar Telescope experiment [28].
Most of the chameleon experiments performed to date

using neutrons and atoms have sought the chameleon field
by passing the probe close to a dense mass inside a high
vacuum environment and searching for the phase shift from
the chameleon-matter coupling β in a chameleon field
gradient. The chameleon field profile is obtained by solving
the appropriate nonlinear Klein-Gordon equation for ϕðxÞ
using the boundary conditions set by the experimental
apparatus. Previous calculations [29] have shown that ϕðxÞ
is a rapidly varying function of the density of the gas. When
the gas density is low the chameleon field ϕðxÞ develops a
nonzero amplitude for distances sufficiently far from the
walls of the vacuum chamber. As the gas density is raised
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into a critical regime, which depends on β and the geometry
of cell, the chameleon field ϕðxÞ is suppressed and tends
toward zero.
The work presented here is the second experiment that

has used perfect crystal neutron interferometry to search for
chameleon scalar fields. To perform this type of search one
exploits the fact that, unlike atoms, neutrons are able to pass
through matter at densities (gas pressures of a few mbar
suffice) for which the chameleon field is greatly sup-
pressed. The first experiment of this type was recently
performed at Institut Laue-Langevin (ILL) [30]. In that
experiment neutrons passed through a vacuum chamber
mounted in the perfect crystal interferometer. The effect of
the chameleon field was sought both by varying the relative
separation of the neutron paths from the vacuum cell walls
by translating the cell relative to the incident beam and by
varying the gas pressure inside the cell. In our experiment
we also varied the gas pressure. This pressure variation
periodically introduces a nonzero matter density into the
experimental chamber that actively suppresses the chame-
leon field in the measurement. In this case the chameleon
field in the apparatus seen by the neutrons is repeatedly
“turned off” by the addition of a small gas pressure in the
apparatus and “turned on” by evacuation of the chamber.
We also kept the pressure difference between the two arms
of interferometer constant using feedback control. This
provides a direct measurement of any background that is
independent of gas pressure, such as neutron scattering off
the cell walls etc.

II. NEUTRON INTERFEROMETRY

The experiment was performed at the National Institute
of Standards and Technology’s (NIST) Center for Neutron
Research (NCNR) located in Gaithersburg, Maryland. At
the NCNR free neutrons are generated using a 20 MW
research reactor that feeds over two dozen individual
instruments that are primarily tailored for material science
applications. Here we used monochromatic 11.1 meV
neutrons and interferometric techniques similar to those
of a Mach-Zehnder interferometer for light optics [31].
The perfect crystal neutron interferometer used in this

experiment consists of three crystal blades on a common
crystal base, a schematic of which is shown in Fig. 1. The
monolithic silicon base below the blades ensures proper
arcsecond alignment between the lattice planes of each of
the three blades. The first blade serves to spatially separate
the neutron’s wave function ψe−iΦ into two coherent paths
(A and B). In order for the two paths to interfere, a central
crystal blade acts as a lossy mirror and directs the paths
back together onto the third blade. Neutrons exit the
interferometer along either one of two paths labeled tradi-
tionally as “O’’ and “H’’ and are detected using highly
efficient 3He-filled proportional counters. It should be
noted that there is only one neutron at a time inside the
interferometer and thus it is an elegant example of

macroscopic self interference. Differences in phase ΔΦ
between the paths A and B modulate the intensities
recorded by the detectors as

IO ¼ AO þ B cos½ξðδÞ þ ΔΦ�; ð1Þ

IH ¼ AH − B cos½ξðδÞ þ ΔΦ�: ð2Þ

In order to determineΔΦ and the other fit parameters (AO;H

and B) one could vary the cosine term in a controllable way
[ξðδÞ]. This is done by adding what is called a “phase flag”
inside the interferometer. The phase flag used here is a
1.5 mm thick ×50 mm wide piece of optically flat quartz
and is illustrated in Fig. 1(b). By rotating the phase flag an
angle δ a phase shift of ξðδÞ is caused due to the effective
path length difference between paths A and B. Rotating δ
by �2.5 degrees creates an interferogram like the one
shown in Fig. 2.
The perfect crystal neutron interferometry technique

employed in this work has been used to conduct a number
of textbook experiments in gravitation, neutron optics,
and quantum entanglement [32]. These experiments
include, but are not limited to, (1) the first demonstration
that the gravitational field affects neutron wave functions as
expected in nonrelativistic quantum mechanics, (2) clear

FIG. 1. Left is a three-dimensional schematic of the neutron
interferometer seen in profile with the two coherent beam paths;
right shows the top view of the two-chamber gas cell for the
experiment, which fits around the central blade of the interfer-
ometer crystal.
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FIG. 2. A typical pair of O-beam interferograms, normalized to
the total sum of counts, corresponding to the two run configu-
rations in the experiment. Uncertainties are purely statistical.
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demonstrations of the fascinating minus sign in the
quantum amplitude of a spin-1=2 particle rotated by 2π,
(3) the most precise determinations of neutron-nucleus
scattering amplitudes, (4) sensitive tests of quantum entan-
glement predictions such as the Bell inequalities and the
Greenberger-Horne-Zeilinger inequalities, and (5) subtle
effects in neutron optics, most recently the successful
manipulation of the orbital angular momentum quantum
number of a neutron beam [33].
Our experiment searches for the neutron phase shift

between the two coherent paths of the interferometer
arising from the coupling of the neutron to the chameleon
field. The neutron phase shift Φcham due to the chameleon
scalar field is

Φcham ¼ −
Z

β

MPL

m2ϕðxÞ
ℏ2k

dx ð3Þ

where m is the mass of the neutron, ϕðxÞ is the chameleon
field, k is the neutron wave vector, and the integration is
performed over the neutron’s trajectory. We use the sign
convention that defines the neutron phase such that positive
potentials give negative phases. By measuring Φcham, we
can then limit β for a given Ratra-Peebles index n.

III. EXPERIMENTAL DESIGN AND SETUP

A two-chamber vacuum cell is placed in the perfect
crystal neutron interferometer [see Fig. 1(b)] with internal
pressures controlled at different values. The overall dimen-
sion of the vacuum cell is 189 mm × 58.5 mm × 54 mm,
with wall thickness of 3 mm and each inner chamber being
80 mm × 40 mm × 48 mm. Both neutron beams have a
height of 8.0 mm and an increasing beam width from
roughly 4.6 (between the first and second blade) to 7.0 mm
(between the second and third blade). The maximum
separation between two neutron paths is around 38 mm.
The vacuum cell and the neutron interferometer are both
symmetric about the center walls of the vacuum cell, so
those two neutron beams should feel exactly the same
chameleon field if the pressures inside are the same.
However the neutron interferometer detects the difference
in phase shifts between the two neutron beams so we need
to control the pressure of the two chambers at different
levels. First (Conf. 1), the pressure in the right chamber is
kept low so that the chameleon field can develop a nonzero
value. Meanwhile, the left chamber is filled with gas at a
higher pressure so that the chameleon field is highly
suppressed. Then (Conf. 2), the gas pressure in each
chamber is raised by the same amount so that the
chameleon field gets suppressed in both chambers. So
the four phase shifts the neutrons develop during the
experiment are

Φ1;A ¼ Φcham;1A þ Φcell;1A þ Φgas;1A; ð4Þ

Φ1;B ¼ Φcham;1;B þ Φcell;1;B þ Φgas;1;B; ð5Þ

Φ2;A ¼ Φcham;2A þ Φcell;2A þ Φgas;2A; ð6Þ

Φ2;B ¼ Φcham;2B þ Φcell;2B þ Φgas;2B: ð7Þ

Ideally, the phase shift due to the chameleon in Φ1;B, Φ2;A,
Φ2;B should be close to zero sowe define the phase shift of the
chameleon to be ΔΦcham¼ðΦ1;A−Φ1;BÞ−ðΦ2;A−Φ2;BÞ.
The heliumgas pressures in the cell in either configuration

are low enough that the equation of state of the helium gas is
well described by the ideal gas law. The gas density and
resulting neutron phase shift from the neutron optical
potential of the helium gas is then proportional to the gas
pressure. At these low gas densities the neutron phase shift
from the helium gas is a few orders of magnitude smaller
than the ultimate sensitivity of our experiment to phase
shifts from the chameleon field, so in practice Φgas can be
neglected. Furthermore, even if the phase shift from the gas
was larger, our active control of the pressure difference
between the two sides of the cell in the two configurations
would cause this phase shift difference ðΦgas;1A − Φgas;1BÞ −
ðΦgas;2A − Φgas;2BÞ to cancel to high accuracy. The phase
shift difference from the two cell walls in the two different
configurations, ðΦcell;1A − Φcell;1BÞ − ðΦcell;2A − Φcell;2BÞ, is
also negligible: the only physically plausible mechanism
that might cause a difference, namely some absolute-
pressure-dependent change of the phase shift from the
neutron optical potential of the aluminum cell walls, is
known to be negligible from previous measurements at
much higher gas pressures at the NCNR of the neutron-
heliumoptical potential. Under these conditions,ΔΦcham is a
clean and direct measurement of the chameleon phase shift.
Table I shows the two sets of pressure configurations that are
used in the experiment. The “set point” in the table refers to a
low enough pressure at which the chameleon field may
produce an extra phase shift. The choice of gas pressures
used in this experiment is also low enough that, for the
chameleon coupling strengths to which we are sensitive, the
chameleon field sees the helium gas used in the cell as a
homogeneous medium based on previous analysis of this
issue [29].
In the experiment we choose to control the absolute

pressure (the low pressure side in Fig. 1) and the differential
pressure across two chambers to eliminate possible

TABLE I. Pressure configurations used for two different
measurement runs.

Run cycle Configurations Pressure (high) Pressure (low)

Run 1
Conf. 1 0.67 mbar Set point
Conf. 2 0.79 mbar 0.133 mbar

Run 2
Conf. 1 1.33 mbar Set point
Conf. 2 2.67 mbar 1.33 mbar
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systematic effects as discussed above. The absolute pres-
sures in Conf. 2 deviate slightly from the expected 1.33 and
2.67 mbar shown in Table I because the absolute pressure
gauge used in this experiment has a maximum measuring
range of 0–0.133 mbar. So instead of measuring the
pressures in Conf. 2 directly, the differential pressure
gauge, which can measure up to 1.33 mbar, is used to
achieve the desired pressures in Conf. 2. We measured the
associated pressure uncertainty to be smaller than
0.01 mbar. This gives a negligible systematic uncertainty
since the chameleon field amplitude is close to zero at such
high pressure and it is only logarithmically sensitive to the
pressure in this regime.
Figure 3 shows the schematic of the gas handling system

(GHS) used in this experiment. The vacuum cell is made
of aluminum alloy 7075. Two Conflat (CF) flanges are
machined on the two ends of the cell to accommodate
aluminum gasket seals with negligible outgassing. A wall
of thickness 3 mm separates the cell into two chambers that
can be filled by gas at different pressures. The GHS
employs metal seals (CF 1–1=3”) and UHV compatible
components that are helium leak tight as verified by
measurements using a helium leak detector. All the vacuum
tubes and the mechanical bellows have a high-conductance
path to the cell (tubing diameters are greater than 2 cm) so
the pressure gradient inside the gas handling system is
minimized. Two absolute pressure capacitance transducers
and one differential capacitance transducer are placed close
to the vacuum cell and used to monitor the absolute
pressure and differential pressure across the vacuum cell.
Two types of feedback loops control the pressures inside
the cells. One controls the differential pressure across the
chamber using a motorized edge-welded stainless UHV

bellows according to readings from the differential pressure
gauge. The other feedback control employs an absolute
pressure gauge and a vacuum compatible sensitive mass
flow controller to control the pressure in the low pressure
chamber. All valves are controlled by air-actuated switches
to reduce possible electromagnetic or vibrational noise in
the interferometer environment. Both absolute pressure and
differential pressure are controlled with fractional fluctua-
tions below 1%. Figure 5 shows the pressure stability data.

IV. CALCULATION OF THE CHAMELEON
FIELD PHASE SHIFT IN THE CELL

To calculate the chameleon scalar field inside a vacuum
cell, one could solve the Klein-Gorden equation,

Δϕ ¼ ∂Veff

∂ϕ ¼ −nΛ4

ϕnþ1
þ βρ

MPI
: ð8Þ

Unfortunately there is no known analytical solution to
this nonlinear second order partial differential equation so
we had to use a finite difference method to obtain a
numerical solution of the three-dimensional field profile
inside the experiential cell chamber. We built a three-
dimensional mesh with roughly 500 × 500 × 500 nodes in
total and solved the nonlinear Poisson equation iteratively
using the formula below [Eq. (9), where i, j, k denotes the
node index in each dimension and l denotes the iteration
number]. To accelerate the convergence of the calculation
we further exploited the Gauss-Seidel method shown in
Eq. (10). To get a precise solution, the number of grid
points must be fairly large because the chameleon field
grows rapidly close to the walls. The gradient of the
chameleon field is close to infinity at such places, which
inevitably causes instability in the iteration method. To
address this problem, we implemented an uneven grid with
more grid points where the field changes dramatically and
fewer grid points where the field does not change much.
The explicit formula is lengthy but is similar to Eq. (10).

ϕðlÞ
iþ1;j;k þ ϕðlÞ

i−1;j;k − 2ϕðlþ1Þ
i;j;k

Δh2x
þ ϕðlÞ

i;jþ1;k þ ϕðlÞ
i;j−1;k − 2ϕðlþ1Þ

i;j;k

Δh2y

þ ϕðlÞ
i;j;kþ1 þ ϕðlÞ

i;j;k−1 − 2ϕðlþ1Þ
i;j;k

Δh2z
¼ −nΛ4

ϕðlÞnþ1
i;j;k

þ βρ

MPI
; ð9Þ

ϕðlþ1Þ
i;j;k ¼

�
nΛ4

ϕðlÞnþ1

i;j;k

− βρ
MPI

�
þ ϕðlÞ

iþ1;j;kþϕðlþ1Þ
i−1;j;k

Δh2x
þ ϕðlÞ

i;jþ1;kþϕðlþ1Þ
i;j−1;k

Δh2y
þ ϕðlÞ

i;j;kþ1
þϕðlþ1Þ

i;j;k−1
Δh2z

2
Δh2x

þ 2
Δh2y

þ 2
Δh2z

: ð10Þ

FIG. 3. Schematic diagram of the gas handling system that
maintains a constant pressure in one chamber and a controlled
pressure difference between the two chambers.
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Having solved for the chameleon field inside the vacuum
cell, the extra phase shift picked up by neutrons due to
the chameleon field is computed according to Eq. (3) by
integrating the chameleon field over the neutron path
length. Figure 4 shows the calculated phase shift caused
by the chameleon field with different Ratra-Peebles model
parameters n and β. This result agrees well with a previous
calculation in the literature [29].

V. DATA ACQUISITION AND ANALYSIS

Environmental factors are known to cause the phase of a
neutron interferometer to drift. To isolate the chameleon
phase from environmental phase drifts, we switched
between Conf. 1 and Conf. 2 after taking each interfero-
gram. The contrast [or B=AO from Eq. (1)] of the neutron
interference pattern with the cell in the interferometer was
around 37% and is consistent with other Al cells used
inside the interferometer (the empty interferometer contrast
is 85%). Since the chameleon field is a function of pressure
as shown in Fig. 4, we also varied the pressure set point in
Table I to look for any pressure dependence of the phase
shift. Two sequences of measurements were taken during
two adjacent reactor cycles. The only difference between
the two runs is in the pressure configurations used. In the
first run, nine pressure set points were scanned in the range
from 3.33 × 10−4 to 2.67 × 10−3 mbar. In the second run,
we chose three pressure set points that span over a wider
range, 3.33 × 10−4, 3.33 × 10−3, and 2.00 × 10−2 mbar.
The measured phase shift along with the pressure and
differential pressure stability is shown in Fig. 5.
Systematic uncertainties in our measurement are negli-

gible compared to the statistical uncertainty. Table II lists
the major systematic uncertainties and corrections. The first
two items could lead to a nonzero phase shift even in the
absence of a chameleon field but both are much smaller
than the statistical uncertainty (typically 0.0025 rad) in
the chameleon phase. The last three factors reduce slightly
the amplitude of the line integral used to compute the

chameleon phase Φcham (shown in Fig. 4) and therefore
reduce the calculated upper limit of β proportionally. These
scaling corrections are also negligible compared to the
uncertainty in our upper limits for β.
Before fitting the measured phase shift to the calculated

phase shift due to the chameleon field, the sequence of
phase shift differences is filtered using a time-series
analysis algorithm designed to remove slow zero-point
drifts in data sequences like ours that oscillate between two
states with equal measurement times [34]. To do this one
takes a weighted average from neighboring points from the
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two cells (ΔP), the Conf. 1 pressure in the low pressure chamber
(P), and the measured chameleon phase shift in the first and
second runs (ΔΦcham).
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original sequence, yi ¼
Pp

k¼0 ckuiþk, where ui is the
original data sequence and yi is the combined sequence.
A covariance matrix must be used to properly estimate the
uncertainties after the correlations induced by the weight-
ing algorithm. The weights ck satisfy the equation,

0
BBBBBBBBBB@

1 1 1 1 � � � 1
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.
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;

ð11Þ

which is designed so that a zero point drift in the signal with
a polynomial time dependence up to order p will be
canceled by combining each pþ 1 items in the sequence
while a true signal correlated with the difference in the two
configurations is kept unchanged. For comparison we
present both the filtered mean and unfiltered mean in
Fig. 6. The good agreement between the mean values and
statistical uncertainties of the filtered and unfiltered phase
shift data shows that any possible effects of interferometer
phase drift are negligible in our measurement. We use the
filtered data to extract our limit.
To establish an upper limit of β at the 95% confidence

level, the square of the weighted residuals is summed over
all measurements [χ2ðβÞ],

χ2ðβÞ ¼
X
i

½ζðβÞi − ΔΦi�2
σ2i

; ð12Þ

where ζðβÞi is the expected chameleon phase shift and ΔΦi
is the measured phase shift with uncertainty σi for the ith
pressure set point. To estimate β, χ2ðβÞ is then minimized
with respect to β for a given Ratra-Peebles index n.
However, the typical computation of a fit parameter
confidence interval is not valid in this case, because for
our measurements this function reaches its minimum at
β ¼ 0 for all values of n due to the constraint β > 0. To find
the 95% confidence interval, χ2ðβÞ was solved for the value
of χ2 that gives

TABLE II. Estimates of systematic uncertainties.

Systematic Correction Uncertainty

Helium nuclear scattering 0.002 rad=bar 2.0E-6 rad
Pressure gauge accuracy 0.3% FS 1.2E-4 rad

Vacuum cell misalignment
1° rotation 0.0005Φcham

1 mm translation 0.02Φcham
Neutron beam divergence 1.5° 0.006Φcham

(a)

(b)

FIG. 6. (a) and (b) show the measured phase in two runs
compared to the calculated phase with different values of
β (n ¼ 1).

TABLE III. The calculated upper limit on β with 95% con-
fidence level.

n 1 2 3 4 5 6

βlimit × 106 4.7 8.2 12.7 17.9 20.4 23.8

FIG. 7. The excluded regions in (β, n) parameter space
compared to other experiments. From bottom to top: torsion
pendulum experiment [35]; atom interferometer experiment [22];
this work; and ILL neutron interferometer experiment [30].
Other experimental constraints in the regime of large β are less
stringent.
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Z
χ2ðβlimÞ

0

p12ðχ20Þdχ20 ¼ 0.95 ð13Þ

where p12ðχ2Þ is the χ2 distribution with 12 degrees of
freedom, corresponding to the 12 pressure set points. The
calculated limit is shown in Table III and the excluded
area is shown in Fig. 7 as a function of the Ratra-Peebles
index n.

VI. CONCLUSION

We have conducted a search for chameleon dark energy
fields using neutron interferometry. We realized an experi-
ment in which the chameleon field is periodically varied in
magnitude with no change in the experimental geometry.
Our upper bound of β < 4.7 × 106 for a Ratra-Peebles
index of n ¼ 1 to β < 2.4 × 107 for n ¼ 6 is the most
sensitive direct constraint on the free neutron-chameleon
coupling in the strong coupling regime of the theory. It is
more sensitive than a recent neutron interferometer experi-
ment at the ILL [30] by about a factor of 5 for n ¼ 1 to a
factor of 30 at n ¼ 4, and it cuts into part of the projected
sensitivity of a proposed experiment using an optimized
force sensor [14]. The constraints from this work on the
chameleon are consistent with but less stringent than a very
recently published atom interferometry experiment using
cesium atoms [22]. Under the assumption that chameleon
dark energy obeys the gravitational equivalence principle
and that there are no essential differences between the
response of a neutron and a cesium atom to the chameleon
field, the atom interferometer constraints are about two
orders of magnitude more stringent at present.
This neutron interferometer experiment can be improved

by (a) using an interferometer crystal with a larger path
length, (b) improving the contrast of the interference signal

in the interferometer, (c) optimizing further the pressure
range of the measurements, (d) operating the interferometer
on a more intense monochromatic neutron beam, and
(e) varying the neutron coupling to the chameleon both
by changing the cell geometry and also by varying the gas
pressure. With these improvements, the statistical sensi-
tivity of this measurement to the coupling β can be
improved by at least two more orders of magnitude with
negligible systematic effects, which could then surpass the
existing atom interferometer limits at larger n.
An experimental lower bound on β > 50 for n ¼ 1

already exists from gravitational inverse square law tests.
By improving the atom interferometry limits by another
few orders of magnitude, laboratory experiments will either
discover chameleons or provide the first experimental
refutation of a plausible dark energy theory. Scalar field
candidates for dark energy which employ other screening
methods, such as symmetrons, might also be constrained by
this and other experiments with further analysis.
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