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Abstract

In the field of cryptography, one generally obtains assurances for the security of a
cryptographic protocol by giving a reductionist security proof, which is comprised of
a reduction from breaking a mathematical problem (that is well-studied and widely
believed to be intractable) to the breaking of the cryptographic protocol. While
such reductions are generally constructive, some authors give non-constructive re-
ductions (also called non-uniform reductions) in order to reduce the tightness gap
of the reduction. However, in order to assess the concrete security that the proof
provides, one also needs to assess the intractability of the underlying mathematical
problem against non-constructive attacks. Unfortunately, there has been very little
work in the literature on non-constructive attacks on these problems, and sometimes
non-constructive attacks are found that are much faster than their constructive coun-
terparts. Thus, it is sometimes very difficult to obtain meaningful security assurances
about a cryptographic protocol from a non-constructive reductionist security proof.

In this thesis, we examine three instances of non-constructive security proofs
for cryptographic protocols in the literature: (1) a password-based key derivation
function; (2) an HMAC-related message authentication code scheme; and (3) a round-
optimal blind signature scheme.
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Chapter 1

Introduction

Suppose that we have a cryptosystem designed for a specific purpose, and we would
like to assess its “security”. First, we need to provide a definition of security that
makes sense in practice. Typically, a definition would state that any attacker with
certain capabilities, trying to accomplish some goal, can succeed with at most a
negligibly small probability. The definition requires a description of the attacker’s
capabilities. This could involve, for example, interactions with certain parties, or the
ability to query an “oracle” and receive responses. The attacker’s resources include
the attacker’s computational capabilities, the maximum number of queries it can
make to an oracle, the number of interactions it can have with a party, etc. The
attacker’s goals are also suitably defined to capture security properties desired of the
cryptosystem when deployed in real-world applications. For example, for encryption
schemes, we can define the attacker’s goal as retrieving the private key or decrypting
a ciphertext.

Proving that a cryptographic scheme is secure generally takes the following approach,
(1) Describing the attacker’s capabilities and resources. (2) Defining a suitable no-
tion of security with respect to the above attacker. (3) Stating assumptions that are
backed by extensive research. (4) Proving that the cryptographic scheme satisfies
the security definition under the stated assumptions.
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1.1 Reductions in security proofs

Let us denote the problem of attacking a cryptosystem, as described in its security
definition, as problem A. One way to obtain some assurance about the security of
the cryptosystem is to see if it withstands extensive cryptanalysis. Another way is
to provide a proof that for all attackers with certain capabilities and resources, it
is “hard” to solve A. This is typically proved using a reduction from a problem B
that is widely believed to be “hard”, to problem A. In simple terms, a reduction
algorithm from problem B to problem A is an algorithm that solves B, using an
algorithm that solves A. If the algorithm for solving B is not allowed to view or
modify the algorithm for solving A, but can only call the function to solve A, then it
is called a blackbox reduction. If the reduction can view or modify the solution to A,
then it is called a non-blackbox reduction. Assuming the conjecture that problem B is
hard for adversaries with certain capabilities and resources, the reduction establishes
a class of adversaries (with some capabilities and resources) for which problem A
is hard. This is the basis of the proof-based security approach that is central to
cryptography.

1.2 Types of proofs

Information-theoretic. Information-theoretic security refers to the setting where,
roughly speaking, one is only concerned with the amount of information that an
adversary can learn in its interaction with the cryptosystem, irrespective of the time
required to execute such an adversary. The adversary is assumed to have unbounded
computational power, but its other resources might be constrained, such as being
allowed to only make a fixed number of queries to an oracle.

Complexity-theoretic. In complexity-theoretic security, one is concerned with
the running time of the adversary. A cryptosystem is described in terms of a secu-
rity parameter λ. The running time of the adversary and its advantage (which can
be interpreted as the success probability of the adversary) are functions of λ and are
meant to be interpreted in the language of complexity theory, where one is concerned
with the asymptotic behavior of functions.

An adversary can be described as a Turing machine (possibly suitably modified
to allow interactions) that takes (among other things) the security parameter λ as
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input, performs some computation, and halts. The running time of such an adver-
sary is the number of steps executed by the machine until it halts. An adversary is
said to be efficient if its running time is probabilistic polynomial time (PPT) in λ.
The advantage of the adversary in accomplishing its goal is provided in the security
definition, and is a function of λ. We require this function to be “negligible”. A
function f(n) is said to be negligible if, for every polynomial function poly(n), there
exists a positive integer N such that f(n) ≤ 1/poly(n) for all n ≥ N . In other words,
the function f is smaller than every inverse polynomial, for large enough n. So, in
the security definition of a cryptosystem, we would like all efficient adversaries with
certain capabilities to have negligible advantage.

A reduction from problem B to problem A is an adversary with input the secu-
rity parameter λ that solves B, with the additional capability to make function calls
to a “solver” for problem A. Each function call is counted as one time step. We
would like to have an efficient reduction, i.e., the running time of the reduction must
be PPT in λ. This would prove that if there exists a PPT solution for A, then there
exists a PPT solution for B.

This approach of using complexity theory makes the analysis easier because the
running times are not strictly bounded by a constant t, unlike the case for concrete
security. However, this approach cannot be used directly to compute concrete pa-
rameters.

Concrete setting. In this setting, the running time of the adversary and its advan-
tage are concrete values. A (t, ε)-adversary attacking a cryptosystem is an algorithm
that runs in time at most t and succeeds in breaking the cryptosystem with advan-
tage greater than ε. A problem or cryptographic scheme is said to be (t, ε)-hard (or
(t, ε)-secure respectively) if the advantage of any adversary running in time t is at
most ε.

Security reductions are typically described and analyzed in the Random Access Ma-
chine (RAM) model of computation whereby the cost of an algorithm is its running
time in the RAM model plus its length. The length of the program is included in
the cost, for otherwise one could include large tables in the program. This is also
the metric considered in this thesis. The problem with the RAM metric is that it
only considers the cost of running an attack, but not the cost of finding it. This
underestimates the actual cost of an attack, whereby attacks with large precompu-
tation can cost significantly less in the RAM metric. The impact of this observation
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on security reductions, and possible ways to fix this are discussed in detail in [7].
Analyzing other cost metrics that avert this problem is not the focus of this thesis,
however.

1.2.1 Tightness gaps

In the concrete setting, one can define the tightness gap of a security reduction.
Consider a reduction from problem B (the underlying hard problem) to problem A
(the security definition of the cryptosystem). For a (t, ε)-adversary against problem
A, suppose that the reduction solves B in time t′ and advantage ε′. The reduction
proves that if there is no (t′, ε′)-adversary against problem B, then there cannot be
a (t, ε)-adversary against problem A. We would like the reduction to have t′/ε′ as
small as possible for a given t, ε (it must be at least t/ε). The tightness gap of the
reduction is defined as t′ε/tε′. Security reductions aim for a small tightness gap, since
this would mean that the computational effort required to attack the cryptosystem
is almost the same as the effort required to solve the underlying hard problem.

1.2.2 Calculating parameters

The security parameter of a scheme is evaluated using a reductionist security proof
in the following way. A typical reduction uses an attacker against the cryptosystem
A that takes time t and succeeds with advantage ε, to construct an attacker for the
underlying hard problem B that takes time t′ and succeeds with advantage ε′. If the
hypothesis of the security theorem is that B is (t′, ε′)-hard, then it implies that the
scheme is (t, ε)-secure. Parameters are then chosen for the scheme assuming that the
hypothesis is true. Therefore, it is necessary to assess the concrete hardness of the
underlying problem B.

1.3 Idealized assumptions

In this section, we consider two idealized assumptions that are commonly used in se-
curity proofs and are relevant to the schemes considered in this thesis. If no idealized
assumption is used in the analysis, the security proof is said to be in the standard
model.
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Random Oracle Model (ROM). The first idealized assumption we consider is
called the random oracle model, or ROM for short. This represents a function that
for any input, outputs a value in its range uniformly at random. If the same input
is queried to the oracle twice, it must output the same value. Cryptographic hash
functions are usually modeled as random oracles in security proofs.

There has been a difference of opinion in the cryptography community about the
use of ROMs. From a theoretical perspective, it was shown by Canetti, Goldreich
and Halevi [9] that there exists a cryptographic scheme that is secure in the random
oracle model, but the scheme is insecure for any instantiation of the oracle with a
concrete function. Koblitz and Menezes [23] argue that most of the negative theoret-
ical results on the random oracle model (including the aforementioned one) require
constructions that do not comply with standard cryptographic practice, and hence
do not pose a real threat to the security of protocols that are evaluated in the ran-
dom oracle model. Cryptographic schemes with proofs in the ROM are usually more
efficient than schemes with proofs in the standard model.

Generic Group Model. The generic group model refers to the setting where a
group G is represented by a random encoding (encoding here refers to a particu-
lar representation of the group elements). Further, an adversary can only perform
group operations using an oracle, which takes as input the encodings of two group
elements, and outputs the encoding of the group element obtained by applying the
group operation to the two inputs. Such an adversary is called a generic adversary.
The generic group model was introduced by Shoup [30] to prove a lower bound on
the number of group operations required to solve the discrete logarithm problem for
generic adversaries. In [22], it is argued that the generic group assumption is stronger
than the random oracle assumption from a practical point of view.

1.4 Constructive vs. non-constructive adversaries

There are two types of computational adversaries we consider: constructive and
non-constructive. Informally, a constructive adversary/algorithm is one for which an
efficient way to describe it is known. A non-constructive adversary/algorithm is one
which is known to exist, but for which no efficient method for describing it is known.
[29] contains one of the earliest attempts to formalize constructivity in the context of
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collision resistance for unkeyed hash functions. Attempts to formalize constructive
adversaries in general can be found in [7].

Non-constructive adversaries can render some problems completely trivial. Con-
sider the problem of finding a collision in the SHA-256 hash function. Since the
input length is arbitrary, there must exist two inputs x1, x2 that have the same hash
value.The existence of a fast algorithm that prints a collision for SHA-256 is known,
namely one that has x1, x2 hardcoded, and which outputs the collision (x1, x2) for
SHA-256 with probability 1. However, we do not know an efficient way to find such
a collision. This type of an attack works for any hash function that is not injective.

In the complexity-theoretic setting, adversaries can also be modeled as uniform or
non-uniform. A non-uniform adversary is one that receives a polynomial sized advice
string depending on its input security parameter. Thus, for each security parameter,
the adversary has a different algorithm to solve the problem, depending on the ad-
vice string. In constrast, a uniform adversary is a single algorithm that must work
for all input values (or security parameter, in this case). The non-uniform adver-
sary is very powerful since there is no requirement that the advice string can be
generated efficiently. Therefore, a truly non-uniform adversary (one for which there
is no known efficient way to generate the advice string from the security parame-
ter) is essentially non-constructive. Under the same assumptions, proving that a
cryptosystem is secure against all non-uniform adversaries yields stronger assurances
than proving security against all uniform adversaries. Now, consider the following
theorem statement.

Statement I. Under non-uniform assumptions (i.e. the underlying problem is hard
for non-uniform adversaries), the cryptosystem is secure against non-uniform adver-
saries.

Statement II. Under uniform assumptions (i.e. the underlying problem is hard for
uniform adversaries), the cryptosystem is secure against uniform adversaries.

The above two statements cannot be compared directly. We need to assess the
hardness of the underlying problem against non-uniform adversaries to make sense
of statement I. This is often not well studied, and in many cases in the literature,
the hardness is only evaluated against uniform adversaries.
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1.5 Our contributions

In this thesis we re-evaluate the security of two cryptographic schemes that use non-
constructive security reductions: an NMAC-related scheme called 2-Lane NMAC,
and a blind signature scheme. The security parameters we obtain from the analysis
are larger than what is originally claimed in the two works, which evaluate security
with respect to constructive attacks only on the underlying primitive. Further, since
non-constructive attacks have not been sufficiently well studied in the cryptanalytic
literature, we cannot claim with much confidence that the security parameters we
compute are sufficient for the 128-bit security level, since there could exist much
faster non-constructive attacks than the ones we consider. Cryptanalysts do not
have sufficient motivation to investigate non-constructive attacks, since the cost of
finding an attack matters in practice. This makes it challenging to satisfactorily
evaluate the security of schemes that use non-constructive arguments.

In addition to the above schemes, we consider the use of an argument called coin-
fixing for game-based security proofs, described by Bellare and Rogaway [6]. This
is a non-constructive technique used to upper bound the advantage of any adver-
sary with fixed computational resources. Coin-fixing is mainly used to eliminate
adversarial adaptivity. It is not always applicable in every game-based proof, but
when applicable, it helps simplify the analysis. However, it may result in a worse
(i.e. larger) upper bound for the adversary’s advantage when compared to a security
theorem obtained without the use of coin-fixing. This is to be expected, since to
obtain the upper bound, one considers the most powerful adversary that somehow
“knows” how to fix the coins used in its randomness to maximize its probability of
winning the security game. We show that this is the case in the security proof of a
password-based key derivation function (PBKDF) scheme considered by Zhou et al.
[34].

1.6 Outline of thesis

In Chapter 2, we consider a Password Based Key Derivation Function (PBKDF)
scheme that was presented and analyzed by Zhou et al. [34]. The security proof of
this scheme uses games, and a coin-fixing technique that was defined formally by
Bellare and Rogaway [6]. However, we found that the application of this technique
to the PBKDF scheme was incorrect. We provide a new security proof of the same
result that does not use coin-fixing, based on the proof of a very similar KDF scheme
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considered by Yao and Yin [32]. We then rework the security result of the PBKDF
with a correct application of the coin-fixing technique. This results in a greater upper
bound on the adversary’s advantage against the PBKDF scheme (and thus a weaker
security result) compared to the result obtained without coin-fixing. The adversary
considered in the security definition is information-theoretic with unbounded com-
putation, but is allowed a fixed number of queries to the random oracle. Therefore,
there is no issue of constructivity vs non-constructivity in this case.

In Chapter 3, we describe 2-Lane NMAC, a variant of the MAC scheme NMAC
that uses non-constructive arguments in its proof. The security of 2-Lane NMAC
(in terms of the number of queries up to which the security result has any meaning)
is evaluated in light of the fastest known non-constructive attack on the underlying
primitives, and compared with the security level offered assuming the fastest known
constructive attack. Not unexpectedly, the security level offered in the former is
much lower than the latter. All but one non-constructive theorem can be converted
into a constructive theorem, and wherever it is evident, we restate the security result
and recalculate parameters in the constructive model. The constructive security re-
sult for 2-Lane NMAC we obtain is similar to the constructive theorem for GNMAC
(a generalized version of NMAC). We do not know if the originally claimed security
result of 2-Lane NMAC in [33] can be restored in the constructive setting.

In Chapter 4, we take a closer look at the efficiency claims made in a round-
optimal blind signature scheme by Garg and Gupta [17]. We examine uses of non-
constructivity in the security proofs, and re-calculate security parameters and effi-
ciency by evaluating the underlying hard problems against the fastest known non-
constructive attacks, wherever applicable. This results in significantly larger security
parameters, and therefore lowered efficiencies than originally claimed.

In Chapter 5, we provide some concluding remarks and directions for future work.
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Chapter 2

A Password Based Key Derivation
Function

This chapter is about a Password Based Key Derivation Function (PBKDF) scheme
that was presented and analyzed by Zhou et al. [34]. The security proof of this
scheme uses games, and a coin-fixing technique that was defined formally by Bellare
and Rogaway [6]. However, we found that the application of this technique to the
PBKDF scheme was incorrect. We provide a new security proof of the same result
that does not use coin-fixing, based on the proof of a very similar KDF scheme con-
sidered by Yao and Yin [32]. We then rework the security result of the PBKDF with
a correct application of the coin-fixing technique. This results in a greater upper
bound on the adversary’s advantage against the PBKDF scheme compared to the
result obtained without coin-fixing. The adversary considered in the security defini-
tion is information-theoretic with unbounded computation, but is only permitted a
fixed number of queries to the oracle. Therefore, there is no issue of constructivity
vs. non-constructivity in this case.

The organization of this chapter is as follows: The PBKDF of Zhou et al. is pre-
sented in §2.1. In §2.2, we give a brief introduction to the game-playing technique as
described by Bellare and Rogaway [6]. We state the coin-fixing theorem for games in
§2.2.1. In §2.3, we give a proof of the “weakly secure KDF” property of the PBKDF
that doesn’t use coin-fixing. In §2.4, we use the coin-fixing technique to give a slightly
different result, and compare the theorems obtained.
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2.1 Description

Password Based Key Derivation Functions (PBKDFs) are used to generate crypto-
graphic keys selected from passwords. This is usually done by choosing an element
from a password space PW at random (or at least, with sufficiently high entropy),
and repeatedly applying an n-bit pseudorandom function a constant number of times.
Iteratively applying the pseudorandom function increases the attacker’s cost in brute
forcing the key, and is known as key stretching.

The PBKDF, denoted by Fp(s, c), has the following parameters:

• H : {0, 1}∗ → {0, 1}n, a pseudorandom function (PRF).

• c, the number of times the PRF is iteratively applied, and is appropriately
chosen to increase the time taken for brute force attacks on the PBKDF.

• PW , a set of “passwords” from which a password p is chosen and passed as
an input to the PRF. It is assumed that all passwords in PW have the same
length.

• salt s, which is a public value that changes with each use of the PBKDF, and
is chosen from a set S of valid salts. It is assumed that all salts have the same
length.

• n, the length of the output of the PBKDF.

The key generated can be used in other cryptographic applications. The purpose of
adding a salt is to prevent an adversary from using a single precomputed table of
inputs (passwords from PW ) and outputs of the PBKDF to brute force a given n-bit
key generated from the PBKDF.

The PBKDF considered in this chapter is of the type described above, and instanti-
ates the PRF with a cryptographic hash function. It is assumed that each password
is chosen from PW with equal probability. Further, it is assumed that p||s is of
bitlength at most n, where p ∈ PW and s ∈ S. The scheme is formally described in
Algorithm 2.1.

We prove the security of the PBKDF scheme described in Algorithm 2.1 with
respect to the “weakly secure KDF” property as defined in [32]. We note that a very
similar PBKDF was considered by Yao and Yin in [32], the only difference being
that the index i was not appended to ui when passed to H.
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Algorithm 2.1 PBKDF scheme

p
$←− PW

s← S, where s is public
u0 ← p||s
for i = 0 to c− 1 do

ui+1 ← H(ui||i)
end for
Return uc

Definition 2.2 (weakly secure KDF). Let Fp(s, c) be a PBKDF. Let A(t) be an
adversary making at most t queries to H. We consider the experiment E that is
described in Algorithm 2.3.

Algorithm 2.3 Experiment E

1: p
$←− PW

2: s← S (s is public)

3: H
$←− {h : {0, 1}∗ → {0, 1}n}

4: b
$←− {0, 1}

5: if b = 0 then
6: y0 ← Fp(s, c)
7: else
8: y0

$←− {0, 1}n
9: end if
10: A takes as input y0.
11: for i = 1 to t do
12: On A’s query xi to H, return H(xi)
13: end for
14: A outputs either 0 or 1

The advantage of the adversary is given by

AdvwKDF
A (n) = |Pr

[
AE = 1|b = 1

]
− Pr

[
AE = 1|b = 0

]
|.

Then Fp(s, c) is considered to be a (t, ε)-weakly secure KDF if AdvwKDF
A (n) is at most

ε for all adversaries A making at most t queries to H.

In the above definition, the case b = 0 corresponds to a string output from the
KDF, and the case b = 1 corresponds to a random string.
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2.2 Game-playing technique

The manuscript [6] was specifically written for the purpose of formalizing game-
playing which had until then appeared in different works, but without much formal-
ism. Since a comprehensive, rigorous definition of this technique will be too lengthy,
we will give an informal description which will hopefully be enough to understand
how it works.

A program is defined to be a finite, valid sequence of statements in some programming
language. This is for the purpose of formalism, however, in our case we can assume
that programs are written in pseudocode. A game is a program consisting of a col-
lection of procedures. A game can contain three kinds of procedures, an initialization
procedure, a finite sequence of procedures P1, . . . , Pn (n ≥ 0) called oracles, and a
finalization procedure. The initialization or finalization procedure may be absent in
a game. For the sake of simplicity, we shall assume in this chapter that all games are
comprised of an initialization phase P0, a single oracle P , and a finalization phase P1.

An adversary is a probabilistic polynomial time algorithm written as a program
consisting of a single procedure, with the ability to query oracles. We can run a
game G with an adversary A, and this is denoted by GA. First, the initialization
procedure of G possibly produces an output which is passed as an input to A. Next,
A executes its procedure, while making at most t queries to P . A may generate an
output which is passed as an input to the finalization procedure, which then produces
the final output of the game.

Suppose that we have an adversary A whose goal is to distinguish between two
cryptographic systems A and B. Each system is described as a game. The task of
distinguishing the two systems A and B is broken down into a finite sequence of suit-
ably chosen games A = G0, G1, . . . , Gn−1, B = Gn. The advantage of distinguishing
between A and B is now upper bounded by the sum of the advantages of distinguish-
ing (A and G1), (G1 and G2), . . . , (Gn−1 and B). Typically, the intermediate games
G1, . . . , Gn−1 are written in such a way that for some two consecutive games Gi and
Gi+1, where 0 ≤ i ≤ n − 1, Gi = S|| bad← true||X and Gi+1 = S||bad← true||Y
for some pseudocode S,X, Y , with X possibly different from Y . The variable bad
is a flag that is set to true from its initial state of false, to indicate that the code
following it is possibly different for the two games Gi and Gi+1, but the code preced-
ing it is the same for the two games. In this chapter, we will only need to consider
the case when bad is set to true once inside the oracle. The games Gi and Gi+1 are
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called identical-until-bad-is-set games. The following lemma can be used to prove
Theorem 2.5.

Lemma 2.4 (after bad is set, nothing matters, Proposition 3, [6] ). Let G and H be
identical-until-bad-is-set games, and let A be an adversary. Then Pr

[
GA sets bad

]
=

Pr
[
HA sets bad

]
.

The following is the main result of game-playing.

Theorem 2.5 (fundamental lemma of game-playing, Lemma 2, [6]). Let G and H
be identical-until-bad-is-set games, and let A be an adversary. Then

|Pr
[
GA → 1

]
− Pr

[
HA → 1

]
| ≤ Pr

[
GA sets bad

]
. (2.1)

The quantity on the left hand side of inequality (2.1) is the advantage of the
adversary in distinguishing the games G and H. Depending on how we define the
games G,H, the probability of bad being set could vary. For the goal of distinguish-
ing two systems, two differently designed pairs of games could give different upper
bounds. Therefore, the prover’s task is to design the games in such a way that the
probability of bad being set is as small as possible, and in particular is not trivially 1.

Next, we will describe coin-fixing, which is one of the methods used to compute
the probability of bad being set.

2.2.1 Coin-fixing

This section describes the coin-fixing argument used in game-based security proofs.
The purpose of this proof technique is to reduce or eliminate adversarial adaptivity,
i.e., to avoid the complexity of computing the probability of bad being set when
taking into account the various possibilities for the adversary’s input to the oracle,
each input depending on the outputs of the previous queries. Roughly, what the
coin-fixing theorem states is this: the probability of bad being set in a game can be
upper bounded by the probability of bad being set in a modified game where the
inputs to the oracle and its outputs are certain constants fixed beforehand, provided
some conditions on the game are satisfied. We formally define this technique next.

The following description of the technique has been adapted from [6] to the case
where there is only one oracle in the game. Let G be a game with an oracle P . Let
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A be an adversary that makes at most t queries to P , where each query lies in the
domain of P . We would like to modify GA so that no oracles are used.

Eliminable oracles. We first describe the conditions under which the technique
applies. Let P be of the following form:

Procedure P (X)

i← i+ 1

Xi ← X

Yi ← DX1,...,Xi,Y1,...,Yi−1

S

Return Yi

Here, i is an integer variable that is initialized to 0 before A makes its first query
to P . The variables Xi and Yi where 1 ≤ i ≤ t, must appear in the game G as
l-values (which means on the left hand side of an assignment/random assignment
statement) only in the statements in P shown above. DX1,...,Xi,Y1,...,Yi−1

denotes a
set that only depends on the variables X1, . . . , Xi, Y1, . . . , Yi−1, by which we mean
that D represents a piece of code that computes a set which only uses the variables
X1, . . . , Xi, Y1, . . . , Yi−1. S denotes an arbitrary compound statement. If P is of the
above form, then it is said to eliminable.

Coin-fixing technique. Let P be an eliminable oracle. We define C, the set of valid
query-responses for P , in the following way. If there exists an adversaryA that makes
at most t queries to P for which there is a non-zero probability that X1, . . . ,Xt and
Y1, . . . ,Yt occur as queries and responses, respectively, in an execution of GA, then
(X1, . . .Xt,Y1, . . . ,Yt) is in C. For a query-response C = (X1, . . . ,Xt,Y1, . . . ,Yt) ∈ C,
we can define a modified game GC called the coin-fixed game as follows. Starting
from GA, replace every occurrence of Xi by Xi. Similarly, replace every occurrence
of Yi by Yi. Eliminate the procedure for oracle P . At the beginning of the Finalize
procedure (add a Finalize procedure if there is none), execute the statement “for
i = 1 to t, S”. Here i represents the index of the variables Xi and Yi. Note that all
occurrences of Xi and Yi in S have been replaced by Xi and Yi, respectively. Also
note that the game GC no longer depends on A. We can now state the coin fixing
lemma.

Lemma 2.6 (coin-fixing). Let G be a game with eliminable oracle P and a flag bad.
Let A denote an adversary that makes at most t queries to P . Let C denote the set of
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valid query-responses for P , and for C ∈ C let GC be the coin-fixed game as defined
above. We have that

max
A

Pr
[
GA sets bad

]
≤ max

C∈C
Pr[GC sets bad ] .

2.3 Proof without coin-fixing

In order to model experiment E (Algorithm 2.3), we design two games G0 and G1

which correspond to the case where b = 0 and b = 1 in the experiment, respectively.
Algorithm 2.7 describes the two games, with G0 containing the underlined state-
ment but G1 omitting it. They are very similar to the games K and R described in
[32] (albeit for a slightly different KDF scheme). Note that the collision flag records
whether a collision for H has occured, whereas the bad flag records whether Hc(u0||0)
has been computed. The collision flag is used to simplify the analysis.

There are a few points to note regarding the two games. In trying to simulate
the hash function H, we assume that its output cannot be distinguished from a ran-
dom string of the same length. Therefore, we are justified in first choosing a random
string y of the correct length, and then setting that as the output for a given input
x to the hash function. We also treat the function H as a black-box, in that the
adversary cannot exploit its internal code. Hence, the proof that is provided in this
section is in the random oracle model. If an adversary queries an input that has been
previously queried to the oracle, we need to make sure that the output is the same as
before. However, we can safely assume that a real-life adversary will make distinct
queries to the oracle since a hash function is deterministic and will return the same
output for the same input.

The advantage of the adversary can be rewritten as

AdvwKDF
A(t) (n) = |Pr

[
AG0 = 1

]
− Pr

[
AG1 = 1

]
|. (2.2)

We can now state the main theorem of this section.

Theorem 2.8. For an adversary A(t), the PBKDF scheme described in Algorithm 2.1
is a (t, ε)-weakly secure KDF where ε = (t/c)/|PW |+ t2/2n.

Proof. Note that games G0 and G1 are identical until line 16, and are therefore
identical-until-bad-is-set games. We can apply the fundamental lemma of game play-
ing (Theorem 2.5) to obtain

|Pr
[
AG0 = 1

]
− Pr

[
AG1 = 1

]
| ≤ Pr

[
GA1 sets bad

]
.
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Algorithm 2.7 Distinguishing games G0 and G1

1: p
$←− PW

2: s← S, where s is public

3: y0
$←− {0, 1}n, y0 is given to the adversary A

4: i← 0, u0 ← p||s, Y ← {u0, y0}
5: collision← 0, bad← 0
6: function Oracle H(x)

7: y
$←− {0, 1}n

8: if y 6∈ Y then
9: Y ← Y ∪ {y}
10: else
11: collision← 1
12: end if
13: if i < c− 1 and x = ui||i then
14: i← i+ 1 and ui ← y
15: else if i = c− 1 and x = uc−1||c− 1 then
16: bad← 1, y ← y0
17: end if
18: Set H(x)← y and return y.
19: end function
20: After at most t queries to H, A(t) outputs 0 or 1.
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The goal now is to calculate Pr
[
GA1 sets bad

]
. Similar to what was done in [32],

we can define a directed graph that represents A’s queries and its responses in the
following way. Let U be the set {0, 1}n ∪ {p||s : p ∈ PW}. Consider a graph with
vertex set V = U × {0, 1, 2, . . . , c}. The directed edge set of the graph is defined in
the following way: there is an edge from (x, i) to (y, i+ 1) if and only if H(x||i) = y,
where x, y ∈ U and 0 ≤ i ≤ c − 1. We shall assume that the adversary with the
highest advantage only queries H with messages that are in the subset of vertices
W = U × {0, . . . , c − 1} of V . (Since we have modelled H as a random function,
the output of H on some X 6∈ W is independently, randomly distributed from each
H(Y ) for Y ∈ W . Furthermore, bad is set if and only if i = c − 1 and some query
of the adversary is uc−1||c − 1, i.e., the query is in W . Therefore, querying X 6∈ W
does not give any information about any of the ui, 0 ≤ i ≤ c− 1, and the adversary
may as well not make such a query.)

We can define a subgraph of the original graph based on the H-queries made by
the adversary in the following way. If the message queried is m||i where m ∈ U and
0 ≤ i ≤ c−1, then there is an edge from the vertex (m, i) to the vertex (H(m||i), i+1).
We shall refer to this subgraph as the “query graph” of the adversary. We can see
that

AdvwKDF
A (n) ≤ Pr[bad = 1]

= Pr[bad = 1|collision = 0] · Pr[collision = 0]

+ Pr[bad = 1|collision = 1] · Pr[collision = 1]

≤ Pr[bad = 1|collision = 0] + Pr[collision = 1] .

The above probabilities are assessed with respect to the game GA1 . We first calculate
Pr[collision = 1]. This is the probability that there is a collision among {u0, y0} and
the outputs y1, . . . , yt to the t queries. The probability that the output to any of the
t queries is equal to u0 is at most t/2n, since each output is randomly chosen. The
probability that there is a collision among y0 and the outputs to the t queries is at
most

(
t+1
2

)
/2n, since there are

(
t+1
2

)
unordered pairs {yi, yj}, 0 ≤ i 6= j ≤ t, among

which a collision can occur, and each collision occurs with a probability of 1/2n since
all the yi’s are chosen randomly. Thus, we have

Pr[collision = 1] ≤
(
t+ 1

2

)
/2n + t/2n =

t2 + 3t

2n+1
.

Assuming that 3t < t2, we have

Pr[collision = 1] ≤ t2/2n.
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To calculate Pr[bad = 1|collision = 0], note that if collision = 0 the query graph
must consist of distinct paths in which (u0, 0) can only occur as the first vertex in
some path. Now, Pr[bad = 1|collision = 0] is the probability that there is a path of
length c in the query graph starting at (u0, 0). There are a maximum of t/c paths of
length c in the query graph, so we need to calculate the probability that at least one
of them starts at (u0, 0). Since p is chosen randomly from PW , the probability that
the starting vertex of a path is equal to (u0, 0) is 1/|PW |. Given that there are at
most t/c such paths, the probability that at least one of them starts at (u0, 0) can
be upper bounded by the union bound to get

Pr[bad = 1|collision = 0] ≤ t/c

|PW |
.

Therefore, we have

AdvwKDF
A (n) ≤ t/c

|PW |
+
t2

2n
. (2.3)

We can give an attack that almost matches the upper bound in (2.3). Consider
the adversary A defined in Algorithm 2.9. The adversary randomly selects an element
p̃ from the password space, affixes the salt s and an index j = 0 to it, and iteratively
queries it to the hash function H c times, each time incrementing the index j. It
checks if the final output equals the challenge string y0. If it is not equal, the
adversary tries a new p̃.

Let us calculate Pr
[
AE = 1|b = 0

]
. The adversary returns 1 if p̃ is equal to p at some

iteration i of the outer loop (in which case H(uc−1||c− 1) = y0), or if for some iter-
ation i we have p 6= p̃ but still H(uc−1||c− 1) = y0. The probability of the former is
(t/c)/|PW | and that of the latter is (t/c)/2n. Next, we calculate Pr

[
AE = 1|b = 1

]
.

The probability that uc = y0 is 1/2n, and the probability that A outputs 1 is (t/c)/2n.
So in this case, the advantage is (t/c)/|PW |, which shows that the upper bound in
(2.3) is essentially tight, if t2 � 2n.

Let us compare Theorem 2.8 to the result for the weakly secure KDF property
of the PBKDF defined in [32]. The upper bounds are exactly the same, suggesting
that affixing the index while iteratively applying the hash function does not offer any
security advantage in the random oracle model.
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Algorithm 2.9 A(y0)

Tried passwords = ∅
for i = 1 to t/c do

p̃
$←− PW − Tried passwords

Tried passwords← Tried passwords ∪ {p̃}
u0 ← p̃||s
for j from 0 to c− 1 do

uj+1 ← H(uj||j)
end for
if uc = y0 then

Return 1
end if

end for
Return 0

2.4 Proof using coin-fixing

We now state a result for the weakly secure KDF property of the PBKDF that uses
coin-fixing. We begin by noting that the two distinguishing games from the work by
Zhou et al. [34] are exactly the same as the games G0 and G1 in Algorithm 2.7. We
can now state the theorem.

Theorem 2.10. For an adversary A(t) making at most t queries to H, the PBKDF
scheme described in Algorithm 2.1 is a (t, ε)-weakly secure KDF where ε = (t − c +
1)/|PW |.

Proof. As in the proof of Theorem 2.8, the advantage of A can be bounded by the
probability of bad being set in one of the games G0 or G1 since they are identical-
until-bad-is-set games and Theorem 2.5 can be applied. We have

|Pr
[
AG0 = 1

]
− Pr

[
AG1 = 1

]
| ≤ Pr

[
GA1 sets bad

]
.

Let us compute the right hand side of the above inequality. One can observe that
the oracle H in the game G1 is eliminable, as per the definition of eliminable oracles
in §2.2.1. Applying the coin-fixing lemma to game G1 we get that

Pr
[
GA1 sets bad

]
≤ max

C∈C
Pr[G1,C sets bad ]
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where G1,C is the non-interactive game defined in Algorithm 2.11. Let C ∈ C and let
the queries corresponding to C be (X1, . . . ,Xt) and the corresponding responses be
(Y1, . . . ,Yt). We would like to upper bound Pr[G1,C sets bad ]. For the flag bad to

Algorithm 2.11 Coin-fixed game G1,C with C = (X1, . . . ,Xt,Y1, . . . ,Yt)

1: p
$←− PW

2: s← S, s is public

3: y0
$←− {0, 1}n, y0 is an input to the adversary

4: i← 0, u0 ← p||s, Y ← {u0, y0}
5: collision← 0, bad← 0
6: for j = 1 to t do
7: if Yj 6∈ Y then
8: Y ← Y ∪ {Yj}
9: else
10: collision← 1
11: end if
12: if i < c− 1 and Xj = ui||i then
13: i← i+ 1 and ui ← Yj.
14: else if i = c− 1 and Xj = uc−1||c− 1 then
15: bad← 1
16: end if
17: end for

be set to true in G1,C, C must have the following sequence of queries (not necessarily
consecutive, but in the given order):

p||s||0, H(p||s||0)||1, H(H(p||s||0)||1)||2, . . . , H(. . . H(H(︸ ︷︷ ︸
c− 1 times

p||s||0)||1) . . .)||c− 1.

Define the set U = {p||s : p ∈ PW} ∪ {0, 1}n. We say that a valid query-response
C contains a query chain Qi where 1 ≤ i ≤ t− c+ 1 if there exists a query Xi = y||0
for some y ∈ U and C contains the sequence of queries

Xi = y||0, H(y||0)||1, H(H(y||0)||1)||2, . . . , H(. . . H(H︸ ︷︷ ︸
c− 1 times

(y||0)||1) . . .)||c− 1

that occur in this order but not necessarily consecutively. Therefore, we can see that
bad is set in G1,C if and only if the following event occurs:⋃

1≤i≤t−c+1

{C contains Qi and Xi = p||s||0}.
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The probability β of the above event occurring can be upper bounded using the
union bound:

β ≤
t−c+1∑
i=1

Pr[C contains Qi and Xi = p||s||0]

=
t−c+1∑
i=1

Pr[C contains Qi| Xi = p||s||0] · Pr[Xi = p||s||0]

≤
t−c+1∑
i=1

Pr[Xi = p||s||0] .

Since p is chosen randomly, Pr[Xi = p||s||0] is at most 1/|PW | for any 1 ≤ i ≤
t− c+ 1. Thus, for any C ∈ C we have

Pr[G1,C sets bad ] ≤ (t− c+ 1)/|PW |.

What remains to show is a valid query-response that achieves this upper bound. Let
C be the concatenation of the following queries

(x1||s||0, x2||s||0, . . . , xt−c+1||s||0, y1||1, y2||2, . . . , yc−1||c− 1)

and the corresponding responses

( y1, . . . , y1︸ ︷︷ ︸
t− c+ 1 times

, y2, y3, . . . , yc)

where xi’s are chosen randomly from PW and are all distinct (this part of the query
can be thought of as trial-and-error to hit the value of p used in the game), the yi’s
for 1 ≤ i ≤ c − 1 are chosen randomly from {0, 1}n, and yc = y0. We will show
that C maximizes Pr[G1,C sets bad ]. First, C is indeed a valid query-response for
the oracle H since there exists an adversary that makes the above queries and the
oracle outputs the above responses with a non-zero probability, since the outputs
are chosen randomly. Next, we compute the probability of bad being set. Note that
C contains a query chain, where the first query in the chain can be any of the first
t− c+ 1 queries, and the last c− 1 queries of the chain are the last c− 1 queries of
C. Since all the first t− c+ 1 queries map to y1, bad is set if and only if any of them
is equal to p||s||0. The probability that any of the first t− c+ 1 queries equals p||s||0
is (t− c+ 1)/|PW |, since p is chosen randomly. This completes the argument.
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Note that provided t2 � 2n, the upper bound in Theorem 2.8 is better than the up-
per bound in Theorem 2.10 by a factor of approximately c. In [34], the same result
as Theorem 2.8 is obtained, however the attempt to use coin-fixing was incorrect.
In order to use it correctly, one must consider a query/response set that, when fixed
in the game G1, maximizes the probability of bad being set in the coin-fixed game.
Since the authors of [34] did not consider the query/response set C that we described
in the above proof, they obtained an (incorrect) upper bound that was significanty
lower, namely (t/c)/|PW |.

Coin-fixing is a technique used in games primarily to eliminate complications that
may arise in upper bounding the probability of bad being set when an adversary
can query an oracle adaptively. Informally, it involves fixing certain coins in the
game and the adversary that maximize the probability of the variable bad being
set to 1 in the coin-fixed game. The coin-fixed adversary may be non-constructive,
and hence, the probability of setting bad in the coin-fixed game is usually higher
than what is obtained in the non-coin-fixed game (this is to be expected). How-
ever, in the PBKDF scheme considered here, we cannot make the distinction of a
constructive/non-constructive adversary, since we are not concerned with its running
time.

In conclusion, we investigated the use of coin-fixing in the security proof of a PBKDF
scheme considered by Zhou et al. [34]. We found the use of coin-fixing to be incorrect
and provided a revised proof. Further, we observed that the result obtained without
the use of coin-fixing (Theorem 2.8) was stronger than the result obtained using
coin-fixing (Theorem 2.10). In the PBKDF scheme considered in this chapter, since
it is possible to obtain an upper bound without the use of coin-fixing that is almost
tight with a matching attack, the use of coin-fixing is not necessary in the proof, and
results in a weaker security result than what can be obtained without its use.
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Chapter 3

2-Lane NMAC

In this chapter, we describe 2-Lane NMAC, a variant of NMAC that uses non-
constructive arguments in its proof. The security of 2-Lane NMAC (in terms of the
number of queries up to which the security result has any meaning) is evaluated in
light of the fastest known non-constructive attack on the underlying primitives, and
compared with the security level offered assuming the fastest known constructive
attack. Not unexpectedly, the security level offered in the former is much lower than
the latter. All but one non-constructive theorem in this scheme can be converted to
a constructive theorem, and wherever it is evident, we restate the security result and
recalculate parameters in the constructive model. The constructive security result
for 2-Lane NMAC we obtain is similar to the constructive theorem for GNMAC. We
do not know if the originally claimed security result of 2-Lane NMAC in [33] can be
restored in the constructive setting.

The chapter is organized as follows. In §3.1 we provide some cryptographic defi-
nitions that are used in the rest of the chapter. In §3.2, we state two theorems on
the prf security of NMAC provided by Bellare [5]. In §3.3 we discuss a scheme called
L-Lane NMAC by Yasuda [33], based on Bellare’s NMAC construction. In §3.4 we
state the theorem on prf security of 2-Lane NMAC from [33], and discuss the use
of non-constructivity in the proofs. In §3.5 we provide a constructive proof of the
prf-security of 2-Lane NMAC and compare the constructive and non-constructive
theorems. In §3.6, we calculate parameters for 2-Lane NMAC under different as-
sumptions, and compare the values obtained for the different cases.
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3.1 Preliminaries

3.1.1 MAC schemes

MAC stands for Message Authentication Code, which is a cryptographic scheme used
to certify the authenticity and integrity of data transmitted between two communi-
cating parties. The following three steps describe how a MAC works:

1. Key generation. KeyGen(1n) = k: On input 1n, a key k is generated and shared
between the two parties.

2. Tag generation. MACk(m) = t: The sender, who wishes to communicate a
message m, generates a tag t using the shared key k.

3. Verification. SignVerk(m
′, t′) = true or false: The receiver, upon receiving a

message m′ and tag t′, regenerates a tag t′′ = MACk(m
′), and checks if t′ = t′′

whereupon it accepts the message m′, otherwise, rejects it.

MACs are designed to guarantee two properties: data origin authentication, which is
to certify that the received message came from a trusted party (in terms of the proto-
col above, came from a party who knows the secret key k), and data integrity which
is to certify that the message m transmitted by the sender is exactly the same as
the message m′ obtained by the receiver. Note that MAC schemes differ from digital
signature schemes in that they do not provide non-repudiation, which is the property
wherein the party that “signed” a message cannot deny that it indeed “signed” it.

In order to describe the security of a MAC scheme, the following definition is of-
ten used. It must be computationally infeasible for an adversary, given access to a
MAC oracle, denoted by MACk, to produce a MAC forgery. There are three types
of access the adversary can have to MACk.

• Known-message: The adversary is given a set of message-tag pairs beforehand,
and is not allowed access to MACk.

• Chosen-message: The adversary is allowed to query MACk a sequence of mes-
sages m1, . . . ,ms to get their corresponding tags t1, . . . , ts.

• Adaptive chosen-message: The adversary is allowed to query MACk with a
sequence of messages m1, . . . ,ms to receive their corresponding tags t1, . . . , ts,
where each message mi can be chosen by the adversary based on its previous
messages m1, . . . ,mi−1 and tags t1, . . . , ti−1.
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There are two types of MAC-forgeries one can consider:

• Existential : The adversary has to produce a message m and a corresponding
tag t such that SignVerk(m, t) = 1, where m has not been queried to MACk
before.

• Universal : The adversary is required to produce a message-tag pair (m, t), for
an m that is provided to it, such that SignVerk(m, t) = 1. Again, the adversary
is not allowed to query m to MACk.

The strongest definition of security that one can describe for a MAC scheme is
existential unforgeability against an adaptive, chosen-message adversary. In the re-
mainder of this chapter, we will only consider this notion of security.

3.1.2 Cryptographic ingredients

Notation. We will use the following notation throughout this section. Let B =
{0, 1}b, and let B+ denote the set of binary strings which are of length some multiple
of b bits. Let D denote the set of all strings up to a fixed, maximum length. Let pad
be a fixed, public function, known as the length padding function, which converts
any string s ∈ {0, 1}∗ to s∗ = s||pad(|s|) ∈ B+, where |s| denotes the bitlength of s.
Let h : {0, 1}c × {0, 1}b → {0, 1}c be a compression function, and M be a message
m1 . . .m` where each mi, 1 ≤ i ≤ `, is a b-bit message block. Let Th denote the time
taken for one compression function computation. Let h∗ : {0, 1}c × B+ → {0, 1}c
be the iterated application of h on M defined as follows: h∗(K,M) = H`, where
H0 = K and Hi = h(Hi−1,mi) for 1 ≤ i ≤ `.

Computationally almost universal (cAU) functions. Let h be a family of
keyed functions h : {0, 1}c × Domain → Range. A (t, µ)-cAU adversary of h is an
algorithm that runs in time t and outputs two messages M1,M2 ∈ Domain each of
bitlength at most µ. The advantage of such an adversary A is

AdvcAU
h (A) = Pr

[
h(K,M1) = h(K,M2)

∣∣∣M1,M2 ← A, K
$←− {0, 1}c

]
.

The function family h is (t, µ, ε)-cAU if AdvcAU
h (A) ≤ ε for all (t, µ)-cAU adversaries

A of h. We write AdvcAU
h (t, µ) = ε if the maximum advantage of all (t, µ)-cAU ad-

versaries of h is ε.
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In the definition of a cAU adversary used in the L-Lane NMAC proof in [33], time
is not taken into account since the author assumes that one is working in the non-
uniform computational model. Thus, the parameter t is omitted and, for example,
one writes Advau

h (µ) instead of AdvcAU
h (t, µ).

Pseudorandom function (prf) function. Let h : {0, 1}c × {0, 1}b → {0, 1}c
be a keyed family of functions, where {0, 1}c is the key space. A (t, q)-prf adversary
A of h is an algorithm that runs in time t and makes at most q queries to an “oracle”.
The oracle with probability 1

2
is a randomly chosen function from b bits to c bits (i.e.

R(·), where R
$←− {{0, 1}b → {0, 1}c}) or with probability 1

2
is h(K, ·) for a randomly

chosen K. The adversary A outputs either 0 or 1, and its advantage is defined as

Advprf
h (A) = |Pr

[
AR(·) → 1

]
− Pr

[
Ah(K,·) → 1

]
|.

A function family h is a (t, q, ε)-secure prf if Advprf
h (A) ≤ ε for all (t, q)-prf ad-

versaries A of h. Each query to the oracle is counted as one time-step. We write
Advprf

h (t, q) = ε if the maximum advantage of all (t, q)-prf adversaries of h is ε.

One can also define the notion of a secure prf for a function family h : {0, 1}c ×
{0, 1}∗ → {0, 1}c. In this case, there is an additional parameter µ which is the maxi-
mum of the bitlength of a message. Thus, one considers (t, q, µ)-prf adversaries, and
writes Advprf

h (t, q, µ).

Iterated Merkle-Damg̊ard hash function. The collision resistance properties
of this construction for a hash function was proved independently by Ralph Merkle
[26] and Ivan Damg̊ard [13]. Such hash functions H : {0, 1}c × {0, 1}∗ → {0, 1}c are
defined as

H(IV,M) = h∗(IV,M ||pad(|M |)).

For the constructions in this chapter, we can assume that the IV is a c-bit string
chosen randomly, and is fixed and public. Hash functions implemented in practice
have a hard-coded IV as their c-bit input, and hence it is not possible to change
this value. There also exist hash functions in practice for which the final output is
strictly smaller than c bits; examples include SHA384 which is SHA512 with its 512
bit output truncated to 384 bits and using a different IV.

Nested message authentication code (NMACH) ([5]). This is a function from
{0, 1}2c × {0, 1}∗ → {0, 1}c that uses an iterated Merkle-Damg̊ard hash function H.
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The first input of NMACH is a concatenation of two c-bit keys K1 and K2, and the
second is a message M of variable length. It is defined as

NMACH(K1||K2,M) = H(K1, H(K2,M)).

Hash-based message authentication code (HMACH) ([5]). This MAC con-
struction overcomes NMAC’s problem of having to key the hash function with a vari-
able IV. Let ipad and opad be fixed, public b-bit strings. Let K be a b-bit key and
M a message of variable length. The function HMACH : {0, 1}b × {0, 1}∗ → {0, 1}c
is defined as

HMACH(K,M) = H(IV, (K ⊕ opad)||(H(IV, (K ⊕ ipad)||M))). (3.1)

This construction for HMACH has been taken from [5] where it was proved that
HMACH is a prf when keyed through the b-bit input. However, the version of HMAC
standardized in [25] has a minimal recommended key length of c bits. Here, the c-bit
key K is converted to a b-bit string by appending b− c zeroes, which is then used in
the HMACH construction shown. The standardized version also allows the bitlength
of K to exceed b bits, in which case the key K ′ = H(IV,K)||0b−c is used in place of
K in HMACH . A discussion of the security issues that arise from the different key
sizes considered in Bellare’s HMAC proof [5] can be found in [24].

3.2 Bellare’s NMAC proofs

Bellare [5] proved that NMAC is a pseudorandom function assuming that the com-
pression function h is a prf. The proof establishes that h∗, the iterated compression
function defined in §3.1.2, is computationally almost universal. This can be proved
assuming that h is a prf. The following two lemmas describe these two results; there
are two versions for each, a blackbox version and a non-blackbox version.

Lemma 3.1 (Lemma 3.1, [5]). Let B = {0, 1}b, let h : {0, 1}c × B → {0, 1}c be a
family of functions, and let n ≥ 1 be an integer. Let A∗ be a cAU-adversary against
h∗ that has time complexity at most t. Assume that the two messages output by A∗
are at most n1, n2 blocks long respectively, where 1 ≤ n1, n2 ≤ n. Then, there exists
a prf-adversary A against h such that

AdvcAU
h∗ (A∗) ≤ (n1 + n2 − 1) · Advprf

h (A) +
1

2c
. (3.2)
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A makes at most two oracle queries, has time complexity t under a blackbox reduction,
and O(nTh) under a non-blackbox reduction where Th is the time for one evaluation
for h.

Lemma 3.2 (Lemma 3.2, [5]). Let B = {0, 1}b. Let h : {0, 1}c × B → {0, 1}c and
F : {0, 1}k ×D → B be families of functions, and let hF : {0, 1}c+k ×D → {0, 1}c
be defined by

hF (Kout||Kin,M) = h(Kout, F (Kin,M))

for Kout ∈ {0, 1}c, Kin ∈ {0, 1}k and M ∈ D. Let AhF be a prf-adversary against
hF that makes at most q ≥ 2 oracle queries, each of length at most n, and has
time complexity at most t. Then, there exists a prf-adversary Ah against h and a
cAU-adversary AF against F such that

Advprf
hF (AhF ) ≤ Advprf

h (Ah) +

(
q

2

)
AdvcAU

F (AF ).

Ah makes at most q oracle queries, has time complexity at most t, and is obtained
via a blackbox reduction. The two messages that AF outputs have length at most
n. The time complexity of AF is t under a blackbox reduction and O(TF (n)) under
a non-blackbox reduction, where TF (n) is the time taken to compute F on an n-bit
input.

The next theorem combines the previous two lemmas for a construction known
as GNMAC (Generalized NMAC).

Theorem 3.3 (Theorem 3.3, [5]). Assume b ≥ c and let B = {0, 1}b. Let h :
{0, 1}c × B → {0, 1}c be a family of functions and let fpad ∈ {0, 1}b−c be a fixed
padding string. Let GNMAC : {0, 1}2c ×B+ → {0, 1}c be defined by

GNMAC(Kout||Kin,M) = h(Kout, h
∗(Kin,M)||fpad)

for all Kout, Kin ∈ {0, 1}c and M ∈ B+. Let A be a prf-adversary against GNMAC
that makes at most q ≥ 2 oracle queries, each of at most ` blocks, and has time
complexity at most t. Then, there exist prf adversaries A1,A2 against h such that

Advprf

GNMAC(A) ≤ Advprf
h (A1) +

(
q

2

)[
2` · Advprf

h (A2) +
1

2c

]
. (3.3)

A1 makes at most q oracle queries, has time complexity at most t, and is obtained
via a blackbox reduction. A2 makes at most two oracle queries. The time complexity
of A2 is t under a blackbox reduction and O(`Th) under a non-blackbox reduction,
where Th is the time for one computation of h.
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There is a well known forgery attack on iterated MACs by Preneel and van
Oorschot [28]. This attack is applied on MACs of the following form:

H0 = IV, Hi+1 = h(Hi, xi) 0 ≤ i ≤ t, output = g(Ht).

Here, h is the compression function with c-bit chaining value, x0, . . . , xt is the block
representation of a suitably padded message, and g is the output transformation that
converts the c-bit chaining value into an m-bit final MAC output. The secret key
can be introduced in the IV, compression function h, or in the output transformation
g. Note that GNMAC falls into this class of iterated MACs, with the keys being
introduced in the IV and the function g.

The attack described in [28] is based on finding internal collisions in the iterated
MAC. According to Proposition 3 and Corollary 2 in [28], an existential MAC forgery
can be obtained using an expected number 2c/2+1/

√
s+ 1 of known message-tag pairs

where each message has the same substring of s trailing blocks, and which works with
probability approximately 1/(1 + 2c−m/(s+ 1)) provided that s ≥ 2c−m+6. For GN-
MAC, s can be at most the maximum block length `, and can be assumed to be
greater than 2c−m+6. Therefore, the attack requires approximately 2c/2/

√
` queries

to the MAC function.

The non-blackbox version of Theorem 3.3 has content only up to 2c/2/` queries for
GNMAC, assuming only constructive adversaries for A1 and A2 (for a detailed analy-
sis see §3.6). SinceA2 in the non-blackbox version of Theorem 3.3 is non-constructive,
strictly speaking, it must be evaluated with respect to non-constructive adversaries,
and this gives a different query bound of 2c/4/

√
` (see [24]). The blackbox version of

Theorem 3.3 has content only up to 2c/3/`1/3 queries for GNMAC (see [5]). In com-
parison, the best known forgery attack on GNMAC which is the one described above
requires 2c/2/

√
` queries to the MAC function. We see that there is a gap between

the security offered (in terms of the number of queries upto which the theorem has
content) by the blackbox version of Theorem 3.3 and the best known constructive
attack. Even using the non-blackbox version of Theorem 3.3 does not help shorten
this gap significantly.

3.3 Description of 2-Lane NMAC

L-Lane NMAC, a variant of NMAC, was introduced by Yasuda [33] for the fol-
lowing reason. From the attack on iterated MACs we saw in §3.2, the security
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of NMAC/HMAC can be at most O(2n/2) for an n-bit chaining variable. L-Lane
NMAC was introduced to restore n-bit security for NMAC. The variable “L” in L-
Lane NMAC represents an integer at least two; the L=2 and L ≥ 3 cases are treated
differently. We first describe the ingredients used in L-Lane NMAC before describing
the construction of 2-Lane NMAC.

Doubly Injective Lengthening (DIL). Let M, X be finite subsets of {0, 1}∗.
Fix an integer L ≥ 2. Let

φ = {ϕi}1≤i≤L

be a family of functions ϕi :M→ X. We say that φ is doubly injective if M 6= M ′

(M,M ′ ∈M) implies ϕi(M) 6= ϕi(M
′) and ϕj(M) 6= ϕj(M

′) for some 1 ≤ i < j ≤ L.
Given a DIL φ = {ϕi}1≤i≤L, define

ρφ(µ) = max
M,i
|ϕi(M)|,

where M ranges over messages in M of length at most µ.

DIL-cAU-PRF Construction. Given a DIL φ = {ϕi}1≤i≤L with ϕi :M→ X, a
cAU function H : K × X → Y , and a PRF G : K ′ × Y L → T , we construct their
compositions HL ◦ φ : KL ×M → Y L and G ◦ HL ◦ φ : KL × K ′ ×M → T as
described in Algorithm 3.4 and Algorithm 3.5 (see also Figure 3.1).

Algorithm 3.4 Function
(
HL ◦ φ

)
k1,...,kL

(M)

xi ← ϕi(M) for i = 1, . . . , L
yi ← Hki(xi) for i = 1, . . . , L
Output (y1, . . . , yL)

Algorithm 3.5 Function (G ◦HL ◦ φ)k1,...,kL,k′(M)

(y1, . . . , yL)←
(
HL ◦ φ

)
k1,...,kL

(M)

tag ← Gk′(y1, . . . , yL)
Output tag.

2-Lane NMAC. The 2-Lane NMAC is essentially a DIL-caU-PRF function. We
describe the instantiation of each component of the DIL-cAU-PRF construction as
seen in 2-Lane NMAC, next.
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Figure 3.1: Yasuda’s L-Lane NMAC construction.

M φ

x1

xL

Hk1

HkL

y1

yL

Gk′ tag

1. Let f : {0, 1}n × {0, 1}m → {0, 1}n denote a compression function, where
m ≥ 2n.

2. Trivial instantiation of DIL φ. For the DIL ϕ1, ϕ2, the trivial instantiation
ϕ1(M) = ϕ2(M) = M where M ∈M is used.

3. Merkle-Damg̊ard iteration for the cAU H. For a compression function f , use
the Merkle-Damg̊ard iterated hash function as described in §3.1.2 to instantiate
H.

4. Prf G. For k′ ∈ {0, 1}n, y1, y2 ∈ {0, 1}n, the function G is defined as follows

Gk′(y1, y2) = f(k′, y1||y2||0m−2n).

Note that this makes sense since we have assumed m ≥ 2n.

3.4 Non-constructive proof

In this section, we reproduce Yasuda’s proof of the prf property of 2-Lane NMAC
[33]. This proof is in the non-constructive setting. All the results stated in this
section were proved in [33] for the general case of L-Lane NMAC, where L ≥ 2. To
enable an easy analysis in the constructive setting, we consider the case L = 2.

31



Theorem 3.6. An upper bound on the advantage of any (t, q, µ)-prf adversary of
2-Lane NMAC is given by

Advprf
2-Lane-NMAC(t, q, µ) ≤ Advprf

f (t, q) + 2q2 ·
(
` · Advprf

f (t′, 2) + 2−n−1
)2

where ` = dµ/me, t′ = 4` · Tf , Advprf
f (t, q) is assessed against all constructive adver-

saries, and Advprf
f (t′, 2) is assessed against all non-constructive adversaries.

The proof of Theorem 3.6 follows by substituting the cAU advantage of the
adversary in Theorem 3.7 with the right hand side of (3.2) in Lemma 3.1 where
n1 = n2 = `.

Theorem 3.7. An upper bound on the advantage of any (t, q, µ)-prf adversary of
G ◦H2 ◦ φ is given by

Advprf
G◦H2◦φ(t, q, µ) ≤ Advprf

G (t, q) +

(
q

2

)
· (Advau

H (µ′))
2
,

where q ≥ 2, µ′ = ρφ(µ) = µ, and Advprf
G (t, q) is assessed against constructive

adversaries. (Note that in the instantiation for 2-lane NMAC, ϕ1, ϕ2 are identity
maps, and hence µ′ = ρφ(µ) = maxM,i |ϕi(M)| = µ.)

Theorem 3.7 follows by applying the result of Lemma 3.8 to upper bound the cAU
advantage term in Lemma 3.2. Bellare’s Lemmas 3.1 and 3.2 each has a constructive
as well as a non-constructive version. The main use of non-constructivity in the
security result of 2-Lane NMAC stems from Lemma 3.8. There is no obvious way to
convert it to the constructive setting.

Lemma 3.8 (Lemma 2 with L=2, [33]). We have

Advau
H2◦φ(µ) ≤ (Advau

H (µ′))
2

where µ′ = ρφ(µ) = µ.

Proof. Let A be a au-adversary attacking H2 ◦φ with the maximum advantage, and
that outputs a pair of messages each at most µ bits. Without loss of generality we
assume that A always outputs a fixed pair of messages M,M ′ with M,M ′ ∈M and
M 6= M ′.
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Remark 3.9. Note that in the definition of AU used in [33], the time taken by the
adversary is not taken into account. This gives an adversary unbounded computa-
tional power and makes the proof non-constructive. The strongest au-adversary for
a function H is one that outputs two messages M,M ′ ∈M that maximizes the num-
ber of keys k ∈ {0, 1}n for which H(k,M) = H(k,M ′). Note that there cannot exist
an adversary with an advantage greater than the one we have described. Therefore,
we can assume that an adversary attacking the AU property of H with maximum
advantage will output a fixed pair of messages M,M ′ with probability 1.

Recall that the DIL functions ϕ1, ϕ2 described in the construction for 2-Lane
NMAC are the identity functions. Therefore

Advau
H2◦φ(µ) = Pr[H(k1, ϕ1(M)) = H(k1, ϕ1(M

′)) ∧H(k2, ϕ2(M)) = H(k2, ϕ2(M
′))

|k1, k2 ← {0, 1}n],

= Pr[H(k1,M) = H(k1,M
′) | k1 ← {0, 1}n ]

· Pr[H(k2,M) = H(k2,M
′) | k2 ← {0, 1}n ] .

Note that Pr[H(k1,M) = H(k1,M
′) | k1 ← {0, 1}n ] ≤ Advau

H (µ). The lemma follows
from this.

3.5 Constructive proof

In this section, we provide a proof of the prf property of 2-Lane NMAC in the con-
structive setting. This is obtained by converting the proof of each result in Section
§3.4 to a constructive proof. We emphasize that all adversaries in this section are
constructive, and that prf-advantages and cAU-advantages are assessed over con-
structive adversaries. Note that the result is similar to Theorem 3.3 obtained for
GNMAC.

Theorem 3.10. We have

Advprf
2-Lane-NMAC(t, q, µ) ≤ Advprf

f (t, q) + q2 · (` · Advprf
f (t, 2) + 2−n−1)

where ` = dµ/me.

The proof of the above theorem follows from using the upper bound for the cAU
advantage of H from Lemma 3.11 in Theorem 3.12. Lemma 3.11 is obtained from
the constructive version of Lemma 3.1 using n1 = n2 = `.
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Lemma 3.11. If f is a PRF, then H, constructed from f via the Merkle-Damg̊ard
iteration, is cAU. More concretely, we have

AdvcAU
H (t, µ) ≤ (2`− 1) · Advprf

f (t, 2) +
1

2n

where ` = dµ/me.

Theorem 3.12. We have

Advprf
G◦H2◦φ(t, q, µ) ≤ Advprf

G (t, q) +

(
q

2

)
· AdvcAU

H (t, µ′)

where q ≥ 2 and µ′ = ρφ(µ) = µ.

Theorem 3.12 is obtained by using the upper bound for the cAU-advantage of H2

from Lemma 3.14 in Lemma 3.13. Lemma 3.13 follows from the constructive version
of Bellare’s Lemma 3.2.

Lemma 3.13. We have

Advprf
G◦H2◦φ(t, q, µ) ≤ Advprf

G (t, q) +

(
q

2

)
· AdvcAU

H2◦φ(t, µ)

where q ≥ 2.

In Lemma 3.14, we lose the square factor in the upper bound for Advau
H2◦φ com-

pared to the corresponding Lemma 3.8 we had in the non-constructive setting1. We
show that it is not possible to obtain the upper bound from Lemma 3.8 in the con-
structive setting, unless the adversary AcAU

H2◦φ satisfies a very strong condition.

Next, we state Lemma 3.14 and provide a proof.

Lemma 3.14. We have

AdvcAU
H2◦φ(t, µ) ≤ AdvcAU

H (t, µ′)

where µ′ = ρφ(µ) = µ.

1Note that [33] was published in Indocrypt 2007, when the version of [5] had all its results in
the non-constructive model. The earliest version of [5] on eprint which has the revised Lemmas in
the constructive model appears on 9th April 2014. Therefore, it is understandable that [33] would
use non-constructivity in their proofs, in accordance with the lemmas in [5].
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Proof. Let B be a (t, µ)-cAU adversary ofH2◦φ such that AdvcAU
H2◦φ(t, µ) = AdvcAU

H2◦φ(B).
In the rest of the proof, M,M ′ will represent messages that are each at most µ bits
long. We have

AdvcAU
H2◦φ(B) =

∑
M,M ′∈M

Pr
[
Hk1(M) = Hk1(M

′) ∧Hk2(M) = Hk2(M
′)
∣∣∣ k1, k2 $←− K

]
· Pr[{M,M ′} ← B ]

=
∑

M,M ′∈M

Pr
[
Hk(M) = Hk(M

′)
∣∣∣ k $←− K

]2
· Pr[{M,M ′} ← B ]

≤
∑

M,M ′∈M

Pr
[
Hk(M) = Hk(M

′)
∣∣∣ k $←− K

]
· Pr[{M,M ′} ← B ]

= AdvcAU
H (B)

≤ AdvcAU
H (t, µ).

This completes the proof.

Continuing the discussion from the above proof, let us use P (M,M ′) to denote

Pr
[
Hk(M) = Hk(M

′)
∣∣∣ k $←− K

]
. For any (t, µ)-cAU adversary B against H2 ◦φ, we

can construct a (t, µ)-cAU adversary A against H that just runs B and outputs the
two messages that B outputs. Then, the cAU advantage of A is given by∑

M,M ′∈M

Pr
[
Hk(M) = Hk(M

′)
∣∣∣ k $←− K

]
· Pr[{M,M ′} ← B ] .

We also have the inequality

EM,M ′ [P
2(M,M ′)] ≥ E2

M,M ′ [P (M,M ′)], (3.4)

where the expectation is taken over the coins of B as it outputs the messages M,M ′.
Therefore

AdvcAU
H2 (t, µ) ≥ AdvcAU

H2 (B) ≥
(
AdvcAU

H (A)
)2

=
(
AdvcAU

H (t, µ)
)2
.

Equality holds if and only if equation 3.4 is tight. This happens if with probability
1 B outputs a pair of messages (M,M ′) ∈ S, where S is a set such that for any
(M1,M

′
1), (M2,M

′
2) ∈ S, we have P (M1,M

′
1) = P (M2,M

′
2). Note that from the

definition of the adversary B, it has the maximum advantage among all adversaries
with the same time and bound on message length. This seems like a strong condition
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that is required to be satisfied by a constructive adversary for any hash function H
and time t. If t = 2µTf , then one cannot expect the adversary to obtain information
about this set S and output the two messages within time t, given any hash function
H.

3.6 Concrete security

To evaluate the security of 2-Lane NMAC, we consider the dominant term in the
upper bound of the prf-advantage in Theorem 3.10 and Theorem 3.6, which are in
the constructive and non-constructive setting respectively. We examine two claims
made by Yasuda in [33], the first regarding the security of NMAC, and the second
regarding the security of L-Lane NMAC, both in the non-constructive model. There
appears to be an error in both cases, even assuming that in the non-constructive
model the fastest prf-attack is brute force; we correct them here.

The first claim is that the security of NMAC is upper bounded by a term of order
O(`q2/2n), obtained from the non-blackbox version of Theorem 3.3. By observation,
the dominating term on the right hand side of the inequality (3.3) is

(
q
2

)
2`·Advprf

h (A2).
One can assume that for a constructive adversary A2 against the prf-property of h
that runs in time t and makes at most two queries to the oracle, the highest advan-
tage is (t/Th)/2

n. This is because for a good compression function h, the assumption
is that the best A2 can do is the following brute force attack. It queries two messages
M1,M2 to the oracle and stores the output X1, X2 respectively. It tries as many keys
K as possible in time t and computes h(K,M1). If for any key K, h(K,M1) = X1, it
computes h(K,M2), and if this equals X2, the adversary outputs 1, else 0. It can be
seen that the advantage in this case is (t/Th)/2

n, where t/Th is the number of keys
tried, and with a probability of 1/2n a tried key is correct. Note that even if the
non-blackbox version of Theorem 3.3 is evaluated against all constructive adversaries
A2 against h, the dominant term in the upper bound must be O(`2q2/2n) by setting
t = O(` · Th) in the brute force attack described above.

The second claim is that L-Lane NMAC has O(`2q2/22n) security. The following
is the theorem on prf security of L-Lane NMAC. We don’t discuss the L-Lane con-
struction in detail in this chapter, however.

Theorem 3.15 ([33]). The upper bound on advantage for any (t, q, µ)-prf adversary
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against L-Lane NMAC is given by

Advprf

L-Lane-NMAC(t, q, µ) ≤ Advprf
f (t, q) + 4q2

(
λ · Advprf

f (t′, 2) + 2−n−1
)2

where λ = max{dµ/m(L− 1)e, dLn/me} and t′ = 4 · dµ/(m(L− 1))e ·Tf . (Note that
for the construction to work, we need m ≥ 2n, which is satisfied in practice).

Assuming that the dominant term is 4q2 · λ2 · (Advprf
f (t′, 2))2, we see that it is of

the order of O(q2`4/22n), and not O(`2q2/22n).

Now we can analyze the security of 2-Lane NMAC under different assumptions. In
Table 3.1, q1 denotes the number of queries up to which Theorem 3.6 for the 2-Lane
NMAC (which is non-constructive) is meaningful, assuming only constructive attacks
to evaluate the term Advprf

f (t′, 2). The quantity q2 is computed similar to q1, but

against all known non-constructive attacks when evaluating Advprf
f (t′, 2). The num-

ber of queries up to which Theorem 3.10 for 2-Lane NMAC (which is constructive) is
meaningful, assuming only constructive adversaries, is denoted by q3. The quantity
q4 is the number of queries up to which the constructive version of Theorem 3.3
for the GNMAC construction is meaningful. The last two columns of Table 3.1 can
be used to compare the actual security benefits offered by 2-Lane NMAC over GN-
MAC. We do not consider the computational cost of using 2-Lane/L-Lane NMAC
over GNMAC. For this, one can refer to the original paper [33].

Table 3.1: Query bounds

Hash function. n µ m ` q1 q2 q3 q4
SHA-1 160 250 512 241 275 239 240 240

SHA-224/SHA-256 256 250 512 241 2171 287 272 272

SHA-384/SHA-512 512 250 1024 240 2429 2216 2158 2158

NIST recommends an upper bound of 264 − 8 · 64 bits for a message input to
HMAC instantiated with SHA256. We make the assumption that a reasonable up-
per bound on the bitlength of a query to HMAC with SHA-256 is 250. To give an
estimate on how large this value is, assuming that a fast implementation of SHA256
requires 1.6 cycles per byte (see [12]) and working with a 4 GHz processor, it would
take 15 hours to print the SHA256 hash output of a 250-bit message. We fix the
same upper bound on the bitlength of messages queried to HMAC instantiated with
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SHA-1 and SHA-512.

Computing q1. Consider Theorem 3.6. For simplicity, we set Tf = 1. Set

Advprf
f (t, q) to be t/2n and Advprf

f (t′, 2) to be 4`/2n, assuming the brute force at-
tack described above to be the fastest constructive attack. This gives

Advprf
2-Lane-NMAC(t, q, µ) ≤ t

2n
+ 25 ·

(
q`2

2n

)2

.

To compute q1, we set the right hand side of the above expression to 1, and make
the assumption that the first term in the above expression is negligibly small in
comparison to the second term when q = q1. For example, from Table 3.1, if SHA256
is used as the hash function, then ` = 250/512 = 241. Assuming t = 2128, we need
q1 � 2106 for the second term to be dominant. To compute q1, set

26 ·
(
q1`

2

2n

)2

= 1

and thus

q1 =
2n−3

`2
.

Computing q2. To compute q2, assume that the fastest non-constructive attack
against the compression function f is the one described by Koblitz and Menezes
[24], which has advantage 1/2n/2, much larger than the brute force attack considered
earlier. Substituting this in Theorem 3.6, we have

Advprf
2-Lane-NMAC(t, q, µ) ≤ t

2n
+ 2 ·

(
q`

2n/2

)2

.

We make the assumption that the first term is negligibly small compared to the
second term in the above expression when q = q2. Setting 2 · (q2l/2n/2)2 = 1 we have

q2 =
2n/2

`
.
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Computing q3. To compute q3, we use Theorem 3.10. Assuming that brute force
is the fastest prf attack, we get

Advprf
2-Lane-NMAC(t, q, µ) ≤ q2`t/2n.

Assuming that each query to the oracle takes one time step, the prf-adversary against
2-Lane-NMAC can make at most t queries. Therefore, q ≤ t. This gives

q3 =

(
2n

`

)1/3

.

Computing q4. Since the constructive theorem for 2-Lane NMAC is the same as
for GNMAC, we have the same upper bound on the number of queries q4 for GNMAC.

One can see from Table 3.1 that the actual security offered by Yasuda’s non-constructive
theorem, i.e. Theorem 3.6 (column q2) is much closer to the security offered by its
constructive version, i.e. Theorem 3.10 (column q3) (which is really the same as the
security offered by GNMAC (q4)), as opposed to what is claimed in the paper (q1).
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Chapter 4

A Round-Optimal Blind Signature
Scheme

In this chapter, we take a closer look at the efficiency claims made in a round-
optimal blind signature scheme by Garg and Gupta [17]. We examine uses of non-
constructivity in the security proofs, and recalculate security parameters and effi-
ciency by evaluating the underlying hard problems against the fastest known non-
constructive attacks, wherever applicable. This results in significantly larger security
parameters and lowered efficiencies than originally claimed.

The security proof of the Garg-Gupta scheme is in the Common Reference String
(CRS) model, which refers to a setup where every party in a cryptographic pro-
tocol has access to a common reference string generated by a trusted party. This
is typically used to eliminate interactions between parties, for example, to create a
non-interactive proof of knowledge system.

The chapter is organized as follows: In §4.1, we define blind signature schemes and
state the two main security properties, i.e. blindness and unforgeability. We describe
the framework of the Garg-Gupta round-optimal blind signature scheme in §4.2. In
§4.3 we describe the hardness assumptions used, and the fastest known constructive
and non-constructive attacks against them. In §4.4, we highlight the use of complex-
ity leveraging and non-constructivity used in the security results for unforgeability
and blindness, respectively. In §4.5 we instantiate the Garg-Gupta scheme as in [17],
and in §4.6 we compute its security parameters and efficiency for the 80-bit and
128-bit security levels.
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4.1 Blind signature schemes

To describe a blind signature scheme simply, it involves two parties, a user and a
signer, where the user wants to get a signature s of some message m from the signer,
who has a secret key sk and a corresponding public key vk. The user does not want
to reveal m to the signer, but needs a signature that verifies under vk; this property
is called blindness. Further, the user must be unable to forge a signature s′ on any
message m′ such that s′ verifies correctly under vk (provided it has not obtained the
signature for m′ from the signer previously) even if the user is allowed to ask for
signatures of a certain number of messages from the signer previously. This property
is referred to as unforgeability. We formally define a blind signature scheme, and
state the two security properties of blindness and unforgeability.

A blind signature scheme can be described in terms of three algorithms which are
all probabilistic polynomial time. However, for the blind signature scheme under
consideration in this chapter, we will assume that the third algorithm, SignVer is
deterministic. In the following, λ denotes a security parameter, and U ,S represent
the user and signer respectively, which are interactive algorithms. It is assumed that
if either of U ,S aborts, it outputs the null string ⊥.

• KeyGen(1λ) → (sk, vk). sk is the secret key known only to S, and vk is the
public key.

• SignGen(sk,m) → σ. m represents the message which has to be signed, and
σ is its signature. SignGen is an interactive protocol between U and S, where
U has input m, vk and outputs either σ or aborts. S has input sk and either
generates no output, or aborts.

• SignVer(vk,m, σ) → {0, 1}. If the output is 1, it means that the signature σ
verified correctly for the message m, and 0 means that the verification failed.

4.1.1 Completeness

For perfect completeness, the following should hold true:

Pr
[
SignVer(vk,m, σ) = 1

∣∣KeyGen(1λ)→ (sk, vk); SignGen(sk,m)→ σ
]

= 1

for all messages m.
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4.1.2 Blindness

The signer is assumed to be adversarial, and tries to learn something about the mes-
sages that the user wants to get signed. Further, since the signer is also responsible
for generating the keys in a blind signature scheme, we assume that it can generate
keys adversarially. Let A be a PPT adversary that can operate in three modes: gen-
erate, protocol and guess. We can describe the game played between the adversary
and the user in three steps.

1. In the first step, A operating in the “generate” mode takes as input a security
parameter λ and outputs two messages m0,m1, a public key vk, a secret key
sk, and a string st1.

2. In the second step, the user with public key vk chooses a bit b at random and
executes the blind signature protocol to sign the messages mb,mb in that order,
with A operating in the “protocol” mode acting as the signer. A’s initial input
at the start of this step is st1, sk. If in any of the signing protocols for either of
the messages m0,m1 the user aborts, the user outputs ⊥ for the other message
too, even if it generates a signature for it successfully without aborting. Let
the user’s output at the end of the first execution of the signing protocol be
denoted as σ0, and the second one as σ1. Thus, the user’s output at the end of
this step is (σ0, σ1), where either both of σ0, σ1 are ⊥, or neither is ⊥ and each
is a successfully generated signature. The adversary outputs a string st2.

3. In the third step, the adversary, operating in the “guess” mode, takes as input
st2, (σ0, σ1) and outputs a bit b′.

The advantage of A is defined to be

AdvBlindness
A,BS (λ) = |Pr[b′ = 1 | b = 1 ]− Pr[b′ = 1 | b = 0 ] |.

If the advantage is negligibly small in λ for all probabilistic polynomial time adver-
saries A, then the scheme is said to satisfy the blindness property.

4.1.3 Unforgeability

In this case, the user acts as the adversary A. The game is as follows.

1. KeyGen(1λ) is run to generate (sk, vk), where vk is public and only the signer
S is given access to sk.
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2. A interacts with S(sk) in at most k executions of the signing protocol. If A
outputs distinct messages m1, . . . ,mk,mk+1 and their corresponding signatures
σ1, . . . , σk+1 such that SignVer(vk,mi, σi) = 1 for all 1 ≤ i ≤ k + 1, then A is
said to succeed.

The advantage of A in the unforgeability game, denoted by Advunforge
A,BS (λ), is defined

as the probability that A succeeds in the above game. For a fixed value of k, the
blind signature scheme is said to be unforgeable if the advantage is negligible in the
security parameter λ for all probabilistic polynomial time adversaries A.

4.2 The Garg-Gupta blind signature scheme

We give the framework of the Garg-Gupta blind signature scheme [17] next. It uses
the following cryptographic components.

1. A group based commitment scheme ComG. This is a commitment scheme where
the message is an element in a group G and the commitment is comprised of
group elements in G. The scheme must be computationally hiding, by which
we mean it is computationally hard for any adversary to distinguish between
commitments of two messages, even if it is allowed to choose the messages. It
must also be perfectly binding, by which we mean that a commitment must
open to a unique message.

2. A structure preserving signature scheme on groups. It consists of three algo-
rithms: Key generation SPKeyGen(1λ)→ (skSP , vkSP ), where skSP is the secret
key and vkSP is the public key; Signing SPSign(skSP ,m) → s; and signature
verification SPVer(vkSP ,m, s) → {0, 1}. Public keys, messages and signatures
are group elements, and verification involves evaluating pairing product equa-
tions.

3. A 2-CRS NIZK (2-common reference string non-interactive zero knowledge
proof ) on groups. Let R be an efficiently computable binary relation, and let
(x,w) ∈ R. We shall refer to x as the statement and w as the corresponding
witness. The 2-CRS NIZK consists of the following components.

• A PPT crs generator K(1λ) → (crs, τ), where crs represents a common
reference string and τ is called the extraction key.
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• Two PPT deterministic algorithms Shift, Shift−1 that take a crs as input,
and output a “shifted” crs.

• A PPT prover P . Let K(1λ) → (crs, τ). P takes as input one of
{crs, Shift(crs), Shift−1(crs)} denoted by crs′, a proof statement x, and a
witness w, and outputs a proof π.

• A PPT verifier V . Let K(1λ) → (crs, τ). V takes as input one of
{crs, Shift(crs), Shift−1(crs)} denoted by crs′, a proof statement x, and a
proof π. The verifier V(crs′, x, π) outputs 1 or 0, which corresponds to the
case where it accepts or rejects the proof π, respectively.

• A PPT extractor ε that takes as input crs, the extraction key τ , a state-
ment x, and a proof π. It produces a witness w ← ε(crs, τ, x, π) such that
(x,w) ∈ R.

The 2-CRS NIZK must satisfy the following properties

• Perfect completeness. If a prover produces a proof honestly, then the
verifier must accept it. That is,

Pr[V(crs, x, π) = 1 | P(crs, x, w)→ π ] = 1,

where crs can be the output of either K, Shift ◦K or Shift−1 ◦K.

• Perfect soundness. For a crs crs← K(1λ), a statement x, and a proof
π such that V(crs, x, π) = 1, there must exist a witness w such that
(x,w) ∈ R. Perfect knowledge extraction implies perfect soundness.

• Perfect knowledge extraction. There must exist an efficient knowledge
extractor ε that can extract the witness from a zero-knowledge proof that
verifies correctly under a crs generated from K. In other words, for any
statement x, crs ← K(1λ), and proof π such that V(crs, x, π) = 1, we
require

Pr[(x, ε(crs, τ, x, π)) ∈ R ] = 1.

• Perfect zero-knowledge. It must be computationally hard to extract
any information about the witness used in a proof, from the proof. We
do not describe this property formally here since it is not required for our
discussion. It is enough to note that this property must hold under the
shifted crs’s, i.e. Shift(crs) and Shift−1(crs) where crs← K(1λ).
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• CRS-indistinguishability. Informally, this property requires that the
following two distributions be computationally indistinguishable : (crs′, crs)
and (crs, crs′′), where crs← K(1λ), crs′ = Shift−1(crs) and crs′′ = Shift(crs).

This completes the description of the cryptographic components. We describe the
framework of the Garg-Gupta scheme next.

1. Key generation:

• Let λ be a security parameter. Execute a pairing generation algorithm
G(1λ) to obtain (n,G, g,GT , e) where G = 〈g〉 and GT are groups of prime
order n, and e : G × G → GT is a symmetric bilinear pairing. Select
0 < q < n. All algorithms described in this protocol take (n,G, g,GT , e)
as implicit input.

• Execute SPKeyGen(1λ)→ (skSP , vkSP ).

• Sample (crs1, τ)← K(1λ), and its shift crs2 ← Shift(crs1).

• Set vk = (vkSP , crs1, crs2, q) and sk = (skSP , τ).

2. Signing protocol: The user U wants to get a message m ∈ G signed by the
signer S.

(a) Round 1 (User):

• Abort if Shift(crs1) 6= crs2.

• ComG(m; r)→ mblind.

• Sample a uniformly random c such that 0 < c < q, and set C = gc.

• Generate a proof π ← P(crs1, x, c) of the statement x:

There exists c, 0 < c < q, such that gc = C.

• Send (mblind, C, π) to S.

(b) Round 2 (Signer):

• Verify that V(crs1, x, π) = 1, else abort.

• Extract c = ε(crs1, τ, x, π).

• Sample π′ ← P(crs2, x, c).

• Generate σSP ← SPSign(skSP ,mblind).

• Send (σSP , π
′) to U .
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(c) Round 3 (User):

• Check if V(crs2, x, π
′) = 1 and if SPVer(vkSP ,mblind, σSP ) = 1. If

either is false then abort.

• Let Φ be the following statement:

∃(mblind, r, σSP )|mblind = ComG(m; r) ∧ SPVer(vkSP ,mblind, σSP ) = 1.

U outputs the signature on m as σ, where σ is a proof of Φ under
crs2.

3. Verification: To verify a signed message (m,σ), check if V(crs2,Φ, σ) = 1.

4.3 Hardness assumptions

In this section, we describe various hardness assumptions that need to be examined
for the blind signature scheme. To evaluate the assumptions, we consider constructive
as well as non-constructive attacks for each problem. First, we describe a suitable
choice of an elliptic curve to instantiate the symmetric bilinear pairing.

4.3.1 Symmetric bilinear pairings

Let G = 〈g〉 and GT be groups of prime order n. A symmetric bilinear pairing

e : G×G→ GT

is a non-degenerate bilinear pairing. Such a pairing is cryptographically useful if
e and the group operations of G,GT are efficiently computable, and the discrete
logarithm problem in G is intractable. Since the pairing e can be used to efficiently
reduce the discrete logarithm problem in G to the discrete logarithm problem in GT ,
we also require that the latter problem be intractable. The known constructions for
cryptographically useful symmetric bilinear pairings arise from supersingular elliptic
curves over finite fields.

Let Fq be a finite field of characteristic p, and let E be a supersingular elliptic
curve defined over Fq (so p | (q + 1−#E(Fq)). Let n be a prime divisor of #E(Fq)
with n2 - #E(Fq) and gcd(n, q) = 1, and let G be the order-n subgroup of E(Fq).
The embedding degree of E (with respect to G) is the smallest positive integer k
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such that n | (qk − 1). The Weil and Tate pairings can be used to construct a
symmetric bilinear pairing e : G × G → GT , where GT is the order-n subgroup of
the multiplicative group F∗

qk
of the extension field Fqk .

Supersingular elliptic curves having embedding degrees 2, 4 and 6, corresponding
to the cases q = p, q = 2m and q = 3m, respectively, have been widely implemented.
However, after the discovery of quasi-polynomial time algorithms for computing dis-
crete logarithms problems in finite fields of small characteristic (see [4], [18], [2]), the
elliptic curves of embedding degrees 4 and 6 are considered insecure for cryptographic
applications. Thus, in the remainder of this chapter we will instantiate symmetric
bilinear pairings using supersingular elliptic curves of embedding degree 2.

The following is one construction for these curves (see [21]). Select a prime n,
and a prime p = nh− 1 where 4 | h and 3 - h. Consider the elliptic curve

E/Fp : Y 2 = X3 − 3X.

Then #E(Fp) = p+1 = nh, and so E is a supersingular elliptic curve with embedding
degree k = 2. The Weil and Tate pairings yield a symmetric bilinear pairing e :
G × G → GT , where G is the order-n subgroup of E(Fp) and GT is the order-n
subgroup of F∗p2 . Observe that an element in G is a point in E(Fp), and so can be
represented using two elements of Fp, or a single element of Fp (plus a single bit) if
point compression is used. Note also that the discrete logarithm problem in G can
be solved using Pollard’s rho algorithm in time approximately n1/2 [27], or by using
the number field sieve (NFS) to solve the discrete logarithm problem in F∗p2 in time

Lp2 [
1
3
, 1.923] [3].

4.3.2 Discrete logarithm in a symmetric bilinear group

Definition 4.1 (Discrete logarithm in a symmetric bilinear group assumption). Let
G = 〈g〉 be a symmetric bilinear group of prime order n and security parameter λ.
For a PPT algorithm A and the group G, the following probability should be negligible
in the security parameter λ:

Advdlog
G,A(1λ) = Pr

[
c = c′

∣∣∣ c $←− Zn; C = gc; c′ ← A(C)
]
.

Note that G and g are known to the attacker before it sees C. In the non-
constructive setting, the attacker can perform unbounded precomputation using g,
and this may offer faster run times as compared to attacks in the constructive setting.
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First, we assess the fastest known constructive attacks for discrete logarithms in
G. As noted in §4.3.1, the discrete logarithm problem in G can be solved using
Pollard’s rho algorithm in time approximately n1/2 and minimal space requirements
[27], or by using the number field sieve (NFS) to solve the discrete logarithm problem
in F∗p2 in time Lp2 [

1
3
, 1.923]. For the former attack to be infeasible, n should be at

least 160 bits for the 80-bit security level, and 256 bits for the 128-bit security level.
For the latter attack to be infeasible, p should be at least 512 bits for the 80-bit
security level, and 1536 bits for the 128-bit security level.

Next, we consider two non-constructive attacks on the discrete logarithm problem
in G. First, we mention an attack due to Bernstein and Lange [7] on the discrete
logarithm problem over the NIST P-256 elliptic curve. Let P be a generator of the
NIST P-256 curve, an elliptic curve group of a 256-bit prime order n over a 256-bit
prime field Fp. The discrete logarithm problem is the following: Given a point Q
on the curve, find the unique integer k modulo n such that Q = kP . Bernstein and
Lange’s attack requires approximately 2n1/3 curve additions, and succeeds with a
considerable probability of at least 0.23. The space requirements are n1/3 “distin-
guished” elliptic curve points, but the precomputation to find them is of the order
of n2/3 curve additions. The Bernstein-Lange attack is not restricted to the P-256
curve, which was only used for concreteness and practical relevance. It can also be
applied to compute discrete logarithms in the group G with similar computational
and space requirements.

The second non-constructive attack is the speedup for NFS with precomputation
on Fp due to Commeine et al. [10]. We make the heuristic assumption that these
speedups apply for discrete logarithms in the finite field Fp2 as well. Therefore, the
running time of this attack on Fp2 is Lp2 [1/3, 3

1/3], with a precomputation table of
size Lp2 [1/3, .951].

4.3.3 Discrete logarithm in an interval

Definition 4.2 (Discrete logarithm in an interval (DLOG-q) assumption). Let G =
〈g〉 be a symmetric bilinear group of prime order n and security parameter λ, and
let 0 < q < n. The DLOG-q assumption is that for all PPT adversaries A, the
advantage

Advdlog
A,G,q(λ) = Pr

[
c = c′

∣∣∣ c $←− Zq; C = gc; c′ ← A(C)
]
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is negligible in the security parameter λ.

To determine the fastest known constructive attack on DLOG-q in G, we con-
sider two attacks. The first one is the “kangaroo method” due to Pollard [27]. The
kangaroo method has expected running time is about 2n1/2 group operations (ignor-
ing optimizations in the constant factor), and requires minimal storage. The second
attack is the number field sieve for computing discrete logarithms in Fp2 , and has
running time Lp2 [1/3, 1.923].

We consider the following two non-constructive attacks against discrete logarithm
in an interval in G: computing discrete logarithms in Fp2 using the number field
sieve with precomputation having running time Lp2 [1/3, 3

1/3] (see §4.3.2), and Pol-
lard’s kangaroo method with precomputation, requiring approximately n1/3 elliptic
curve additions and a storage of n1/3 precomputed “distinguished points”. The pre-
computation effort is of the order of n2/3 curve additions. We describe the latter
attack in detail next.

Procedure. Let S = {s1, . . . , sr} be a set of jump distances, and J = {gs1 , . . . , gsr}
be the set of jumps. We require the mean of the set S to be α = q2/3. A walk
starting at the point x0 ∈ G is defined as a sequence of points xi, i ≥ 0, such
that xi+1 = xig

sd(xi) where d : G → {1, . . . , r}. A step is defined to be the process
of moving from xi to xi+1 for some i ≥ 0. The function d should be chosen such
that the sizes of the preimages of i, for each 1 ≤ i ≤ r, are roughly equal, and
the function is efficiently computable. An analysis of the choice of parameters for
Pollard’s Kangaroo method is presented in [31]. Based on these considerations, we
choose r = 20, and the jump distances in S to be randomly chosen between 1 and
2α with gcd(s1, . . . , sr) = 1. The jumps can be precomputed and stored. We define
the “distance” between two group elements, gx and gy, as |x − y| assuming that
0 ≤ x, y < n.

Define a distinguishing criterion such that an element in the group is distinguished
with probability 1/(βq1/3) where β is a constant (we shall choose an appropriate
value of β later on). This is typically done using an easily-verifiable property of
the representation of a group element, such as checking if some x bits of the binary
representation of the group element are all zeroes, and marking it as distinguished if
true. In the above example, a fraction of 1/2x points are distinguished. The purpose
of using distinguishing points is to offer a time-memory trade-off.

In the precomputation phase, start m = q1/3 walks (tame kangaroos) at the points
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gq/2+iv, 0 ≤ i ≤ m − 1, and keep track of the discrete logarithm of the current po-
sition of each walk. Here, v is a constant chosen to be α/m. Stop a walk if it hits
a distinguished point. Note that the distance between the “first” and “last” walk is
(m− 1) · v, which is approximately q2/3. If any of the walks reaches a distinguished
point before βq1/3 steps, restart the walk from a new point a small distance away
from the previous and repeat the process. It is unfavourable for our case if two of
these walks collide at the same distinguished point (one can think of this situation as
one where no “new” information is provided by the colliding walk). Therefore, repeat
one of the walks starting from a point slightly displaced from its original starting
point, until a different distinguished point is obtained. Store the m distinguished
points, and their discrete logarithms in a table.

In the online phase, after receiving C = gc, launch one wild kangaroo from C and
perform a walk for at most q/2α + (β + 1)q1/3 steps, recording only the distance
between C and the current point in the walk. Record the point reached after the
(q/2α)th step (call it x), and the discrete logarithm of C−1x. At each step, check if a
distinguished point is obtained, and if it coincides with a distinguished point in the
precomputed table. Suppose that the wild kangaroo hits a distinguished point Cgb

which is also stored in the table as (Cgb, a); then C = ga−b and (a− b) mod n is the
discrete logarithm of C. If the walk fails to reach a distinguished point in the table,
restart the wild kangaroo at a small distance from the (q/2α)th step.

Analysis. At the start of the online phase, the wild kangaroo can be anywhere
between g0 and gq−1. Once it covers q/2α steps, assuming an average distance of
α for each step, it is somewhere betwen gq/2 and g3q/2. The starting points of the
precomputed walks are between gq/2 and gq/2+q

2/3
. Therefore, once the wild kangaroo

covers q/2α steps, we can assume that it is in the region of the precomputed walks.
The probability that in one step in this region, the wild kangaroo collides with one
of the m walks in the precomputation is m/α = q1/3/q2/3 = 1/q1/3. The probability
that there is at least one collision in the next q1/3 steps of the wild kangaroo with
any of the precomputed walks is roughly

1−
(

1− 1

q1/3

)q1/3
≈ 1− e−1.

If there is a collision between a precomputed walk and a wild kangaroo, both will
hit the same distinguished point, which can be detected. We have to ensure that
after the wild kangaroo has completed q/2α + q1/3 steps, it is still in the region of
precomputed walks for the above mentioned collision to occur. For this, we need
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each precomputed walk to travel at least q1/3 steps before it hits a distinguished
point. Note that after the wild kangaroo has taken q/2α steps, it is at most q/2α
steps from gq, and hence at most q/α steps from gq/2, the starting point of the “first”
precomputed walk corresponding to i = 0. Therefore, we need each precomputed
walk to cover at least q/α + q1/3 steps before a distinguished point is reached. We
need β to satisfy the relation βq1/3 = q/α + q1/3 = 2q1/3, whence β = 2. Once a
collision between the wild kangaroo and a precomputed walk has ocurred, the wild
kangaroo needs to travel at most βq1/3 = 2q1/3 steps to hit a distinguished point,
which should match with some entry in the table. Therefore, the total running time
of the wild kangaroo in terms of steps is q/2α + q1/3 + βq1/3, where the collision
occurs with probability 1− e−1. The expected running time is then

q1/3
(

1

2
+ 3

1

1− e−1

)
≈ 5q1/3.

4.3.4 Decision linear problem

Definition 4.3 (Decision Linear Assumption). Let G = 〈g〉 be a bilinear group of
prime order n with security parameter λ. For a non-uniform PPT adversary A, its
advantage AdvDLIN

A,G (λ) is defined as:

AdvDLIN
A,G (λ) = Pr

b = b′

∣∣∣∣∣∣∣∣
g1, g2

$←− G;x, y, z
$←− Zn

b
$←− {0, 1}; if b=0, set W = gx+y else set W = gz

b′ ← A(g1, g2, g
x
1 , g

y
2 ,W )

− 1.

The DLIN assumption is said to hold for the bilinear group G if for all PPT non-
uniform algorithms A, AdvDLIN

A,G (λ) is negligible in λ. More generally we say that the
T-DLIN assumption holds in the group G if for every T · poly(λ) time non-uniform
algorithm A, AdvDLIN

A,G (λ) is negligible in λ.

It can be shown that if one can solve the DLIN problem in G, then one can
solve the decisional Diffie-Hellman problem (DDH) in G, implying that DLIN is at
least as hard as DDH. Boneh et al. [8] proved that a generic algorithm that solves
the DLIN problem has a lower bound complexity of O(n1/2) for a generic bilinear
group of order n. The fastest known attack to solve DLIN in G is to solve discrete
logs in G. This is done by computing discrete logs of g1, g

x
1 , g2 with base g, thereby

computing x, Wg−x, and determining if (Wg−x)logg g2 = gy2 . Therefore, the fastest
known non-constructive attack for the DLIN problem is the fastest non-constructive
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attack for computing discrete logs in G. Any generic algorithm to solve the latter
problem has a lower bound of n1/3, as was shown recently in [11].

4.4 Security proofs

In this section, we will highlight the uses of non-constructivity and complexity lever-
aging used in the two proofs of blindness and unforgeability, respectively.

4.4.1 Proof of blindness

Theorem 4.4 (Theorem 3, [17]). For any PPT malicious signer S∗ that plays the
blindness game of §4.1.2, the following holds:

AdvBlindness
S∗,BS (λ) < 2 · Advhide

A,ComG
(λ) + Advdlog

B,G,q(λ)

where A is an adversary against the non-uniform hiding property of ComG such that
T(A) = T(S∗) + poly(λ), and B is an adversary against the non-uniform discrete
log problem in G when exponents are chosen uniformly randomly in Zq such that
T(B) = T(S∗) + poly(λ).

The use of non-uniformity in Theorem 4.4 stems from the proof of Lemma 4.5.
We describe the proof of Theorem 4.4 leading up to Lemma 4.5, providing only
enough details to understand the setting in which Lemma 4.5 is relevant. This proof
uses a sequence of games, starting from the original blindness game Game0 between
the challenger U (honest user) and the adversary S∗ (malicious signer). For our pur-
pose, we will need to consider what is denoted as Game1 in [17] and is described below.

Game1. S∗ outputs a public key vk and challenge messages m0,m1. The challenger
may run in unbounded time to test if crs2 is in the range of K. If the challenger
concludes that crs2 is in the range of K, it can compute and store an extraction key
τ corresponding to crs2. S∗ expects the incoming blind messages mblind,b,mblind,1−b
from U corresponding to the messages mb,m1−b, where b is a random bit. After re-
ceiving the two messages, S∗ outputs its responses to the challenger. The challenger
U outputs the signatures on m0,m1 obtained from the two executions of the signing
protocol with the adversary S∗. If the following two events occur (i) crs2 is in the
range of K and (ii) the first instance of the signing protocol completes successfully,
the challenger U additionally outputs DL-Abort. The adversary S∗ then outputs a
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bit b∗. If b = b∗, then the adversary is said to succeed, and AdvGame1
A (λ) is defined as

|2 Pr[b = b∗ ]− 1|.

Game0 and Game1 are identical, except when the challenger outputs DL-Abort. Thus,
they are identical-until-DL-Abort-is-set, and

|Pr[A succeeds in Game0 ]− Pr[A succeeds in Game1 ] |
≤ Pr[U outputs DL-Abort in Game1 ] .

(4.1)

The expression on the left hand side of (4.1) is 1/2 · |AdvGame0
A (λ) − AdvGame1

A (λ)|.
Note that AdvGame0

A (λ) = AdvBlindness
A,BS (λ). Therefore, we have

AdvBlindness
A,BS (λ) ≤ AdvGame1

A (λ) + Pr[U outputs DL-Abort in Game1 ] .

We are concerned with the probability that U outputs DL-Abort. This is given
by the following lemma.

Lemma 4.5 (Lemma 1, [17]). The probability of DL-Abort happening is bounded
above by Advdlog

B,G,q(λ) with T(B) = T(S∗) + poly(λ), where B is an adversary against
the non-uniform discrete log problem in G when exponents are chosen uniformly at
random from Zq.

The proof of Lemma 4.5 uses the following argument. Using an adversary S∗ that
makes the challenger output DL-Abort in Game1, one can “construct” a non-uniform
adversary B that solves the discrete logarithm in an interval problem in G, where
the exponent is restricted to q. The adversary B in the proof of Lemma 4.5 uses
unbounded precomputation, and a polynomial sized advice string. We explain the
use of non-constructivity in B next.

The adversary B participates in Game1 as the challenger against S∗. For an ad-
versary S∗ there exist coins c such that, upon running S∗ with these coins, the
challenger in Game1 outputs DL-Abort with the maximum probability. Let B be a
non-uniform adversary, which for an adversary S∗, obtains the aforementioned coins
c as an advice string and hard codes S∗ with these coins. Further, B upon obtaining
the public key vk from S∗, executes in unbounded time to test if crs2 is in the range
of K or not. Therefore, the adversary B is non-uniform and non-constructive.

4.4.2 Proof of unforgeability

Suppose that A is an adversary for problem A, and B is an adversary for problem
B constructed from A using a reduction from B to A. Complexity leveraging is
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the technique where the running time of B so constructed is much larger than the
running time of A. Since B must now be hard for adversaries that have much
larger running times, this technique is often not desirable in a security proof, and
authors try to minimize or eliminate the need for complexity leveraging. The Garg-
Gupta protocol is more efficient compared to previous constructions of round-optimal
blind signature schemes in the standard model due to its reduced use of complexity
leveraging. We describe the use of complexity leveraging in [17], which appears in
the proof of unforgeability.

Theorem 4.6 (Theorem 1, [17]). For any PPT malicious user U∗ for the unforge-
ability game against the blind signature scheme, the following holds

Advunforge
U∗,BS (λ) ≤ Advcrs-distinguish

B (λ) + Advunforge

Û∗,SPSign
(λ) (4.2)

where B is an adversary against the CRS indistinguishability property of the 2-CRS
NIZK proof system with run time T (B) = k · T dlog

G,q + T (U∗) + poly(λ) and Û∗ is an
adversary against the unforgeability of the underlying structure preserving signature
scheme such that T (Û∗) = k ·T dlog

G,q +T (U∗)+poly(λ). Also, U∗ and Û∗ make at most
k signing queries.

We now describe the use of complexity leveraging in the proof of Theorem 4.6.

Consider the unforgeability game for the blind signature scheme described in §4.1.3,
and denote it as Game0. The signer S is the challenger, and the user U∗ is the
malicious adversary. We can modify Game0 to obtain Game1, where the challenger
extracts the witness c of the statement “There exists c, 0 < c < q, such that gc = C”
from the proof π by computing the discrete logarithm of C instead of using the ex-
tractor ε. If this value is greater than q, it aborts. The challenger requires time T dlog

G,q
for this step. Since the 2-CRS NIZK proof π used with crs1 is perfectly sound, the
value c computed by the challenger must equal the value otherwise obtained using
the knowledge extractor ε. Thus, U∗ sees no difference between Game0 and Game1.

We can modify Game1 to obtain Game2, where the challenger generates crs1 and
crs2 in the opposite way, i.e. crs2 ← K(1λ), and crs1 = Shift−1(crs2). From the crs-
indistinguishability property of the 2-CRS NIZK, it is hard to distinguish between
(crs1, crs2) and (crs′1, crs

′
2), where crs′1 ← K(1λ) and crs′2 = Shift(crs′1) (the way crs’s

are generated in the blind signature scheme). Any adversary U∗ that distinguishes
between Game1 and Game2 can be used to construct an adversary B that runs in time
at least k ·T dlog

G,q +T (U∗), and that distinguishes between the two crs pairs mentioned
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above. (B does this by running as the challenger in the distinguishing game between
Game1 and Game2, and setting (crs1, crs2) as the challenge pair that it receives in
the crs-distinguishing game.) This is one use of complexity leveraging in the proof
of unforgeability, as the adversary B in the reduction must solve DLOG-q multiple
times (at most the query bound k of U∗).

Next, it is shown that any adversary U∗ that succeeds in Game2 can be used to
construct an adversary Û∗ that outputs an existential-forgery for the underlying
structure preserving signature scheme. Û∗ does this by running as the challenger in
Game2. Since the challenger in Game2 must solve at most k instances of DLOG-q,
the running time of Û∗ must be k · T dlog

G,q + T (U∗) in addition to the time taken for
the remainder of the reduction.

4.5 Instantiating the Garg-Gupta scheme

In this section, we will describe the instantiations used in [17] for each component of
the framework of the GG scheme provided in §4.2.

• A symmetric bilinear pairing e : G×G→ GT , where G = 〈g〉 and GT are
groups of order n. This is instantiated using a suitable elliptic curve E(Fp) and
the Weil/Tate pairing, as described in §4.3.1.

• Commitment scheme on groups. The commitment scheme ComG : G ×
Z4
n → G6 is defined as

ComG(m; a, b, x, y) = (g, ga, gb, gax, gby,m · gx+y).

To generate a commitment on a message m, choose a, b, x, y
$←− Z4

n and out-
put ComG(m; a, b, x, y). To reveal the commitment, output (m, a, b, x, y). The
scheme is computationally hiding under the DLIN assumption, and perfectly
binding.

• Structure preserving signature scheme. A constant size, structure pre-
serving signature scheme SIG1 instantiated under the DLIN assumption, by
Chase et al. [1] is used. The scheme employs the symmetric bilinear pairing
e. If the message contains k elements of G, the public key consists of 2k + 25
elements of G, the signature is comprised of 17 elements of G, and verification
involves evaluating 9 pairing product equations.
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• 2-CRS NIZK proofs on groups. This is instantiated using Groth-Sahai
(GS) NIZKs [19]. GS NIZKs are used to provide proofs of knowledge for certain
kinds of equations. Before describing the type of statements that allow a GS
NIZK, we describe its ingredients.

– A crs which is sampled from one of two distributions, depending on
whether the proof is in the binding mode or hiding mode. If the crs
is binding, then there is also an extraction key τ , and a PPT knowledge
extractor ε. In particular, if the crs in the GS setup is a DLIN tuple,
it is in the binding mode, and in this mode, GS satisfies perfect knowl-
edge extraction. If the crs in the GS setup is a non-DLIN tuple, wherein
crs = (g, ga, gb, gax, gby, gz) with z 6= x+y, then the GS setup is in the hid-
ing mode. In this mode, the perfect zero knowledge property is satisfied.
Both modes support perfect completeness.

– A prover P and a verifier V which are PPT, and operate in both the
modes just described.

A 2-CRS NIZK can be constructed from a GS NIZK in the following way

– For the prover, verifier, and knowledge extractor of the 2-CRS NIZK, use
the corresponding algorithms available for GS NIZK.

– Set the crs generator to output a DLIN tuple:

K(1λ)→ crs = (g, ga, gb, gax, gby, gx+y).

The extraction key τ is (a, b, x, y). Note that under this crs, the GS NIZK
elements P ,V , ε operate in the binding mode.

– Set

Shift(crs)→ (g, g1, g2, g
x
1 , g

y
2 , g

x+y+1)

and

Shift−1(crs)→ (g, g1, g2, g
x
1 , g

y
2 , g

x+y−1).

Note that both the shifted crs’s are non-DLIN tuples, and hence the GS
NIZK operates in the hiding mode.

A GS NIZK is used to provide proof of knowledge of statements that are pairing
product equations, multiscalar multiplication equations and quadratic equations.
However, we also need to provide a proof of knowledge of a different type of
equation called a range equation, in the protocol.
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1. Pairing product equations. A pairing product equation (PPE) is of
the following form, where X1, . . . , Xm ∈ G are variables, Ai ∈ G and
γ1,j ∈ Zn are constants:

m∏
i=1

e(Ai, Xi)

m,m∏
i=1,j≥i

e(Xi, Xj)
γi,j = 1.

2. Multiscalar multiplication equations. Let X1, . . . , Xm ∈ G and
y1, . . . , ym ∈ {0, 1} be variables. The equation must be of the form

m∏
i=1

Ayii

t∏
i=1

Xbi
i

t∏
i=1

m∏
j=1

X
yjγi,j
i = τ,

where Ai ∈ G, bi, γi,j ∈ Zp and τ ∈ G are constants.

3. Quadratic equations over Zn. Let y1, . . . , ym be variables in Zn. Let
ai, γi,j and t, shown in the equation below, be constants in Zn. The
quadratic equation must be of the following form

m∑
i=1

aiyi +
∑

1≤i 6=j≤m

γi,jyiyj = t.

4. Range equation. Let c ∈ Zn and C ∈ G be variables. Let q ∈ Zn be a
constant. The equation must be of the form

0 < c < q ∧ gc = C.

For any 0 < c < q, let d = blog2 qc + 1, and let x0, . . . , xd−1 be the bit
representation of c. We can write the range equation in the following way:

d−1∏
i=0

gxii = C,

xi(1− xi) = 0, where 0 ≤ i ≤ d− 1,

where x0, . . . , xd−1 are variables in Zn, C and gi = g2
i

are constants in
G. This is a combination of a multiscalar multiplication equation and
quadratic equations, for which it is known how to construct GS-NIZK.

From Table 4 in [19], a GS-NIZK proof of a statement containing m variables,
each either in Zn or G, ` pairing product equations/multiscalar multiplication
equations, is comprised of 3m+ 9` group elements of G.
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4.6 Concrete security

In this section, we will discuss some concerns with the selection of security parame-
ters for the Garg-Gupta scheme as performed in [17]. The parameters are computed
using Theorems 4.4 and 4.6 on blindness and unforgeability respectively, and effi-
ciency is measured in terms of public key size, signature size, and communication
size. We recalculate parameters and efficiency for the 80-bit and 128-bit security
levels, taking into consideration the aforementioned concerns.

The security parameters of a scheme are selected using a reductionist security proof
in the following way. A typical reduction uses an attacker against the scheme that
takes time t and succeeds with probability ε, to construct an attacker for the un-
derlying hard problem A that takes time t′ and succeeds with probability ε′. If the
hypothesis of the security theorem is that A is (t′, ε′)-hard, then it implies that the
scheme is (t, ε)-secure. Parameters are then chosen for the scheme assuming that
the hypothesis is true. Therefore, it becomes necessary to assess the hardness of
the underlying problem A. If the reduction is non-constructive, i.e., there exists (in
the mathematical sense) an attacker for A but there is no efficient way known to
construct it, then the hypothesis must hold against all non-constructive adversaries,
making it a stronger assumption. Non-constructive attacks against commonly used
hard problems in cryptography are not as well studied as constructive attacks, mak-
ing it difficult to base our confidence on such strong hypotheses. Indeed, in practice
for any cryptographic problem one is mostly concerned with attacks that can actually
be constructed, as opposed to fast attacks that exist but cannot be found efficiently.

There has been some interest recently in studying non-constructive attacks and their
implications to provable security including the non-contructive attack on pseudoran-
dom functions by Koblitz and Menezes [24], non-constructive attacks on AES-128,
NIST P-256, DSA-3072 and RSA-3072 by Bernstein and Lange [7], and recent work
by Corrigan-Gibbs and Kogan [11] on lower bounds for generic discrete logarithm
attacks with precomputation. It was shown in [11] that any generic algorithm for the
discrete logarithm problem in a group of order N that allows unbounded preprocess-
ing, uses an S-bit advice string, runs in online time T , and succeeds with probability
ε, must satisfy ST 2 = Ω̃(εN). The Bernstein-Lange attack with T = N1/3 and
S = N1/3 matches this lower bound. A faster attack in any group would require one
to exploit the group representation.

Returning to the Garg-Gupta scheme, we have two main objections to their analysis
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of security parameters. The first is that the authors assume the hypothesis of Corol-
lary 4.7 holds in the constructive setting, whereas the reduction in their proof makes
use of non-constructive adversaries. They evaluate the underlying hard problems,
DLIN and DLOG-q, with respect to constructive attacks only. As seen in §4.3, there
exist much faster non-constructive attacks for the two problems. The result is that
they assume that their theorem is stronger than it actually is, and obtain smaller
security parameters.

The second issue is their treatment of the order-n group G as a generic group. Since
it is a symmetric bilinear group, it is implemented as a subgroup of a suitably chosen
elliptic curve E/Fp. Therefore, there are three parameters under consideration for
this scheme: n, q and p. The choice of p was not considered in [17].

A group element in G is an elliptic curve point, represented by an element of Fp
with one additional bit (see §4.3.1). If n � p, then storing a point requires signif-
icantly more than log n bits as was assumed in [17]. For a comparison, from line 1
of Table 4.1 where q, n and p are 240, 380 and 3270-bit integers respectively, storing
one element of G requires 3271 bits as opposed to 380 bits. This has an impact on
all three measures of efficiency, since they all depend on the size of a group element.

Further, when evaluating the hardness of discrete logarithm and related assump-
tions in G, the authors of [17] do not consider the existence of a faster discrete
logarithm attack on G that utilizes pairings to reduce the problem to computing
discrete logarithms in Fp2 , for which there exist much faster subexponential attacks.
They assume that the fastest attack against discrete logarithm and DLIN in G is
Pollard’s Rho, and the fastest attack for DLOG-q takes time q1/2. The pairing-
based attack has to be taken into account when considering attacks against discrete
logarithm, DLOG-q and DLIN, since all three can be solved by computing discrete
logarithms in Fp2 . This further enlarges the security parameters than what was
originally claimed. Compounding the two issues is the fact that when considering
attacks against DLIN and DLOG-q in the non-constructive setting, we also need to
consider the Lp[1/3, 3

1/3]-NFS with precomputation by Commeine et al. [10] apart
from generic group attacks with precomputation.

Next, we compute the security parameters for the 80-bit and 128-bit security levels.
Table 4.1 presents the security parameters and public key sizes that we computed,
whereas Table 4.2 presents the corresponding values computed using the methodol-
ogy in [17].
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Table 4.1: Security parameters (q, n, p), public key size (vk), signature size (σ),
and communication complexity (CC) of the Garg-Gupta blind signature scheme for
different values of k and t, with the underlying hard problems evaluated with respect
to the appropriate computational model of the adversary.

k t q p n vk (in KB) σ (in KB) CC (in MB)
220 230 240 3270 380 17.6 74.8 1.8
220 240 240 3700 400 19.9 84.6 2

80-bit 230 230 240 4170 420 22.4 95.4 2.3
230 240 240 4670 440 25.1 106.8 2.5

220 230 384 12322 652 66.2 281.9 10.7
220 240 384 13286 672 71.4 303.9 11.6

128-bit 230 230 384 14294 692 76.8 326.9 12.4
230 240 384 15348 712 82.5 351.1 13.3

4.6.1 Selecting parameters

In order to measure the computational effort of an adversary A in attacking a prob-
lem with running time T (A) and advantage ε, we use the concept of a work factor
(as was done in [17]) which is defined as T (A)/ε. First, we compute parameters for
the 80-bit security level, followed by parameters for 128-bit security.

Since the hiding property of the commitment scheme ComG is based on the DLIN
assumption, we have the following corollary of Theorem 4.4.

Corollary 4.7 (Corollary 2, [17]). For any PPT malicious signer S∗ that plays the
blindness game of §4.1.2, the following holds:

AdvBlindness
S∗,BS (λ) < 4 · AdvDLIN

C,G (λ) + Advdlog
B,G,q(λ),

where C is an adversary against the non-uniform DLIN assumption in G such that
T(C) = T(S∗) + poly(λ), and B is an adversary against the non-uniform discrete
log problem in G when exponents are chosen uniformly randomly in Zq such that
T(B) = T(S∗) + poly(λ).

For the 80-bit security level, an adversary S∗ playing the blindness game should
have AdvBlindness

S∗,BS (λ) = 1 only when T (S∗) ≥ 280. Suppose that there exists such an
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Table 4.2: Security parameters (q, n), public key size (vk), signature size (σ), and
communication complexity (CC) of the Garg-Gupta blind signature scheme for dif-
ferent values of k and t, evaluated in the original work [17].

k t qGG nGG vkGG(in KB) σGG(in KB) CCGG(in KB)
220 230 155 291 1.6 6.6 102.9
220 240 155 311 1.7 7.1 110

80-bit 230 230 155 331 1.8 7.8 117.1
230 240 155 351 1.9 8.0 124.4

220 230 248 385 2.1 8.8 216.8
220 240 248 405 2.2 9.3 228.1

128-bit 230 230 248 424 2.3 9.7 238.8
230 240 248 444 2.4 10.2 250

adversary S∗ that runs in time 280 and succeeds in the blindness game with advan-
tage 1. Corollary 4.7 tells us that there exists an adversary B that solves DLOG-
q with probability 1 and has running time T (B) ≈ 280. (This is assuming that
AdvDLIN

C,G (λ)� Advdlog
B,G,q(λ), given that C and B take approximately the same time.)

Corollary 4.7 has some content only if the adversary B constructed through the reduc-
tionist security proof performs better than the fastest known non-constructive attack
against DLOG-q, for otherwise we cannot use the result to conjecture that there exist
no attacks against the blind signature scheme that take time at most 280 and succeed
with probability 1. To assess the fastest known non-constructive attack for DLOG-q
in G, we consider three attacks: (i) Pollard’s kangaroo method with precomputation
in G with running time q1/3 (see §4.3.3); (ii) Bernstein-Lange’s Pollard’s Rho method
with precomputation in G with running time n1/3; and (iii) non-constructive NFS
for discrete logarithms in Fp2 with running time Lp2 [1/3, 3

1/3] [10]. We need the
following inequalities to hold:

T (B)/Advdlog
B,G,q(λ) = 280 ≤ q1/3, (4.3)

280 ≤ n1/3, (4.4)

280 ≤ Lp2 [1/3, 3
1/3], (4.5)

which imply that q must be at least 240 bits, n must be at least 240 bits, and p must
be at least bits 825 bits for the 80-bit security level.
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We now consider the theorem on unforgeability for the blind signature scheme. We
have the following existential unforgeability result for the constant size, structure
preserving signature scheme (SIG1) by Chase et al. [1] mentioned in §4.5.

Theorem 4.8 (Theorem 30, [1]). SIG1 is a structure-preserving signature scheme
that yields constant-size signatures, and is UF-CMA (existentially UnForgeable under
Chosen Message Attack) under the DLIN assumption. In particular, for any PPT
adversary A for SIG1 making at most qs signing queries, there exists a PPT algorithm
B such that

Advuf−cma
SIG1,A(λ) ≤ (qs + 3)AdvDLIN

G,B (λ) +
1

n
. (4.6)

The CRS-distinguishing property holds under the DLIN assumption. Using this
fact, and substituting (4.6) in (4.2), we have the following corollary.

Corollary 4.9. For any PPT malicious user U∗ playing the unforgeability game
described in §4.1.3, the following holds

Advunforge
U∗,BS (λ) ≤ (k + 5)AdvDLIN

G,A (λ) +
1

n

where A is an adversary against the DLIN assumption in G with run time T (A) =
k · T dlog

G,q + T (U∗) + poly(λ), and k is the maximum number of signing queries made
by U∗.

For the 80-bit security level, we require that for any adversary U∗ playing the
unforgeability game, Advunforge

U∗,BS (λ) = 1 only if T (U∗) is at at least 280. Suppose that

there exists an adversary U∗ such that T (U∗) = 280 and Advunforge
U∗,BS (λ) = 1, i.e., it

breaks the unforgeability property of the blind signature scheme. Corollary 4.9 tells
us that there exists an adversary A against the DLIN problem in G that takes time
k · T dlog

G,q + T (U∗) and has advantage at least 1/(k + 5).

Remark 4.10. The following simplifying assumption is made regarding the running
time of A in [17]. It is assumed that the running time of A is t ·k ·T dlog

G,q , for a suitably
chosen constant t. The fastest known constructive attack to solve DLOG-q in G is
to either use Pollard’s Kangaroo with running time q1/2, or compute discrete logs in
Fp2 in time Lp2 [1/3, 1.923]. Therefore, T dlog

G,q is the minimum of Lp2 [1/3, 1.923] and

q1/2, and it follows from equations (4.4) and (4.5) that each of these is much greater
than T (U∗) = 280. Hence k · T dlog

G,q � 280, and the simplifying assumption can be
made.
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In order for Corollary 4.9 to have any content, we need T (A)/AdvDLIN
G,A (λ) to be

smaller than the work factor of the fastest known attack on the DLIN problem in G.
We consider two attacks, computing discrete logarithms in G using NFS in Fp2 , and
computing discrete logarithms in G using Pollard’s Rho. This yields

t · k · T dlog
G,q

1/(k + 5)
≤ Lp2 [1/3, 1.923] (4.7)

and

t · k · T dlog
G,q

1/(k + 5)
≤ n1/2. (4.8)

As an example, let k = 220, t = 230, and T dlog
G,q = q1/2. Note that we need to choose

a value for p such that q1/2 ≤ Lp2 [1/3, 1.923] for (4.7) to make sense (otherwise,

T dlog
G,q = Lp2 [1/3, 1.923] and the inequality is violated). For the 80-bit security level,

we have Lp2 [1/3, 1.923] ≥ 2190 which requires a 3270-bit p.

Thus, for 80-bit security, we need a 240-bit q, 3270-bit p, and 380-bit n for k = 220

and t = 230. The complete list of parameters for different choices of t and k is given
in Table 4.1.

4.6.2 Efficiency

We compute three efficiency metrics considered by Garg and Gupta in [17]. We do
not consider minor optimizations for any of these metrics, in the interest of compar-
ing values obtained here to those in [17].

Public key size. The public key is vk = (vkSP , crs1, crs2, q). Here, crs1 and crs2
are of the form (g, ga, gb, gax, gby, gz), where z = x + y or x + y − 1 for crs1, and
z = x + y + 1 or x + y for crs2. Since crs2 is the shift of crs1, only 6 elements of
group G are required to represent the two crs’s. vkSP consists of 2k + 25 group ele-
ments, if the message to be signed is k group elements. Since in the blind signature
scheme, the structure preserving signature is used to sign a blinded message which
is actually a commitment comprising of 6 group elements, vkSP contains 37 group
elements. The total size is 43 group elements. (Note that one can reduce this size
by minor optimizations, but we won’t consider them here.) Each group element is a
point on the elliptic curve E/Fp, and requires log p+ 1 bits. Therefore, the total size
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is 43(log p+ 1) bits. In contrast [17] computes the public key size to be 43log n bits.

Signature Size. The final signature is a Groth-Sahai NIZK proof. From Ta-
ble 4 in [19], to produce a GS-NIZK proof of a statement containing m variables,
each either in Zn or G, ` pairing product equations/multiscalar multiplication equa-
tions, then under the DLIN assumption, the GS-NIZK proof requires 3m + 9` el-
ements of G. The blind signature is comprised of mblind, r, σSP and the equations
ComG(m; r) = mblind and SPVer(vkSP ,mblind, σSP ) = 1. From the instantiation seen
in §4.5, mblind = (g, ga, gb, gax, gby,m ·gx+y), r = (x, y) ∈ Z2

n, and σSP is the signature
produced by SIG1 instantiated under the DLIN assumption containing 17 elements
of G. Thus, there are a total of 25 variables, which require 75 elements of G in the
blind signature. To verify ComG(m; r) = mblind, we need 3 multiscalar multiplication
equations, and to verify SPVer(vkSP ,mblind, σSP ) = 1, where the signature scheme is
SIG1 under the DLIN assumption, we need 9 pairing product equations (see §4.5).
Thus, the above two equations require 12 × 9 = 108 elements of G. The signature
comprises a total of 183 group elements, with size 183 log p bits. In [17] this is com-
puted as 183 log n bits.

Communication complexity. The overall communication complexity is 18log q
+ 41 elements of G. This requires (18 log q + 41) log p bits. In [17] this is computed
as (18 log q + 41) log n bits.
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Chapter 5

Concluding remarks

In this work, we analysed non-constructive security reductions for two cryptographic
schemes, an NMAC related scheme called 2-Lane NMAC by Yasuda [33], and a blind
signature scheme by Garg and Gupta [17]. To compute security parameters of the
two schemes, we considered the fastest known non-constructive attacks on the un-
derlying primitives, instead of considering only constructive attacks as was done in
the original works. This resulted in larger security parameters and lower efficiencies.

For 2-Lane NMAC, we attempted to obtain a constructive proof of the security
result in [33] and highlighted the difficulty in doing so. We found that the actual se-
curity offered by Yasuda’s non-constructive theorem was much closer to the security
offered by the constructive version presented here (which is really the same as the
security offered by GNMAC), as opposed to what is claimed in the paper.

We also investigated the use of coin-fixing in the security proof of a PBKDF scheme
considered by Zhou et al. [34]. We found the use of coin-fixing to be incorrect and
provided a revised proof. Further, we observed that the result obtained without
the use of coin-fixing (Theorem 2.8) was stronger than the result obtained using
coin-fixing (Theorem 2.10). For the PBKDF scheme, since it is possible to obtain
an upper bound without the use of coin-fixing that is almost tight with a matching
attack, the use of coin-fixing is not necessary in the proof, and results in a weaker
security result than what can be obtained without its use.

The following are possible directions for future work.

• It remains to see if the original security theorem from [33] for 2-Lane NMAC
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can be proved in the constructive setting. If this is not possible, then one
would have to rely on Theorem 3.6 which is non-constructive to evaluate the
proof-based security of 2-Lane NMAC.

• Analyze the impact of non-constructivity on parameters used for HMAC as a
randomness extractor in TLS [14].

• Since non-constructive attacks for the underlying primitives (PRF property
and DLOG-q in a symmetric bilinear group) in the schemes considered in this
thesis are not well studied, there could be faster attacks. For example, the
precomputation considered in [10] for NFS in a prime field Fp uses a table of size
Lp[1/3, .951] that takes Lp[1/3, (64/9)1/3] to compute, after which individual
discrete logarithms can be computed in time Lp[1/3, 3

1/3]. There remains the
possibility that with larger precomputation, the online running time can be
further reduced.

• In Chapter 4 we made the heuristic assumption that the speedup for NFS with
precomputation for discrete logarithms in Fp where p is prime (see [10]), also
applies to the finite field Fp2 . It is worthwhile to investigate this assumption.

• Another direction for future work is to look for efficient, round-optimal con-
structions for blind signature schemes in the standard model with reasonably
tight, constructive security proofs.
We note that round-optimal blind signature schemes were presented in [16, 15]
together with reductionist security proofs that use neither complexity leverag-
ing nor non-constructivity. The schemes are significantly more efficient than
the Garg-Gupta blind signature scheme. The authors of [16, 15] claim that
their schemes are in the standard model. However, their schemes utilize the
structure-preserving signature scheme on equivalence classes from [20] whose
only known security proof is in the generic group model. Thus, the security
proof for the schemes in [16, 15] cannot be considered to be in the standard
model.
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