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Abstract  

Biochar has been present in tropical agriculture as a soil amendment for millennia. Its 

ability to alter soil physical and chemical characteristics has been utilized to improve soil health 

and crop productivity. The use of biochar in temperate agricultural soils is a new concept, and 

has been practiced for about a decade. To date, few long-term field studies have quantified the 

temporal effects biochar has on soil health or greenhouse gas emissions (GHGs) of temperate 

agricultural soil. The objectives of this study were to quantify differences in soil characteristics 

of biochar and non-biochar amended soil, to determine the relationship between emissions and 

soil characteristics, and to determine temporal variations in GHG emissions in temperate 

agricultural soils following biochar additions. The treatments were (1) 6 t/ha poultry manure plus 

135 kg/ha of nitrogen (urea) fertilizer (MN), (2) 3 t/ha poultry manure plus 3 t/ha biochar (MB) 

and (3) 3 t/ha poultry manure, 3 t/ha biochar plus 135 kg/ha fertilizer (MNB). It was found that 

the vast majority of analyzed attributes were unchanged by biochar additions. Soil moisture, 

temperature, and PO4
3- were however significantly greater (P<0.05) in the conventional 

treatment, while C/N ratios and light fraction distribution within the soil were temporarily altered 

by additions. Though not significant, biochar soils, MB and MNB, appeared favorable for corn 

yield and aboveground biomass accumulation (2016). The opposite effect was found for soybean 

yield (2017), although this was still not significant. Soil CO2 and N2O emissions were not 

significantly different (P<0.05) among the conventional treated soils and biochar-amended soils 

in 2016 and 2017. CO2 and N2O emission rates were similar in both field seasons. Results from 

this study revealed that a low biochar addition rate had few, or temporary impacts on soil health 

and greenhouse gas emissions.  
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1. Literature Review and Thesis Objectives 

1.1 Biochar in Agriculture 

 

Climate change (CC) has become closely associated with industries such as agriculture, 

which account for 10-12% of anthropogenic greenhouse gas (GHG) emissions (IPCC, 2014). 

While contributing to CC, agriculture is as well acutely vulnerable to increasing CC impacts, 

such as frequent drought events which damage crop yields (Motha & Baier, 2003). With the ever 

growing concern over CC, it is of great interest to academics, policymakers, and farmers to find 

feasible methods of addressing the impacts agriculture and CC have on each other. In temperate 

agriculture, biochar is being investigated as a potential solution to both slow the rate of climate 

change and ameliorate the severe effects CC may pose to soil health and crop production 

(Ameloot et al., 2013; Ajayi & Horn, 2017; Jones et al., 2013). 

Biochar is merely charcoal added to soil with the intent of improving soil health and its 

characteristics, such as nutrient retention, for increased crop productivity (Kloss et al., 2012; 

Lehmann & Joseph, 2009; Lone et al., 2015). The sustainable nature of biochar is another 

essential defining feature. To qualify as biochar, the char feedstock must be sourced sustainably, 

and contribute to improved environmental outcomes for agriculture (Lehmann & Joseph, 2009). 

Like charcoal, it is comprised of thermally decomposed (pyrolyzed) biomass, which causes 

carbon to form a large body of polycyclic aromatic hydrocarbon structures (Kloss et al., 2012). 

Unlike graphite, which has a purely aromatic crystalline structure, biochar has additional 

functional groups and is therefore amorphous (Atkinson et al., 2010). These functional groups 

give the char heterogeneous chemical properties (Lehmann & Joseph, 2009; Atkinson et al., 

2010). The functional groups can form regions of acidity and alkalinity, hydrophobicity and 

hydrophilicity, and locations of cation and anion exchange on the same body of char (Atkinson et 
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al., 2010; Lehmann & Joseph, 2009). The individual pieces of char, which have variable 

chemical makeup, can be chemically interactive with soil (Atkinson et al., 2010; Lehmann & 

Joseph, 2009). The characteristics of biochar are determined by three primary factors; the 

biochar feedstock, the temperature of pyrolysis, and the residence time in a kiln (Lehmann & 

Joseph, 2009; Glaser et al., 2002). The desired properties of the biochar can be controlled using 

these three factors (Glaser et al., 2002).  

Despite variability among individual chars, biochar is broadly characterized by its high 

surface area and stable carbon (Lehmann & Joseph, 2009; Smith et al., 2010). As the carbon 

restructures during pyrolysis, other molecules are lost as smoke/tar, and pore spaces are formed 

giving biochar its characteristically large surface area (Keiluweit et al., 2010). The number and 

size of pores, however, depends heavily on pyrolysis temperature (Glaser et al., 2002). Typically, 

higher burn temperatures result in larger pore spaces and greater surface area (Lehmann & 

Joseph, 2009). Pore spaces are important as they function in many of the soil-biochar interactions 

(Rogovska et al., 2014). 

  Biochar is comprised of extremely stable carbon structures and undergoes little change in 

a variety of environments, which is a useful property (Schneider et al., 2011; Glaser et al., 2002). 

A study by Schneider et al. (2011) found that after a century of weathering in a tropical climate 

there was no significant change in the physical or chemical composition of biochar. Even after 

centuries of rain, the Terra Preta soils in the Amazon Basin are considered to have maintained 

their original stable biochar (Glaser et al., 2001, Petter & Madari, 2012). The anthropogenic 

nature of the Terra Preta soil shows that biochar has been a tropical soil amendment used for 

thousands of years (Petter & Madrari, 2012). Treating agricultural land with fire is not unique to 

South America: nearly 40% of global soils having been fire altered (Atkinson et al., 2010; Karer 
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et al., 2013). Globally, biochar has primarily been introduced by the “slash and burn” technique 

of land-clearing. Slash and burn was very popular in tropical climates to improve soil organic 

carbon (SOC), which allowed ash and other by-products to be quickly mineralized (Atkinson et 

al., 2010). Along with ash, deposits of charcoal are formed and build up in the soil after each 

burn event (Schneider et al., 2011). However, large amounts of charcoal have also been 

intentionally added to soil, such as in Zambia and the Amazon where charcoal was produced in 

hearths for agricultural amendments (Spokas et al., 2012). 

Tropical soils can possess properties that limit agricultural productivity due to weathered 

mineral components and their long history of intensive land use (Glaser et al., 2002; Lehmann & 

Rondon, 2006). Low cation exchange capacities (CEC), low pH, and rapid carbon mineralization 

in tropical soil results in low carbon content and reduced yields (Lehmann et al., 2003; Güereña 

et al., 2013). These factors make it difficult for land to remain productive over long periods of 

time, especially now amidst CC (Lehmann & Rondon, 2006). For example, issues such as water 

scarcity will increase as the climate changes (Karer et al., 2013). Increasing water retention is 

one way that biochar can reduce CC detriments (Dil et al., 2014). Biochar has been an effective 

amendment within the tropics to improve a variety of soil physical and chemical characteristics 

(Lehmann et al., 2003; Glaser et al., 2002; Karer et al., 2013). 

While biochar has been used for millennia in the tropics, it has only recently begun to be 

explored in temperate agriculture (Atkinson et al., 2010). Research on the use of biochar in 

temperate agriculture is a developing field, with studies focusing on biochar beginning in the 

2000s (Lehmann et al., 2011). Up to 2010, only a moderate body of research had been conducted 

within laboratory settings (Atkinson et al., 2010). However, within the past five years, field 

experiments have begun in temperate climates across the globe (Nelissen et al., 2015). The 
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outcomes of these experiments have varied greatly depending on how the local soil and biochar 

properties interact. Light textured soils especially have benefitted from higher temperature 

biochars, which due to their high porosity improve retentive properties of the soil (Dil et al., 

2014). 

 

1.2 Impacts of biochar on soil health in temperate agriculture 

1.2.1 Soil Physical Characteristics 

Soil health is comprised of the physical, chemical, and biological soil components that 

contribute to or maintain, soil environmental and agronomic productivity (Lone et al., 2015; Lal, 

2011). Healthier soils can sustain greater agricultural productivity and ecological integrity (Lal, 

2011). The critical physical characteristics which contribute to soil health are; texture, structure, 

drainage, and water retention (Lal, 2011). By influencing these characteristics, biochar can affect 

soil health. In both tropical and temperate agricultural projects, biochar has been found to alter 

soil moisture and water interactions (Borchard et al., 2014; Hammond et al., 2013). Specifically, 

biochar can improve soil water infiltration and water-holding capacity (Karer et al., 2013 

Borchard et al., 2014). These improvements are a result of biochar’s pore space (Lehmann et al., 

2011). Pore space increases water-holding capacity (WHC), which reduces the effects of water 

stress and can also facilitate oxygen diffusion (Dil et al., 2014; Lehmann et al., 2011; Jones et al., 

2011b). Biochars produced at low temperatures (200-400°C) have more, but smaller, micropores 

and lack nanopores (Zimmerman et al., 2011; Lehmann & Joseph, 2009). High-temperature 

biochars (500-700°C) have nanopores and fewer but larger micropores, as pores become 

conjoined (Zimmerman et al., 2011; Lehmann & Joseph, 2009). These pores physically absorb 

and retain water. As a result, treating the soil with biochar not only increase water infiltration 
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rates but also available moisture (Hammond et al., 2013; Karer, 2013). Though rarely observed, 

among some soil and biochar combinations, water may be removed from the soil and held within 

the biochar structure, making the soils drier (Steiner et al., 2010). The absorption of soil water 

has been seen to improve aeration and therefore aerobic microbial communities. Though Steiner 

et al. (2010) did not investigate crop yields in their study, it follows that negative implications for 

crops could exist, especially in dry years, following moisture loss to biochar. 

The high porosity of biochar also makes it lighter than many other soil constituents, and 

when biochar is incorporated in soil it can decrease bulk density (Bamminger et al., 2016). 

Biochar can also improve soil structure, and thereby soil health, by promoting stable soil 

aggregate formation (Liu et al., 2012). It can do so by acting as a binding agent for soil organic 

matter, the critical constituent which binds all other soil particles together (Browdowski et al., 

2006; Liu et al., 2012; Bronick & Lal, 2005). The bound soil particles then alter other physical 

characteristics by improving air and water transportation, and resisting compaction. Soil 

structure not only exerts influence on other physical characteristics but chemical processes as 

well (Bronick & Lal, 2005; Liu et al., 2012). 

 

1.2.2 Soil Chemical Characteristics 

The capacity of soil to sustain chemical reactions is a crucial attribute of healthy soils 

(Lal, 2011). The mechanisms behind how biochar influences soil chemical properties remain 

poorly understood (Atkinson et al., 2010; Glaser et al., 2002). One commonly observed effect 

has been biochar’s increase of tropical soil pH, which has been one of the significant benefits of 

its use in these systems (Lehmann & Joseph, 2009; Atkinson et al., 2010). Though less frequent 

and less permanent, increases to temperate soil pH have also been observed, primarily by the use 
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of high temperature biochars (Ander et al., 2013; Anderson et al., 2011; Bamminger et al., 2014; 

Glaser et al., 2015; Imparato et al., 2016). These increases have been attributed to by-products of 

pyrolysis (alkaline minerals) and the additional functional groups on biochar (Lehmann et al., 

2011). Though biochar has an array of side-chain functional groups, it is mostly comprised of 

hydrocarbons (Lehmann et al., 2011). 

 Soil organic carbon (SOC) levels are strong determinants of soil health, as they influence 

other chemical, physical, and biological characteristics (Lal, 2011). SOC is often lost from 

agricultural soils for reasons including; lower biomass returns, altered temperature and moisture 

regimes which increase decomposition, and susceptibility to leaching and erosion (Lal, 2011). 

Biochar research has investigated how SOC can be built and the carbon cycle altered following 

additions. Labile biochar carbon, those that form side-chain functional groups, can interact with 

more active C pools, like the free-light fraction or hot water extractable carbon (Vasilyeva et al., 

2011; Liang et al., 2008). SOC, however, is a large soil reservoir, and typically biochar effects 

are indistinguishable in the first several years of studies (Dil et al., 2014). Depending on the type 

of soil and biochar, SOC can be impacted in two ways; recalcitrant portions can accumulate, or 

labile components can trigger the decomposition of pre-existing SOC (Lentz & Ippolito, 2012; 

Luo et al., 2011; Jones et al., 2011b). As already mentioned with the formation of stable 

aggregates, biochar’s reactive components can bind and retain SOC, leading to carbon 

accumulation within the soil (Liu et al., 2012; Lentz & Ippolito, 2012). The remaining body of 

biochar is aromatic hydrocarbons, which are recalcitrant and will not breakdown in soil, 

therefore contributing to even greater carbon storage within the soil (Ippolito et al., 2012). The 

portion of labile carbon is readily consumed by microbial communities (Domene et al., 2014). 

Some researchers have hypothesized that biochar’s ability to retain soil nutrients can optimize 
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soil nutrient ratios, allowing microbes to decompose previously inaccessible soil carbon (Lone et 

al., 2015). 

Surface functional groups on biochar create localized regions of cation and anion 

exchange (Lehmann et al., 2011). Due to the larger surface area of biochar, there are many 

opportunities for interactions with soil nutrients (Atkinson et al., 2010). In this way, biochar can 

improve soil health since nutrient retention is a critical factor of soil health. In general, cation 

exchange capacity is increased in biochar soil, enhancing the availability of nutrients such as 

NH4
+

, Mg2+, and K+ (Atkinson et al., 2010; Glaser et al., 2002). When biomass is burned at high 

temperatures to produce high porosity, nitrogen and other macro- and micronutrients are burned 

off as tars (Lehmann & Joseph, 2009). Following the addition of this porous and nutrient 

depleted matter to the soil, it can quickly absorb these nutrients from the rhizosphere (Ding et al., 

2010; Borchard et al., 2014; de la Rosa & Knicker, 2011). This absorption can prevent nutrient 

leaching within the soil, but also reduce plant access to these nutrients (Güereña et al., 2013). 

Nutrient availability is the dominant limiting factor for temperate agriculture (de la Rosa & 

Knicker, 2011). Therefore, newly pyrolyzed biochar can temporarily decrease crop yields by 

absorbing micro- and macronutrients (Borchard et al., 2014). As previously mentioned, biochar 

feedstock and pyrolysis-temperature will determine the extent of these effects (Lehmann & 

Joseph, 2009). Desirable attributes, such as high pore space (which allow for more microbes, 

water holding capacities, and nutrient exchange), require high pyrolysis temperatures (Lehmann 

& Joseph, 2009).  
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1.2.3 Soil Biology 

Changes to soil physical and chemical characteristics are expected to have an impact on 

soil biology (Lehmann et al., 2011).  Soil biology is the final key component of soil health (Lal, 

2011). Healthy soils must be free from both pests and pathogens, maintain high biodiversity and 

biomass, as well as contribute to beneficial physical and chemical properties (Lal, 2011). 

Macrofauna is an essential component of soil biology, as they influence soil biogeochemical 

processes, the soil food web, and plant-available nutrients (Marks et al., 2014; Lehmann et al., 

2011; Domene et al., 2015). Soil invertebrates can also indicate soil quality and ecotoxicity, 

along with altering the ecosystem conditions (Lehmann et al., 2011). For example, soil 

macrofauna often modifies soil structures and therefore material exchange in the soil (Domene et 

al., 2015). In this way, soil macrofauna can ultimately impact crop production (Decaëns et al., 

2006). Soil health and crop management also regulate macrofauna populations, which respond to 

soil pH, nutrient availability, and crop residues (Domene et al., 2015). These, in turn, alter soil 

moisture and C/N ratios (Domene et al., 2015; Reibe et al., 2015; Lavelle et al., 2006). 

Unfortunately, very little temperate research has been carried out to date on biochar interactions 

with soil macrofauna (Reibe et al., 2015; Castracani et al., 2015; Ameloot et al., 2013). Biochar 

impacts a variety of soil characteristics, and how invertebrates react will be highly dependent 

upon soils and amendment schemes (Domene et al., 2015). One suggested way that biochar 

influences macrofauna is by affecting their food source (Domene et al., 2015). Increased 

bacterial numbers, which can be improved by biochar, generally enhance macrofauna grazing 

(Domene et al., 2015). However, species that do not specifically graze on rhizosphere bacteria, 

such as some earthworms, have still been observed to prefer biochar soils for yet unknown 

reasons (Lehmann et al., 2011). Interactions with earthworms are of interest since they can 
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consume and excrete mineral enriched biochar and distribute it within the soil profile (Marks et 

al., 2014; Domene et al., 2015; Lehmann et al., 2011). On the whole, the specific interactions 

between soil invertebrates and microbial biota in biochar treated soil are not well understood 

(Lehmann et al., 2011; Ameloot et al., 2013; Marks et al., 2014; Domene et al., 2015).  

Within temperate biochar projects, the majority of biological research has focused on 

microbial communities (Domene et al., 2014). Both microbial biomass and activity generally 

increase with greater biochar additions, but to a degree community nutrient efficiency can also 

be improved (Bamminger et al., 2016; Domene et al., 2015). The labile components of biochar 

are held partially responsible for these changes, along with the alterations to aeration and pH 

which will favour particular microbial species (Bamminger et al., 2016; Lehmann et al., 2011).  

The general increase in soil microbial activity as a result of biochar can mean increases in 

metabolic-by-products, which impact soil aggregation and nutrient cycling (Lehmann et al., 

2011). The fundamental shift in community composition following biochar additions also effects 

soil health as nutrient cycles change, for example, biochar can decrease nitrifier populations (Luo 

et al., 2011; Mitchell et al., 2015; Bamminger et al., 2014; Anderson et al., 2011). In other 

studies, the addition of biochar favoured fungi and gram-positive bacteria, which can also impact 

soil nutrient levels (Bamminger et al., 2014; Gomez et al., 2014; Mitchell et al., 2015).  

 

1.2.4 Crop Yield and Biomass 

The impact of biochar on crop yields are of paramount concern for agricultural producers. 

Improvements to crop yields have been observed in temperate biochar studies and can range 

from increases of 5% to upwards of 100% (Hammond et al., 2013). Biochar benefits crops by 

improving nutrient and moisture retention (Atkinson et al., 2010). However, improvements are 
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not universally experienced (Borchard et al., 2014; Hammond et al., 2013). Many temperate 

studies found no impact or even initial decreases in crop yield (Hammond et al., 2013; Karer et 

al., 2013; Borchard et al., 2014). Nutrient availability is the primary limiting factor of 

agriculture, fortunately in temperate agriculture nutrient unavailability is not further exasperated 

by low CEC and pH, which decrease nutrient retention (Güereña et al., 2013; Anderson et al., 

2011). As noted above, nitrogen loss is reduced in biochar systems, but this does not mean that it 

is more available to crops (Lehmann et al., 2003). At times, the nitrogen is tightly bound to 

biochar and unavailable (Borchard et al., 2014). In this way, it can contribute to an initial 

decrease in crop yields (Borchard et al., 2014). However, research by Kloss et al. (2014), Schulz 

et al. (2013), and Glaser et al. (2015) showed that adding nutrient sources (i.e., fertilizers, 

composts, manure) ameliorated these initial adverse effects. The majority of studies that did not 

find a reduction in yields had several other factors in common: the biochar was formed in 

traditional kilns, the feedstock was high in plant nutrients, and they were implemented in coarse-

textured soils (Haefele et al., 2011; Spokas et al., 2012, Glaser et al., 2002; Borchard et al., 

2014).  

Nearly all biochar studies have focused on its soil chemical impacts and the effects to 

crop yields (Lehmann et al., 2011; Ameloot et al., 2013).  As a result of this, and the immaturity 

of this field of study, there remain many gaps in research on the full effects of biochar, as noted 

above. Just as other amendments have optimal application rates for specific crop and soil type 

combinations, biochar ought to be appropriately applied (Schulz et al., 2011; Ameloot et al., 

2013). However, due to limited studies to inform ideal rates, these prescriptions have not been 

determined for individual crops or soil types, let alone the combinations thereof (Ameloot et al., 

2013). This knowledge would allow farmers to access biochar’s variety of benefits, including 
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carbon sequestration, without sacrificing soil productivity in their agricultural system (Atkinson 

et al., 2010).  

 

1.3 Biochar and GHG emissions in temperate agricultural systems 

The addition of biochar to lower soil GHG emissions is another relatively new concept 

(Hüppi et al., 2015). As a result of this, the mechanisms by which biochar alters soils 

components, and therefore GHG emissions is unclear (Spokas & Reicosky, 2009; Kuzyahov et 

al., 2014; Anderson et al., 2011). Sohi et al. (2010) and Clough & Condron (2010) identified no 

existing peer-reviewed field studies investigating GHG emissions before 2010. However, since 

then, several field studies have been undertaken in temperate environments (Appendix A); still 

few resembled typical Canadian agroecosystem management practices (Appendix A). The 

majority of GHG biochar studies have been conducted using micro- and mesocosms, which do 

not capture temporal variations in emissions (Clough & Condron, 2010). It is important to 

understand temperate soil responses to varying quantities and types of biochar additions and 

common agronomic fertilizer or manures. As well, it is important to uncover how these additions 

impact GHG emissions (Glaser, 2015). 

 

1.3.1 Carbon Dioxide Emissions 

Not only does biochar impact the carbon cycle by storing once atmospheric carbon in the 

soil, but it also alters soil conditions causing a positive feedback loop (Jones et al., 2011b). Soil 

moisture, pH, and nutrient availability impact microbial activity and therefore soil carbon cycling 

(Lehmann et al., 2013). However, the amount and type of carbon in the soil (i. e. labile or 

recalcitrant) strongly determined microbial interactions and the rate of CO2 emissions (Smith et 
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al., 2010). Newly incorporated biochar has portions of labile carbon which are consumed by soil 

microbes (Luo et al., 2011; Ameloot et al., 2013: Liang et al., 2008). In most temperate studies 

there were initial peaks in CO2 release following biochar incorporation into the soil, these peaks 

were most distinct when larger portions of biochar were used (Mitchell et al., 2015; Gomez et al., 

2014). These initial peaks were followed by emission decreases as biochar aged and labile 

compounds were entirely consumed (Jones et al., 2011b; Zimmerman et al., 2011; Cross & Sohi, 

2011; Steinbeiss et al., 2009; Liang et al., 2008; Kammann et al., 2012). In many temperate 

biochar projects, no changes to CO2 were also commonly observed (Kuzyakov et al., 2009; 

Knoblaunch et al., 2011). In some cases, as seen with Bamminger et al. (2014) CO2 emissions 

decrease following biochar additions. Their decrease was the result of a biochar-induced fungal 

dominant microbial community (Bamminger et al., 2014). 

 

1.3.2 Nitrous Oxide Emissions 

Presently ~60% of N2O emissions are a result of agricultural practices (Smith et al., 2007; 

Nelissen et al., 2014). Nitrous oxide (N2O) is a very potent GHG, 265 times more potent than 

CO2, and greater amounts have been released recently due to agricultural fertilizers and soil 

disturbances (Bamminger et al., 2014; USEPA, 2007). Some studies have identified biochar’s 

potential to decrease N2O emissions, though the exact mechanisms promoting this are still 

undetermined (Case et al., 2015). Some studies propose physical changes (i.e., moisture and 

aeration) are behind the change in emissions, while others indicate it is chemical effects (i.e., 

lower NH4 availability), and others still say ecological (i.e., shifts in microbial communities) 

(Deng et al., 2015; Anders et al., 2013; Case et al., 2015). Ultimately, biochar has been 

documented to increase soil aeration, soil pH, and N immobilization; thereby suppressing N2O 
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emissions (Cayuela et al., 2013; Signor & Cerri, 2013; Condron et al., 2013). While the majority 

of studies have observed decreased emissions, many have noted a short-term emission peak from 

temperate soil amended with biochar (Yuan et al., 2017; Smith et al., 2010). Increases have been 

attributed to ecological changes and enhanced enzyme activity among microbial communities 

(Yuan et al., 2017). Whether biochar’s direct impact is to physical or chemical characteristics, the 

soil biota that drives the nitrogen cycle will be impacted. Chemically emissions can increase as a 

result of increased N retention within soils (Singh et al., 2010).  

 

1.4 Knowledge Gaps 

It is yet undetermined whether biochar is an effective amendment to soils used for 

temperate agriculture (Atkinson et al., 2010). Biochar results are variable and depend on biochar 

type (feedstock composition, pyrolysis temperature, and available oxygen during pyrolysis) and 

the soil type it is added to (Imparato et al., 2016; Atkinson et al., 2010). For this reason, to 

identify patterns in the impact of biochar, further studies are needed to evaluate interactions 

between different biochar and soils types. Long-term studies as well are required to characterize 

the long-term relationships between soil health, greenhouse gas emissions, and biochar. The 

greatest gaps among all soil and biochar types, are the effects on crop growth, macrofauna, 

microbial communities, and the driving factors behind greenhouse gas emission (Ameloot et al., 

2013; Castracani et al., 2015; Anderson et al., 2011; Spokas & Reicosky, 2009; Hüppi et al., 

2015).  While physical and chemical changes have been documented, these interactions with 

biological systems are complex. For this reason, while observed soil changes have been 

theorized to benefit plants and soil fauna, such effects have not always been observed (Ameloot 

et al., 2013; Anderson et al., 2011; Hüppi et al., 2015; Spokas & Reicosky, 2009). The poor 
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understanding of soil microbial communities in response to biochar may be contributing to the 

lack of knowledge surrounding macrofauna, crop yields, and greenhouse gas emissions (Domene 

et al., 2014; Domene et al., 2015; Bamminger et al., 2014).   

 

1.5 Thesis Objectives and Hypothesis 

To address the aforementioned knowledge gaps, this study aimed to assess the suitability 

of biochar as a soil amendment in temperate agricultural practices, both as a tool for achieving 

GHG neutral agriculture and for promoting soil health. The specific objectives of this study 

therefore were: 

1) Determine effects of biochar amendment on soil physical, chemical, and 

biological characteristics, 

2) Quantify effects of biochar amendment on crop grain yields and biomass 

production, and 

3) Quantify effects of biochar amendment on temporal GHG emissions. 

These objectives are motivated by the goal to contribute new science on how to 

successfully utilize biochar in temperate agricultural systems. The following manuscripts 

presented in this thesis will address these objectives and relate to the following hypothesis: 

The biochar design used in this study, of a low addition rate, will store carbon in the 

soil without negatively impacting soil health, crop growth, or stimulating GHG 

release from Ontario agricultural soils. 

The first manuscript in this thesis investigates two years of effects on soil health, crop 

yields/ biomass productivity, and biological impacts following biochar additions. These 

characteristics were analyzed from 2016-2017. Macrofauna analysis was carried out once a 

season (spring, summer, and fall) to determine the interacting effects of biochar and season. At 
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harvest, soil characteristics and crop production were measured. These analyses were carried out 

to observe the short-term impacts of biochar, as well as, anticipate future changes to soil 

chemistry. The second manuscript is comprised of the results of a two-year bi-weekly GHG 

sampling experiment. CO2 and N2O sampling were carried out in conjunction with bi-weekly soil 

analysis. This study was implemented to distinguish the influence of biochar on GHG emissions 

across seasons and to determine which soil characteristics were the most impactful for these 

emissions. One biochar-altered soil element alone was not identified to dominate these processes. 

The conclusions drawn are most appropriately interpreted in the context of temperate sandy-

textured soils.  

 

1.6 Literature Review Summary 

In summary, biochar has a potential to impact soil health and greenhouse gas emissions 

within temperate agricultural systems. However, due to the variability of impacts dependent on 

biochar quantity and quality, its suitability for temperate systems this is not certain. This project 

is needed to determine whether negative effects can be avoided and if any benefits can be 

accessed in an Ontario agricultural system. This project is valuable as well in contributing much-

needed information as to how biochar, directly and indirectly, impacts crop productivity, soil 

macrofauna, and microbial communities. As well as, this project weighs in on the value of 

biochar as a carbon-negative farming practice. 
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2. Effect of biochar on soil health and crop growth in temperate agriculture 
 

2.1 Overview 

While biochar is commonly used in tropical agriculture to improve soil health, its 

addition to temperate agricultural soils represents relatively new territory. The objectives of this 

study were to evaluate soil health and crop productivity in a conventional agricultural production 

system amended with biochar. The treatments, established on a sandy loam soil in Southern 

Ontario, consisted of (1) poultry manure (6 t/ha) and nitrogen fertilizer (urea) (135 kg/ha) (MN); 

(2) poultry manure (3 t/ha) and biochar (wood source material) (3 t/ha) (MB); and (3) poultry 

manure (3 t/ha), fertilizer (135 kg/ha), and biochar (3 t/ha) (MNB). Following the treatments, 

several tests were conducted at harvest to determine the effects of biochar on soil health and crop 

growth. Results showed that biochar additions significantly (P>0.05) lowered soil moisture in the 

first and second year of the project. Moisture was 12.7 % (s.e.= 0.39), 10.1 % (s.e.= 0.34), and 

10.7 % (s.e.= 0.36) in MN, MB, and MNB treatments, respectively.  Soil C/N ratios and 

microbial diversity were the only characteristics affected in the first year of this project. Soil C/N 

was 9.2 in MN, 7.8 in MB, and 7.5 in MNB. In 2016, soil richness was found to increase in MB 

and MNB, though diversity decreased. These differences were not sustained through the second 

year of the project. PO4
3- concentrations were significantly lower in biochar treated soil within 

the first year of this study, but by the second year were higher than the conventional treatment. In 

year 1 (2016), mean bicarbonate extractable phosphate-P (PO4
3—P) levels were 55.4 mg P/kg, 

44.8 mg P/kg, 48.8 mg P/kg, in MN, MB, and MNB treatments, respectively. In year 2 (2017), 

the concentrations were 76.9, 80.6, and 90.2 mg P/kg in MN, MB, and MNB respectively. None 

of these changes resulted in significant differences (P<0.05) to corn (2016) or soybean (2017) 

grain yield, shoot or root biomass.  
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2.2 Introduction 

Biochar is a charcoal-based soil amendment that aims to improve soil health and productivity 

(Ameloot et al., 2013). This carbon-rich material is known to modify both soil’s physical and 

chemical characteristics, and subsequently plant growth (Atkinson et al., 2010). Biochar has been 

an amendment in tropical agricultural systems for millennia, however, only within the last 

decade has research explored how biochar modifies soil characteristics and processes in 

temperate agriculture (Cayuela et al., 2013; Atkinson et al., 2010). Despite the growing field of 

research, it is difficult to identify the interacting mechanisms and predict biochar’s impacts 

within temperate soils (Atkinson et al., 2010; Borchard et al., 2014; Luo et al., 2013).  

Changes to soil physical properties directly impact soil health, by contributing to material 

exchange and structural integrity, but also indirectly by influencing soil chemistry and biology 

(Lal, 2011). Physical characteristics are commonly modified in temperate soils after biochar 

additions (Atkinson et al., 2010). Increased infiltration rates and moisture retention are widely 

observed due to biochar’s porosity (Karer et al., 2013; Nelissen et al., 2015; Bamminger et al., 

2016). The outcome of treatments is dependent mainly on the type and quantity of biochar, as 

well as the nature of recipient soils. Though most studies found increased moisture and retention, 

a few studies including Steiner et al. (2010) observed a decrease in soil moisture. In addition to 

this, biochar porosity has also decreased soil bulk density, and therefore lowers temperate soil’s 

susceptibility to compaction (Karer et al., 2013; Bamminger et al., 2016). A lower bulk density is 

beneficial for soil ecology and crop root growth (USDA). Biochar has also contributed to 

increasing soil stability, preventing erosion and preserving ecological niches, thereby enhancing 

soil biodiversity (Martinsen et al., 2014; Jones et al., 2012; Nelissen et al., 2015). The physical 

changes explored here are especially beneficial for coarse-textured soils, which retain little 
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moisture and do not naturally form strong soil aggregates (Rogovska et al., 2014; Ajayi & Horn, 

2017). Many of these changes are further helpful amidst climate change. With climate change, 

Ontario is likely to see an increase in extreme weather events (Reid et al., 2007). These extreme 

events will mean extended periods without precipitation and infrequent but heavy rainfall that 

can destroy aggregates and increase soil erosion (Reid et al., 2007). Biochar can potentially 

benefit agriculture by storing soil moisture during drought periods and stabilizing soil particles 

(Karer et al., 2013; Lone et al., 2015).  

Impacts on chemical conditions can be more variable than those on physical 

characteristics. pH is one chemical property that consistently increases among biochar studies 

(Prendergast-Miler et al., 2011; Schomberg et al., 2014; Rutigiano et al., 2014; Luo et al., 2011). 

An elevated pH is desired in agriculture because it increases the availability of essential 

nutrients, such as P and K, as well as increases soil fertility and microbial diversity (Atkinson et 

al., 2010; Anders et al., 2013). pH is not a great concern in Southern Ontario, which has 

calcareous soils that buffer against high acidity (Lentz & Ippolito, 2011). Temperate studies, 

many of which also have calcareous soils, saw no pH change or just observed an initial increase 

that settled back to normal over time (Güereña et al., 2013; Jones et al., 2012). pH drives nutrient 

availability and will impact biota, favouring certain species (Domene et al., 2015). Unlike pH, 

soil organic carbon (SOC) and total nitrogen (TN) experienced a greater variety of effects in 

temperate studies (Jones et al., 2012; Karer et al., 2013; Lentz & Ippolito, 2012; Luo et al., 

2011). Some studies have observed biochar stabilizing these nutrients and contributing to the 

accumulation of C and N in soil (Lentz & Ippolito, 2012; Yuan et al., 2017; Liang et al., 2008). 

However, others have concluded that biochar can trigger mineralization of SOC (Luo et al., 

2011; Qayyum et al., 2012; Mitchell et al., 2015). The ratio between SOC and TN (C/N ratio) is 
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a vital soil health quality indicator that generally increases following biochar additions (Atkinson 

et al., 2010; Nelissen et al., 2015; Anders et al., 2013). C/N ratio increases are attributed to 

biochar contributing carbon or stabilizing native SOC (Atkinson et al., 2010; Nelissen et al., 

2015). SOC is a substantial component of soil and large portion it is stable, therefore it is 

difficult to observe long-term changes to SOC (Awale et al., 2017). Studies investigating effects 

1-2 years after biochar additions may not capture or convey the result of biochar additions (Dil et 

al., 2014). Soil free light fraction (FLF) was analyzed to observe short-term contributions to 

future SOC and TN. FLF is a portion of soil made up of newly incorporated biomass which can 

be consumed by soil biota or overtime convert into a stable, inactive portion of SOC and TN 

(Gosling et al., 2013; Liang et al., 2008). Investigating soil FLF accumulation is an approach to 

project an increase or decrease of SOC and TN (Gosling et al., 2013). In the literature, it has 

been found that biochar contributes the most to the heavy-fraction of soil, with only ~30% 

becoming incorporated in the FLF (Vasilyeva et al., 2011). While few studies that have explored 

this, it has been suggested that biochar will change the distribution of FLF carbon and nitrogen in 

the soil horizon (Vasilyeva et al., 2011). 

Biochar’s modifications to nutrient cycles have been a focus within literature (Clough et 

al., 2013). The biochar pyrolysis temperature and feedstock type; exert a considerable influence 

on the degree of effects to soil nutrients (Akinson et al., 2010). In temperate agriculture, biochar 

has appeared to modify the nitrogen cycle, impacting biotic and abiotic interactions within the 

soil and on the surface of biochar (Clough & Condron, 2010). Some studies have seen no impact 

on NH4
+ and NO3

-, with nitrogen absorption offset by reduced N losses (Jones et al., 2012; 

Nelissen et al., 2015). Many studies found short-term absorption of N by biochar, which reduces 

the concentration of bioavailable N species but also reduces leaching (Anders et al., 2013; 
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Bamminger et al., 2014). Among studies with low temperature (<400C) biochar (Anders et al., 

2013), N was found to be stabilized and retained in the rhizosphere of soil, thereby increasing 

soil fertility (Qayyum et al., 2012; Prendergast-Miller et al., 2011). The broad concepts of 

biochar-N interactions are understood: biochar retains N through ion exchange, absorbing NH3, 

immobilizing NO3
- (Clough et al., 2013). As well, biochar can create conditions that do not 

favour denitrifying bacteria, these interactions can reduce rates of soil denitrification (Anderson 

et al., 2011; Clough et al., 2013). However, the degrees to which these processes are observed 

depends on the source material, the pyrolysis temperature of biochar, and to which soil they are 

added (Clough et al., 2013; Joseph et al., 2010). Phosphorous is another primary limiting nutrient 

for temperate plant growth (De Luca et al., 2009). Though biochars are noted to function as an 

effective P fertilizer, decreases in bioavailable P have been observed in temperate biochar 

projects, especially if there was an initial increase in soil pH due to biochar (Wang et al., 2012; 

Atkinson et al., 2010). PO4
-3 can become less accessible to plants if biochar increasing P 

solubility, adsorbs P, or alters enzyme activity (De Luca et al., 2009; Zhang et al., 2016; Madiba 

et al., 2016). In soils with low P sorption capacities, biochar can retain and initiate increases to 

available P (Zhai et al., 2015; Novak et al., 2009; Lehmann et al., 2003). Low sorptive soils, such 

as sandy soils, have poor nutrient retention and can benefit from biochar additions (Uzoma et al. 

2011; Dil et al., 2014). The reduction in nutrient leaching is especially crucial for agricultural 

systems, which lose significant amounts of nutrients into the surrounding environment (Kulyk, 

2012). These fluxes have been detrimental to natural and human systems causing eutrophication 

and well-water contamination (Galloway et al., 2008).  

Biochar impacts on soil biota are not well understood, and little research has been carried 

out concerning macrofauna (Atkinson et al., 2010; Domene et al., 2014). Available research has 
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focused on a few insect species. Impacts range from increased reproduction (Marks et al., 2014) 

to biomass loss (Li et al., 2011). The small number of studies, with their variable outcomes, 

make it difficult to understand to what degree biochar impacts macrofauna physically (i.e., 

desiccation, improved aeration), chemically (i.e., toxicity, nutrient availability), or ecologically 

(i.e., food sources). One study has observed the impact of biochar on earthworms, and saw an 

increase in soil water content (Hardie et al., 2014). Therefore, insects can also act as an 

intermediary for indirect biochar impacts (Burrell et al., 2016). In regards to soil biota, more 

information is available in on soil microbial life, which generally benefits from biochar 

(Bamminger et al., 2014). Biochar has driven changes regarding diversity, community structures, 

efficiency, and total microbial biomass (Bamminger et al., 2016; Anderson et al., 2011; Domene 

et al., 2014). Much like chemical and physical characteristics, not all impacts have been 

consistent across studies (Domene et al., 2014; Marks et al., 2014). While some saw increases in 

species diversity and colonization, especially among lower temperature biochars (Lou et al., 

2013; Mitchell et al., 2015; Bamminger et al., 2014), others found that biochar favoured a narrow 

array of species (Khodadad et al., 2011; Quilliam et al., 2013; Mitchell et al., 2015). Some 

applications favoured fungi (Bamminger et al., 2014; Yuan et al, 2017), while others saw more 

gram-negative bacteria (Gomez et al., 2014), and yet others gram-positive bacteria (Mitchell et 

al., 2015). Likewise, some studies saw an initial decrease in activity, though most found short-

term increases in activity (Luo et al., 2011; Rutigiano et al., 2014; Mitchell et al., 2015; 

Bamminger et al., 2014). Changes to microbial communities impact nutrient cycling and 

therefore continued investigations are essential (Knicker, 2011). 

The aforementioned changes to soil structure and nutrient availability, and the resulting 

changes to soil biota, strongly impact crop productivity. Due to a naturally higher pH, cation 



   22 

exchange capacity (CEC), and SOC content, temperate soils need fewer alterations to soil 

conditions for productivity (Atkinson et al. 2010). With many needs already met, biochar does 

not always improve temperate soil characteristics (Appendix B). Very rarely has biochar resulted 

in a straightforward increase in crop productivity within temperate systems. However, certain 

temperate soil types and land uses can benefit (Kloss et al., 2014). Biochars can aid soils that are 

naturally less effective at retaining moisture and nutrients (such as coarse-textured soils) during 

droughts (Glaser et al., 2014; Hammond et al., 2013). Many sandy soil projects have observed 

impacts to crop yield (Borchard et al., 2014; Nelissen et al., 2015; Güereña et al., 2013; 

Hammond et al., 2013). However, many temperate studies found an initial or sustained decrease 

in crop growth (Karer et al., 2013; Anders et al., 2013; Borchard et al., 2014; Kloss et al., 2014; 

Lentz & Ippolito, 2012). In several cases, these impacts were corrected with additional fertilizers 

(Glaser et al., 2015; Hammond et al., 2013). The degree of influence on crop yield was found to 

vary between biochar types; especially among wood biochars, manure biochars, and grass 

biochars (Kloss et al., 2014; Anders et al., 2013). The pyrolysis temperature of biochar 

influenced crop productivity. Typically, low-temperature biochars were found to be more 

beneficial for improving soil fertility (Qayyum et al., 2012; Luo et al., 2013; Yuan et al., 2017). 

It is apparent once again that the outcomes of biochar additions will vary significantly depending 

on biochar makeup (original material and pyrolysis temperature), the amount that is added, and 

the soil type it is being added to (Atkinson et al., 2010). This study aimed at contributing to an 

understanding of how a high-temperature biochar addition might impact soil health and crop 

productivity  in a course textured Southern Ontario agricultural soil. Crop yield differences 

between biochar and non-biochar soil in southern Ontario were quantified. 
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2.3 Methods 

2.3.1 Site Description  

This study was carried out in Bayfield, Ontario, Canada (4334’45.8”N, 8139’52.2”W). 

The site was located 183 m above sea level with a 1.5% slope, and the soil has been classified as 

a uniform Grey-Brown Luvisol (Burford loam). The nearest historical weather station in 

Dashwood, ON (4322’00.0”N, 8137’00.0”W) reported an average annual temperature of 8.2C 

and average annual precipitation of 1006.8 mm (Government of Canada). Historically, July has 

been the warmest month while January the coldest, with an average temperature of 20.8C and -

5.0C, respectively. September has been the wettest and March the driest month at this site, with 

an average of 117.9 and 60.9 mm precipitation, respectively. Prior to initiating this study, the site 

received poultry manure with switchgrass bedding on a three-year rotation and fertilizer 

additions when supporting cash crops [(maize (Zea mays L.)-soybean (Glycine max Merr. L.) 

rotation). The first field season was initiated in 2016, beginning with maize crop followed by 

soybean crop the next growing season, 2017. Both field seasons ended after crop harvest. The 

2016 field season terminated in early November and 2017 in early October. 
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Figure 2.1 Historic a monthly climatic conditions from a) the nearest historic weather station in Dashwood, Ontario from 1981-2010, 

b) the nearest present station in Goderich, Ontario in 2016, and c) 2017.  
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The experimental design was a complete randomized design (CRD) with three treatments 

each replicated three times, yielding nine plots in total (10 m x 10 m plot size). A three-meter 

buffer zone was established between each treatment plot to account for edge effects. No 

measurements were taken within the outer meter of each treatment plot to avoid border effects. 

The treatments were: 6 t/ha poultry manure (M) with switchgrass bedding plus 135 kg/ha 

nitrogen (N) fertilizer (urea) (MN); 3 t/ha poultry manure plus 3 t/ha biochar (B) (MB); 3 t/ha 

poultry manure, 135 kg/ha nitrogen (N) fertilizer, and 3 t/ha biochar (MNB). Biochar was only 

added once at the onset of the study using a drop spreader. The biochar was provided by Titan 

Carbon Smart Technologies (Saskatoon, Saskatchewan, Canada). The biochar feedstock was 

50/50 pine (Pinus spp.) and spruce (Picea spp.), and underwent slow pyrolysis and reached peak 

temperature at 550C for 15min (Table 2.2). The site was under minimum tillage using a disc 

harrow, which incorporated the manure and biochar into the soil to a depth of 8 cm in May 2016. 

Conventional commercial farm management operations, such as herbicide additions (N-

phosphonomethyl glycine (Glyphospate)), and N fertilizer application rates were considered 

standard agronomic practices for this region within Southern Ontario. Soil sampling was 

primarily carried out on three dates, baseline (May 5th, 2016), harvest 2016 (November 7th, 2016) 

and harvest 2017 (October 7th, 2017). Soil baseline conditions are given below in Table 2.1. 
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Table 2.1 Pre-experiment characteristics of the project soil  

 

 

 

 

 

 

 

Standard errors are given in parentheses. All values are expressed on a dry weight basis.  

 

 

Table 2.2 Pre-experiment characteristics of the biochar and manure used in this study 

All values are expressed on a dry weight basis. Biochar properties were supplied by Titan 

Industries. 

 

 

 

 

 

 Burford Loam Soil (0-10 cm) 

Classification Grey-Brown Luvisol 

Landuse  Corn-Soybean Rotation 

Texture Sandy Loam 

Bulk Density (g/cm3) 1.26 (0.01) 

pH 7.07 (0.03) 

Total Organic C (%) 1.07 (0.05) 

Total N (%) 0.12 (0.01) 

C/N 8.35 (0.37) 

Bicarbonate ext. P (mg P kg-1) 52.6 (1.32) 

 Titan Carbon Smart 

Technologies Biochar 

Poultry Manure with 

switchgrass bedding 

Pyrolysis Type Slow Pyrolysis, 550C - 

Feedstock Pine/Spruce - 

Water Content (%) 1.7 34.1 

pH 7.2 7.9 

Total Organic C (%) 80 30.3 

Total N (%) 0.5 3.2 

C/N 170 9.5 

Ash content (%) 12 - 

P  0.03 0.83 

K 0.30 g/g 13725 mg/kg 

Ca 0.68 g/g 14200 mg/kg 

Mg 0.23 g/g   4500 mg/kg 

S 0.03 g/g 3600 mg/kg 
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2.3.2 Soil Sampling and Analysis 

2.3.2.1 Soil Physics 

  Infield analysis, such as infiltration rate measurement, were carried out the day of 

baseline, harvest 2016, and harvest 2017 soil collection. Infiltration was measured using a 2800 

Guelph Permeameter, Model 09.07 (Eijkelkamp Agrisearch Equipment, Giesbeek, the 

Netherlands). Raw data were converted into an infiltration rate using the Guelph Permeameter 

Calculations spreadsheet recommended in the 2800 Guelph Permeameter, Model 09.07 

Operating Instructions Manual (soilmoisture.com). Several soil characteristics, including soil 

moisture, and temperature, were sampled biweekly for the entire growing season of each year at 

two randomly selected points in each treatment replicate, coinciding with greenhouse gas 

sampling (cf. Chapter 3). Soil temperature and moisture were measured to a 10 cm depth using 

an HH2-WET sensor within 1 m radius of each sample point from 10 a.m. and 3 p.m. from May 

to November 2016 and 2017 (Delta T Devises, Cambridge, UK). Before crop harvest, soil 

samples were collected at five random points using a spade to collect soils between the depths of 

0-10cm, 10-20cm and 20-30cm within each plot. Unless analyzed immediately, soil samples 

were frozen for later analyses. At these same points a bulk density ring was driven horizontally 

into the middle of the three depths. The soil held in the ring was then oven-dried at 105°C for 48 

hrs, weighed to determine dry weight and quantity bulk density. At the time of sample collection, 

five additional soil samples were combined at the shared depths of 0-10 cm, 10-20 cm, and 20-30 

cm. Therefore, each treatment had three combined replicates from each of treatment replicate of 

the three depths.  These combined samples were used for the analysis of aggregate stability and 

all chemical characteristics.  
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Figure 2.2 Schematic diagram of project’s complete randomized design (CRD) plots at H & N 

Baker Farm, Bayfield Ontario, Canada. 

 

Aggregate stability was measured using a protocol adapted from Carter et al. (2002) and 

Mehuys et al. (2007). To minimize slaking, the soil was moistened to approximately 50% field 

capacity with a mist bottle 5 minutes before sieving. Air-dried soil samples were passed through 

a 2-mm sieve and ~10 g of each sample was placed onto a 250 m sieve. The initial weight was 

recorded (W1). The sieves were then gently lowered into a tub of de-ionized water and moved up 

and down approximately 4 cm 30 times/minute. After 10 minutes of wet sieving, the soil 

remaining on the sieve was rinsed off with de-ionized water into tins and oven-dried at 105C 

overnight. The dried soil represents weight 2 (W2). W2 subtracted from W1 gives the weight of 

particles and aggregates >250 m. After weighing, the remaining soils were shaken in a 50 ml 

solution of 0.5% sodium hexametaphosphate solution on a reciprocating shaker at 180 rpm for 
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45 minutes. The mixtures were then poured through a 250 m sieve, a flat plate was used to 

gently break up the remaining aggregates, which were further rinsed with de-ionized water. The 

remaining coarse particles were transferred with de-ionized water into tins and were oven-dried 

at 105ºC overnight. The coarse particles were subsequently weighed (W3). Carter et al.’s (2002) 

calculation for the percentage of water-stable macro-aggregates was used:  

Eq. [2.1]  %WSA = 100 ∗
𝑊2−𝑊3

𝑊1−𝑊3
  

 In addition, the percent of unstable aggregates (%UA) was calculated with  

Eq. [2.2]  %UA = 100 ∗
𝑊1−𝑊2

𝑊1
 

and percent of stable aggregates (%SA) with  

Eq. [2.3]  %SA = 100 ∗
𝑊2−𝑊3

𝑊1
  

 

2.3.2.2 Soil Chemical Analysis  

Following soil collection, after crop harvest, the combined soil samples (from 5 points) at 

0-10 cm, 10-20 cm, and 20-30 cm were air-dried. Soil pH was determined using a 1:1 soil to 

ultra-pure water paste using a pH meter (Fisher Scientific, Pittsburg, USA). Before soil elemental 

SOC and TN analysis, carbonates were removed from the air-dried soil through acid washing 

(Dyer et al., 2012). 2.0 g of soil was treated with 50.0 ml of 0.5 M HCl and was shaken three 

times over 24 hrs on a reciprocating shaker at 200 rpm (Heidolpj Unimax 1010 DT, Schwabach, 

Germany). Following a settling period, the acid solution was removed using a pipette. The soils 

were washed by adding 50 ml ultrapure water and shaking the soils at 200 rpm daily for four 

days. The soils were dried at 40C for 2 days and then ground in a ball mill (Retsch® ZM1, 

Haan, Germany) to 250 m. Approximately 15 mg of the ground soil was weighed and packaged 

into tin capsules (Costech, 5 x 9 mm), to be further analyzed in an Elemental Analyzer (Costech 
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4010, Cernusco, Italy) for soil organic carbon and total nitrogen (%). From these results, the C/N 

ratio was calculated. 

The free light fraction was isolated from soils using the method of Carter and Gregorich 

(2007). 50 ml of NaI solution (with a specific gravity of 1.7) was added to 25 g of air dried soil. 

Each sample was first hand-shaken for 10 seconds to ensure mixing and subsequently shaken at 

250 rpm for an hour on a reciprocating shaker (Heidolpj Unimax 1010 DT, Schwabach, 

Germany). Following mixing, the soil was then settled for 48 hrs at room temperature. The light 

fraction of the soil was stratified on the surface of the solution and aspirated onto microfiber 

glass filters (Whatman 934-AH, Buckinghamshire, UK) using the vacuum filter unit illustrated in 

Carter and Gregorich’s methodology (2007). The filters were pre-weighed for each sample and 

weighed once more after drying the FLF samples on the filters. The FLF was then gently 

removed from the filter surface, ground, weighed, packaged into tin capsules (Costech, 5 x 9 

mm), and finally analyzed in an Elemental Analyzer (Costech 4010, Cernusco, Italy) for FLF 

carbon and FLF nitrogen (%). From these results the FLF C/N ratio was calculated. 

To quantify changes in NH4
+ and NO3

-, biweekly soil samples were collected over 24 

weeks during the growing season between May - November 2016 and 2017, which coincided 

with greenhouse gas sampling (cf. Chapter 3). Approximately 250 g of soil were removed from a 

depth of 0-10 cm from the 18 locations (Estefan & Sommer, 2013) and stored frozen (~ -15C). 

As well, at harvest soil was collected at 0-10 cm, 10-20 cm, and 20-30 cm for analysis. Before 

each analysis, portions of soil samples were thawed, air-dried, sieved (2 mm), and extracted in 5 

g batches with 25 ml of 2 M KCl. This mixture was shaken at 180 rpm for 15 minutes on a 

reciprocating shaker (Heidolpj Unimax 1010 DT, Schwabach, Germany), and filtered through 

Whatman 42 filter paper. The resulting supernatants were used to analyze NH4
+ and NO3

- 
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content. NH4
+ was analyzed on a Shimadzu 1800 UV-Vis Spectrophotometer (Shimadzu Corp., 

Kyoto, Japan) at a wavelength of 650 nm following an hour of colour development at room 

temperature (Verdow et al., 1978; Foster, 1995). NO3
- was analyzed at a wavelength of 540 nm 

over 12 hrs after colour development using the same UV-Vis Spectrophotometer (Miranda et al., 

2001; Doane & Horwath, 2003). Soil samples collected at harvest at the three depths were 

analyzed each year for NH4
+, NO3

-, and ortho-phosphate (PO4
-3). Extractable P was determined 

using the Olsen P method (Amacher et al., 2003) and analyzed on a Shimadzu 1800 UV-Vis 

Spectrophotometer (Shimadzu Corp., Kyoto, Japan) at a wavelength of 880 nm following the 

Ascorbic Acid method (Amacher et al., 2003). 

 

2.3.2.1 Soil Biology  

2.3.2.1.1 Macrofauna Invertebrates 

In May 2016, a random point was selected in each plot and macrofauna were collected 

within 1m of this point on the sample date. In spring, summer, and autumn of both years soil 

monoliths were dug at this point to a dimension of 25 cm x 25 cm x 30 cm with a spade to collect 

soil invertebrates. The monoliths were then hand-sorted for insects the day of collection or 

bagged, transported to the lab, and hand-sorted within one week of collection. Macrofauna were 

counted and identified to an order level, to investigate soil invertebrate populations and diversity. 

 

2.3.2.1.2 Microfauna 

After field collection, portions of the combined soil samples from each site were frozen. 

Before analysis, the soil was moved into a 4°C refrigerator to thaw for a week. Once thawed, a 

portion was used for soil microbial biomass (SMB) and another for microbial diversity analysis. 

For the SMB process, the thawed soils were moistened to a ~50% water holding capacity, 

incubated at room temperature for seven days, and sieved (2 mm) to remove large rocks (Allison, 
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2008). After seven days the soil was divided into three 30 g portions. The first portion was oven-

dried for 24 hrs to determine the moisture content of the soil, the second portion was 

immediately extracted, and the third portion was fumigated for 24 hrs with CHCl3 before 

extraction (Allison, 2008). Before being extracted the third 30 g portion of soil was fumigated in 

a vacuum desiccator with 50 ml of chloroform, as outlined by Voroney et al. (2008) and Allison 

(2008). 

 The oven-dried soil was used to determine how much 0.05 M K2SO4 solution was 

needed to extract each 30 g wet samples. For every gram of the wet soil’s dry weight, 2 ml of 

solution was added. The mixture was then shaken at 200 rpm for 1 hour and filtered through 

Whatman GF 934-AH filter paper. All filtrates were then freeze-dried (Mandel ModulyoD-115, 

Ashville, NC) before being oven dried at <40C overnight. Following this, ~10 mg was 

packaged in tin capsules (Costech, 5 x 9 mm) and analyzed in the elemental analyzer (Costech 

4010, Cernusco, Italy).  

The following calculations were used to calculate SMB-C (Voroney et al., 2008). 

Eq. [2.4]  𝑆𝑀𝐵 − 𝐶 =
𝐶𝐹−𝐶𝑈

𝐾𝐸𝐶
 

 CF was the total weight of extractable C from the fumigated soils (g/ g soil), as given by 

the elemental analyzer. CU was the total weight of extractable C from the unfumigated soils (g/ 

g soil). KEC was the conversion factor of 0.35 (Voroney et al., 2008). Soil microbial biomass 

nitrogen (SMB-N) was calculated similarly but used a conversion factor (KEN) of 0.5 (Voroney et 

al., 2008). 

Soil microbial diversity was determined following the methodology performed by 

Garland (1996). Ecoplates™ were incubated for five days at room temperature and read on a 

EL800 Microplate Reader (BioTek Instruments, Inc. 2011, Bad Friedrichshall, Germany) 
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approximately every 12 hrs. Well-colour development peaked at 95 hrs. The measurements from 

95 hrs were then used to calculate the average well colour development (AWCD), species 

richness, and Shannon Diversity Index. AWCD was calculated as the average microplate well 

optical density (OD) at 590 nm, excluding the control wells [Equation 4] (Garland, 1996).  

Eq. [2.5] AWCD =
𝑂𝐷𝑖

31
    

Richness was counted from the wells which had an OD greater than 0.25 at 590 nm. The 

Shannon Diversity Index (Hs) gives a value to compare the diversity and evenness of the 

microbial communities within each substrate. It was quantified using Equation 2.6. Within 

Equation 2.6, pi is the ratios of the substrates activity (ODi) to the sum of activity within all the 

substrates (ODi). 

Eq. [2.6] Hs =  −𝑝𝑖 (ln𝑝𝑖)  

 

2.3.3 Crop Sampling and Analysis  

On November 7th, 2016, 40 cm x 2 m strips were randomly chosen from each treatment 

replicate. From these strips, all maize and soybean yields, shoot biomass (stalks, leaves, tassels, 

husks), and root biomass was collected. Out of interest to the farmer, all maize cobs were 

collected from the entire 10 m x 10 m plots. The maize was collected in a bin, and a wet weight 

was determined in the field using a Manual Poultry scale BAT 1 (VEIT Electronics, Moravany, 

Czech Republic). The 40 cm x 2 m samples of maize grain were weighed as well and brought to 

the lab. All soybean plant matter within the 40 cm x 2 m strip was collected on October 7th, 2017 

and transported to the lab for further analysis. Plant aboveground biomass was considered all 

plant matter above the first aerial roots, excluding the grain. Loppers were used to cut the 

biomass into sections to weigh in the field. Root biomass was collected after carefully digging 20 

cm around the crop rows and loosening the soil. The soil was light enough that the roots could be 
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lifted out and gently shaken with minimum root loss. The roots were then weighed in the field 

and brought back to the lab for cleaning. Each root mass was carefully cleaned in water to 

remove all remaining soil particles.  A 2 mm sieve was used to collect additional root loss during 

cleaning. The cobs, aboveground biomass, and cleaned roots were then heated in an oven at 72°C 

for 48 hrs (Oelbermann & Voroney, 2007). The final weights were then collected on a Sartorius 

6200 D electronic top load digital scale (Göttingen, Germany). Total plot biomasses were 

subsequently inferred for each treatment using these numbers. During the biweekly sampling, 

soil temperature and moisture were measured as well using an HH2-WET Sensor (Delta T 

Devices, Cambridge, UK).  

 

2.3.4 Statistical Analysis 

All statistical analyses were conducted on SPSS Statistics for Windows Version 23 and 

had a P>0.05 threshold probability level. One-way analyses of variances (ANOVA) were carried 

out in conjunction with Tukey’s post hoc HSD to test for emissions homogeneity of variance and 

normality. One-way ANOVA analyses were conducted to quantify the impact of the three 

treatments (MN, MB, MNB) on soil characteristics, soil biology, and crop yields. All 

characteristics were analyzed between years (2016, 2017) and/or among seasons [spring (May 

19th to June 21st), summer (June 22nd to September 2nd), and autumn (September 23rd to 

November 5th)]. Two-way ANOVAs were used to determine whether time (year or season) and 

treatment type were interacting to significantly influence soil characteristics mentioned earlier 

(Kloss et al., 2014; Lutes et al., 2016). Distribution normality was determined using the Shapiro-

Wilk Test and Kolmogorov-Smirnov Test. Any value distributions that were not normal (p>0.05) 

were given as medians. Significant differences among means were determined with Tukey’s post 

hoc HSD tests. Pearson’s two-tailed correlation analysis was used for each treatment to establish 
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the relationship between crop yields and soil characteristics. A principal components analysis 

was carried out using the AWCD values collected from the microbial Ecoplates to examine how 

similar microbial communities were (Dil et al., 2014). 

 

2.4 Results 

2.4.1 Soil Characteristics  

Soil Physics 

Soil infiltration treatment effects were not significant (P= 0.876) at any time during this 

study. As well, there were no significant changes from baseline measurements to 2016, or from 

2016 to 2017 (P=0.102). In 2017, biochar soils appeared to have increased infiltration rates, but 

these were not statistically significant (Table 2.4). Infiltration rates did no change following 

additions of biochar, as well there were no treatment-by-year interactions (P>0.05). 

Both year (P<0.001) and treatment (P=0.034) were found to significantly impact bulk 

density levels, though there was no interaction for treatment-by-year (P=0.145).  When 

considering an LSD interaction, a significant difference (P=0.035) was identified between MN-

MB and MN-MNB (P=0.017), with MN having a lower bulk density of ~0.1 g/cm3.  A 

significant difference, however, only existed between MN-MNB (P=0.045) using Tukey’s 

comparison. As well, bulk density was different across each sampling date. 2017 was 

significantly lower than in 2016 by 0.132 g/cm3 (P=0.022). 

Water-stable soil aggregates only saw significant change between sampling depths 

(P=0.017). As sampling depth increased so did the percent of water-stable aggregates within 

each treatment and across dates. The 10-20 cm depth had an average of 44.0% water-stable 

aggregates and 0-10 cm had 37.3% (P=0.017). 2017 appeared to have the highest percent of 

water-stable aggregates, followed by baseline and then 2016, although there were no significant 
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differences identified. No significant difference was found among treatments, though MN had 

the highest total of aggregate stability, followed by MB and MNB. As well, differences among 

treatments were not observed for stable aggregate particles greater than 250m. The difference 

between treatments was negligible when considering this portion of water-stable soil aggregates. 

The aggregate particles >250m levels were far more similar between depths (10-20 cm was 

slightly higher, P=0.075) and had a greater temporal change (P<0.001) than when considering 

the total water-stable soil aggregates. However, the temporal pattern remained the same for this 

subset of stable-aggregates with 2017 having the greatest percent followed by baseline and 

finally 2016. 

 

 

Table 2.3 Mean (𝜒̅) baseline physical soil characteristics in temperate soil amended from three 

treatments: poultry manure and N fertilizer (MN), poultry manure and biochar (MB), and poultry 

manure, N fertilizer and biochar (MNB) in Bayfield, Southern Ontario, Canada. Standard errors 

are given in parentheses. 
 

Soil Physical Characteristics Baseline 
  MN MB MNB 

Wet Stable 

Aggregates 

%  

0-10cm 35.1 (2.15)A,a 40.3 (5.16)A,a 45.9 (8.49)A,a 

10-20cm 45.8 (4.50)A,a 44.4 (1.04)A,a 53.1 (6.99)A,a 

    

Wet Stable 

Aggregates 

% >250 m 

0-10cm 84.7 (1.59)A,a 86.3 (3.22)A,a 87.0 (2.46)A,a 

10-20cm 85.4 (1.56)A,a 86.8 (1.50)A,a 89.6 (2.99)A,a 

    

Bulk Density g/cm2 

 

0-10cm 1.3 (0.03)A,a 1.2 (0.04)A,a 1.3 (0.05)A,a 

10-20cm 1.3 (0.07)A,a 1.3 (0.06)A,a 1.3 (0.05)A,a 

20-30cm 1.3 (0.04)A,a 1.3 (0.03)A,a 1.3 (0.03)A,a 

Infiltration cm/s 0-10cm 0.006 (0.002)A 0.005 (0.000)A 0.004 (0.001)A 

A Values followed by the same upper case letters are not significantly different among treatments 

(at p< 0.05). a Values followed by the same lower case letters are not significantly different 

among depths (at p<0.05).  
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Table 2.4 Mean (𝜒̅) yearly (2016 & 2017) physical soil characteristics in temperate soil amended from three treatments: poultry 

manure and N fertilizer (MN), poultry manure and biochar (MB), and poultry manure, N fertilizer and biochar (MNB) in Bayfield, 

Southern Ontario, Canada. Standard errors are given in parentheses. 
 

Soil Physical 

Characteristic 

2016  2017 

MN MB MNB  MN MB MNB 

Wet Stable 

Aggregates 

%  

0-

10cm 
33.7 (3.75)A,a 21.6 (4.50)A,a 23.3 (7.60)A,a  49.0 (2.23)A,a 51.0 (3.09)A,a 45.1 (4.82)A,a 

10-

20cm 

38.3 (2.28)A,a 37.3 (3.04)A,b 29.3 (4.29)B,a 

 51.2 (2.73)A,a 52.2 (6.92)A,a 55.4 (4.98)A,a 

        

Wet Stable 

Aggregates 

% >250m 

0-

10cm 
81.9 (0.86)A,a 81.2 (0.83)A,a 81.1 (3.28)A,a  88.9 (1.54)A,a 89.5 (1.32)A,a 86.9  (0.68)A,a 

10-

20cm 

85.4 (1.07)A,b 85.7 (0.55) A,b 83.9 (4.54)A,a 

 90.1 (0.63)A,a 88.8 (1.79)A,a 88.1 (1.48)A,a 

        

Bulk Density 

g/cm2 

 

0-

10cm 
1.3 (0.04)A,a 1.3 (0.04)A,a 1.3 (0.04)A,a  1.1 (0.02)A,a 1.1 (0.03)B,a 1.1 (0.02)AB,a 

10-

20cm 
1.3 (0.10)A,a 1.3 (0.03)A,a 1.3 (0.02)A,a  1.1 (0.05)A,a 1.1 (0.05)A,a 1.1 (0.06)A,a 

20-

30cm 

1.3 (0.07)A,a 1.3 (0.03)A,a 1.3 (0.02)A,a 

 1.1 (0.04)A,a 1.1 (0.07)A,a 1.1 (0.01)A,a 

Infiltration 

cm/s 
0-

10cm 
0.008 (0.001)A 0.004 (0.001)A 0.006 (0.001)A  0.006 (0.002)A 0.008 (0.003)A 0.008 (0.001)A 

Moisture 

% 

0-

10cm 
13.0 (0.58)A 10.3 (0.50)B 10.8 (0.50)B  12.3 (0.50)A 9.8 (0.43)B 10.5 (0.52)B 

Temperature 

C 

0-

10cm 
19.4 (8.72)A 19.2 (8.83)A 19.6 (8.83)A  22.3 (7.55)A 21.2 (7.55)A 21.7 (7.55)A 

A Values followed by the same upper case letters are not significantly different among treatments (at p< 0.05). a Values followed by 

the same lower case letters are not significantly different among depths (at p<0.05).  
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Table 2.5 Variance analysis of soil physical characteristics under three soil treatments (MN, MB, MNB) in temperate soil at H & N 

Baker Farm, Bayfield, ON, 2016-2017. F is the F-statistic, in the brackets P is the significance given as a P-value.  

 

Bolded values indicate significant factors.

       

 

Fixed Effect 

Agg. Stab. % 

Wet Stable 

Agg. Stab. % 

>250m 

Bulk Den. 

g/cm2 

Infiltration 

cm/s 

Moisture 

% 

Temperature 

C 

 F (P>F) F (P>F) F (P>F) F (P>F) F (P>F) F (P>F) 

Date  59.8 (0.00) 24.9 (0.00) 37.1 (0.00) 2.0 (0.18) 0.23 (0.634) 1.47 (0.226) 

Depth 6.6 (0.02) 3.5 (0.08) 0.5 (0.63) - 67.18 (0.000) 179.17 (0.000) 

Treatment (Trt) 1.1 (0.34) 0.8 (0.48) 3.7 (0.03) 0.1 (0.88) 19.67 (0.000) 0.63 (0.533) 

Date*Depth 0.7 (0.43) 1.8 (0.19) 0.0 (1.00) - - - 

Date*Trt 1.4 (0.28) 0.0 (0.95) 2.0 (0.15) 1.6 (0.23) 0.46 (0.635) 0.51 (0.604) 

Depth*Trt 0.4 (0.68) 0.0 (0.99) 0.1 (0.97) - - - 

Date*Depth*Trt 1.1 (0.34) 0.3 (0.78) 0.2 (0.93) - 1.31 (0.266) 1.03 (0.394) 
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 Soil Chemistry 

A slightly lower pH level was found in biochar treatments, though this difference was 

marginal and not significant across either 2016 and 2017. MN was at its lowest at baseline and 

saw the greatest increase following its manure and urea additions. The pH was significantly 

impacted by depth-year interaction (P=0.034). The 0-10 cm depth was significantly lower than 

10-20 cm (P=0.004) and 20-30 cm (P<0.001) in the second year. The pH was more evenly 

spread among the three depths in 2016. Due to the second year change, 0-10 cm was 

significantly lower than 10-20 cm and 20-30 cm (P<0.005).  

SOC was not significantly different among any treatments (P=0.701). MB and MNB had 

very similar percentages and were only found to be slightly higher than MN, most noticeably in 

2016, after biochar additions. The treatment-time interaction was also not significant (P=0.241). 

Only 2017 was found to differ significantly from the baseline measurement (P=0.002) and was 

higher by 0.46%.  While there were no interactions between date and depth (P=0.854), depth 

resulted in significant differences (P=0.021). As depth increased, SOC decreased; 0-10 cm had 

0.55% more carbon than 20-30 cm (P=0.012). Much like SOC, total nitrogen (TN) had only 

slight and insignificant differences between biochar soil and MN, MB and MNB had a greater 

amount than MN. As well, TN mirrored SOC by decreasing with increased depth. 0-10 cm TN 

0.06% greater than 20-30 cm (P= 0.001) by 0.06%. 2016 was found to have the greatest TN 

level, followed by 2017, and then the baseline. When compared by LSD, the baseline was 

significantly lower (-0.025%) than harvest 2016 (P=0.027). This difference did not exist within 

the Tukey’s comparison. Treatment-by-year interacted to produce a significant impact on the 

carbon: nitrogen ratio (C/N) among treatments (P=0.002). C/N was greatest in MN, followed by 

MB, and finally MNB in 2016; 9.2, 7.8, and 7.5 respectively. In 2017 MNB and MB ha the 

greatest total C/N ratio; 12.5, 12.0, and 14.9, respectively. However, treatment alone did not 
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produce differences (P>0.05). Each treatment altered the distributions among depths. In 2016, 

MNB had the lowest average value at its 0-10 cm horizon and the highest at 20-30 cm. For every 

other treatment and date, the 20-30 cm sampling depth had the greatest ratio, followed by 10-20 

cm, then 0-10 cm.  The greatest C/N was observed in 2017, followed by the baseline reading and 

2016, which were more similar. 2017 had a ratio significantly higher than 2016 (P<0.001) (Table 

2.7).  

Although biochar soils had higher soil light fraction carbon (FLF-C) content, these 

differences were not significant (P=0.474). Treatment-by-depth-by-depth interactions were, 

however, significant (P=0.01). The depth where most FLF-C was held changed for each 

treatment from baseline to harvest 2016 and to harvest 2017 (Table 2.7). Before treatments were 

applied, MN and MNB stored more FLF-C in the top 0-10 cm of soil, while MB held it in the 10-

20 cm. However, six months following soil additions, MN held far less FLF-C in the top 10 cm, 

and biochar treatments retained more carbon in the top 10 cm. Following another twelve months 

(2017), all treatments had similar FLF-C readings.  Over the two years, it seemed that biochar 

treatments held carbon in 0-10 cm of soil, while MN had more in the 10-30 cm. Unlike FLF-C, 

light fraction nitrogen (FLF-N) had no significant impacts from factors or their interactions. All 

values between treatments were very close with no significant difference; the same was true for 

depth (Table 2.7). 2016 and 2017 exhibited nearly identical total amounts of FLF-N, though 

2017 was slightly lower and was significantly lower than baseline. Like FLF-C, a trend appeared 

in which biochar-treated soil held more FLF-N in the top 0-10 cm while MN held more in 10-30 

cm. Due to the differences among soil FLF-C, the FLF carbon: nitrogen ratio (FLF-C/N) also 

had a significant year-by-treatment interaction (P=0.002). In 2016 MN had a significantly lower 

FLF-C/N than the biochar treatments, both of which were quite similar. However, in 2017, this 
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ratio rose and exceeded MNB and MB. Even further, biochar treated soils’ FLF-C/N increased to 

such an extent that 2016 was significantly greater than baseline (P=0.003) and even more in 2017 

(P=0.001). In the end, MNB had the greatest total ratio, followed by MB and finally MN. MNB’s 

ratio was only significantly greater than MN’s (P=0.015). Depth did not have a significant impact 

and did not interact with other factors. However, like FLF-C and FLF-N, MN had a higher C/N 

ratio at the lower while biochar treated soils had a higher C/N at 0-10 cm. 

Soil ammonium (NH4
+) and nitrate (NO3

-) did not differ significantly among treatments. 

MB only had slightly higher concentrations of NH4
+ but lower NO3

- values that MNB and MN 

(P>0.05). Depth as well had no significant impact on nitrogen concentrations; values were 

similar among depths for NH4
+ though NO3

- appeared to have greater levels in 0-10 cm. Date 

was found to be a significant interaction. Both 2016 and 2017 NH4
+ concentrations differed from 

baseline concentrations (2016, P=0.054; 2017, P<0.001), as well as from each other. It was 

found that in the first year NH4
+ fell significantly (P<0.001). For NO3

- it was the interaction of 

depth-by-year that caused the greatest variation (P=0.048). In 2016, the 20-30 cm depth had the 

greatest NO3
- concentration. However, over the course of the next year, this depth lost the 

greatest amount of NO3
-. The 0-10 cm appeared to lose very little, and 10-20 cm lost only 

slightly more (Figure 2.3). 

Soil phosphate (PO4
3-) was one of the few soil characteristics significantly affected by 

biochar additions. The treatment-by-year interaction was significant (P=0.012) therefore all 

treatment differences must be discussed in a temporal context. While MN had the greatest 

amount of PO4
3- in 2016, in the following year it accumulated less phosphorus than MB or MNB. 

MNB, which had the second highest concentration in 2016 and the greatest in 2017, significantly 

greater than MN. MB, which had the lowest concentration in 2016, had a nearly identical PO4
3- 
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concentration to MN in 2017. By the second year, MN had a 38%, MB 84%, and MNB 80% 

increase in P stocks. All concentrations for depth were very similar and did not vary significantly 

(P>0.05). 

 

Table 2.6 Mean (𝜒̅) baseline (May 2016) carbon: nitrogen characteristics, including free light 

fraction (FLF) values, before treatment application in Bayfield, Southern Ontario, Canada. 

Standard errors are given in parentheses. 

Carbon: Nitrogen  

Characteristics 

Baseline 

  MN MB MNB 

SOC 0-10 cm  1.2 (0.09)A,b  1.1 (0.08)AB,a 0.8 (0.02)B,a 

% 10-20 cm 0.9 (0.11)A,a  0.9 (0.02)A,a 1.3 (0.21)A,a 

 20-30 cm  0.7 (0.16)A,a 0.9 (0.10)A,a 1.0 (0.26)A,a 

TN 0-10 cm  0.2 (0.01)A,a 0.1 (0.01)A,a 0.1 (0.01)B,a 

% 10-20 cm  0.1 (0.00)A,ab 0.1 (0.00)A,a 0.1 (0.02)A,a 

 20-30 cm 0.1 (0.01)A,b 0.1 (0.01)A,a 0.1 (0.03)A,a 

C:N 0-10 cm 7.5 (0.36)B,a 9.2 (0.22)A,a 9.1 (0.03)A,a 

 10-20 cm 6.5 (0.38)B,ab 8.8 (0.53)A,a 9.4 (0.16)A,a 

 20-30 cm 5.9 (0.54)B,b 10.8 (1.58)A,a 8.5 (0.58)AB,a 

FLF-C 0-10 cm 27.7 (13.11)A,a 23.5 (5.45)A,a 23.8 (1.34)A,a 

% 10-30 cm 16.3 (1.34)A,a 28.3 (3.10)A,a 19.1 (5.00)A,a 

FLF-N 0-10 cm 2.8 (1.47)A,a 3.0 (0.67)A,a 3.3 (0.12)A,a 

% 10-20 cm 2.0 (0.10)A,a 3.5 (0.16)B,a 2.6 (0.64)AB,a 

FLF- 0-10 cm 10.3 (0.47)A,a 7.7 (0.12)B,a 7.1 (0.16)B,a 

C/N 10-30 cm 8.0 (0.30)A,b 8.0 (0.60)A,a 7.4 (0.12)A,a 

A Values followed by the same upper case letters are not significantly different among treatments 

(at p< 0.05). a Values followed by the same lower case letters are not significantly different 

among depths (at p<0.05).  
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Table 2.7 Mean (𝜒̅) yearly (2016 & 2017) carbon: nitrogen characteristics, including free light fraction (FLF) values, in temperate soil 

amended from three treatments: poultry manure and N fertilizer (MN), poultry manure and biochar (MB), and poultry manure, N 

fertilizer and biochar (MNB) in Bayfield, Southern Ontario, Canada. Standard errors are given in parentheses. 

Carbon: Nitrogen  

Characteristics 

2016  2017 

  MN MB MNB  MN MB MNB 

SOC 0-10cm 1.2 (0.02)A,a 2.2 (0.96)A,a 1.2 (0.15)A,a  1.8 (0.40)A,a 1.4 (0.11)A,a 1.8 (0.27)A,a 

% 10-20cm 1.1 (0.10)A,a 1.2 (0.33)A,a 1.2 (0.28)A,a  1.7 (0.14)A,a 1.5 (0.22)A,a 1.3 (0.23)A,a 

 20-30cm 0.7 (0.05)A,b 1.0 (0.16)AB,a 1.1 (0.02)B,a  1.2 (0.32)A,a 1.3 (0.21)A,a 1.1 (0.06)A,a 

TN 0-10cm 0.1 (0.00)A,a 0.2 (0.07)A,a 0.2 (0.01)A,a  0.15 (0.04)A,a 0.12 (0.01)A,a 0.15 (0.03)A,a 

% 10-20cm 0.1 (0.01)A,a 0.2 (0.02)A,a 0.1 (0.02)A,ab  0.15 (0.02)A,a 0.13 (0.02)A,a 0.11 (0.02)A,a 

 20-30cm 0.1 (0.01)A,b 0.1 (0.01)B,a 0.1 (0.01)AB,b  0.10 (0.03)A,a 0.10 (0.02)A,a 0.09 (0.01)A,a 

C:N 0-10cm 9.3 (0.22)A,a 8.6 (1.05)B,a 5.0 (2.50)C,a  11.9 (0.14)A,a 12.1 (0.03)A,a 11.7 (0.26)A,a 

 10-20cm 9.4 (0.13)A,a 7.4 (0.94)B,b 8.1 (1.18)C,b  11.6 (0.43)A,a 11.4 (0.51)A,a 12.2 (0.54)A,a 

 20-30cm 8.8 (0.11)AB,b 7.4 (0.81)B,b 9.5 (0.61)C,c  12.2 (0.30)A,a 12.3 (0.32)A,a 13.7 (1.81)A,a 

FLF-C 0-10cm 9.4 (4.31)A,a 39.1 (12.22)B,a 29.1 (5.02)B,a  17.4 (0.99)A,a 15.8 (1.04)A,a 16.4 (0.74)A,a 

% 10-30cm 26.2 (13.04)A,b 12.1 (4.79)B,b 23.3 (3.72)A  16.5 (1.26)A,a 15.6 (1.13)A,a 15.4 (0.37)A,b 

FLF-N 0-10cm 1.6 (0.17)A,a 2.7 (0.77)A,a 2.0 (0.33)A,a  2.0 (0.08)A,a 2.4 (0.27)A,a 2.4 (0.21) A,a 

% 10-20cm 3.3 (1.64)A,a 1.5 (0.68)A,a 2.3 (0.43)A,a  2.0 (0.05)A,a 2.4 (0.36)A,a 1.9 (0.08) A,a 

FLF- 0-10cm 5.3 (2.30)A,a 14.2 (0.48)B,a 14.5 (0.72)B,a  8.6 (0.36)A,a 6.8 (0.84)A,a 6.8 (0.36)A,a 

C/N 10-30cm 7.9 (0.05)A,a 9.9 (2.04)A,a 10.7 (3.58)A,a  8.1 (0.42)A,a 6.7 (0.52)A,a 7.9 (0.53)A,a 

A Values followed by the same upper case letters are not significantly different among treatments (at p< 0.05). a Values followed by 

the same lower case letters are not significantly different among depths (at p<0.05).  
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Table 2.8 Mean (𝜒̅) baseline (May 2016) mineral N and P concentrations before treatment application in Bayfield, Southern Ontario, 

Canada. Standard errors are given in parentheses. 

Nutrient Characteristics Baseline 

  MN MB MNB 

NH4
+ 

mg N kg-1 

 

0-10cm 8.9 (1.11)A,a 11.0 (1.96)A,a 10.6 (0.93)A,a 

10-20cm  7.2 (0.70)A,a 7.5 (1.33)A,a 8.9 (0.67)A,a 

20-30cm  10.5 (2.93)A,a 6.2 (1.13)A,a 9.7 (1.49)A,a 

NO3
- 

mg N kg-1 

0-10cm 5.4 (0.68)A,a 5.34 (0.50)A,a 4.70 (1.11)A,a 

10-20cm 2.9 (0.50)A,b 2.84 (0.05)A,b 2.00 (0.57)A,ab 

20-30cm 2.3 (0.54)A,b 2.08 (0.27)A,a\b 1.64 (0.71)A,b 

PO4
3- 

mg P kg-1  

0-10cm 56.0 (2.33)A,a 49.5 (0.51)A,a  51.1 (4.20)A,a 

10-20cm 54.9 (2.50)A,a 50.2 (4.15)A,a 60.0 (5.16)A,a 

20-30cm 57.0 (1.43)A,a 50.0 (7.04)A,a 48.8 (4.31)A,a 

A Values followed by the same upper case letters are significantly different among treatments (at p< 0.05). a Values followed by the 

same lower case letters are not significantly different among depths (at p<0.05).  
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Figure 2.3 Mean monthly 0-10 cm depth ammonium concentrations (NH4

+ mg N kg-1) in a) 2016 and b) 2017 from temperate soil 

amended from three treatments: poultry manure and N fertilizer (MN), poultry manure and biochar (MB), and poultry manure, N 

fertilizer and biochar (MNB) in Bayfield, Southern Ontario, Canada. 
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Figure 2.4 Mean monthly 0-10 cm depth nitrate concentrations (NO3
- mg N kg-1) in a) 2016 and b) 2017 from temperate soil amended 

from three treatments: poultry manure and N fertilizer (MN), poultry manure and biochar (MB), and poultry manure, N fertilizer and 

biochar (MNB) in Bayfield, Southern Ontario, Canada. 
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Table 2.9 Mean (𝜒̅) yearly (2016 & 2017) nutrient concentrations in temperate soil amended from three treatments: poultry manure 

and N fertilizer (MN), poultry manure and biochar (MB), and poultry manure, N fertilizer and biochar (MNB) in Bayfield, Southern 

Ontario, Canada. Standard errors are given in parentheses. 

  2016  2017 

  MN MB MNB  MN MB MNB 

NH4
+ 

mg N  

kg-1 

 
 

0-10 cm 7.4 (1.71)A,a 7.8 (1.00)A,a 10.3 (2.83)A,a  0.5 (0.08)A,a 0.8 (0.12)AB,a 1.2 (0.21)B,a 

10-20 cm 7.8 (2.56)A,a 8.0 (1.25)A,a 7.5 (0.81)A,a  0.3 (0.09)A,ab 0.7 (0.18)A,a 0.8 (0.26)A,a 

20-30 cm 7.3 (0.91)A,a 8.7 (1.63)A,a 4.9 (0.50)A,a  0.2 (-)A,b 0.5 (0.10)A, 0.9 (0.08)C,a 

         

NO3
- 

mg N  

kg-1 

0-10 cm 2.0 (0.13)A,a 1.9 (0.31)A,a 2.6 (0.44)A,a 
 

2.7 (0.39)A,a 3.8 (0.61)B,a 5.9 (1.07)B,a 

10-20 cm 1.9 (0.64)A,a 0.8 (0.07)A,b 2.8 (1.34)A,a  1.7 (0.45)A,ab 3.5 (0.89)B,a 3.8 (1.29)A,a 

20-30 cm 3.7 (2.09)A,a 2.4 (0.74)A,c 3.1 (1.76)A,a  1.2 (-)A,b 2.7 (0.52)A,a 4.6 (0.38)C,a 

         

PO4
3- 

mg P 

 kg-1 

0-10 cm 57.6 (1.88)A,a 44.7 (2.81)B,a 48.3 (6.30)AB,a  80.0 (8.99)A,a 81.5 (4.00)A,a 98.6 (8.33)A,a 

10-20 cm 57.0 (5.74)B,ab 43.7 (1.26)A,b 52.8 (2.31)B,a  73.6 (3.14)A,a 76.4 (5.98)A,b 83.7 (8.06)A,a 

20-30 cm 51.8 (0.66)A,b 45.9 (7.59)A,b 45.5 (7.23)A,a  77.0 (6.29)A,a 83.7 (5.44)A,a 88.4 (5.03)A,a 

A Values followed by the same upper case letters are significantly different among treatments (at p< 0.05). a Values followed by the 

same lower case letters are not significantly different among depths (at p<0.05).  
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Table 2.10 Variance analysis of carbon and nutrient characteristics under three soil treatments (MN, MB, MNB) in temperate soil at H 

& N Baker Farm, Bayfield, ON, 2016-2017. F is the F-statistic, in the brackets P is the significance given as a P-value. 

Bolded values indicate significant factors. 
 

 

 

Fixed 

Effect 

         

SOC % TN % C:N FLF-C % FLF-N % FLF-C:N NH4
+ mg N 

kg-1 

NO3
- mg 

N kg-1 

PO4
3- mg 

N kg-1 

 F (P>F) F (P>F) F (P>F) F (P>F) F (P>F) F (P>F) F (P>F) F (P>F) F (P>F) 

Trt 0.4 (0.70) 1.4 (0.26) 0.8 (0.48) 0.8 (0.47) 0.0 (0.85) 3.9 (0.04) 0.3 (0.77) 0.5 (0.01) 2.2 (0.12) 

Year (Yr)  3.0 (0.09) 2.5 (0.12) 80.0 (0.00) 6.9 (0.02) 0.0 (0.84) 13.8 (0.00) 165 (0.00) 4.8 (0.04) 153 (0.00) 

Dep 4.4 (0.02) 7.6 (0.00) 1.4 (0.27) 1.3 (0.27) 0.0 (0.97) 1.2 (0.28) 0.9 (0.44) 1.1 (0.36) 0.8 (0.46) 

Trt*Yr 1.5 (0.24) 3.9 (0.03) 2.2 (0.12) 1.4 (0.27) 0.6 (0.58) 9.1 (0.00) 0.2 (0.80) 3.6 (0.04) 5.0 (0.01) 

Dep*Yr 0.2 (0.85) 0.5 (0.62) 0.3 (0.71) 0.8 (0.40) 0.6 (0.45) 1.6 (0.22) 0.5 (0.64) 2.0 (0.15) 1.3 (0.28) 

Depth*Trt 0.2 (0.92) 0.1 (0.98) 2.7 (0.05) 5.4 (0.01) 2.4 (0.11) 1.5 (0.24) 1.1 (0.38) 0.1 (1.00) 0.3 (0.86) 

Trt*Dep*Yr 1.1 (0.37) 1.0 (0.41) 0.7 (0.59) 5.7  (0.01) 2.3 (0.12) 2.8 (0.08) 1.1 (0.38) 0.6 (0.67) 0.2 (0.88) 
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2.4.2 Soil Biology  

 Total macrofauna counts were unaffected by season, treatments, or any interaction of 

those factors (P>0.05). Year had an impact on total counts, with 2017 having significantly more 

macrofauna observed (P<0.001). When each year was considered in isolation the only difference 

that emerged was that spring 2016 had a significantly higher species count than summer 2016 

(P=0.036, Table 2.11). As a general trend, in both years MB had a higher total count, though 

again this was not significantly greater. When specific species were analyzed in isolation, 

specific effect emerged. Treatment significantly impacted the Haplotaxida family (earthworms) 

in 2017 (P=0.023). In this year, MN had the highest count, followed by MNB, and finally MB. 

MB counts were significantly lower than MN (P=0.007) (Table 2.11). Within the Enchytraeida 

family (whiteworms), only year, season, and year-by-season had impacts on mean counts. Most 

whiteworms were collected in 2017 when seasonal impacts were also the most impactful 

(P=0.005). As a trend in both years, MB had the greatest mean count of whiteworms (Table 

2.11). Similarly, there were greater total counts of the Julida family (an order of soil millipedes) 

in 2017 (P<0.001), along with seasonal variation (P=0.030). The difference among treatments 

were not large and were insignificant (P>0.05). Finally, like the whiteworms and millipedes, the 

highest Coleoptera (beetles) counts came from 2017, where there was a seasonal variation 

(P=0.022). In 2017, summer had the greater counts of whiteworms, millipedes, and beetles 

(P<0.05). This was followed by autumn for all species, though autumn and spring were not 

significantly different.  
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Table 2.11 Total (2016, 2017) mean macrofauna counts under three treatments: poultry manure 

and N fertilizer (MN), poultry manure and biochar (MB), and poultry manure, N fertilizer and 

biochar (MNB) in Bayfield, Southern Ontario, Canada. Standard errors are given in parentheses. 

 

 Total Count Whiteworms Earthworms Millipedes Beetles 

Spring MN 34.3 (15.86) 0.7 (0.67) 7.7 (2.40) 0.7 (0.67) 1.3 (1.33) 

MB 54.0 (47.52) 5.7 (3.84) 2.3 (1.20) 3.3 (3.33) 0.3 (0.33) 

MNB 37.0  (26.58) 2.7 (2.67) 6.0 (2.08) 0.3 (0.33) - 

Summer MN 37.0 (7.09) - 5.7 (2.33) - - 

MB 60.7 (28.42) - 3.7 (1.76) 0.3 (0.33) - 

MNB 37.0 (11.50) - 4.2 (1.06) - - 

Autumn MN 44.3 (11.84) - 7.0 (1.15) 1 (1) - 

MB 26.7 (10.17) - 1.3 (1.33) 0.7 (0.33) - 

MNB 26.3 (20.03) 1.3 (1.33) 3.7 (0.67) 0.7 (0.33) 0.7 (0.67) 

Total insect counts had no significant factors or interactions among treatments.  

 

 

Over the two years of this project soil conditions significantly impacted the microbial 

community; both species richness (P=0.018) and species diversity (P=0.266). Date, nor date-by-

treatment interactions, were significant (P>0.05). However, when each year was considered in 

isolation, 2016 had the greatest differences in values among treatments, and only these 

differences were significant. Species richness was significantly higher in biochar treated soils. In 

2016, MN had an average species count of 12, in 2017 this hardly changed and was 12.3. In 2016 

biochar treated soils averaged 15 species, which lowered to 12.8 in 2017. While biochar treated 

soils had a greater richness, they scored lower on the Shannon Diversity Index (Hs). In 2016 MN 

had a Hs value of 1.04, again in 2017 this hardly changed to 1.03. In 2016 biochar treated soil 

averaged a value of 0.90, which increased to 1.00 in 2017.  
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Figure 2.5 This principal component analysis is associated with microbial activity values, carbon 

utilization, on Biolog Ecoplates. Visually the first Principal Component 1 (PC 1) measures 

treatment effects, while Principal Component 2 (PC 2) measures year. Percent of variance is 

given in brackets. The soils used were accessed from Bayfield, Ontario in 2016 (black markers) 

and 2017 (grey markers) from soils treated with poultry manure and N fertilizer (MN- •), poultry 

manure and biochar (MB- ), and poultry manure, N fertilizer and biochar (MNB-   ) in 

Bayfield, Southern Ontario, Canada. 
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Table 2.12 Mean values for 2017’s Soil Microbial Biomass (SMB) values from temperate soil 

amended with poultry manure and N fertilizer (MN), poultry manure and biochar (MB), and 

poultry manure, N fertilizer and biochar (MNB) in Bayfield, Southern Ontario, Canada. 

2017 SMB  MN MB MNB 

Total Carbon 

(g C/g) 
0-10cm 527.6 (81.97)A,a 774.3 (129.37)A,a 481.0 (68.22)A,a 

10-20cm 235.7 (118.57)A,b 397.1 (128.80)A,a 308.6 (106.41)A,a 

20-30cm 256.2 (19.95)A,b 544.8 (337.85)A,a 233.3 (103.18)A,a 

Total Nitrogen 

(g N/g) 
0-10cm 97.3 (10.73)A,a 92.0 (30.00)A,a 64.0 (10.00)A,a 

10-20cm 40.0 (14.19)A,b 36.7(17.68)A,a 31.3 (13.38)A,a 

20-30cm 36.0 (9.87)A,b 84.7 (58.15)A,a 37.3 (11.10)A,a 

C/N Ratio 0-10cm 5.4 (0.61)A,a 9.8 (1.34)B,a 7.6 (0.91)AB,a 

10-20cm 7.9 (1.83)A,a 12.5 (2.02)A,a 10.5 (1.25)A,a 

20-30cm 8.1 (1.70)A,a 8.4 (2.46)A,a 5.6 (1.99)A,a 
A Values followed by the same upper case letters are significantly different among treatments (at 

p< 0.05). a Values followed by the same lower case letters are not significantly different among 

depths (at p<0.05).  

 

 

 

 

 

Table 2.13 Variance analysis of SMB values under three treatments: poultry manure and N 

fertilizer (MN), poultry manure and biochar (MB), and poultry manure, N fertilizer and biochar 

(MNB) in Bayfield, Southern Ontario, Canada. Standard errors are given in parentheses. F is the 

F-statistic, in the brackets P is the significance given as a P-value. 
    

 

Fixed Effect 

SMB Carbon 

(g C/g) 

SMB Carbon 

(g C/g) 

SMB C/N  

Ratio 

 F (P>F) F (P>F) F (P>F) 

Treatment (Trt) 2.39 (0.12) 0.89 (0.43) 2.45 (0.12) 

Depth 3.13 (0.07) 2.93 (0.08) 2.68 (0.10) 

Trt*Depth 0.18 (0.95) 0.49 (0.74) 0.80 (0.54) 
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Figure 2.6 Mean a) Shannon Diversity Indexes (Hs) and b) soil microbial richness (R) counts 

and from temperate soil amended with three treatments: poultry manure and N fertilizer (MN), 

poultry manure and biochar (MB), and poultry manure, N fertilizer and biochar (MNB) in 2016 

and 2017 from Bayfield, Southern Ontario, Canada.  
A Values followed by the same upper case letters are significantly different among treatments (at 

p< 0.05). a Values followed by the same lower case letters are not significantly different among 

depths (at p<0.05).  
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2.4.3 Crop Yield and biomass productivity  

In the 2016 growing season, maize grain yields, shoot and root biomasses, shoot/root 

ratios, and grain/biomass ratios were not significantly different among treatments (P=0.128). As 

a general trend for grain yield, MB produced the most corn followed by MN and then MNB 

(Figure 2.3). MNB produced the most shoot biomass followed by MB and then MN, though the 

differences were not significant (P>0.005). Treatment did not significantly impact biomass 

accumulation (P=0.503). A reverse of the grain yield-biochar trend was observed for root 

biomass accumulation. Though it was still not significant (P=0.823) MNB produced the most 

roots, followed by MN, then MNB. The shoot/root ratio was found to be highest in MNB, 

followed closely by MN. While MB had the lowest ratio, there was no significant treatment 

effect or difference between treatments (P>0.05) (Figure 2.3). In reverse, MB had the highest 

grain: biomass ratio followed by MN and MNB, though again there were no significant 

differences between the mean ratio and treatment (P=0.238). 

Much like the 2016 growing season, soil treatments did not have a significant impact on 

crop yield and biomass productivity in 2017 (P>0.05). As a trend, biochar did not increase 

soybean yields or biomass production. MN had the greatest grain yield, shoot & root biomass, 

shoot/root ratio, and grain/biomass ratio. MNB had the second greatest measures in each of 

these, except for the shoot: root ratio and grain: biomass ratio, where it had the lowest numbers. 

For these ratios, MB had far more similar results to MN, though again none of these differences 

were found to be significant (P>0.05). Both maize and soybean shoot biomass were significantly 

correlated (P>0.005) with NH4
+, while at a P=0.05 confidence interval soy grain was negatively 

correlated with it (P=0.043). No other crop characteristics were significantly correlated with 

SOC, TN, C/N ratio, NH4
+, NO3

-, PO4
3-.  
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Figure 2.7 Mean grain yield, shoot biomass, and root biomass of a) maize in 2016 and b) 

soybean in 2017 from temperate soil amended with three treatments: poultry manure and N 

fertilizer (MN), poultry manure and biochar (MB), and poultry manure, N fertilizer and biochar 

(MNB) in Bayfield, Southern Ontario, Canada. A Values followed by the same upper case letters 

are significantly different among treatments (at p< 0.05). 
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2.5 Discussion  

2.5.1 Biochar effects on soil health  

Soil health is a measure of the ability of soil to support biotic life, crop productivity, 

improve air and water quality, and resist degradation (Doran & Zeiss, 2000). It includes both 

physical and chemical characteristics, and it has a reciprocal relationship with soil biology 

(Doran & Zeiss, 2000). Biochar is known to impact all of these characteristics (Atkinson et al., 

2010). Greater changes to soil conditions occur when greater amounts of biochar are 

incorporated into soils (Appendix A). In this study, only a small portion of biochar was added 

infield, as this represented the amount of biochar farmers were comfortable applying and could 

afford (Farrell et al., 2014). Among temperate studies biochar addition rates range from 10 -100 

t/ha, while this study added 3 t/ha (Jones et al., 2011b). As expected, few physical changes were 

observed following this amount of added biochar. The general trend in our results showed that 

time and sampling depth had a greater effect on these characteristics, and therefore soil health 

The one exception to this was soil moisture, which decreased as found to be lower in 

biochar treated soils as a result of porosity. This result, however, will be discussed in greater 

detail in Chapter 3 (Clough et al., 2013). Infiltration was one physical characteristic completely 

unaltered by treatments, or over time. If a change were to have occurred, it would have been 

expected that infiltration rates increase due to the porosity of biochar and improvements to the 

course soil structure (Karer et al., 2013; Nelissen et al., 2015; Bamminger et al., 2016, Steiner et 

al., 2010). No significant changes occurred to aggregate stability following biochar additions; 

therefore, it is not surprising that infiltration was unaffected as well. The low addition rate of this 

study resulted in low impacts to soil conditions and did not change soil structure in either year.  
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 Even though bulk density (BD) values appeared nearly identical between the three 

treatments, a statistical difference was uncovered. The differences were small, but the 

conventional treatment (MN) had a significantly lower BD than the biochar treated soils. This 

effect was likely a spurious observation due to sampling or analytical error. In most studies 

biochar has been found to decrease bulk density, compaction, and erosion by improving soil 

structure (Karer et al., 2013; Borchard et al., 2016; Nelissen et al., 2015). In this way, biochar 

has been able to improve soil health. In more than a dozen biochar projects not a single one 

reported increased bulk density (Appendix A). In 2016 soil was collected following maize 

remover, causing soils to be compacted by machinery, and bulk density values were slightly 

higher (P<0.001) (Hamza & Anderson, 2005). The scale of compaction was minimized, likely 

due to the coarse-texture of the soil, and had no apparent impact on soil health (Hamza & 

Anderson, 2005). 

Like bulk density, aggregate stability is an important physical characteristic of healthy 

soil as it promotes seedling growth, root penetration, gas diffusion, and water transport (Hartley 

et al., 2016). Among sandy temperate soils, biochar has been found to enhance aggregate 

stability (Abujabhah et al., 2016; Hartley et al., 2016). As already mentioned no significant 

differences emerged among treatments. Only small differences existed in 2016; Borchard et al. 

(2016) similarly saw this in their 15 t/ha application of biochar. In the first year, biochar soils 

had slightly lower aggregate stability but by 2017 this improved, though no changes emerged 

among treatments. Nelissen et al. (2015) also saw a more distinct improvement in aggregate 

stability due to biochar in their second year. However, since MN had increased stability along 

with MB and MNB, it was likely land use management, such as different crop grown, that 

resulted in the improved stability (Lal, 2011). The general trend among all physical 
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characteristics was that small additions of biochar could only bring about small changes. The 

potential benefits of biochar described in the literature were not observed. At the same time, 

negative impacts to soil physical properties were not seen either. 

Physical and chemical characteristics continually interact. Just as many physical 

characteristics were unaffected by biochar additions, so were many chemical characteristics. 

While biochar frequently raises pH within temperate studies, this project did not observe any 

impact to soil pH (Prendergast-Miler et al., 2011; Luo et al., 2011; Rutigiano et al., 2014; 

Schomberg et al., 2014). Güereña et al. (2013) saw no change to pH either from their 3, 12, or 30 

t/ha additions to a silt-loam in New York. However, Jones et al. (2012) saw an initial increase 

after adding 50 t/ha to a sandy-clay loam in Wales, which was already acidic. The increase was 

only short-lived and dropped as biochar aged (Jones et al., 2012). Once again, the amount of 

biochar added in our study appeared too little to impact pH. As well, lower temperature biochars, 

such as the biochar used by Luo et al. (2011) and Schomberg et al. (2012), have been found to be 

more reactive and more likely to result in observable impacts. This study’s biochar is considered 

a high pyrolysis temperature biochar, and therefore less likely to affect pH. Furthermore, this 

region in southern Canada has very neutral calcareous soils, which resist pH fluctuation 

(Ippolito, Laird, Busscher, 2012). Song et al. (2018) and Lentz & Ippolito (2012) saw no effect 

after adding even upwards of 30 t/ha of high pyrolysis temperature biochar to similar soils 

calcareous soils. 

Other chemical characteristics that exert strong influences on soil productivity are soil 

organic carbon (SOC), total nitrogen (TN) and the ratio between them (C/N). Soil carbon and 

nitrogen have a reciprocal relationship, where soil nitrogen expands the ability of carbon pools to 

grow and be maintained, while soil carbon is necessary to retain and store soil nitrogen (Knicker, 



   60 

2011). Therefore, both must be monitored together. In several temperate studies, biochar has 

been observed to stabilize or enhance SOC and increase the availability of TN (Lentz & Ippolito, 

2012). One proposed way biochar stabilizes SOC is through the inhibition of carbon 

mineralization (Lentz & Ippolito, 2012; Qayyum et al., 2012). However, this is a point of 

contention, and biochars produced under lower temperatures have been suggested to cause an 

initial loss in SOC by stimulating mineralization with labile carbon inherent to new biochar 

(Mitchell et al., 2015; Qayyum et al., 2012; Luo et al., 2011). Temperate studies have also 

observed this spectrum of effects (Nelissen et al., 2015; Yuan et al., 2017). Moreover, large 

amounts of biochar can also immobilize TN, causing plant N deficiency (Atkinson et al., 2010; 

Steiner et al., 2010). In this study, a loss of SOC and TN was not observed in the first year; both 

measures were found to be higher in biochar treatments following the first growing season. This 

increase was not statistically significant, and became far less distinct in the second year of this 

study. Only depth was an impactful factor for both of these measures. The SOC and TN content 

at lower depth increased as expected since natural processes easily move biochar-C and nutrients 

down through sandy soil (Major et al., 2010; Major et al., 2009). 

Not only are individual C and N quantities important to monitor, but their ratio is 

essential as well. C/N ratios indicate the quality of organic matter in the soil, decomposition 

levels and determines microbial activity potential (Batjes, 1996). A ratio between 10 to 12 can be 

found in most soils, with higher ratios making soil increasingly prone to N immobilization and 

resistant to degradation (Atkinson et al., 2010). As a trend, this project’s biochar-treated soils had 

slightly higher ratios than MN. To effect C/N, biochar projects added between 10-90 t/ha (Gaijć 

& Koch, 2012; Kloss et al., 2014). The only significant impact on C/N in this study was the 

redistribution of C/N between depths among treatments. C/N ratios were more even distributed 
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in the biochar treated soils than MN. Each depth, 0-10 cm, 10-20 cm, and 20-30 cm, had fairly 

even ratios in biochar treated soil. MN had much lower 10-20 cm and 20-30 cm C/N ratios. The 

higher ratios of C/N among all depths in biochar treated soils indicated greater degrees of 

microbial activity and breakdown throughout the soil profile (Batjes, 1996). Soil texture as well 

impacts the vertical distribution of the C/N ratio, where sandy soils are unable to retain more 

SOC in the upper layers of soil (Hobley et al., 2013). Biochar has been observed to sorb SOC  

and reduce loss (Zimmerman et al., 2011). Such redistribution was also observed by Naisse et al. 

(2015) in sandy soil in France, which was attributed to different microbial activities and soil 

retention capacity. Naisse et al. (2015) measured an increase in stable SOM in deeper subsoils.  

The free light fraction (FLF) of soil represents an important portion of soil nutrients (Demisie 

et al., 2014). FLF represents the relatively young, labile pool, of SOM (Demisie et al., 2014). 

FLF is an important fraction of SOM since it contributes to SOC and TN turnover within soil and 

quickly reacts to environmental changes (Vasilyeva et al., 2011; Demisie et al., 2014). FLF was 

analyzed in this study to forecast changes to SOC and TN. While biochar did not impact the 

amount of SOC or TN, there was the potential that changes could have been observed within the 

FLF (Vasilyeva et al., 2011). However, biochar did not significantly alter total FLF-C or FLF-N. 

This was unsurprising since such a small portion of biochar was added to the soil, and only 

~30% of biochar contributes to the FLF (Vasilyeva et al., 2011). Demisie et al. (2014), which 

used wood biochar pyrolyzed at a high temperature, only observed a ~5% contribution to FLF-C. 

Our study used a similar biochar type, and in the first year, it appeared to increase FLF-C in 

upper layers of soil slightly. Demisie et al. (2014), concluded that even a small increase in FLF-

C was favorable for improving soil quality; improving aggregation and carbon sequestration. As 

a result of the FLF-C increase, the total FLF C/N ratio was significantly higher for biochar soils, 
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especially in the first year of this study. Biochar’s FLF-C contributions were labile and were 

consumed by microbes before harvest 2017; in this way there appeared to be biologically 

facilitated biochar aging (Ameloot et al., 2013). Keith et al. (2011) also observed this quick loss 

of labile FLF-C to the microbial community. By 2017 labile FLF had decreased, as well as was 

more evenly distributed within the biochar-treated soil. Similar to Vasilyeva et al. (2011), this 

study found that biochar treated soils appeared contribute to mobile FLF, which became 

distributed throughout several depths, not just the top 10 cm. Vasilyeva et al., (2010) found that 

biochar originating FLF moved down the soil horizon.  

One conventional indicator of soil health is macronutrient concentrations; it is a common 

limiting factor for productivity. Following the single amendment addition, Spring 2016 had the 

greatest NH4
+, NO3

-, and PO4
3- concentrations. From then on concentrations fell across that year. 

Much like Jones et al. (2012), biochar’s impact on NH4
+ concentrations in sandy soil was not 

significant, though trends were observed. In spring 2016, NH4
+ concentrations were initially 

lower in biochar treated soils, as a result of absorption (Muchow, 1998; Clough & Condron, 

2010). This absorption of NH4
+ by biochar was commonly observed in other temperate studies 

(Bamminger et al., 2014; Anders et al., 2013; Clough & Condron et al., 2013). After the initial 

absorption of NH4
+, concentration decreases were less extreme among biochar treated soil in 

2016. By the end of the growing season, MB and MNB had very similar concentrations to MN 

(Figure 2.3). The ability of biochar to hold NH4
+ and NO3

- depends on the feedstock and 

pyrolysis temperature of the biochar (Atkinson et al., 2010). Being composed of pine/spruce and 

pyrolyzed at a high temperature the char pore size is expected to be reasonably large, indeed 

greater than 0.30 nm. For this reason, NH4
+ ions, which have a diameter of 0.286 mm, can be 

readily absorbed into the pores of biochar (Späth, 2010). Clough et al., (2013) however did not 
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find that pyrolysis temperature trends impacted NH4
+ availability, but rather decreased ammonia 

lose was the result of biochar feedstock materials, which determined surface CEC rates (Kloss et 

al., 2014). Clough & Condron (2010) found short-term CEC increases with biochar amended 

soils, which only improved after weathering, increasing its ability to hold onto NH4
+ and enhance 

soil fertility. It is unclear whether aged biochar was able to retain more NH4
+ in 2017, or if the 

increased concentrations were solely the result of the soybean crop. In 2017, there were 

increased NH4
+ and NO3

- content. In 2017, NH4
+ was greatest at mid-June, when soybean 

nodules were most active in producing ammonia (NH3) (Garg & Geetanjali, 2007). NH4
+ peaked 

then and decreased steadily until August as soybean crop matured and required less nitrogen 

fixation (Figure 2.2). NO3
- concentrations began to rise in early September, due to the shedding 

and decomposition of the soybean leaves. In early October, these concentrations rapidly fell. 

Nitrate also underwent an extreme drop in concentration following spring 2016, but unlike 

NH4
+, the depth-by-treatment trends were significant (Figure 2.3). Biochar treated soil had the 

lowest concentrations in the first year, again, likely the result of adsorption (Sarkhot et al. 2011; 

Bamminger et al., 2014). Biochar is known to temporarily immobilize NO3
-, decreasing its 

availability to plants (Atkinson et al., 2010). Though the biochar treated soil had the lowest 

concentrations they held the greatest proportion of their NO3
- in the top portion of soil. NO3

- was 

nearly evenly distributed in MN among all measured depths. Prendergast-Miller et al. (2011) 

similarly saw NO3
- localized in the rhizosphere of biochar treated soils. Prendergast-Miller et al. 

(2011) attributed the accumulation to reduced leaching and increased biological use-efficiency of 

NO3
-. The extent of leaching-prevention can equal or overcome losses from adsorption, allowing 

biochar treated soils’ NO3
- concentrations to exceed those in conventional treatments (Clough et 

al., 2013; Haider et al., 2017). High-temperature biochars reduce organic N built into the char 
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structures, but are made more porous, and therefore able to retain onto both NH4
+ and NO3

- 

(Clough, 2013). Biochar also increases areas of cation and anion exchange, thus further altering 

NH4
+ and NO3

- movements in soil (Kloss et al., 2014; Atkinson et al., 2010).  

Phosphate (PO4
3-) was one of the few soil characteristics affected by biochar. In 2016, the 

outcome resembled that of Rogovska et al. (2014); biochar resulted in initial lower PO4
3- 

concentrations (Zhang et al., 2016). Like NH4
+ and NO3

- concentrations in 2016, MN and MNB 

began with the highest concentration of PO4
3- due to fertilizer additions. However, biochar 

appeared to absorb phosphorous since MNB had a lower concentration than MN (Rogovska et 

al., 2014; Laird et al., 2010). MNB was not much lower than MN since wood-sourced high 

pyrolysis temperature biochars have moderate to low sorption capacities (Riddle et al., 2018). 

However, in 2017 PO4
3- accumulated across all treatments and a new trend emerged. This 

apparent increase in year two was likely in part due to soybean being grown instead of corn. 

While corn has greater amounts of residue and therefore P stored within its residue (83.1 lb P2O5/ 

acre); corn loses minimal P (31%) between maturity and harvest (Oltmans & Mallarion, 2011). 

In contrast, soybean can lose upwards of 60% of residue-P between maturity and harvest, the 

vast majority of this takes place between September and October, which is when soil sampling 

took place in 2017 (Oltmans & Mallarion, 2011). It is thought that this caused the observed 

increase in PO4
3- concentrations in 2017. While all treatments had increased P in 2017, the 

increase was not even among treatments. Biochar treated soils accumulated far more available P 

(Table 2.9). This may be due to lower pore absorption rates, which no longer off-setting 

biochar’s ability to reduce P leaching (Lehmann et al., 2011; Joseph et al., 2010; Liang et al., 

2006). Biochar pores readily absorbs nutrients and soil materials when initially added to the soil; 

over time these pores become filled and the rate of absorption is decreased, as seen in 2016 
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(Lehmann et al., 2011; Joseph et al., 2010; Liang et al., 2006; Domene et al., 2014, Laird et al., 

2010). Side functional groups on the surface of biochar increase its anion exchange capacity 

(AEC) and reduce nutrient loss (Domene et al., 2014; Sarkhot et al., 2011; Laird et al., 2010; 

Chintala et al., 2013). Large adsorption rates may have initially hidden surface AEC effects, once 

absorption decreased the biochar treated soils retained more PO4
3- than the conventional 

treatment. Furthermore, wood-sourced, high pyrolysis temperature biochar, which was also used 

in this study, has been found to act as effective P fertilizers, even after 6 seasons (Wang et al., 

2012; Riddle et al., 2018; Zhang et al., 2016; Khodadad et al., 2011; Zhai et al., 2015). Sandy 

soils are especially susceptible to phosphorous loss, and calcareous soils can limit biotic access 

of P, such soils can benefit from biochar which decreases leaching and increases biotic sorption 

(Zhai et al., 2015; Domene et al., 2014; Chintala et al., 201). The ability of biochar to prevent 

leaching and retain nutrients is among its most impactful for supporting soil biology (Atkinson et 

al., 2010). 

 

2.5.2 Biochar effects on soil biology 

The only significant result within macrofauna came in the second year, where 

Haplotaxida (earthworms) counts decreased in biochar treated soils. It is thought that 

earthworms perhaps graze on microbes growing on the surface of biochar (Lehmann et al., 

2011). Though it is still unclear how microbial communities impact earthworm populations, it 

has been found that earthworms in biochar treated soils can also alter microbial communities 

(Bamminger et al., 2014). Given that no differences existed within the microbial community 

structure or soil microbial biomass (Table 2.13; Figure 2.6) in 2017, it is unlikely that food 

source alone caused the decrease in the second year. While Lehmann et al. (2011) saw weight 

loss of earthworms, they also observed them deliberately ingest biochar for an unknown reason.  
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2017 was, as well, a wetter year than 2016; therefore desiccation was unlikely impacting the 

worms as it had for Li et al. (2011). While toxic by-products have been proposed as an 

earthworm deterrent, those were observed in treatments that had upwards of 90 t/ha additions or 

used low pyrolysis temperature biochars (at 10 cm depth) (Li et al., 2011; Iqbal et al., 2015). As 

well, these compounds would have exerted a more significant effect in 2016 than 2017. It is 

possible that due to 2016’s dry year too few earthworms were present to observe treatment 

impacts. On average only 14 earthworms were counted among all plots and depths at each 

sampling events. Most of the biochar impacts had diminished by the second year of this study, 

except moisture, so it is yet unknown which effects induce earthworm avoidance. Earthworms 

are an important component of biochar transport and contribute to its movement between soil 

horizons (Joseph et al., 2010; Lehmann et al., 2011). The relationship between biochar and 

macrofauna - let alone biochar, microbes, and macrofauna - is still poorly understood.  

Biochar additions did not impact total soil macrofauna. Most soil characteristics were 

unchanged by biochar, thus it is no surprise that insect diversity or abundance was not greatly 

affected (Domene et al., 2014). Although not significant, there was a general trend that MB had 

the greatest abundance of macrofauna, while MN had the greatest diversity (Hs). Interestingly, 

this trend was mirrored by soil microbial diversity. It is possible that microbial community 

changes influenced the Hs and richness of macrofauna communities since the microbial changes 

were significant (Marks et al., 2014). Another trend observed in the first-year was that biochar-

treated soils saw more enchytraeids (whiteworms), which are soil indicators sensitive to 

disturbances (Pelosi & Römbke, 2016). Whiteworms are very sensitive to nutrient additions in 

agriculture, explaining why they were not seen in MN (Pelosi & Römbke, 2016). MB had the 

greatest number of whiteworms, though MNB had a similar total; therefore, the biochar perhaps 
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buffered the impacts of urea fertilizer. Unlike other macrofauna species, whiteworms do not feed 

on soil microbes (Marks et al., 2014; Domene et al., 2015). 

Soil health impacts soil biology, and while biochar altered few soils characteristics, some 

impacts to soil microbial diversity were still observed (Nelissen et al., 2015). In year one of the 

study, biochar-treated soils had the highest diversity of species (Figure 2.6). However, the 

elevated levels dropped by the second year, which may have been the result of FLF-C and N 

difference from biochar (Anders et al., 2013; Demisie et al., 2014). Labile C and N from biochar 

may have supported the initial increase in microbial species richness (Luo et al., 2013, Jones et 

al., 2012). Microbes consumed labile compounds within the first year of the study. By 2017 

biochar FLF-C was halved, and the extra species were lost; species diversity was equal among all 

treatments. Potentially, some of the microbial changes could have been the result of the crop 

change between 2016 and 2017 Imparato et al. (2016) observed increases in soil microbial 

diversity following low biochar additions. When considering the evenness of microbial species 

distributions, it was found that MN had the greatest Shannon Diversity index (Figure 2.6). While 

biochar-treated soils had the most number of unique species, only a couple of species dominated; 

which is another impact commonly observed (Rutigiano et al., 2014; Khodadad et a., 2010). 

Mitchell et al. (2015), Bamminger et al. (2016), and Rutigiano et al. (2014) also observed short-

term impacts to microbial community structures lasting between 4 to 14 months, depending on 

biochar type and addition rate. In the second year of this study, the Shannon index and total soil 

microbial biomasses were very similar among treatments; it was in the first year that biochar 

favoured specific microbial groupings as it did for Rutigiano et al. (2014) and Bamminger et al. 

(2016). The PCA also illustrated this change (Figure 2.5). In 2016, the MN microbial 

communities were very different from the biochar treated microbial communities. By 2017 all 



   68 

communities resembled one another and were only slightly different from the previous year. At 

this time, it is unknown which groups were favoured in the first year, whether it was fungi, as 

was the case for Luo et al. (2011), or gram-positive bacteria as was the case for Mitchell et al. 

(2015). Along with Hs and richness evening out by 2017, SMB measurements were similar 

among all the treatments. MB did have the greatest SMB carbon though. As seen, in the PCA 

(Figure 2.5), the three 2017 communities were slightly different from 206, but all more similar 

among themselves. The PCA seems to indicate available nutrients impacted the microbial 

communities since MN 2016, which had the greatest concentrations stood apart from all 

communities. By 2017 the nitrogen concentrations had dropped, most drastically in MN, and 

evened out, making all the communities similar. 

 

2.5.3 Biochar effects on crop growth 

Soil health also drives crop growth; it is little surprise that following very few changes to soil 

characteristics, productivity was not affected by biochar in 2016 and 2017. Crop biomass, (2016 

maize and 2017 soybean), was not significantly different among treatments (Figure 2.7). Deng et 

al. (2015) also observed no significant changes to maize yield after adding 25 t/ha of biochar in 

Tennessee. Hüppi et al. (2015) also saw no impact after adding 20 t/ha in Switzerland. An 

amount of biochar far greater than 3 t/ha would have been needed to impact our yields (Borchard 

et al., 2014; Bamminger et al., 2016). In order to observe decreases to maize yield, biochar 

additions of 72-300 t/ha were needed (Karer et al., 2013; Borchard et al., 2014). Though, as a 

trend, despite lower available moisture and phosphate, the biochar-treated soils produced slightly 

greater root biomass, shoot biomass, and MB produced the greatest grain yield. In our study, 

phosphate was not the most important soil characteristic determining crop growth. Only NH4
+ 

had a significant correlation with maize shoot biomass; which is uptaken by shoot biomass early 
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on in maize development (Bender et al., 2013). Grain yield, which is primary concern 

agriculture, did not appear to be affected by the soil chemical characteristics observed in this 

study.  

The slight increase in grain yield in the biochar plots did not carry over into soybean 

production. Though not significant, it appeared that biochar soils produced a lower average grain 

yield in comparison to the conventional treatment. In the literature, additions of as little as 5 t/ha 

significantly affected soybean yield additions of (Glaser et al., 2002; Kishimoto & Sugiura, 

1985). Soybean, which seemed to be negatively impacted by biochar in this study, is more 

sensitive than corn to soil characteristics such as pH and micronutrient deficiencies (Glaser et al., 

2002; Kloss et al., 2014). Macronutrients did not appear to be the leading cause of all the 

decreases, since NH4
+, NO3

-, and PO4
3- were not significantly correlated with grain yield or root 

biomass. NO3
- was however correlated with soybean shoot biomass, in fact, NO3

-  was lowest in 

MB treatments and yielded the lowest shoot biomass. The biochar may have limited NO3
- 

availability during shoot growth by absorbing what was converted from soybean NH3 

production. The more biochar added, the greater the effect (Glaser et al., 2002). Kloss et al. 

(2014) saw a decrease in soybean production only in the first year following 30 t/ha and 90 t/ha 

additions. Lentz & Imppolito (2012) saw an increase in crop yields in their first year after a 22.4 

t/ha biochar addition but a decrease in yield in their second year, a pattern resembling our own 

study.  

 

2.6 Conclusions 

 In conclusion, biochar affected few soil conditions in this project as a result of the low 

amounts integrated with the field. When using a tenth of the average biochar temperate study 

addition, only moisture, PO4
3-, light fraction C/N ratios, microbial richness, and microbial 
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Shannon diversity were significantly impacted. Just the moisture differences remained in 2017. 

The degree of variation was still small between treatments. In 2016, both moisture and PO4
3- 

were on average lower in biochar treated soil due to biochar’s absorptive quality. For moisture, 

there was simply a consistently lower level, but for PO4
3- there was an initial decrease but also a 

reduction in P loss. Once minerals and particles filled biochar pore spaces, they no longer 

absorbed and lowered available soil phosphate. At this point, phosphate began to accumulate in 

biochar treated soils. Labile C and N on new biochar resulted in light fraction differences. These 

labile compounds were consumed by soil microbes, temporarily stimulating richness, but also 

reducing diversity. After the first year, labile nutrients were consumed, and FLF-C/N levels and 

microbial communities normalized. Regardless of these changes, there were no significant 

effects to corn or soybean yields in the first two years of this study. Therefore, the implemented 

biochar design of this project was an economically feasible way to store previously atmospheric 

carbon in the soil.  
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3. Impact of biochar on greenhouse gas emissions from temperate agriculture: 

A field study 

 

3.1 Overview 

Biochar has demonstrated influence over greenhouse gas (GHG) emission rates in short-

term laboratory and short-term field studies. Few long-term field studies exist in temperate 

systems that investigate biochar effects on GHGs. The objective of this study was to determine 

the long-term effects of biochar on GHG emissions from biochar-amended agricultural soil in 

Ontario. The treatments, established on sandy loam soil in Southwestern Ontario, consisted of; 

(1) poultry manure (6 t/ha) and nitrogen (urea) fertilizer (135 kg/ha) (MN); (2) poultry manure (3 

t/ha) and biochar (3 t/ha) (MB); and (3) poultry manure (3 t/ha), fertilizer (135 kg/ha), and 

biochar (3 t/ha) (MNB). Following the implementation of the treatments, various tests were 

conducted bi-weekly to determine the effects of biochar on GHG emissions and the soil 

characteristics that influence emissions. Sampling took place within two growing seasons, from 

2016-2017. Soil moisture, temperature, and NO3
- were significantly lower in biochar soils 

(P>0.05). Soil CO2 and N2O emission rates were not significantly different among treatments in 

either 2016 or 2017. Only N2O emission appeared to be impacted by treatments in 2016 

(P=0.04), however, no treatments were significantly different from one another in total or within 

individual seasons (P>0.05). Both GHG emissions did appear to be different among seasons 

(P>0.05). CO2 and N2O emissions were frequently affected by soil moisture, temperature, and 

available soil nitrogen. In some seasons moisture was a strong influence on emission rates. This 

study determined that complex interactions among soil and soil microbial communities affect 

soil characteristics and drive GHG emissions. 
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3.2 Introduction 

Biochar is charcoal, pyrolytically altered biomass that is used as a soil amendment to 

improve soil health and crop yields (Ameloot et al., 2013; Lehmann et al., 2006). Biochar has 

been used as an amendment in tropical agricultural soils for millennia; its highly conjugated and 

aromatic carbon structure has enabled biochar to resist degradation and remain there for 

thousands of years (Atkinson et al., 2010).  Biochar aided in improving the physical, chemical, 

and biological characteristics of tropical soils. Biochar has been used to increase soil water 

holding capacity, nutrient retention and exchange, and pH (Atkinson et al., 2010; Van Zwieten et 

al., 2010; Sohi et al., 2010; Lehmann et al., 2006; Kloss et al., 2014). Temperate soils often have 

a naturally higher soil pH than tropical soils, as well more soil organic matter (SOM), different 

microbial communities, a unique mineral composition, and higher nutrient retention; therefore, 

they do not receive the same benefits from biochar (Kloss et al., 2014). However, biochar has an 

additional capability to reduce greenhouse gas emissions from agricultural soil (Bamminger et 

al., 2014). At this time is it unsure how temperate systems will respond to biochar additions; 

research on temperate biochar responses is still in its infancy and comprehensive long-term 

studies are limited (Schomberg et al., 2012). 

Based on available research, it has been proposed that biochar can be used as a carbon-

negative soil amendment to mitigate climate change in temperate agroecosystems (Hammond et 

al., 2013; Borchard et al., 2014). Agriculture represents a notable 12% of anthropogenic GHG 

release (Smith et al., 2014). Reliance on manure and fertilizers contribute to substantial 

greenhouse gas emissions. In the US, nitrogen fertilizers and cropping practices result in 78% of 

total national nitrous oxide (N2O) emissions (Smith, 2017; Ameloot et al., 2013). Globally it 

60% of N2O emissions (Smith et al., 2007; Nelissen et al., 2014). Carbon dioxide (CO2) and N2O 
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are two agriculturally produced GHGs of concern; CO2 due to its prevalence and N2O due to its 

potency (Smith et al., 2014; Smith, 2017). Biochar can affect atmospheric concentrations of 

these gases in two ways. Firstly, up to 50% of plant carbon (C) (sequestered from the 

atmosphere) can be converted, not lost during pyrolysis, into carbon-rich biochar (Zhao et al., 

2014). Biochar is then added to soils where it is stored and remains for hundreds of years (Jones 

et al., 2011a). Secondly, biochar alters microbial ecosystems and the availability of nutrients to 

the microbiome (Lehmann et al., 2011; Anders et al., 2013). The resulting microbial 

communities have lower CO2 and N2O emissions, which can occur for example if the new 

communities are more efficient or are no longer dominated by denitrifiers (Lehmann et al., 2011; 

Bamminger et al., 2014; Smith et al., 2014; Zimmerman et al., 2011). It is unknown to what 

extent biochar alters soils physical characteristics (i. e. soil structure, soil moisture), chemical 

characteristics (i. e. pH, nutrient concentrations), and edaphic processes (i. e. decomposition, 

nitrification/denitrification), and how these influence GHG emissions (Lehmann et al., 2006; 

Lehman et al., 2011). The exact mechanisms of interactions differ among soils, climates, and 

biochar types (feedstock and pyrolysis temperature) (Lehmann et al., 2006; Lehman et al., 2011). 

Spokas and Reicosky (2010) observed that among 16 different biochar studies: a third increased 

CO2 emissions, a third decreased them, and the remaining studies caused no change.  

Biochar has only recently begun to be used in temperate agriculture and therefore it lacks a 

substantial body of literature (Lehmann et al., 2011). As well the majority of temperate biochar 

research has been conducted in the laboratory, rather than field; this is true of CO2, and 

especially N2O, research.  In 2010, Sohi et al. and Clough & Condron (2010) identified no 

existing peer-reviewed in-field biochar studies investigating N2O emissions. Though a handful of 
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field condition temperate experiments have been carried out for CO2, few resemble a typical 

Canadian agricultural system (Atkinson et al., 2010).  

Few studies assessing biochar’s impact on GHGs explore the exact interacting mechanisms 

initiating the quantified changes (Lehmann et al., 2011). Soil moisture is one proposed 

characteristic that, under the influence of biochar, impacts microbial communities and therefore 

emissions (Rondon et al., 2005; Yanai et al., 2007; Liesch et al., 2010). Biochar has been found 

to either increase or decrease soil moisture, depending on the parent material and biochar type 

(Glaser et al., 2002; Clough et al., 2013; Kulyk, 2012). Typically, sandy soils experience the 

greatest increase in available moisture (Rogovska et al., 2014; Hammond et al., 2013).  Soil 

temperature is another characteristic proposed to impact emissions, though little evidence 

supports that biochar significantly influences soil temperature (Kulyk, 2012; Krull et al., 2004; 

Anderson et al., 2011). Chemically, NH4
+ and NO3

- are known to directly influence N2O 

emissions (Kulyk, 2012; Anderson et al., 2011; Signor & Cerri, 2013). Soil pH is another 

chemical factor that strongly influences microbial emission rates and can be increased by biochar 

(Lehmann et al. 2006). As well, soil C/N ratios affect GHG soil emissions since they influence 

biotic activity and nutrient cycles (Cayuela et al., 2014). Newly produced biochar is partially 

comprised of labile carbon residues (Jones et al., 2011a). These residues are thought to be 

quickly mineralized, and therefore a short-term increase in GHG emissions (Jones et al., 2011a; 

Zimmerman et al., 2011). After the labile carbon was decomposed emission rates fell (Atkinson 

et al., 2010; Zimmerman et al., 2011; Cross & Sohi, 2011). Zimmerman et al. (2011) reported 

biochar sorbing SOM onto its surface and thereby reduce its degradation and GHG release. As 

well, biochar pyrolysis forms aromatic and polycyclic hydrocarbons that do not support, or will 

even suppress, microbial biological processes and reduce GHG emissions (Gomez et al., 2014). 
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Likely, a combination of the above factors impact soil microbial communities, and in 

conjunction, alter GHG levels (Lehmann et al., 2006; Lehmann et al., 2011; Ball et al., 2010; 

Mitchell at al., 2015).   

No consensus has been reached on the exact process behind biochar’s influence of GHG 

emission rates. Biochar alters the interacting physical and biochemical characteristics in soils 

(Lehmann et al., 2006; Lehmann et al., 2011). It is likely that for each individual soil and biochar 

mixture, a different soil characteristic or interaction will dominate emission release (Spokas & 

Reicosky, 2009). Agricultural systems should not be presumed equal within biochar studies. It is 

essential to build an extensive body of knowledge for temperate biochar research. Canadian 

biochar research contributes to improving the understanding of temperate soil responses to 

biochar (Glaser et al., 2015). Therefore, the objective of this study was to evaluate temporal 

variation in GHG emissions in a biochar-amended soil over several seasons, across two years. 

This study provides novel information on biochar impacts to GHG emissions of calcareous soil 

in a southern Canada. 

 

 

3.3 Methods 

3.3.1 Site Description 

 

Refer to Chapter 2.3.1. Note that GHG collection continued for another month after 2016 

and 2017 harvests. 

 

3.3.2 GHG Sampling and Analysis 

Two PVC chamber bases (10 cm diameter, 25 cm length) were inserted at two randomly 

selected points to a depth of 10 cm for biweekly gas sampling (total of 18 ports) in each 

treatment replicate (Parkin & Venterea, 2010). The chamber bases were installed in May and 
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remove briefly for crop harvest and removed again at the end of the season in November in 2016 

and 2017. Following installation, the open gas ports were left for several days to allow the soils 

to regain equilibrium following the installation disturbance. Chamber caps were covered with 

reflective insulation and had a 1 cm rubber septum for air extraction and 10 cm long vent tube (3 

mm inner diameter) to release internal pressure buildup (Dyer et al., 2012; Smith et al., 2003).  

Since GHG emissions have large temporal variations, sampling occurred biweekly 

(Parkin et al., 2012). Samples were extracted between 10 a.m. and 3 p.m. to account for diurnal 

fluctuations and minimize sampling biases (May through November 2016 and 2017). At 

sampling, the open ports were capped and gas samples were collected with a 10 ml syringe. 

Originally, the gas was collected at 0, 10, 20, 30 min from May-September 2016.  However, in 

September 2016 this was reduced 0, 15, 30 min when it was found that four sampling points did 

not yield more precise rates of gas emissions. 10 ml of gas was collected from each chamber 

headspace, manually injected into a 3 ml evacuated vial, and stored at room temperature.  

CO2 and N2O concentrations (ppm) were quantified with an Agilent 6890 Gas 

Chromatograph (Agilent Technologies, Inc., Santa Clara, CA, USA), using a capillary column 

attached to a micro-electron capture detector (ECD). The GHG emission rates were calculated 

using an equation developed by Hutchinson and Mosier (1981). An initial equation was used to 

determine if the GHG release resembles a linear or curvilinear response  

Eq. [3.1]   
𝐶1−𝐶0

𝐶2−𝐶1
 

where C0, C1, and C2 are the flux values at time 0, 15 and 30 min [ppm (v)], respectively. If Eq. 1 

is <1, a linear regression slope is used to solve for GHG flux. If the ratio of Eq. 1 yields a result 

>1, another Hutchinson & Mosier equation is used [Equation 3.2]. 

 Eq. [3.2]  f (0) = 
𝑉(𝐶1−𝐶0)2

[𝐴∗𝑡1(2∗𝐶1−𝐶2−𝐶0)∗ln [
𝐶1−𝐶0
𝐶2−𝐶1

]
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In this equation C0, C1 and C2 are the flux values at time 0, 15 and 30 min (ppm (v)), V is the 

volume of the capped chamber (cm3), A is the soil surface area covered by the chamber (m2), and 

t1 is the time interval between sampling events (min) (Hutchinson & Mosier, 1981). The equation 

yields flux (f0) are in L of GHG gas (CO2 or N2O) m-2 min-1 (Hutchinson & Mosier, 1981). 

Values were then converted into mol m-2 h-1 of trace gas using the ideal gas law, and molecular 

masses were used to adjust the flux to g m-2 h-1 of trace gas (Lutes et al., 2016). The 

atmospheric pressure and temperature for the ideal gas law were collected from historical 

weather data from the Goderich Weather Station (4345’58.8”N, 8143’01.1”W). 

 

3.3.3 Soil Sampling and Analysis 

The same two sample points for GHG collection were used for NH4
+ and NO3

- analysis. 

Biweekly, soil samples were taken within 1 m radius of each sample point. Between 10 a.m. and 

12 p.m. soil temperature and moisture were measured using a HH2-WET sensor biweekly during 

soil collection at these same sample points (Delta T Devises, Cambridge, UK). Changes in NH4
+ 

and NO3
- were quantified using the same methodology described in Chapter 2.3.2. Samples were 

collected biweekly for 24 weeks during the growing season between May- November 2016 and 

2017 and coincided with the gas collection.  

 

3.3.4 Statistical Analysis 

All statistical analyses were conducted as described in Chapter 2.3.4. GHGs and soil 

characteristics were analyzed between years (2016, 2017) or among seasons [spring (May 19th to 

June 21st), summer (June 22nd to September 2nd), and autumn (September 23rd to November 5th)]. 

Two-way ANOVAs were used to determine whether time (year or season) and treatment type 

were interacting to significantly influence emissions or soil characteristics (Kloss et al., 2014; 
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Lutes et al., 2016). Distribution normality was determined using the Shapiro-Wilk Test and 

Kolmogorov-Smirnov Test. Any value distributions that were not normal (p>0.05) were given as 

medians. Pearson’s two-tailed correlation analysis was used for each treatment to determine the 

relationship between CO2, N2O and soil characteristics (moisture, temperature, NH4
+, and NO3

-). 

 

3.4 Results 

3.4.1 GHG Emissions 

The interactive effect of treatment-by-season was not significant for CO2 emissions.  

Neither was treatment alone a significant effect on CO2 emissions in 2016 or 2017 (P>0.05). In 

2016, while there was no significant difference among soil treatments, MN had the greatest mean 

rate in the spring and autumn (Table 3.2).  In 2016, MB had the greatest emission rate in the 

summer. Though 2017 saw no significant difference among treatments, in this year MNB had the 

greater mean CO2 emission rate; specifically, in spring and summer. The total emissions were 

not significantly different from 2016 to 2017 (P=0.098). In both 2016 and 2017, CO2 emissions 

among seasons were significantly different (P<0.001). Emissions were significantly greater in 

the springs followed by summers then autumns (P<0.05). In 2016, CO2 emissions were 

significantly correlated with several soil characteristics. CO2 emissions in 2016 had the strongest 

correlation with temperature across all seasons. Soil moisture significantly and positively 

correlated with CO2 in the dry summer of 2016 (for MN and MB), but negatively in the wet 

autumn of 2017 (for MN and MNB). CO2 emissions were significantly and positively correlated 

with soil temperature in autumn 2016 (with MB and MNB) and in autumn 2017 for all three 

treatments (r2=0.419; P<0.001). CO2 emissions were significantly and positively correlated with 

soil NH4
+ concentrations in autumn 2016 (for MNB) and autumn 2017 (for MB and MNB). CO2 
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emissions were not correlated with soil NO3
- during any season. However, NO3

- had a positive 

correlation within the total (2016 and 2017) means (r2=0.34, P< 0.001). 

 Unlike CO2, the treatment-by-season-by-year interaction was significant for N2O soil 

emissions (m N2O-N m-2 h-1) (P=0.006). Biochar treated soils produced less N2O emissions in 

spring 2016, but more in spring 2017. In both these years, the summers these rates were equal to 

or lower than the conventional treatment (Table 3.3). As seen with CO2 emissions, 

total N2O emissions were significantly higher in the spring, followed by summer and then 

autumn. In both years, seasonality was a strong driver of N2O-N emissions, with emissions 

sharply decreasing as the seasons progressed from spring to autumn. 2016 and 2017 emissions 

were not very different (P>0.05). 2016 appeared to produce initially more N2O but had the 

sharper decrease across seasons. In 2016, the biochar-amended soils produced lower emissions; 

most notably in spring 2016, though in autumn they produced slightly more. In 2017, the 

biochar-treated soils had a slightly greater emissions rate, due to increased emissions in spring 

2017 (Table 3.4). Like CO2, N2O emissions correlated with several soil characteristics. N2O 

emissions were significantly and positively correlated to soil moisture in summer 2016, spring 

2017 and summer 2017 (for MN), and for all three treatments in autumn 2017. N2O emissions 

were significantly and positively correlated to soil NO3
- concentration in spring 2017 for MNB 

and as a total among year 1 treatments (P<0.01). A significant positive correlation was observed 

between N2O emissions with NH4
+, NO3

-, and soil temperature when all data from each year and 

season were considered together (Table 3.5). However, these were largely driven by strong 

correlations in autumn 2017. 
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Table 3.1 Variance analysis of total soil physical characteristics and GHG emissions under 3 soil treatments (MN, MB, MNB) in 

temperate soil at H & N Baker Farm, Bayfield, ON, 2016-2017. 

       

 

Fixed Effect 

Moisture Temperature NH4
+ NO3

- CO2 N2O 

 F (P>F) F (P>F) F (P>F) F (P>F) F (P>F) F (P>F) 

Year  0.23 (0.63) 1.47 (0.23) 109.7 (0.00) 19.09 (0.00) 2.75 (0.10) 0.827 (0.36) 

Season 67.2 (0.00) 179.2 (0.00) 204.2 (0.00) 55.0 (0.00) 41.5 (0.00) 68.12 (0.00) 

Treatment (Trt) 19.7 (0.00) 0.63 (0.53) 0.28 (0.76) 12.13 (0.00) 0.40 (0.67) 3.441 (0.03) 

Year*Trt 0.46 (0.64) 0.51 (0.61) 1.88 (0.15) 3.30 (0.04) 0.47 (0.63) 1.95 (0.14) 

Season*Trt 0.99 (0.42) 0.38 (0.83) 3.54 (0.01) 5.70 (0.00) 0.41 (0.80) 0.98 (0.42) 

Year*Season*Trt 1.31 (0.27) 1.03 (0.39) 7.04 (0.00) 4.74 (0.00) 0.37 (0.83) 3.67 (0.01) 

Bolded values represent significant factors. 
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Table 3.2 Median (𝜒̅) seasonal (spring, summer, and autumn) soil CO2 emissions (mg CO2-C m-2 h-1) from soil amended with poultry 

manure and N fertilizer (MN); poultry manure and biochar (MB); and poultry manure, N fertilizer and biochar (MNB) in Bayfield, 

Southern Ontario, Canada. 95% confidence intervals are given in parentheses. 

 MN MB MNB Season (𝝌̅) 

Spring 2016 225.4 (79.46)A,a 208.0 (75.89)A,a 147.5 (51.96)A,a 192.8 (40.24)* 

Summer 2016 79.6 (12.41)A,b 79.6 (12.99)A,b 77.9 (11.47)A,b 78.7 (7.02)* 

Autumn 2016 40.6 (13.25)A,c 31.0 (7.62)A,c 34.8 (7.64)A,c 34.8 (5.94)* 

2016(𝝌̅) 72.4 (21.95)* 59.0 (22.54) 66.9 (16.78)*   

Spring 2017 103.2 (32.44)A,a 145.3 (36.48)A,a 154.9 (47.96)B,a 125.2 (23.31)* 

Summer 2017 106.5 (14.41)A,b 115.9 (17.58)A,b 127.2 (20.21)A,b 117.3 (10.24)* 

Autumn 2017 69.0 (24.75)A,c 69.4 (23.36)A,c 64.2 (19.23)A,c 67.0 (12.64)* 

2017(𝝌̅) 98.5 (13.57)* 101.8 (15.13) 107.2 (19.17)*   

Spring (𝝌̅) 136.3 (52.92) 163.0 (53.86) 147.5 (58.37) 151.1 (31.60) 

Summer (𝝌̅) 93.0 (21.54) 87.5 (31.38) 89.6 (22.99) 90.2 (14.86) 

Autumn (𝝌̅) 41.9 (15.31) 35.4 (16.54) 44.3 (13.41) 41.5 (8.64) 

Treatment(𝝌̅) 84.4 (18.15) 82.3 (21.76) 84.4 (20.08)  
A Values followed by the same upper case letters are significantly different among treatments (at p< 0.05). a Values followed by the 

same lower case letters are not significantly different among seasons (at p<0.05). Values followed by *are significantly different 

between the two years within treatments.  
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Table 3.3 Median (𝜒̅) seasonal (spring, summer, and autumn) soil N2O emissions (g N2O -N m-2 h-1) from soil amended with poultry 

manure and N fertilizer (MN); poultry manure and biochar (MB); and poultry manure, N fertilizer and biochar (MNB) in Bayfield, 

Southern Ontario, Canada. 95% confidence intervals are given in parentheses. 

 MN MB MNB Season (𝝌̅) 

Spring 2016  106.5 (74.74)A,a 54.3 (56.87)A,a 159.2 (70.69)A,a  102.2 (36.72) 

Summer 2016  14.2 (7.24)A,b 7.9 (6.59)A,b 20.0 (7.25)A,b  14.2 (4.15)* 

Autumn 2016  6.7 (7.52)A,b  12.8 (7.77)A,b 11.0 (10.60)A,b  10.5 (4.94)* 

2016(𝝌̅) 13.3 (12.07) 18.3 (14.28) 21.0 (12.61)  

Spring 2017  32.4 (23.52)A,a  52.6 (27.68)A,a 47.8 (22.68)A,a 45.1 (14.70) 

Summer 2017 22.8 (14.17)A,b 14.9 (7.31)A,b 27.2 (8.60)A,b 22.7 (6.17)*  

Autumn 2017  38.1 (17.76)A,c 42.3 (18.03)A,c 34.7 (15.46)A,c  38.7 (9.76)*  

2017(𝝌̅) 25.8 (10.29) 28.1 (11.43)A 31.1 (8.47)A   

Spring (𝝌̅)  44.6 (34.53)  54.2 (28.48) 72.2 (34.53)  56.5 (18.16) 

Summer (𝝌̅)  21.6 (6.84) 13.1 (9.17)  22.6 (7.30) 21.0 (4.42) 

Autumn (𝝌̅)  12.9 (9.10) 19.5 (11.24)  20.0 (9.88)  16.7 (6.74) 

Treatment(𝝌̅)  22.7 (10.85) 24.8 (8.91)  27.2 (10.21)    
A Values followed by the same upper case letters are significantly different among treatments (at p< 0.05). a Values followed by the 

same lower case letters are not significantly different among depths (at p<0.05). Values followed by *are significantly different 

between the two years within treatments.  
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Table 3.4 2016 and 2017 linear regression coefficient of determination (r2) values for CO2-C and N2O-N emissions and soil 

characteristics from soil amended with poultry manure and N fertilizer (MN); poultry manure and biochar (MB); and poultry manure, 

N fertilizer and biochar (MNB) in Bayfield, Southern Ontario, Canada. 

 

*Denotes a statistically significant relationship (P<0.05); **denotes a statistically significant relationship (P<0.01). 

 

 

 

 

 

Table 3.5 Two-year total linear regression coefficient of determination (r2) values for CO2-C and N2O-N emissions and soil 

characteristics from soil amended with poultry manure and N fertilizer (MN); poultry manure and biochar (MB); and poultry manure, 

N fertilizer and biochar (MNB) in Bayfield, Southern Ontario, Canada. 

 

 

 

 

 

*Denotes a statistically significant relationship (P<0.05); **denotes a statistically significant relationship (P<0.01). 

 

 

 

Season GHG 2016  2017 

NO3
- NH4

+ Soil Temp Soil Moist NO3
- NH4

+ Soil Temp Soil Moist 

Spring CO2-C 0.119 0.061 0.014 0.059  0.052 0.104 0.223 -0.143 

N2O-N 0.161 -0.284* 0.345** -0.171  0.103 0.154 0.191 0.181 

Summer CO2-C 0.116 0.022 -0.037 0.304**  0.147 0.365** 0.465** -0.262* 

N2O-N -0.067 0.049 -0.091 0.177*  0.022 0.046 -0.077 0.221* 

Autumn CO2-C 0.234 -0.138 0.419** 0.053  0.207 -0.135 0.728** -0.765** 

N2O-N 0.246* -0.098 0.671** -0.437**  0.027 0.320* 0.741** -0.640** 

 GHG NO3
- NH4

+ Soil Temp Soil Moist  

Total CO2-C 0.285** 0.182** 0.320** -0.140*  

N2O-N 0.351** -0.023 0.340** 0.040  
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Figure 3.1 Median CO2 emissions (mg CO2-C m-2 h-1) from temperate soils amended with three treatments: poultry manure and N 

fertilizer (MN), poultry manure and biochar (MB), and poultry manure, N fertilizer and biochar (MNB) in a) 2016 and b) 2017 from 

Bayfield, Southern Ontario, Canada. 95% confidence interval bars are given for each median value 
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Figure 3.2 Median N2O emissions (g N2O -N m-2 h-1)  from temperate soils amended with three treatments: poultry manure and N 

fertilizer (MN), poultry manure and biochar (MB), and poultry manure, N fertilizer and biochar (MNB) in a) 2016 and b) 2017 from 

Bayfield, Southern Ontario, Canada. 95% confidence interval bars are given for each median value.
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3.4.2 Soil Characteristics 

Soil moisture was significantly different among treatments (P<0.001) in both 2016 and 2017. 

The lowest average soil moisture was found in the MB (10.4 %) followed by the MNB (11.1 %) 

and MN (13.3 %) treatments. Though very similar temperatures were seen in all three treatments, 

MB and MNB were significantly lower in temperature than MN (-2.9ºC and -2.2ºC; P<0.001). 

(Figure 3.4). Both moisture and temperature were affected by climatic conditions and were 

inversely related throughout the two growing seasons. 

In 2016 and 2017, one of the few significant interactions for ammonium (NH4
+) was 

treatment-by-season-by-year (P<0.001). Among seasons, NH4
+ was significantly higher in spring 

2016 and summer 2016. In the spring, MN had significantly higher NH4
+ values, followed by 

MNB, but by summer the differences between all treatments were not statistically significant 

(Table 3.1). In autumn 2016 the differences remained insignificant, and the soils treated with 

biochar had similar concentrations to MN (Figure 2.3). 2017 continued to see no statistical 

difference among treatments(P=0.756); however, differences arose among seasons. During 2017, 

soybean growth (spring and early summer) elevated NH4
+ concentrations. NH4

+ was quickly 

consumed, and the concentration dropped during soybean maturation. NO3
- as well had a 

significant treatment-by-season-by-year interaction (P=0.001). The greatest differences among 

treatments existed in Spring 2016 (P<0.001). In this season MN was significantly greater than 

MB (P<0.001), though this difference diminished by summer concentrations were very similar 

by autumn 2016. In 2017, the treatments were still statistically similar until autumn 2017, when 

MN accumulated the greatest soil NO3
- concentration following the shedding of soybean foliage. 

In October NO3
- concentrations peaked and MN was significantly greater than MB (P=0.007) 

and MNB (P=0.025). In both years there were consistently lower concentrations of NO3
- in soils 

treated with biochar (Figure 2.4).  
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Table 3.6 NH4
+ (mg N kg-1

soil) and NO3
- (mg N kg-1

soil) treatment and seasonal median concentrations [treatment (𝑥̅); season (𝑥̅)] 

from soil amended with poultry manure and N fertilizer (MN); poultry manure and biochar (MB); and poultry manure, N fertilizer and 

biochar (MNB) in Bayfield, Southern Ontario, Canada over 28 weeks in 2016 and 24 weeks in 2017 growing season.  

Standard errors are given in parentheses. 

  MN MB MNB Season (𝑥̅) 

NH4
+ mg N kg-1

soil Spring 7.94 (0.74)A,a 5.45 (0.73)B,a 7.50 (0.74)A,a 7.60 (0.43)a* 

 Summer 1.50 (0.57)C,b 1.63 (0.57)B,b 1.85 (0.55)B,b 1.62 (0.31)b* 

 

 

Autumn 1.10 (0.67)A,b 1.05 (0.67)A,b 1.10 (0.67)A,c 1.10 (0.39)c 

Treatment(𝑥̅) 1.95 (0.39)A 1.86 (0.37)A 2.35 (0.39)A  

NO3
- mg N kg-1

soil Spring 32.78 (5.00)A,a 16.93 (5.15)C,a 17.79 (5.00)B,a 20.57 (2.92)a* 

 Summer 8.15 (4.02)A,b 7.34 (3.98)A,b 7.00 (4.06)A,b  7.58 (2.32)b* 

 Autumn 5.30 (4.68)A,b 6.35 (4.76)B,b 4.11 (4.68)B,b 4.93 (2.72)b* 

 Treatment(𝑥̅) 9.88 (2.65)A* 9.47 (2.69)A* 9.38 (2.65)A  

Values followed by the same uppercase letter, comparing differences among treatments (MN, MB, MNB) within season, are not 

significantly different (p<0.05). Values followed by the same lowercase letter, comparing differences among seasons and within 

treatments (MN, MB, MNB) within season, are not significantly different (p<0.05). Values followed by * represent differences when 

comparing grand means (𝑥̅) between seasons within treatments (p<0.05). 
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Figure 3.3 Median moisture (%) at 0-10cm (with confidence intervals error bars) from temperate soils amended with three treatments: 

poultry manure and N fertilizer (MN), poultry manure and biochar (MB), and poultry manure, N fertilizer and biochar (MNB) in a) 

2016 and b) 2017 from Bayfield, Southern Ontario, Canada. 
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Figure 3.4 Median temperatures (ºC) at 0-10cm (with confidence intervals error bars) from temperate soils amended with three 

treatments: poultry manure and N fertilizer (MN), poultry manure and biochar (MB), and poultry manure, N fertilizer and biochar 

(MNB) in a) 2016 and b) 2017 from Bayfield, Southern Ontario, Canada.
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3.5 Discussion 

Soil conditions strongly influence soil GHG emission rates. Therefore, it is important to 

discuss biochar impacts on soil physical, chemical, and biological conditions before exploring 

GHG changes. Despite low biochar addition rates, soil moisture was still affected by biochar in 

this study. While changes to soil moisture vary among biochar studies, this project saw a 

decrease in moisture. This decrease was similar to Uzoma et at. (2011) and Devereux et al. 

(2012), who attributed the lower moisture to biochar’s high surface area, which readily absorbs 

water (Barnes et al., 2014; Yao et al., 2012). Most microbial organisms have a narrow optimal 

soil moisture range (USDA, 2009); thus biochar initiating a 15-20% decrease in soil moisture 

was expected to impact microbial GHG emissions. Related to soil moisture, soil temperature 

impacts vary among biochar studies; some observing increases (Genesio et al. 2012), decreases 

(Zhang et al., 2013), or no effect (Nelissen et al., 2014). Biochar darkens soil, increasing albedo, 

and therefore increase soil temperature (Genesio et al. 2012). Temperature decreases have been 

associated with altered soil textures, which absorb less infrared radiation and insulate soil from 

ambient temperature changes (Zhang et al., 2013).  

The most substantial change within soil NH4
+ and NO3

- concentrations occurred 

seasonally. Nitrogen concentrations were unsurprisingly greater within MN and MNB treatments 

due to N fertilizer input in spring 2016. Nitrogen fertilizer was added in spring 2016 to increase 

maize yield. Nitrogen concentrations quickly dropped across summer and autumn of 2016; this 

decrease was a result of the growing maize and soil biota, which promptly consumed available 

soil N (Cayuela et al., 2013; Regehr et al., 2015). In 2017, soybean production affected NH4
+ 

concentration, elevating it during the early growing season, as rhizobacteria produced NH3 (Garg 

& Geetanjali, 2007). Once the plants had matured the concentration quickly fell, at which time 

NO3
- rose due to soybean foliage, considered a high-quality residue, shedding and decomposition 
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(Yang & Cai, 2005; Ball et al., 1999; McDaniel et al., 2014). At that point, a significant 

difference briefly emerged due to biochar’s adsorption of available N (Clough et al., 2013). 

Differences among treatments were not as apparent as differences among seasons. Only when 

excess N became available in the soil did NH4
+ and NO3

- concentrations treatment differences 

emerge. Initially, in spring 2016, MB had the lowest concentrations, not having received 

fertilizer additions. Both NO3
- and NH4

+ were lower in biochar treated soils; even MNB, which 

received fertilizer, as a result of adsorption (Clough et al., 2013). Biochar is known to have 

regions of cation and anion exchange and therefore can absorb both NO3
- and NH4

+ (Clough et 

al., 2013). NO3
- and NH4

+ adsorption is a common effect of woody-biochars and was found to 

increase as biochar pyrolysis temperatures increase (Spokas & Reicosky, 2009; Clough & 

Condron, 2010; Barnes et al., 2014; Kerré et al., 2017; Yao et al., 2012; Anders et al., 2013). 

Similar to the studies which observed N absorption, this study’s biochar was both wood-sourced 

and pyrolyzed at a high temperature. However, the absorption was limited in this study by the 

low biochar addition rate. Small, negligible changes to soil NH4
+ and NO3

- following small 

biochar additions, were also observed in several temperate studies (Clough & Condron, 2010; 

Backer et al., 2017; Hangs et al. 2016). Since N absorption has been seen to decrease N2O 

emissions, it was unlikely that the minimal changes in soil N would result in altered N2O release 

(Anders et al., 2013). Nutrient concentrations, however, are not often the sole driving force 

behind microbial respiration in temperate agriculture; properties such pH, moisture, and 

temperature change are greatly impactful for CO2-C emissions (Kloss et al., 2014). 

Biochar can directly influence CO2 emissions by affecting soil physical or chemical 

characteristics (Ameloot et al., 2013). Indirectly, biochar can create favorable environments for 

microbial communities, these communities contribute a large portion of GHG emissions (Jones 
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et al., 2011a; Bamminger et al., 2014; Khodadad et al., 2011; Dil et al., 2014; Luo et al., 2015; 

Domene et al., 2015). Enhanced microbial activity can accelerate the decomposition of soil 

SOM, which leads to increased CO2 emissions (Kuzyakov et al., 2000). Biochar has also created 

more efficient microbial communities, which produce less CO2 (Bamminger et al., 2014). No 

significant effect of biochar on soil CO2 emissions was observed among treatments in either field 

season; only significant seasonal effects were observed. The greatest CO2 emissions occurred in 

spring 2016, due to the incorporation of soil amendments and warm/moist conditions. A greater 

amount of labile C and N were also available at that time and accessible to the microbial 

community (Cross & Sohi, 2011). Following spring 2016, and the consumption of labile C, only 

recalcitrant C compounds remained and therefore CO2 emissions decreased (Zimmerman et al., 

2011; Cross & Sohi, 2011).  

As seen in this study, it was typical for short-term releases of CO2 to follow soil 

amendment additions (Jones at al., 2011a; Yoo & Kang, 2012). In spring 2016, MNB and MN 

yielded the highest GHG emissions. However, it had nearly a double emission rate in Summer 

2016. There was potentially a partial breakdown of biochar’s carbon during this season since as 

observed in Chapter 2, free light fraction carbon (FLF-C) decreased between 2016 and 2017 

(Jones at al., 2011a; Yoo & Kang, 2012; Demisie et al., 2014; Table 2.7).  For Jones et al. 

(2011a) this rate increase was most notable in the first month and steadily decreased over 15 

months. Cross & Sohi (2011) observed similar effects to those of Jones et al. (2011a) and 

proposed that labile compounds were consumed and emissions lowered over time once only 

recalcitrant biochar carbon remained. The initial spike of CO2 released in summer 2016 was 

perhaps a result of bioavailable carbon residues being decomposed since CO2 emissions were not 

correlated with any physical or nutrient soil conditions at this time. C/N ratios are a known 
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indicator of soil productivity which in turn directly contributes to CO2 production. Biochar 

additions increase C/N ratios which can decrease microbial activity within the soil (Atkinson et 

al., 2010). C/N ratios in this study were more evenly distributed in biochar treated soils and had a 

higher ratio in lower depths. Despite the changes to soil moisture, temperature, and nitrogen 

species, CO2 emissions from this study in Bayfield, ON were not significantly different among 

the three treatments, Manure and Nitrogen (MN), Manure and Biochar (MB), Manure, Nitrogen, 

and Biochar (MNB) (Table 3.1). As mentioned earlier, this study incorporated comparatively 

small amounts of biochar. Therefore, drastic changes from the biochar additions were unlikely. 

While the differences between treatments were not extreme, there were significant changes 

across seasons, especially in spring 2016 (Figure 3.1). The decrease after spring 2016 could also 

have been a result of soil acclimatization; since as nutrient differences and water content 

normalize, after a year more correlations between soil characteristics and emissions were seen 

(Zimmerman et al., 2011).  

In summer and autumn, soil moisture and temperature also affected CO2 emissions. This 

is because of moisture and temperature influences on microbial activity (Banerjee et al., 2016). It 

has been proposed that by absorbing soil moisture, biochar can facilitate O2 diffusion which 

increases microbial respiration, and therefore greater CO2 emissions (Jones et al., 2011a). This 

effect was most evident in summer 2017 when CO2 had the greatest a negative correlation to 

moisture. In 2016’s dry soils, aeration was not a limiting factor, therefore moisture did not exert a 

strong influence on CO2 emissions (Agriculture and Agri-Food Canada, 2017). However, a slight 

negative correlation also existed across the two years despite different levels of precipitation, as 

2017 was unusually wet (Agriculture and Agri-Food Canada, 2018). In this study, biochar treated 

soils were the driest and produced slightly more CO2. However, the pattern observed could also 
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have been the result of the inverse relationship between soil moisture and temperature. As soil 

moisture increases soil temperatures decrease, and this causes CO2 emissions to decrease 

(Davidson et al., 1998; Smith et al., 2003). In autumn 2017, when temperatures were lowest, 

temperature was positively correlated to CO2 emissions. Temperature can be an important 

limiting factor for microbial growth (Zanchi et al., 2014). Not only do physical conditions affect 

CO2 emissions, but nutrient concentrations as well (Liang et al., 2015). Elevated soil nitrogen 

levels have not been known to cause CO2 emission from soils directly, however, NH4
+ can 

stimulate soil enzyme activity, and thereby enhance CO2 emissions (Liang et al., 2015). 

The specific qualities of biochar are often observed to affect GHG emissions from soils; 

pyrolytic temperature and source material determine nutrient exchange and adsorption rates, as 

well as amounts of labile compounds (Atkinson et al., 2010). Only seven in-field investigations 

of biochar and poultry manure impacts on N2O emissions are available (Agegnehu et al., 2015; 

Angst et al., 2014; Felber et al., 2014; Karhu et al., 2011; Verhoeven & Six, 2014; Wanatabe et 

al., 2014; Rose et al., 2016).  Of these, only the tropical study resulted in decreased N2O 

emissions (Agegnehu et al., 2015). Other amendment schemes have resulted in decreased N2O 

emissions as well, but those were seen in laboratory settings and with high-temperature biochars 

(>700C) (Cayuela et al., 2014; Anders et al., 2013; Bamminger et al., 2014). Biochars 

pyrolyzed at temperatures above 600C adsorb large amounts of soil NO3
-, as a result of greater 

porosity, which decreases access for both the nitrifiers and/or denitrifiers, and therefore decrease 

N2O emission (Smith et al., 2014). Woody feedstock chars also stabilize N and slow N 

mineralization (Van Zwieten et al., 2013). Newly pyrolyzed biochars contain ethylene and 

polycyclic aromatic hydrocarbons residues which also inhibit denitrifiers (Gomez et al., 2014; 

Zimmerman et al., 2011; Clough & Condron, 2010). Given the low addition rate of biochar in 
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this study, few residues would have been present in our biochar treatments to suppress N2O 

production. Considering the quantity of application, subtle responses were expected. Indeed, 

N2O emissions were not found to differ significantly in any season among any of the three 

treatments of this study (Table 3.2). However, when all seasons and years were combined 

together it appeared that biochar soils produced less N2O than the conventional treatment. This 

has been an observed outcome of other biochar studies, since emissions often result from 

nitrogen availability for microbes to convert and biochar can reduce available nitrogen (Clough 

& Condron, 2010; Troy et al., 2013). This interaction was illustrated further by N2O’s correlation 

to soil NO3
-, which was at times responsible for ~35% of the total observed emission (Table 3.5).  

At the same time, soil temperature was responsible for ~30% of the total N2O emissions (Table 

3.5). These two characteristics explained more than half of total N2O emissions. The degree to 

which these two factors affected emissions also depended on weather conditions and nutrient 

additions. 2016 showed a greater difference among treatment emissions than 2017 since the 

greatest differences in soil conditions developed in the first year. The total emissions rate was 

slightly lower and more even in 2017 than in 2016. This decrease was attributed to cooler 

weather patterns and lower NO3
- concentrations. The initial spring flush of N2O-N was much 

lower in the second year since no fertilizers were added. Autumn emissions elevated slightly in 

2017 from the summer readings. This was likely the result of NO3
- production from 

decomposing soybean leaves (McDaniel et al., 2014). It was found that in summer and autumn 

2017, N2O emissions were positively correlated to moisture availability. Maximum N2O 

emissions rates exist between the range of 80-95% water-filled pore space (Schindlbacher et al., 

2004). Throughout the frequent rainfall events in 2017, ideal water-filled pore space conditions 

for denitrification were often present, resulting in a greater total time of peak emissions. While 
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pore size has been attributed to decreased N2O emissions in several studies, in this case, it may 

have facilitated increased emissions (Atkinson et al., 2010). Aeration is a significant factor in 

N2O generation and appeared to impact N2O emission in this study (Cayuela et al., 2014; 

Atkinson et al., 2010). The greatest emissions occurred in the driest year and moisture was 

strongly correlated with gas production in the wettest year. As well, moisture determines soil 

temperature (McLain & Martens, 2006). N2O has been found to be affected by soil temperature 

in many land-uses, as well as in this study (Schindlbacher et al., 2004). N2O emissions were 

significantly correlated with temperature during autumn 2017, the coldest season. The lack of 

consistent correlations with NH4
+ and NO3

- was observed in other studies (Verdouw et al., 1978; 

Troy et al., 2013), and indicates a complexity of soil emission drivers. The most influential 

factors in this study were nitrogen availability in 2016 and physical conditions in 2017 

(Butterbach-Bahl et al., 2013; Felber et al., 2014).  Spring 2016 to summer 2016 had a 60% 

decrease in mean N2O-N. In 2017 that seasonal decrease was only 50%. The least drastic 

reductions were found in MN soils, suggesting that aging of biochar induced some reduction in 

emissions (Clough & Condron, 2010). As seasons progressed in both years, nutrient levels, labile 

carbon biochar residues, and emissions all decreased together. 

 

 

3.6 Conclusion 

The amount of biochar added to this temperate agricultural soil was low and did not 

significantly impact GHG soil emissions. Results showed that adding biochar with poultry 

manure or with mineral N fertilizer and/or poultry manure did not induce greater greenhouse gas 

emissions in any given season. These results also demonstrated that complex soil interactions 

changed seasonally and influenced GHG emissions, with or without biochar. Physical soil 



   97 

characteristics had the most consistent and greatest impact on emissions. As a result, weather 

conditions heavily influenced emissions; with more extreme conditions resulting in stronger 

effects. NO3
– was identified as a factor that can strongly influence N2O emissions as well. Since 

biochar ages following its addition, future research should focus on long-term field-scale GHG 

emissions. More growing seasons, with their unique weather patterns, would aid in determining 

the full influence of physical characteristics over GHG emissions in biochar soil. It is important 

to now decide what optimal amounts of biochar can be economically utilized by agricultural 

producers while still mitigating GHG emissions. Though GHG emissions were statistically 

identical among treatments in each season, as a trend, CO2 and N2O were initially lower in 

biochar treated soil. To move agriculture towards a carbon-neutral status it is important to know 

whether one large addition of biochar or several small additions would result in the lowest initial 

CO2 release. This low application-rate strategy was able to bypass the initial significant increase 

in CO2 seen in early-stages of larger biochar additions. It is expected that in the following 5 

years, the emissions of our site will remain lower in our biochar treated plots. Continual 

observation would be beneficial to determine what the final long-term impacts are going to be of 

biochar treatments.  
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4. Conclusion 

In previous studies biochar has demonstrated its potential to change soil characteristics in 

a variety of ways, and in doing so impact; soil health, crop growth and GHG emissions. 

However, few of the biochar projects have taken place infield to validate its effect on soil 

systems. As well, little research exists to date on its effects on soil ecology and the mechanics by 

which it alters GHG emissions. This study provided a unique design, of low additions, in a 

Canadian agriculture system as an attempt to fill the aforementioned knowledge gaps. This study 

did not observe many of the results of previous works. 

 Chapter 2 demonstrated that low biochar additions result in few changes to soil physical, 

chemical, biological characteristics, or crop growth. Biochar’s small-scale changes to C/N 

distribution, as well as microbial diversity and richness were together short-lived. Microbial 

communities were able to access initial labile components of biochar in this temperate system. 

As biochar aged labile carbon was consumed, the differences between microbial communities 

diminished. While soil microbial richness and diversity appeared temporarily affected by 

biochar, these results ultimately did not affect crop productivity or macrofauna populations. 

Similarly, phosphate was only significantly decreased by biochar within the first growing season 

following its addition and then accumulated within biochar-amended soil within the second 

growing season. As Spokas et al. (2011) observed, the aging processes can drastically change the 

chemical surface or pore space composition of biochar. However, physical and chemical 

composition are not equally altered during the aging process of biochar (Yuan et al., 2017). Only 

soil moisture was consistently lower in 2016 and 2017, as a result of biochar, in this temperate 

agricultural study. At every biweekly sampling event, biochar soils had significantly lower 

moistures. This revealed that as biochar aged in its first season it underwent more chemical 

changes than physical. Nelissen et al. (2015) also observed an unequal degree of change between 
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soil physical and chemical characteristics as biochar aged. These effects were, however, not 

severe enough to drive changes to soil productivity. Based on soil productivity indicators, soil 

health was not altered by biochar. In conclusion, this chapter demonstrated that an economically 

feasible portion of biochar can be used in temperate soils without compromising soil health or 

crop productivity.  

 Chapter 3 showed that low-addition biochar schemes do not impact CO2 but potentially 

impacted general N2O emission rate trends. However there were no significant difference season 

to season each year. In studying N2O emissions this chapter was novel; it is among the first 

biochar field projects in Canada to do so. Similar infield experiments have been carried out in 

agricultural fields in Germany (Bamminger et al., 2014) and Switzerland (Hüppi et al., 2015), 

though addition rates exceeded economically feasible levels. Much like Chapter 2, altered soil 

characteristics did not result in secondary impacts, in this case, GHG emission. While weather 

changes had the largest influence on emissions, only weak correlations existed between soil 

characteristics and GHG. Biochar ultimately did not definitively trigger or lower GHG 

emissions, as it had in other studies (Yaun et al., 2017; Case et al., 2015; Deng et al., 2015). 

Some laboratory settings observed no changes to CO2 as well (Knoblaunch et al., 2011; Steiner 

et al., 2010). It is likely that this lack of effect was again due to the low biochar addition rates. 

Most projects required ~20t/ha before effects were observed (Bamminger et al., 2014; Hüppi et 

al., 2015; Mitchell et al., 2015). The increased complexity of field setting may have contributed 

to this as well and made it harder to identify which effects were driving the emission system.  

In the future, more biochar project designs or biochar types should be implemented in 

temperate settings. It would be of value to identify which addition amounts or length of aging 

time might result in beneficial changes to crop yields or GHG emissions. Moderate amounts of 
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biochar and higher pyrolysis temperatures would likely result in more profound decreases in 

emissions (Zimmerman et al., 2011). As well, different feedstocks would likely result in different 

impacts to soil health and emissions. Continuing this project would provide important 

information on the continued aging of biochar; to determine if the physical changes persist and 

whether differences in C/N or among microbial communities reemerge. This study could benefit 

as well from an analysis of collected soils to determine how much biochar remained in our soil 

following year one, and now after year two. At the very least, it would be beneficial to continue 

this project for several more crop rotations; in order to provide a greater amount of information 

on crop responses to biochar, but also biochar responses to an array of weather patterns. With 

this extra information, farmers will be able to customize biochar use to meet the specific needs of 

their farm and our shared climate. 
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Appendix A. Summary of notes collected on reviewed biochar studies, including; study site 

location, biochar type (feedstock and temperature), the amount of biochar utilized, and the 

observed outcomes. 

 

Bolded author names indicate that the study was carried out in temperate soils. 

 

Biochar Effects on Soil Characteristics, Soil Biology, and Crop Yields 

 

Author Amount Type Temps 
C 

slow,  

Impacts 

Anders et al, 

2013 

 

Greenhouse 

and field 

(Austria) 

 

 

 

 

24 t/ha 

72 t/ha 

Vineyard pruning 

Wheat straw 

Mixed wood 

Beech hardwood 

 

400 

525 

500 

• No impact on SMB 

• Shift in family, genera, and 

species 

• Increased pH, CEC, C/N, EC, 

Corg 

• Decreased EC in first 7 months 

• Increased C/N favours fungi+ 

limits bacteria 

• Field: C/N increased, everything 

else not impacted 

• Field: Lower wheat yield 

without additional fertilizer 

Anderson et 

al, 2011 

 

Missouri (Silt-

loam) 

 

 

 

 

 

 

 

 

 

15 t/ha 

30 t/ha 

Pine  • Biochar decreased abundance of 

microbes associated with 

nitrification of NH4 +NO2 

• Increased mycobacterial nitrate 

reduction to NH4, and N2 

fixation 

• Promotes phosphate solubilizing 

bacteria 

• Increased abundance of bacteria 

families that can degrade 

recalcitrant C compounds 

• Potentially decreased bacterial 

plant pathogens 

• Few changes to total microbe 

abundance and activity 

• Impact pH and water holding 

capacity (WHC), therefore 

decreased N2O emissions 
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Bamminger et 

al, 2014 

 

Germany 

(Silty ag soil) 

 

30 t/ha 

30cm 

Miscanthus 

giganteus 

600 slow • Reduced NH4 and NO3 

concentrations 

• Increased microbial biomass, 

favoured fungi 

• More efficient microbial 

community 

Bamminger et 

al, 2016 

 

Germany 

 

 

30 t/ha 

30cm 

Miscanthus 

giganteus 

600 slow • No impact to shoot biomass 

• Decreased bulk density 

• Increased pH 

• Decreased NO3 

• No impact on microbial biomass 

Borchard et 

al, 2014 

 

Germany 

(sandy-silt) 

 

 

 

 

 

45 t/ha 

300 t/ha 

Hardwood 

Softwood 

500slow & 

gas 

1100Flash 

• The 45 t/ha had no impact to 

maize yield 

• 300 t/ha decreased maize yield  

• Flash=decline in germination 

rate (organic phytotoxins) 

• Slow= increased WHC 20% 

• 45 t/ha did not impact WHC or 

aggregate stability 

• 300 t/ha increased WHC, C/N, K 

• 300 t/ha changed K/MG, K/N, 

and P/K 

Bornø et al., 

2018  
 

 Softwood 

Rice husk 

Oil seed rape 

550 • Increased available P 

• Did not interact with fertilizers 

• Affected the microbial 

community and phosphatase 

activity 

• Crop residue biochars increase 

fertilizing effect 

Brunn et al., 

2014 

 51 t/ha 

102 t/ha 

204 t/ha 

408 t/ha 

Straw 

 

Hardwood 

Lowgas 

 

slow 

 

Chintala et 

al., 2013 

 

Acidic clay (S. 

Dakota) 

Calcareous 

(Minnesota) 

 Corn stover 

Ponderosa pine 

Wood residue + 

switchgrass 

650 • Pine increased available P (43% 

of sorbed P), especially 

bicarbonate extractable P 

• Biochar increased P sorption in 

calcareous soils 

• Biochar increased AEC 
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• Laboratory experiment, says in-

field needed  

de la Rosa & 

Knicker et al, 

2011 

 

150 mg 

in 150 g 

soil at 

15cm 

Rye grass 

(imitating 

wildfire) 

350 • Increased biomass with biochar 

• Biochar partially decomposed 

(N) nutrient source for microbes 

(SMB) 

• Biochar increased total C+N 

de la Rosa et 

al, 2018 

 

Mediterranean  

(Sandy-clay 

calcareous) 

 

15 t/ha Pine 

Paper sludge 

Sewage sludge 

Vineyard 

cuttings 

Woodchips 

 • C content decreased over 24 

months, partially attributed to 

mineralization (initial loss). 

Most in first year, statistically 

insignificant after that. 

• Decreased N in first 6 months 

for wood, increase onward 

• Initial pH rose then fell back 

• Feedstock important for how 

biochar ages/breaks apart 

• Biochar increased slow C pool 

without increasing CO2 

Dempster et al, 

2012 

 

Australia, 

Mediterranean, 

Wales (Eutic 

cambisol) 

 

25 t/ha 

10cm 

Mixed hardwood 450 

48hrs 
• Short+ long term no major shift 

in C turn over or partitioning in 

SMB 

• No big impact on organic N 

mineralization 

• Biochar aged/change 

considerably over 3 years in 

Wales 

Domene et al, 

2014 

 

New York 

(Sandy-loam) 

 

 

3 t/ha 

12 t/ha 

30 t/ha 

1 t/ha/yr 

Corn stover 600slow • Medium term effect paper  

• Biochar increased microbial 

abundance (especially as biochar 

increased) 

• Mesofauna+ leaf litter 

unaffected (trend increased) 

• Biochar increased NO2 + NO3 

mineralization, decreased SO4 

+Cl 

Domene et al, 

2015 

 

0.2 

0.5 

2 

Corn stover 600slow • Short term effect paper 
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New York 

(Sandy-loam) 

 

 

 

7 

14% 

w/w 

• Microbial biomass increased as 

biochar increased, decreased 

after 61 days 

• Collembolan avoided biochar, 

enchtraids did not 

• This avoidance disappeared 

when increased microbial 

biomass of NH4. Therefore not 

toxic 

Durenkamp 

et al, 2010 

 

UK and China 

(Silty-clay-

loam, Loamy 

sand, Red 

loam) 

3.5 mg/g 

28 mg/g 

Beech for UK 

 

Corn+ wood for 

China 

500 

 

350-400 

• Biochar did not decrease 

extraction efficiency of biomass 

C or N 

• CEC increase over time 

Gaijć & 

Koch, 2012  
 

Germany 

(Silty) 

 

10 t/ha 

15cm 

30 t/ha 

pot 

Sugar beet pulp 190 • Biochar decreased initial beet 

growth 

• Likely microbial N 

immobilization 

• Immobilization increased with 

increased C/N ratios from 

biochar 

• Increased C/N ratio biochar 

decreased leaching 

Glaser et al., 

2002 

5 t/ha   • Decrease soybean and maize 

yield 

Glaser et al, 

2014 

 

Germany 

(Sandy) 

 

 

 

1 t/ha 

10 t/ha 

40 t/ha 

Green cuttings 650 • Biochar +fertilizer more yield 

increase than just fertilizer 

• Biochar increased K, Mg, Zn 

uptake; decreased Na, Cu, Ni, 

Cd uptake 

• Can increase WHC. More 

biochar= increased pH 

• Even 1 t/ha increased efficiency 

of nutrient use 

Gomez et al, 

2014 

 

1 % 

5 

10 

20 

Oak pellet 550 Fast • Biochar increased microbial 

abundance and favour Gram - 
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Colorado, 

Iowa, 

Michigan, 

Minnesota 

 

over fungi and + (increased as 

biochar amount increased) 

• Biochar decreased extractable 

phospholipid fatty acids 

•   Biochar-C incorporated into 

SMB 

Güereña et al, 

2013 

 

New York 

(Silt-loam) 

 

3 t/ha 

12 t/ha 

30 t/ha 

1 t/ha/yr 

Maize stover 600slow • No impact to maize yield or 

plant N uptake 

• N decreased after biochar, no 

change to pH 

• Biochar increased microbial 

biomass N 3-fold + increased 

retention of N in topsoil 

Haider et al., 

2017 

 

Germany 

Temperate 

sandy soil 

4 year 

15 t/ha 

30 t/ha 

Norwary spruce 

and European 

beech 

550-600 • 30 initial decrease in Mn in first 

maize 

• Reduced NO3 leaching 

• Higher moisture 

• Decreased crop yield N 

deficiency 

• No increase to crop yields in 4 

years 

Hammond et 

al (2013) 

 

UK (Silty-

clay-loam, 

loamy-sand) 

 

10 t/ha 

20 t/ha 

40 t/ha 

Mixed wood 500slow • Most cases no impact to crops 

• Increased yield w 1-20 t/ha 

biochar, most with 10 t/ha 

decrease with 40 t/ha 

• Increased biochar= increased 

yield if fertilizer added 

• Biochar increased soil moisture 

retention 

• Beyond 30 t/ha can produce 

negative effects 

• 10 t/ha sufficient for benefits 

• Shallow incorporation for this 

effect 

Hardie et al 

(2014) 

 

Austria 

Planosol and 

Chernozem 

3%, top 

30cm 

Mixed wood 

Wheat straw 

 

Vineyard 

525 

525 

 

525 

400 

• Biochar decreased bulk density 

• Improved aggregate stability 

• Improved available plant water 

in planosol soil by 38% 

• Course texture have most to gain 
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Hartley et al., 

2016 

 

UK 

5% Green waste 

Shrub 

Softwood 

440steam • Aggregate stability only 

improved with oversize biochar 

• Micronutrients reduced in wheat 

grain  

• Biochar increased dissolved 

organic carbon (doc) in pore 

waters compared to control 

• Biochar enhanced soil 

respiration 

Hilscher & 

Knicker, 2011 

 

 See GHG sheet   

Imparato et 

al, 2016 

 

Danish 

(agri sandy) 

 

 

 

0.8-1.4 

t/ha 

6-8 t/h 

Wheat straw 700-

750gas 
• Biochar did not impact ATP 

content, soil toxicity or catabolic 

community profiles 

• Increasing biochar increased 

phenol oxidase activity and pH 

and decreased cellulose activity 

• Low bichar additions increased 

diversity of soil microbes 

• Biochar had limited impact to 

functional and structural 

diversity of microbial 

community 

Jones et al, 

2011b 

 

Wales 

Australia 

 

 

 

10 t/ha 

100 t/ha 

Hardwood 450 48hrs 

600 24hrs 

 

• Sorbs herbicide reducing 

leaching, available to microbes 

and biodegradation 

• Herbicide mineralization inverse 

with biochar particle size 

• Biochar reduces herbicide 

dissipation therefore 

environmental contamination 

and human exposure 

• May impact efficiency of soil 

applied herbicides 

Jones et al, 

2012  

 

Wales (Sandy-

clay loam) 

 

25 t/ha 

50 t/ha 

20cm 

Hardwood 450 48hrs • Biochar increases foliar N (yr 2) 

and biomass, maize shoot 

biomass (yr 3), fungal + bacterial 

growth/turn over (yr 2), soil 

respiration 



   123 

 

 

 

 

 

• Biochar favours bacterial 

decomposer community 

• No impact to DOC, NO3
-, NH4

+, 

N mineralization, 

NH4
+volitization, density, or 

sorption (short or long term) 

• Impacts not same between field 

and lab 

• No impact on crop (maize) in 

first year 

• Initial pH increases then fall as 

ages  

Karer et al, 

2013 

 

Austria (Silt 

loam, clay 

loam) 

 

 

 

24 t/ha 

72 t/ha 

Beech 550 slow • During drought biochar 

increases WHC and yield with 

highest Biochar addition 

• Maize + grain decreases with 

highest biochar without 

fertilizer. No impacts when 

fertilizer added too 

• Biochar caused N deficiency, N 

released too slow 

• Biochar decrease bulk den, 

increases infiltration, decrease 

compaction + erosion 

Khodadad et 

al, 2010 

 

Florida 

(Sandy) 

300 mg/ 

3g soil 

Oak 

Grass 

250 3hrs 

650 
• Biochar decreases microbial 

diversity and increases specific 

taxa 

Kloss et al, 

2014 

 

Planosol, 

Cambisol, 

Chernozem 

30 t/ha 

90 t/ha 

Wheat straw 

Mixed wood 

Vineyard pruning 

 

525 slow 

60m 

 

400 

• C/N increases at 90 t/ha 

• Initial decreases crop yields by 

biochar (decreases Cu, Fe, Mn, 

Zn, increases Mo in plant tissue) 

• Strong variation of impact with 

soil type 

Koide et al, 

2011 

 

Penn State 

(Silt-loam) 

 

56.8 t/ha Hardwood slow • Just method for determining how 

much biochar really is in field 
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Kuzyakov et 

al, 2009 

 

Germany 

 

108g 

biochar 

in 45g 

soil 

Ryegrass 400 • Very slow biochar 

mineralization, decreases during 

incubation. No significant CO2 

emit 

• Direct incorporation of biochar-

C into SMB 

Lentz & 

Ippolito, 2012 

 

Idaho 

 

 

22.4 t/ha Hardwood 500 fast • Biochar increases available Mn, 

TC, and TOC 

• 1st year biochar increases corn 

silage, not impact grain 

• 2nd year biochar decreases silage, 

yield, and S concentrations 

• No pH change 

• Biochar may inhibit 

mineralization of manure C 

Li et al, 2011 

 

Artificial soil 

9 t/ha 

90 t/ha 

180 t/ha 

Applewood 

sawdust 

400-525 
slow 

• Biochar=weight loss in 

earthworms but no impact on 

reproduction 

• Due to water-loss, not nutrient 

deficiency or toxins 

Liang et al, 

2008 

 

Brazil 

(Anthrosols) 

   • Biochar increases physical, 

stability, stable ortho-mineral C, 

oxidation on biochar surface 

• Biochar no difference between 

amount 1st year and 600-8700 

years 

• Older biochar no impact on CO2, 

younger biochar increased CO2 

Luo et al, 

2011 

 

UK (Silty-

loam) 

 

 

 

 

50 mg 

C/ g soil 

Miscanthus 

giganteus 

350 

700 
• Both biochar temperatures 

increases biomass C 

concentration + soil microbe 

ATP (decreases bio available C 

as temp increases), most in 90 

days but continued into 180 

• Biomass C linear relationship 

with CO2 evolution 

• Biochar mineralization a 

biological process 

• Increases pH (more with higher 

temp) 
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• Low temp biochar most 

colonized with bacteria + fungi 

Luo et al, 

2013 

 

UK (Clay-

loam) 

 

 

 

 

 

 

 

50 mg/g Miscanthus 

giganteus 

300 

 

700 

• 300 increases biomass C and 

ATP in 1st 90 days then 

decreased. Not likely correlated 

with biochar though 

• 700 less C in biomass 

• microbe colonization attributed 

to biochar-C avail + surface area 

(more in low temp) 

• Biochar mineralization a 

biological process 

• Biochar makes C, N, and 

micronutrients available and 

reduces toxics of Al+Mn 

• Biochar increases nutrient 

solubility due to pH increases 

• More benefits when soil pH 

lower 

Ma et al., 2016 7.8 t/ha Maize straw and 

peanut hull 

 • Improved macro-aggregates 

• Improved SOC. No effect on 

C/N ratio 

• Major (2012) no impact on water 

holding capacity 

• Jeffery (2015) no impact to 

water retention, aggregate 

stability in sandy soil 

Madiba et al., 

2016 

 

Australia 

Loamy-sand 

5 t/ha 

10 t/ha 

Chicken manure 

Wheat chaff 

450 • Increased plant P uptake, P 

availability to microbes, and P 

sorption 

• Favoured mycorrhizae 

• 5 t/ha increased wheat yield the 

most, 10 t/ha slightly 

• Biochar decreased relative 

leaching, but increased water 

holding capacity of soil so P lost 

in solution too 

Marks et al, 

2014 

 

0.5% 

1.3 

3.2 

Poplar 

 

Slude 

~500 slow 

~500 fast 

~500 slow 

• Pine gas char inhibited 

invertebrates, likely increase 

carbonate, Ca content, and pH 
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Spain 8 

20 

50 

Pine ~500 slow 

~500 fast 

~500 gas 

• High amount of biochar decrease 

number of inverts 

• Wood char stimulated 

reproduction for 1 species, not 

other 

 

Mitchell et al, 

2015 

 

Ontario 

(Brunisol) 

 

 

 

 

 

5 t/ha 

10 t/ha 

20 t/ha 

Maple wood 500  • Pyrolysis at temp convers 

cellulose, hemi-cellulose, and 

lignin aromatic 

• Biochar increase CO2 

• Initial depression of gram +, -, 

and actinomycetes In first 16 

weeks. Then recover (adapt) 

• Favour gram + over gram – and 

fungi 

• Biochar increases activity of 

specific microbes= increases 

CO2 and decreases labile SOM 

Naisse et al., 

2015 

0.3g 

Biochar/ 

30g soil 

Poplar wood 

Maize silage 

250 

1200gas 
• Chemical stability of both 

biochars unaffected by physical 

weathering 

• High temper gas led to 

protection of native SOM 

(negative priming) 

• Low temperature led to positive 

priming (stimulated native soil 

OM mineralization) 

Nelissen et al, 

2015 

 

Belgium 

(Sandy loam) 

 

 

 

 

20 t/ha Hard+ soft wood 480 slow • Slight impact to soil microbe 

community in 1st yr 

• No impact to N+ P uptake or 

crop yield in first 2 yr 

• Stable C applied 

• No N immobilization observed 

• Improved water storage capacity 

and soil stability after some 

aging 

• Increase SOC 

• No Impact to spring barley crop 

yield 
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Prendergast-

Miller et al, 

2011 

 

UK 

 

 

20 t/ha 

60 t/ha 

Mixed wood  • Biochar increases wheat root 

length 

• Biochar decreases root N uptake 

• Plant biomass and N content 

similar between treatment 

• NO3 localized in rhizosphere 

with biochar, decreases loss 

increases efficiency 

• Increases pH 

• No impact to crop biomass or 

root architecture 

Qayyum et al, 

2012 

 

Germany 

 

 

 

50 t/ha Bark 

 

Sewage sludge 

200 

 

400 

• 200 higher nutrient 

concentration but loss of C in 

alfisol 

• 400 lowest CO2 emissions after 

270 days. Stabilizes SOM 

• 400 Charcoal shows 

accumulation of NO3-N 

• High temperature biochar better 

for C-sequestration 

• Low temperature biochar better 

for increasing soil fertility 

Quilliam et al, 

2013 

 

Wales (Sand-

clay loam) 

 

 

 

 

50 t/ha 

20cm 

Hardwood mix 45048 • In short term no significant 

habitat for microbes 

• Labile compounds impact 

microbe activity and structure 

• Biochar 5x greater surface area 

than soil 

• Biochar only sparsely colonized 

by microbes 

• Sorption can prevent microbes 

from penetrating pores 

• Glucose mineralizes faster on + 

in biochar than soil 

Riddle et al., 

2018 

 

 Hardwood/spruce 

mix coated in 

magnetite  

380-430 • Wood BC low source of P and 

poor P sorption capacities 

• Coating reduced P loss 

Rutigiano et 

al, 2014 

 

30 t/ha 

60 t/ha 

Wood 500 slow • No impact on Corganic, Cextractable, 

CSMB, or genetic diversity 
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Italy, Tuscany 

(Silty-loam) 
• Increase pH, specific microbe 

activities and change in 

functional diversity after 3 

months but none after 14 (expect 

pH, a little higher) 

• Positive stimulation to soil 

microbe activity short lived 

Sarkhot et al, 

2011 

 

California 

Orchard 

10 g/kg 

15 cm 

Hardwood 300 slow • Biochar 68-75% decrease in net 

nitrification 

• Biochar 221-229% decrease in 

net ammonification 

• Reduced NH4+ NO3 

concentrations- Adsorption 

rather than immobilization 

• Source of K for 20 days 

• Decreases N + P leaching ~70% 

Schneider et 

al, 2011 

 

Kenya 

 Burns  • Charcoal resists chemical 

degradation after 100 years 

Schomberg et 

al, 2012 

 

South Carolina 

40 t/ha Peanut hull 

 

Pecan shell 

 

Poultry litter 

 

Switchgrass 

 

CQest 

400 

500 

350 

500 

350 

700 

250 

500 

500 

• No increase in mineralizable N 

fraction (no stimulation of 

microbial biomass) 

• Decrease in resistant N fraction 

• Volatization of N as NH3 

• 350 Poultry increased soil N 

• Low temp increase pH (higher 

ash) 

• All biochar increases soil C 

• High temperature decreases N 

leaching 

• High temperature shell, hull, and 

litter had net N loss to 

volatilization 

• Little impact on microbial 

biomass 

Steinbeiss et 

al, 2009 

 

30% C 

w/w 

Glucose-derived 

 

Yeast-derived 

850 • See GHG sheet 
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Germany 

(aerable and 

forest) 

28 

Sun & Lu, 

2014 

 

Clayey soil 

Greenhouse 

20 g/ka 

40 

60 

 

Straw 

Waste-sludge 

500 • Increased macroaggregate 

formation 

• Increased aggregate stability, 

resistance to slaking and inter 

particular cohesion 

• Straw biochar increased 

available water contents of soil 

and pore space 

Vasilyeva et 

al, 2011 

 

Russia 

(Chernozem) 

 

 Wild fire  • Charcoal stock did not change or 

decrease over time 

• Move down horizons- stock lost 

form FLF 

• Water repellant 

Wang et al, 

2012 

 

Acid washed 

sand 

Tokomaru silt 

loam 

1:1 Eucalyptus 250 

350 

450 

550 

• Hydro stable (labile pool in 

biochar) N decreases as 

pyrolysis temperature increase 

• C + N increase stable as pyro 

temperature increases 

• N restructures as pyro 

temperature increases 

• N availability decreases as pyro 

temperature increases 

Yuan et al, 

2017 

 

North Carolina 

(Loamy-sand) 

 

 

1% 

5% 

120ml 

container 

Harwood/Rice 

hull (added to 

chicken manure) 

Low gas • Enhanced total C+N, 

(in)organic N (especially NO3
-), 

SMB C+N cellulose enzyme 

activity, N2O bacteria +fungi, 

and N2O+CO2 emissions 

• Significantly lower than just 

chicken manure alone 

• SOC more stable with biochar 

• Short term N, SMB+ activity 

Zhai et al., 

2015 

 

Yunnan 

province (red 

earth) 

2% 

4% 

8% 

Maize straw 400 • 8% biochar increased soil 

Olsen-phosphorous in red earth 

and fluvo-aquic soil 

• 8% increase SMB-phosphorus 

in both soils 
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Beijing (fluvo-

aquic/ haplic 

luvisol) 

 

 

• Increases due to ash fraction, 

77% of total biochar P is ash 

Zhang et al., 

2016 

 

Queensland, 

Australia 

 

Clay-loam 

 Mallee 

Wild-fire burn 

Jarrah 

Greenwaste 

Sugarcane 

bagasse 

Blady grass 

Pine 

Peanut shell 

Timber 

 

750 

350-500 

750 

450 

350 

 

450 

750 

450 

750 

• Amount and form of P made 

available in soil depended on 

biochar type 

• 500 wood biochars had highest 

Olsen-P values 

• Can be a P source and absorb P 

• Can act as fertilizer 

• Grass had highest extractable P, 

provided 90% of crop needs 

 

 

Biochar Impacts on GHG Emissions 

 

Authors and 

Date 

Amount Type Temp Impacts 

Anders et al, 

2013 

 

Greenhouse 

and field 

(Austria) 

24 t/ha 

72 t/ha 

Vineyard 

pruning 

Wheat straw 

Mixed wood 

Beech 

hardwood 

 

400 

525 

500 

• Biochar enhances organisms 

involved in N cycling in soil. 

Especially those than can decrease 

N2O through promoting 

denitrification to N2 or by absorbing 

NH4 

Bamminger 

et al, 2014 

 

Germany 

(Silty ag soil) 

30 t/ha 

30cm 

Miscanthus 

giganteus 

600 slow • Reduced CO2 (up to 43%) and N2O 

(up to 42%) 

• Reduced NH4 and NO3 

concentrations 

• Increases microbe biomass, 

favoured fungi 

• More efficient microbe community 

Bamminger 

et al, 2016 

 

Germany 

30 t/ha 

30cm 

Miscanthus 

giganteus 

600 slow • Microbe abundance unaffected 

• Initial decomposition by fungi with 

warmer temperatures (none after 7-

12 months) 

• Increases microbe biomass, fungi 

favoured 

• More efficient microbial 

community, no change to SMB 
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• No change to total aboveground 

biomass 

Case et al., 

2015 

 

UK (Sandy 

loam) 

28 t/ha Hardwoods 180-400 

slow 
• Reduced denitrification by 37% (85-

95% of soil N2O emissions) 

• Increased soil N mineralization 

by269% and nitrification by 34% 

• Therefore alters N transformation, 

not just limits NH4 and NO3 

Cross et al, 

2011 

 

Australia 

(sand) 

2g BC/ 

19 g 

Sand 

Sugar cane 10 types of 

slow 
• C mineralization often higher in 

biochar due to rapid utilization of 

biochar labile compounds 

• Biochar does not prime for losses of 

natural SOM 

• Negative priming in biochar soil due 

to stabilization of labile compounds 

• Largest CO2 from lowest biochar 

temp 

de la Rosa et 

al, 2018 

15 t/ha Pine 

Paper sludge 

Sewage 

sludge 

Vineyard 

cuttings 

Woodchips 

 • C content decrease over 24 months, 

partially attributed to mineralization 

(initial loss). Most in first year, stat 

insignificant after that 

• Decreases N in first 6 months for 

wood, increase onward 

• Biochar increases slow C pool 

without increase CO2 

Deng et al, 

2015 

 

Tennessee 

 

 

2.5 

kg/m2 

 

25 t/ha 

Wood  • Decrease N2O emissions, correlated 

with decrease water filled pore 

space 

• Highest NH4 concentration 

• No sig diff to corn yield  

• Biochar decreases N2O sensitivity to 

WFPS 

Feng et al, 

2013 

24 t/ha Corn stalk 300 

400 

500 

• Decrease CH4 emissions 

• Biochar change microbial 

community 

Gomez et al, 

2014 

 

1 % 

5 

10 

20 

Oak pellet 550 Fast • Biochar increases microbe 

abundance and favour Gram - over 
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Colorado, 

Iowa, 

Michigan, 

Minnesota 

 

 

fungi and + ( increase as biochar 

amount increase) 

• Biochar decreases extractable 

phospholipid fatty acids 

• More CO2 emission as biochar 

increase 

• Biochar-C incorporated into SMB, 

especially where emission is largest 

Harter et al, 

2016 

 

Switzerland 

(Loamy-sand) 

 

 

 

 

 

 

 

10% 

w/w 

10cm 

Green waste 700 Slow • Significantly decreased N2O 

emissions. Alters abundance and 

activity of denitrifier marker genes 

• Biochar increase anaerobic bacteria 

+ including chitin-aromatic C 

degrading microbes 

• 3 generations more abundant in 

biochar all strict or facultative 

anaerobes compatible with 

denititrifiers + fixing molecular N 

• Counter Anders et al (2011), Chen 

(2015), Xu (2014) 

• Abiotic sorption of N2O onto 

biochar + chemo-denitrification 

decrease N2O 

Hilscher & 

Knicker, 

2011 

 

Switzerland 

 

120g 

soil/ 400 

mg 

biochar 

Grass  • Different degradation + 

humification dynamics at work 

(Biochar ages and chemicals alter) 

• Microbes access and degrade 

biochar-N 

Hüppi et al, 

2015  

 

Switzerland 

 

20 t/ha Green waste 650 slow • Biochar cumulative decrease in 

N2O, not statistically significant 

• Decrease not caused by pH 

• Biochar no impact on yield or 

biomass 

• Biochar no impact on N or P uptake 

Jones et al, 

2011a 

 

North Wales 

(Sandy clay 

loam) 

100 t/ha Hardwood 450 48hrs • Increase CO2 efflux. Breakdown of 

organic C and the release of 

inorganic C in biochar 

• Release small compared to C stored 

in biochar 
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36 • Short term release (48hrs – 1 

month) 

Kastner, 2014 5 t/ha 

10 t/ha 

   

Knoblaunch 

et al, 2011 

 

Germany 

 

2.5% 

w/w 

Rice husk  • Initial CH4 increase 

• No impact on CO2 (slightly lower) 

Luo et al, 

2011 

 

UK (Silty-

loam) 

 

 

 

50 mg 

C/ g soil 

Miscanthus 

giganteus 

350 

700 
• 350 caused increase priming 

(mineralization) un low and high pH 

• Priming effect decreases as 

temperature increases 

• CO2-C released, SOC decrease with 

biochar. But more carbon in char 

then released 

• Biochar significant decomposition 

of SOC 

Mitchell et al, 

2015 

 

Ontario 

(Brunisol) 

 

5 t/ha 

10 t/ha 

20 t/ha 

Maple wood 500  • Biochar increase CO2 

• Biochar increases activity of 

specific microbes= increases CO2 

and decreases labile SOM 

Sarknot et al, 

2011 

 

   • 67-68% decrease CO2 flux 

• 26% decrease N2O flux 

Singh et al, 

2010 

 

Australia 

(Alfisol, 

vertisol) 

 Wood 

Poultry 

manure 

400 

500 
• Initial (4 months) greater N2O 

emissions+ leaching from poultry 

biochar. Wood biochar had no 

impact 

• Overtime all decreased 

N2Oemissions in both soils 

(oxidation on biochar increase 

sorption) 

• NH4 leaching reduced overtime 

• Reductions over time attributed to 

increase soprtion 

• Largest emissions following 

additions 
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Smith et al, 

2010 

 

Washington 

State (Silt-

loam, sand) 

11.2 t/ha 

22.4 t/ha 

44.8 t/ha 

Switch-grass 500 
considers this 

low 

• Increase respiration as biochar 

addition increase short term 

• Short-term mineralization increases 

soil C 

• No extra emissions after 6 days 

following 50 days 

• Labile C pool for young biochar 

(bio oil) 

Steinbeiss et 

al, 2009 

 

Germany 

(aerable 

+forest) 

 

30% C 

w/w 

Glucose 

derived 

Yeast derived 

850 • Yeast biochar increases CO2 at 

beginning, decomposition slowed 

after 4 months. No impact from 

glucose 

• No difference after 12 weeks 

• Increase SOC loss (high yeast, 

moderate glucose) 

• Impact same for both soils 

Steiner et al, 

2010 

 

North Georgia 

5% 

20% 

Pine 400 • No poultry litter mass loss with 

biochar 

• Decreases moisture, increases pH, 

increases CO2+temp, decreases N 

with high biochar application 

• Biochar decreases H2S, increase 

aeration 

• Sorption of NH4 

• Initial CO2 peak in 20% biochar 

then no difference 

• Increase compost speed with 

biochar 

Too & Kang, 

2012 

20 t/ha 

10cm 

Barley 

 

Manure 

350 

 

600-800 

• 350 No CO2, CH4 change, decreases 

N2O in pasture 

• 350 increased fungal biomass in 

paddy 

• 600 including N2O emission in rice 

paddy ( increase N mineralization) 

• Initial burst of CO2 then appear 

decreases in CO2 and CH4 

• Biochar provides sufficient 

available N 

Yuan et al, 

2017 

1% 

5% 

Harwood/Rice 

hull (added to 

Low gas • Enhanced total C+N, (in)organic N 

(especially NO3), SMB C+N 
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North 

Carolina 

(Loamy-sand) 

 

 

 

 

 

120ml 

container 

chicken 

manure) 
cellulose enzyme activity, N2O 

bacteria + fungi, and N2O+ CO2 

emissions 

• Significantly lower than just 

chicken manure alone 

• Biochar suppressed N2O from 

bacteria denitrification and/or 

nitrifier denitrification 

• SOC more stable with biochar 

• Short term increase of N, SMB and 

activity 

• Reduced CO2 efflux 

Zhou et al, 

2017 

 

Subtropical 

China 

(Sandy-silty 

clay) 

Temperate 

forest 

 

10 t/ha 

30 t/ha 

Bamboo 800 Slow • Biochar significantly increases (by 

20%) soil respiration in temperate 

• Respiration + correlated with SMB-

C and with DOC 

• Increase temperature sensitivity of 

respiration in biochar in both 

ecosystems 

Zimmerman et 

al, 2011 

 

Quartz Sand 

Northern 

Florida 

(Alfisols, 

Entisols, 

Mollisol) 

 

 

90 t/ha Oak 

Pine 

Bubinga 

Eastern 

Gamma Grass 

Bagasse 

(sugar cane) 

250 

400 
considers this 

low 

650 

• More C released from biochar 

• C mineralization increases with 

decreasing pyro temperature 

• C mineral higher in grass than 

hardwood 

• Positive priming with low 

temperature + grass biochar in 1st 90 

days. Negative priming later (250-

500 days) 

• Soil OM stimulates mineralization 

of labile biochar components over 

short term 

• Long term biochar enhances soil C 

storage through OM sorption to 

biochar 

• Agricultural soil had more negative 

priming (lower SOC to begin 

with(greater portion of total 

mineralizable SOM), more sorption 

to biochar) 
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• Over time SOM progressively 

sorbed onto biochar, win pores 

protected from degradation 

• Estimate annually sequester C~12% 

current anthropogenic CO2 

emissions 
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