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ABSTRACT. Two flavonide glycosides derived from rhamnopyranoside (1) and 

arabinofuranoside (2), have been isolated from leaves of Persea caerulea for the first time. The 

structures of 1 and 2 have been established by 
1
H NMR, 

13
C NMR and IR spectroscopy, together 

with LC-ESI-TOF and LC-ESI-IT MS spectrometry. From the MS and MS/MS data, the 

molecular weights of the intact molecules as well as those of quercetin and kaempferol together 

with their sugar moieties were deduced. The NMR data provided information on the identity of 

the compounds, as well as the  and  configurations and the position of the glycosides on 

quercetin and kaempferol. We have also explored the application of sodium dodecyl sulfate 

(SDS) normal micelles in binary aqueous solution, at a range of concentrations, to the diffusion 

resolution of these two glycosides, by the application of matrix-assisted DOSY (MAD) and 

PGSE methodologies, showing that SDS micelles offer a significant resolution which can, in 

part, be rationalized in terms of differing degrees of hydrophobicity, amphiphilicity and steric 

effects. In addition, intra- and inter-residue proton−proton distances using NOE build-up curves 

were used to elucidate the conformational preferences of these two flavonoid glycosides when 

interacting with the micelles. By the combination of both diffusion and NOESY techniques, the 

average location site of kaempferol and quercetin glycosides has been postulated, with the 

former exhibiting a clear insertion into the interior of the SDS-micelle, whereas the latter is 

placed closer to the surface. 
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INTRODUCTION 

Flavonoids are plant secondary metabolites which bear a diphenylpropane moiety as the main 

structural feature. They are widely distributed in nature and are usually found in fruits and 

vegetables mainly as glycosides in vacuoles.
1
 In different environmental conditions they are 

secreted, if necessary hydrolyzed, or transported to different organelles or tissues/organs. All 

flavonoid glycosides have a C15 phenyl-benzopyrone skeleton to which glycosidic moieties are 

attached via either an O atom (–O–) or a skeletal C atom (–C–).
2
 These classes of secondary 

metabolites play an important role in the interactions of plants with their environment.
3
 

Flavonoid glycosides and free aglycones are involved in the interactions of plants with 

microorganisms, whether pathogenic and symbiotic.
4,5,6

 Their activity in humans have been the 

subject of extensive research and they have been reported to exhibit numerous biological 

activities such as antioxidant, anti-inflammatory, oestrogenic, cytotoxic antitumoral, antiviral 

and many others.
7
 The flavonoids under study in the current research, kaempferol-3-O-

rhamnopyranoside 1 and quercetin-3-O-arabinofuranoside 2 have been isolated from different 

plant species.
8,9,10

 In the genus Persea, 1 is herewith reported by first time for P. caerulea, but 

has been previously isolated from P. americana leaves, exhibiting antiviral activity against 

acyclovir-HSV1.
11,12

 As far as quercetin-3-O-α-L-arabinofuranoside 2 is concerned, there are no 

previous reports, describing its presence in the genus Persea. This species is characterized for its 

anti-inflammatory properties and anti-infective effects.
13

 It is worth mentioning that rapid and 

reliable methods for the analysis and identification of these natural polyphenolic compounds is 

therefore of remarkable importance. Liquid chromatography coupled to mass spectrometry (LC-

MS) represents a very powerful tool for their analysis,
14,15

 although, as it will be seen here, some 

other techniques can be also used for elucidating not only their structure but also their 
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interactions with supramolecular systems such as micelles. Very recently, Pichette and 

coworkers have employed ROESY NMR and DFT calculations to ascertain the chemical 

structure of non-caretonoid abibalsamins isolated from Abies balsamea, although no other 

techniques such as Diffusion NMR and NOESY build-up curves were employed.
16

 

 

RESULTS AND DISCUSSION 

Two flavonoid glycosides kaepmferol-3-O-α-L-rhamnopyranoside (1) and quercetin-3-O-α-L-

arabinofura (2) have been isolated from the ethanolic extract of the leaves of P. caerulea for the 

first time. Inspired by the work of Morris and coworkers
17

 we have investigated their interactions 

with sodium dodecyl (SDS) micelles in binary solvent mixtures. We have elucidated critical 

interactions that allowed the separation of their NMR signals efficiently through the use of PGSE 

and DOSY methodologies, and determined the place and strength of their distinct intermolecular 

contacts through NOESY build-up curves and DFT calculations. 

Compounds 1 and 2 are glycosides substituted at C-3 with free hydroxyl groups at C-5 and C-7 

as indicated in Scheme 1. 

 

Scheme 1. Chemical structures and labels of 1, 2 and sodium dodecyl sulfate dodecyl SDS. 

Anomeric configurations, location and type of sugar in the flavonoid glycosides can be 

determined using some NMR information, such as 
1
H NMR chemical shifts, vicinal and geminal 
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coupling constants, 
13

C NMR chemical shifts, 
1
H-

1
H coupling constants, long-range homo- and 

heteronuclear correlations and inter-residue NOE. The anomeric resonances of -glycosides 

usually resonate 0.3-0.5 ppm to higher frequency compared with that of the corresponding -

glycosides due to ring and C-C diamagnetic anisotropy effects. Thus, resonances at 4.5-5.5 ppm, 

which are doublets with 1-4 Hz coupling, are of -anomeric protons, whereas doublets with 6-8 

Hz appear between 4.0 and 4.8 ppm belong to -anomeric protons as is expected for 

monosaccharides stereochemistry.
18

 

Compounds 1 and 2 are shown to be kaepmferol-3-O-α-L-rhamnopyranoside and quercetin-3-

O-α-L-arabinofuranoside, respectively using the 
1
H, 

13
C, DEPT NMR, 

1
H-

1
H COSY, 

1
H-

1
H 

TOCSY, 
1
H-

13
C HMQC and 

1
H-

13
C HMBC spectral data (see Table 1 and Supporting 

Information). To the best of our knowledge, this is the first report on the occurrence of these two 

flavonoid glycosides in this Persea caerulea leaves. 

The identity of the flavonol moiety in 1 and 2 was first confirmed by comparison of NMR 

spectra with published chemical shifts for kaempferol and quercetin.
18,19

 The glycosidic nature of 

the flavonoids is evidenced by the observation of several resonances typical of sugar moieties. 

The linkage position of the flavonoid, the sugar identity and the alpha or beta configuration is 

usually derived from comparison with reference compounds. Typically a sugar moiety on the 3-

hydroxyl group of, for instance, quercetin, would cause only very minor variations on chemical 

shifts on H5′, H6, H8 and slightly larger shifts on H2′ and H6′, whereas sugar moieties at other 

positions would modify to different extents these chemical shifts and also their multiplicities.
20

 

In addition, the mass of the sugar moiety can be calculated from the difference in mass between 

the molecular ion and some fragment ions. As will be discussed below, from the MS results 

(Table 2) we conclude that both glycosidic moieties were monosaccharides. 
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Table 1. 
1
H and 

13
C NMR Data (chemical shifts) of compounds 1 and 2.

a
 

Entry C H C H 

 Flavonoid glycoside 1 Flavonoid glycoside 2 

2 158.0  158.0  

3 135.7  134.4  

4 179.3  179.8  

5 163.2 12.72, OH, s 163 12.5, OH, s 

6 99.5 6.27, d (2.1) 99.6 6.28, d (2.1) 

7 164.9 9.69, OH, s 165.2 9.76, OH, s 

8 94.5 6.49, d (2.1) 94.6 6.52, d (2.1) 

9 158.4  157.9  

10 105.8  105.4  

1’ 122.5  122.7  

2’ 131.6 7.86, 2H, d, (8.8) 116.6 7.74, d (2.1) 

3’ 116.4 7.02, 2H, d (8.8) 149.3 8.57, OH, s 

4’ 160.9 9.11, OH, s   

5’   116.3 7.00, d (8.4) 

6’   122.4 7.57, dd (2.1, 8.4) 

A,R-1 102.6 5.54, d (1.4) 109.1 5.49, s 

A,R-2 71.5 4.23, dt (3.8, 1.8), 4.16, 

OH, d (3.8) 

82.3 4.31, dd (7.1, 1.6), 4.8, OH, d (7.1) 

A,R-3 72.1 3.71, m 78.9 3.99, ddd (8.5, 3.1, 1.7), 4.88, OH, d (8.5) 

A,R-4 71.3 3.33, m, 3.86, OH, m 89.4 4.11, c (3.7) 

A,R-5 73 3.30, m 62.7 3.60, 2H, t (4.4), 4.38, OH, t (4.4) 

R-Me 16.9 0.90, d (5.9)   

a
 Spectra were recorded at both 300 MHz and 500 MHz spectrometers. Compounds 1 and 2 

were measured in Me2CO-d6. Coupling constants are (J in Hz) in parenthesis. 
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The type of monosaccharide moietys usually found in nature are glucose, galactose, xylose, 

rhamnose, arabinose, mannose, allose, apiose, galacturonic acid, and glucoronic acid.
21

 As 

mentioned above, the combined use of literature and own MS data, showed that compounds 1 

and 2 contained rhamnose and arabinose units, respectively. 

The molar ratio between 1 and 2 was established from the integration of the well-resolved 

anomeric proton signals of both compounds in the 
1
H NMR spectrum located at H 5.54 and 5.49 

ppm for 1 and 2, respectively. Their relative integral established a ratio of 0.4:1.0 for 1 and 2, 

respectively. Compound 1 and 2 were confirmed after the complete interpretation of the NMR 

data and the comparison with data reported in the literature regarding 1
19,22,23

 and 

2.
19,20,22,24,25,26,27,28

 In the Supporting Information (Tables S1 and S2) one could find a detailed 

comparison of previously reported data with the data described herein. 

Regarding the LC-MS analysis of 1 and 2; the negative ESI-TOF mass spectrum of 1 showed a 

pseudo-molecular ion at m/z 431.0990 [M-H]

 corresponding to the formula C21H19O10 with an 

absolute error in ppm of 2.8 and an isotopic pattern fit factor (mSigma) of 12 (see Experimental 

Section). An aglycone ion peak at m/z 284.7 and another ion peak at m/z 254.8 were also found, 

corroborating the NMR assignment for kaepmferol-3-O--L-rhamnopyranoside 1. For 

compound 2, the accurate ESI-TOF MS spectrum showed a pseudo-molecular ion [M-H]

 at m/z 

433.0781 as the predominant signal, corresponding to the formula C20H17O11. In this case, the 

absolute error in ppm was 2.3 and an isotopic pattern fit factor (mSigma) value of 21 (see 

Experimental Section). The ion peak at m/z 300.7 confirmed the assignment and establishes the 

molecule to be quercetin-3-O--L-arabinofuranoside 2. 
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Table 2. LC-ESI-TOF MS and LC-ESI-IT MS results for kaepmferol-3-O--L-

rhamnopyranoside 1 and quercetin-3-O-a-L-arabinofuranoside 2 detected in the ethanolic extract 

of P. caerulea. In brackets are shown m/z theoretical values for both compounds. 

Pseudo-MF
b
 C21H19O10 (1)

a
 C20H17O11 (2)

a
 

LC-ESI-TOF MS (NP) 431.0990 (431.0978) 433.0781 (433.0771) 

LC-ESI-IT MS   

[M+H]
+
 432.9 434.9 

[M-H]

 430.9 432.9 

MS/MS (NP) 284.7; 254.8 300.7 

a
 At the optimum chromatographic conditions, the retention times were 10.2 and 9.0 min, 

respectively, for kaepmferol-3-O--L-rhamnopyranoside 1 and quercetin-3-O--L-

arabinofuranoside 2. 
b
 Pseudo molecular formula corresponding to the accurate [M-H]


. 

 

O-glycoside flavonoids can be distinguished by their positive or negative ionization spectra.
29

 

For this type of metabolite, the application of low or medium fragmentation energy results in 

heterolytic cleavage of their hemi-acetal O–C bonds, yielding distinctive fragments.
30,31 

In the 

current study, the MS/MS signals coming from 1 lead to the following fragments: one fragment 

of m/z 284.7, characteristic of the flavonoid aglycon of kaempferol, and another one of m/z 254, 

produced by the loss of a 30 unit of CH2O. The latter is also characteristic of this type of 

flavonoid (Scheme 2a). In the case of 2, a predominant MS fragment at m/z 300.7 was observed, 

corresponding to quercetin (Scheme 2b). It was observed a loss of 146 Da for 1, which was 

indicative of the elimination of the sugar unit as a deoxy-hexose sugar, corresponding to 

rhamnose. 
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Scheme 2. Proposed fragmentation pathway for a) kaempferol -3-O-rhamnopyranoside 1, and b) 

quercetin-3-O-arabinofuranoside 2. 

As far as 2 is concerned, the elimination of a 132 unit, corresponded to the sugar unit as a 

pentose sugar,
28

 which provides the fragment of m/z at 300.7, clearly observed in the mass 

spectrum (Scheme 2b). The IR spectrum for the mixture of compounds showed hydroxyl 

absorptions at 3700-3300 cm
-1

, bands at 1600 and 1660 cm
-1

 due to the presence of an ,-

unsaturated carboxyl function, other peaks at 2930 cm
-1

 due to methine and methylene groups, 

and peaks at 1500-1600 cm
-1

 due to combinations bands for aromatic rings. These data confirm 

the presence of the functional groups of the flavonoid glycosides 1 and 2 and corroborate with 

the NMR and MS/MS assignments. 

Diffusion studies. Although we could characterize both compounds in the mixture thanks to 

the strength and robustness of NMR techniques, we were interested in the study of their diffusion 

properties through PGSE and Diffusion Ordered Spectroscopy (DOSY), important tools used 

nowadays in the analysis of mixtures.
32

 It is important to mention that diffusion NMR methods 

usually fails when diffusion coefficients and therefore sizes are very similar, or when there are 

spectra with extensive signal overlap.
33

 Recently, it has been shown that performing DOSY in a 
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matrix with which the analytes interact differentially can resolve signals from compounds with 

similar diffusion behavior. In such a matrix-assisted DOSY (MAD) experiment the interaction of 

the analytes with the matrix drives the average diffusion coefficients. The effective diffusion 

coefficient under these conditions may differ greatly from its solution value when the analyte is 

present, and therefore the goal is signal differentiation and not quantification of the diffusion 

coefficient (D-value). Such behavior of the various solutes in the NMR technique closely 

parallels their behavior in liquid chromatography and therefore is also widely known as NMR 

‘‘chromatography”.
34

 Enhanced resolution in DOSY spectra was achieved for the first time by 

Morris and coworkers by addition of micelles, in the case of hydrophobic interactions.
35

 As 

mentioned above, Morris and coworkers reported for the first time an efficient methodology for 

NMR analysis of flavonoids using SDS to separate the NMR signals of compounds of similar 

size such as flavone, fisetin, (+)-catechin and quercetin.
17

 This method has been also extended to 

high-resolution magic angle spinning (HRMAS) NMR where the use of silica gel has been used 

to achieve well-separated and high-resolution spectra for the single components.
36

 

In recent years, it has been shown that micelles, both normal and reverse, can be used as 

separation agents to distinguish between the isomers of dihydroxybenzene, catechol, resorcinol 

and hydroquinone, in DOSY experiments,
37

 between the isomers of methoxyphenol,
38

 and also 

in the differentiation of medium chain length alcohols.
39

 Other resolving agents for diffusion 

NMR have been employed in liquid NMR such as polyvinylpyrrolidone (PVP),
40

 

polyethyleneglycol,
41

 and silica gel,
42

 the latter finding satisfactorily results when matching the 

magnetic susceptibilities of both solvent and type of silica. Chiral versions have been also 

achieved by the use of -cyclodextrins, allowing the resolution of a mixture of two native 

epimers.
43

 More recently, Nilsson and coworkers have presented the use of Brij nonionic 
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surfactant in mixed solvents for the DOSY analysis of mixtures relevant to natural products.
44

 

Finally, the use of nanostructured dispersed media, such as microemulsions, have found also 

application for the separation of complex mixtures.
45

 

To the best of our knowledge the challenge to apply MAD and PGSE methods to flavonoid 

glycosides with high structural similarity has never been achieved, and is therefore the problem 

we face herein by the use of surfactants-based micelles such as those form with sodium dodecyl 

sulfate (SDS). It is well known that surfactants in water spontaneously self-assemble to form 

micelles where the factors influencing their formation in terms of size and shape have been the 

subject of a plethora of studies in the last decades.
46

 The presence of SDS as well defined 

micelles in binary solvent mixtures such as water-DMSO has been confirmed previously by 

investigating the dependence of the diffusion coefficients as a function of SDS concentration,
17

 

showing that the critical micelle concentration (CMC) changed from 7 mM (pure D2O) to 11 

mM (20% v/v DMSO-d6) or 25 mM (50% DMSO-d6), consistent with other literature.
47

 

Interestingly, Hoffmann et al. have studied the interactions of toluene and cyclohexane with SDS 

as a new tool for the structural elucidation of microemulsions.
48

 

DOSY plots and PGSE signal attenuations are shown in Figure 1 for the mixture of flavonoid 

glycosides 1 and 2 in Me2CO-d6 at room temperature. As can be observed, their diffusion 

coefficients (and therefore their hydrodynamic radii), are too similar for their signals to be 

separable, suggesting the need for a matrix-assisted experiment. Often the Stokes-Einstein 

equation
49

 and its modifications
50

 are useful and enable molecular size estimation of large 

particles that are much larger than the solvent. These calculated hydrodynamic radii, rH, assume 

spherical shapes; hence, they do not represent the real shape of the molecules. Nevertheless, their 

use is well established for comparisons, since they offer a rapid and easy method to recognize 
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ion pairing and/or aggregation. As it is shown in Table 3, adding SDS to the mixture of 

compounds completely changed the situation. Several diffusion experiments were performed 

using SDS from 25 to 180 mM, and showed due to their different interaction with the micelles, 

that the diffusion coefficient of 1 is readily separated from that of 2, being this difference more 

pronounced within increasing the concentration of SDS (entries 16 and 17, Table 3). 

In simple acetone solution (Figure 1a) the two flavonoids derivatives have almost the same 

diffusion coefficient (11.1 10
-10

 m
2
 s

-1
) with no difference in their hydrodynamic radii (rH = -

0.04 Å). 

 

Figure 1. a) Linearized Stejskal−Tanner fit of the PGSE NMR data for 1 and 2 in both Me2CO-

d6 and a binary mixture based on DMSO-d6-D2O (20% v/v). b) 
1
H DOSY (500 MHz) spectrum 

with the least attenuated 1D spectrum on top, for a sample containing no SDS in DMSO-d6-D2O 

(20 % v/v) at room temperature. 
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Table 3. Diffusion coefficient (D) and Stokes-Einstein hydrodynamic radius (rH) values for 

compounds 1 and 2 at room temperature in DMSO-d6-D2O (20% v/v) as a function of SDS 

concentration. 

SDS (mM) Comp. D × 10
-10

 (m
2
 s

-1
)
a
 D (1-2) rH (Å)

b
 rH (1-2) 

 1
c
 11.131  6.23  

 2
c
 11.074 -0.0057 6.27 -0.04 

 1
d
 1.005  10.34  

 2
e
 1.036 0.00313 10.04 0.3 

 HDO
f
 6.915  1.50  

 DMSO
g
 3.703  2.81  

25 1 0.8578  12.13  

 2 0.9211 0.00633 11.29 0.84 

 SDS 0.8055  12.9  

60 1 0.8544  12.18  

 2 0.9267 0.00723 11.21 0.97 

 SDS 0.8095  12.90  

120 1 0.7644  13.61  

 2 0.8546 0.00902 12.18 1.43 

 SDS 0.6200  16.80  

180 1 0.6849  15.20  

 2 0.8226 0.01377 12.64 2.56 

 SDS 0.5095  20.40  

 HDO
f
 6.742  1.54  

 DMSO
g
 3.607  2.88  

a
 The experimental error in the D values is ±2 %. 

b
 The viscosities used in the Stokes-Einstein 

equation were taken from Perry's Chemical Engineers' Handbook 8th Edition and were 0.3147 

and 0.2077 10
-3

 Kg s
-1

 m
-1

 for acetone and dimethylsulfoxide, respectively. 
c
 In Me2CO-d6. 

d 
The 
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signal at H 5.24 ppm was monitored. 
e
 The signal at H 5.42 ppm was monitored. 

f
 The signal at 

H 4.71 ppm was monitored. 
g
 The signal at H 2.67 ppm was monitored. 

In the case of the binary solvent mixture based on DMSO-d6-D2O (20% v/v) the situation is 

quite similar with an almost equivalent diffusion coefficient of 1.0 10
-10

 m
2
 s

-1
. Interestingly, in 

this polar and protic solvent media, the hydrodynamic radii difference is slightly increased (ca. 

0.3 Å) and the overall size of both flavonoids significantly higher, probably due to some 

hydrogen bonding interaction with the solvent in parallel with some extent of aggregation in the 

binary mixture DMSO-d6-D2O. 

Figure 2 illustrates the variation of the diffusion coefficients and hydrodynamic radii 

difference as a function of SDS concentration 

 

Figure 2. a) Diffusion coefficients as a function of SDS concentration for a DMSO-d6-D2O 

(20% v/v) solution containing flavonoid glycosides 1 and 2 in a 0.4:1.0 ratio, respectively. b) 

Hydrodynamic radii difference (rH) berween 1 and 2 as a function of SDS concentration. 
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Increasing the SDS concentration leads to a significant decrease in diffusion coefficient for all 

the species present, while their differences more pronounced within the increased of SDS 

concentration. 

The almost equal D-values obtained for DMSO and HDO in samples containing SDS and 

without it (entries 5-6 and 19-20, Table 3) validates the measurements performed under different 

conditions, and therefore explains why the increment in size is due to real interactions with the 

micelle and it is not ascribed to a change on viscosity. As expected, the maximum rH (Figure 

2b) between 1 and 2 was achieved when keeping the concentration of SDS well above the CMC 

at a concentration of 180 mM. The strongest association (i.e. the lowest diffusion coefficient) is 

seen for kaempferol rhamnopyranoside 1, while the weakest is observed for quercetin 

arabinofuranoside 2 (Figure 3). Interestingly, the diffusion values of 1 and 2 in presence of 180 

mM of SDS (entries 16 and 17, Table 3) is fully comparable with the D-value of the SDS micelle 

which shows that stable isotropic aggregates between 1 or 2 and the detergent are formed. 

Figure 3 shows the scenario found well above the CMC at a concentration of SDS of 180 mM. 

In fact, the flavonoid derivatives 1 and 2 interact differentially with the micelles and as a result 

show different diffusion coefficients (0.68 10
-10

 and 0.82 10
-10

 m
2
 s

-1
. for 1 and 2, respectively). 

Although there is some overlap of signals between compounds, they are sufficiently well 

resolved in the presence of SDS to allow adequate characterization. 
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Figure 3. a) Linearized Stejskal−Tanner fit of the PGSE data and b) 
1
H DOSY (500 MHz) 

spectrum with the least attenuated 1D spectrum on top, for 1 and 2 containing 180 mM of SDS in 

a binary mixture DMSO-d6-D2O (20% v/v). 

 

The observation that addition of surfactant leads to DOSY resolution is of immediate practical 

significance, but it is clearly tempting to speculate of the mechanism of interaction. The retention 

of sharp lines for each solute (and for surfactant) indicates that the species remain in fast 

exchange, as is common for micellar solutions, with an equilibrium between free and associated 

states. A simple model for an aqueous system would be the incorporation of solutes into the 

micellar core, for which the partitioning of the glycoside between free and bound states will 

depend on hydrophobicity. However, the presence of several hydroxyl groups in compounds 1 
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and 2 in a protic media suggest that this is at best a partial explanation, and other factors such as 

hydrogen-bonding interactions at the micelle core/headgroup interface, and π-stacking effects 

could enhance or weaken the binding to the micelles. 

To shed light on the existing interactions that discriminate the two flavonoid glycosides in 

SDS-micelles we measured one-dimensional build-up NOESY curves in order to estimate inter-

moiety distances between each of the two natural products and SDS-micelles. 

 

NOESY studies. The use of selective 1D‐NOESY (1D DPFGSE‐NOE) pioneered by A. J. 

Shaka et al.
51

 and later refined by Krishnamurthy et al.,
52

 instead of 2D NOESY or steady‐state 

NOE‐experiments, enable an increased sensitivity per unit of data collection time and a better 

control on the baseline, In addition, the linearity of 1D-NOESY growing curves has been proven 

to be larger than in the 2D-NOESY experiment due to the dependency of the growing rate on T1 

selective.
52

 

The determination of the inter-proton distances described herein is based on comparison of 

build-up NOESY rates for pairs of spins where we standardize the intensity of each NOE peak 

versus another intensity in the same selective inversion experiment. 

We found in our experiments that there are negligible negative (relayed) NOESY peaks, and 

all relative NOE intensities are essentially constant with mixing time (up to ~1.0s), i.e. each 

NOE builds-up at a rate proportional to its initial intensity during this time.
,53a

 In general, the 

integral of each NOE signal is divided by the integral of the excited peak to produce the 

normalized build-up intensities that is used to calculate the NOE build-up rates(s) from the slope. 

Figure 4 shows one-dimensional NOESY spectra for the selective inversion of H-R1 (top) and 



 18 

H-A1 (bottom), evidencing signal enhancement due to both inter- and intra-molecular dipolar 

interactions. 

 

 

Figure 4. a) Comparison of the 
1
H NMR spectrum of the kaempferol-3-O-rhamnopyranoside 1 

and the 1D 
1
H,

1
H-DPFGSE NOESY spectrum (tm 0.5 s) with selective excitation of the anomeric 

proton H-R1. b) Comparison of the 
1
H NMR spectrum of the quercetin-3-O-arabinofuranoside 2 

and the 1D 
1
H,

1
H-DPFGSE NOESY spectrum (tm 0.5s) with selective excitation of the anomeric 

proton H-A1. 

 

We have calculated herein the inter-protonic distances between SDS-micelles and the 

flavonoid glycosides by the -1/6 power of the cross-relaxation rates ratio between the unknown 

distance and that for a reference fixed distance times the reference distance. The respective 
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cross-relaxation rates, , were obtained by linear fitting of the normalized growing curves, using 

the excited peak intensity at the same mixing time to minimize relaxation bias.
53b

 To do so, two 

new samples were prepared and analyzed, separately, containing each glycoside flavonoid and 

SDS up to a concentration of 180 mM in the same binary mixture DMSO-d6-D2O (20% v/v) 

employed in PGSE and MAD studies. In order to corroborate that under similar experimental 

conditions the same micellar media was created in both samples, we performed DLS experiments 

on a Malvern zetasizer instrument. We found that the hydrodynamic volume diameters for both 

samples to be 5.11 and 5.13 nm (see Supporting Information), that unequivocally shows 

reproducible micellar media in both situations. The selective 1D DPFGSE -NOESY spectrum of 

H-R1 and H-A1 show clear and well-resolved NOE enhancements with very flat baselines, 

which are representative of all of the spectra, obtained in this study. The analysis to determine 

inter-proton distances on both samples is illustrated in Figure 5. Selective 1D‐NOESY (1D 

DPFGSE‐NOE) were obtained over a range of mixing times, i.e. 100, 200, 300, 400, 500 and 

1000 ms.
51,54
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Figure 5. NOESY intensities (INOE) normalized with respect to the inverted peak intensity and 

plotted against mixing time (tm). Left: Selective excitation of H-R1; Right: Selective excitation 

of H-A1. 

 

The NOE intensities, normalized with respect to the inverted peak intensity, were plotted 

against the mixing time to obtain build-up rates that, to a large extent, canceled the effect of 

external relaxation at moderate mixing times.
52

 The average interproton distances, were then 

calculated from the obtained cross-relaxation rates ( values) and the intramolecular reference 

distance, assuming that the tumbling of the system can be described by a single rotational 

correlation time. The corresponding reference distance of 4.3 Å between meta protons H6 and 

H8 was derived from experimental data available from X-ray diffraction. For example, the cross-

relaxation rate constants for the intramolecular H-R1/H-R2 and H-A1/and H-A2 were  = 
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0.142801 s
-1

 and  = 0.086681 s
-1

, corresponding to estimated distances of ~3.36 and ~3.09 Å, 

respectively (Table 4). 

 

Table 4. Cross relaxation rate constant (IS, s
-1

)
a
 and internuclear distance (rIS, Å)

b
 at a 

1
H 

frequency of 500 MHz. 

1 IS (s
-1

) rIS (Å) 2 IS (s
-1

) rIS (Å) 

R1-SDSCH2 0.008468 5.38 A1-SDS 0.014922 4.15 

R2-SDSCH2 0.009881 5.24 A1-SDSCH2 0.006003 4.83 

H8-SDSCH2 0.013899 4.95 A2-SDS 0.041484 3.50 

H2'-SDSCH2 0.014883 4.90 A2-SDSCH2 0.005693 4.87 

H3'-SDSCH2 0.010058 5.23 A5-SDS 0.004027 3.51 

- - - H8-SDSCH2 0.0009245 4.49 

R1-H2' 0.024653 4.50 A1-H2' 0.0311375 3.67 

R2- H2' 0.058327 3.90 A1- H6' 0.0329140 3.63 

R2-H3' 0.020418 4.65 A1-A2 0.086681 3.09 

R1-R2 0.142801 3.36 A1-A3 0.0140340 4.19 

H8-H2' 0.023118 4.55 A5-H2' 0.0130481 4.24 

H8- H6’ 0.032537 4.30 A5-H6’ 0.0153984 4.12 

H2'-H3' 0.406921 2.82 H8-H2' 0.0160719 4.09 

- - - H8- H6' 0.0117785 4.31 

- - - H5'-H6' 0.2495815 2.59 

a
 All the fits have R

2
 values higher than 0.99 and the estimated error for a single IS value is 

about 10%. 
b
 Reference distance of 4.3 Å between meta protons H6 and H8 was used for both 1 

and 2. 

 



 22 

In the case of the more interesting intermolecular interactions, the cross-relaxation rate 

constants for H-R1/H-SDSCH2 and H-A1/H-SDS were  = 0.008468 s
-1

 and  = 0.014922 s
-1

, 

corresponding to estimated distances of ~5.38 and ~4.15 Å, respectively. The estimations of the 

average cross relaxation rate constants and the distances derived from the whole analysis are 

shown in Table 4. 

Together with the quantitative analysis described above, we performed a qualitative 

examination of the two-dimensional NOESY performed on samples constituted ex professo as 

mentioned above. Under these experimental conditions, the corresponding integration of the 

cross-peaks provided us with an intensity map for the interaction of each natural product with the 

SDS micelle. Considering only the strongest (red in Table 5) and medium to strongest intensity 

interactions (orange in Table 5), it is remarkable that only the kaempferol derivative interacts 

with the methyl group of the SDS micelles, exhibiting a clear insertion of the product into the 

inner part of the micelle. On the other hand, the quercetin derivative only gives NOE interactions 

with the alpha and internal methylene groups, describing a picture where the natural product is 

not so deeply inserted into the micelle which placed it somehow closer to the surface of the SDS-

micelle (see Table 5 and Supporting Information for full intensity NOESY maps). 
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Table 5. Strong- and medium-intensity NOE cross-peaks derived from 2D gNOESY at 500 MHz 

and 0.5 s of mixing time, between the two flavonoid glycosides 1 and 2 and the SDS-micelle at 

180 mM in a binary mixture solvent based on DMSO-d6-D2O (20% v/v). 

 

1 SDSMe SDSCH2 SDS 2 SDSMe SDSCH2 SDS 

R1 -   A1   - 

R4  -  A2  -  

R5  -  A3    

H3’ -   A4   - 

H6 -   A5    

H8 -   H5’   - 

    H6’  - - 

    H8   - 

a
 All the fits have R

2
 values higher than 0.99 and the estimated error for a single IS value is 

about 10%. 
b
 The reference distance used was H6-H8 for both 1 and 2. 

 

To summarize, the two flavonoid glycosides under study, 1 and 2, were analyzed using a 

systematic in silico M06 functional computational study (with an ultrafine grid) with the aim of 

understanding the molecular factors that determine their interaction with SDS micelles. 
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Optimizations were carried out in water solvent using the continuum method SMD, where no 

explicit water molecules were explicitly computed. Compounds 1 and 2 were optimized in the 

presence of one and two hexylsulfate molecules (used as a model molecules for SDS) in water 

solvent. Unfortunately, the consideration of isolated surfactant molecules was too simplistic to 

reproduce the micellar environment properly. The results were not conclusive since similar 

energies and interactions were found for both species (see Supporting Information). More 

advanced models are required to reproduce the hydrophilic and hydrophobic interaction between 

1 and 2 and the micelle. These simulations are however beyond the scope of the present study. 

 

In conclusion, two compounds, kaempferol-3-O--L-rhamnopyranoside (1) and quercetin-3-

O--L-arabinofuranoside (2), have been isolated for the first time from leaves of Persea 

caerulea. Their structures have been fully characterized by 
1
H NMR, 

13
C NMR and IR 

spectrocopy, together with LC coupled to different MS analyzers (TOF and IT MS). The 

information from MS was crucial to determine the molecular weights of the intact molecules as 

well as those of quercetin and kaempferol together with their sugar moieties have been deduced. 

Matrix-assisted DOSY and PGSE have been applied, using a binary solvent mixture and SDS 

micelles as a function of concentration, to exploit differential binding to separate the NMR 

signals of both compounds. Investigations of the nature of the interactions between glycosides 1 

and 2 and SDS micelles have been conducted by accurately measuring of inter-proton distances 

using selective 1D 
1
H,

1
H NOESY. The calculated average distances derived from the obtained  

values and the intramolecular reference distance showed a clear insertion of the kaempferol 

derivative 1 into the inner part of the micelle, whereas the quercetin analog 2 only gives 

interactions with the alpha and internal methylene groups, describing a picture where the natural 
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product is placed closer to the surface of the SDS-micelle. Together with the quantitative 

analysis, a qualitative examination of two-dimensional NOESYs confirmed selective interactions 

and therefore different solution dispositions within the micelle. 

 

EXPERIMENTAL SECTION 

General procedures. Infrared spectra were recorded in a Bruker Alpha FTIR 

spectrophotometer. Me2CO-d6, DMSO-d6 and heavy water were purchased from Eurisotop. All 

other reagents and solvents were of commercial quality and were used without further 

purification. NMR spectra were measured on a Bruker Avance III 300 (
1
H, 300.13 MHz; 

13
C, 

75.47 MHz) and a Bruker Avance III 500 spectrometer equipped with a third radiofrequency 

channel (
1
H, 500.13 MHz; 

13
C, 125.76 MHz) using a 5 mm BBFO 

1
H/BB(

19
F) probe and an 

indirect 5 mm TBI 
1
H/

31
P/BB triple probe, respectively. Unless otherwise stated, standard Bruker 

software routines (TOPSPIN) were used for the 1D and 2D NMR measurements. Chemical shifts 

are given in ppm for TMS for 
13

C and 
1
H. Coupling constants, J, are given in Hertz as positive 

values regardless of their real individual signs. Stock solutions of the flavonoids in DMSO-d6 

were diluted either with D2O or D2O and a solution of SDS in D2O, as appropriate, to yield a 

final concentration of 25 mM for each flavonoid. The sample selected for MAD experiments was 

prepared by using the corresponding fraction containing the two flavonoids glycosides under 

study, and adding SDS to progressively yield a final concentration of 25, 60, 120 and 180 mM. 

Dynamic light scattering (DLS) data were acquired using a Malvern Zetasizer Instrument, 

equipped with a 4 mW He-Ne 633 nm laser module at 25 ºC. Measurements were carried out at a 

detector angle of 173º (back scattering) and the resulting data analyzed by the Malvern DTS 7.03 

software. 
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Plant Material. The leaves of P. caerulea were collected in the town of San Pedro de la 

Sierra, Magdalena department, Colombia, over December 2009. The Plant material was 

identified by the botanist Adolfo Jara. A voucher specimen (COL 518189) was deposited at 

Herbario Nacional Colombiano, Natural Sciences Institute, Universidad Nacional de Colombia. 

Extraction and isolation. Silica gel (230-400 mesh, Merck) was used for flash 

chromatography (FC), silica gel 60 F254 chromatoplates Merck, for TLC and vacuum liquid 

chromatography (VLC) was carried out with silica gel 60 (70-230 mesh) Merck. Air-dried and 

powdered leaves of P. caerulea (2175 g) were exhaustively extracted with 96% ethanol by 

maceration at room temperature. The solvent was evaporated under vacuum to yield 345.8 g of 

the crude extract. A sample of this extract (58 g) was fractionated by VLC on silica gel using 

ether petroleum, toluene, chloroform, ethyl acetate and methanol as mobile phase producing 5 

fractions. The ethyl acetate fraction (25 g) was subjected to flash chromatography (FC) on silica 

gel, eluted with a mixture of toluene-isopropyl acetate at increasing polarity (from 7:3 to 5:5), to 

yield 22 fractions. Fraction 15 (350 mg) was purified again by FC and eluted with toluene-ethyl 

acetate-acetic acid (6: 4: 1) to afford 10 mg of a mixture of 1 and 2. 

LC-MS instruments. Two different LC-MS platforms were used in the current study. The 

first one was an Agilent 1260 LC system (Agilent Technologies, Waldbronn, Germany) 

equipped with a diode-array detector (DAD) coupled to a Bruker Daltonic Esquire 2000™ ion 

trap mass spectometer (Bruker Daltonik, Bremen, Germany) with an electrospray ionization 

(ESI) interface. The second one was a Waters Acquity UPLC™ H–Class system (Waters, 

Manchester, UK) coupled to a microTOF mass spectrometer (Bruker Daltonik) equipped with an 

electrospray source as well. The first one was mainly used to get MS/MS signals (and to study 

the fragmentation of the analytes under study) and the second one was used to achieve accurate 
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MS data which was very important to get an unequivocal identification. The accurate mass data 

of the molecular ions were processed as reported previously.
55

 Internal calibration was 

performed using sodium formate cluster with a solution containing 5 mM of sodium hydroxide in 

the sheath liquid of 0.2% formic acid in water/isopropanol 1:1 v/v. The calibration solution was 

injected at the beginning of the run and all the spectra were calibrated prior carrying out the 

compound identification. 

LC-MS conditions. In both cases, the compounds under study were separated by using an 

Eclipse Plus analytical column (4.6 x 150 mm, 1.8 μm particle size) (Agilent Technologies), 

operating at 25ºC. The mobile phases were water with 0.5% of acetic acid (Phase A) and 

acetonitrile (Phase B). Analytes were eluted at a flow rate of 0.8 mL/min according to the 

following gradient: from 95% A to 0% A in 30 min, returning to the initial conditions and 

equilibrating the column for 1.5 min. The injection volume was 10 μL. The mass spectrometric 

conditions were optimized for both compound by continuous infusion of standard solutions (at a 

concentration level of 2 mg/L approx.). The end plate offset voltage was set at -500 V, and the 

capillary voltage at +3200 V in negative polarity, and -4000 V when positive polarity was used. 

Optimum values for the ESI source parameters were: 300ºC of drying gas temperature, 9 L/min 

of drying gas flow and 30 psi of nebulizer pressure. These parameters were then transferred to 

the ESI-TOF spectrometer. 

Diffusion experiments. PGSE NMR diffusion measurements were carried out using the 

stimulated echo sequence and bipolar pair pulses.
56

 A sine shape was used for the gradient pulses 

and their strength varied automatically in the course of the experiments. The D values were 

determined from the slope of the regression line ln(I/I0) versus G
2
, according to the Stejskal-

Tanner equation for sine bell shaped gradient pulses (equation 1)
57

 and employing the 
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DiffAtOnce package.
58

 I/I0 = observed spin echo intensity/intensity without gradients, G = 

gradient strength,  = delay between the midpoints of the gradients, D = diffusion coefficient,  

= gradient length. 

2

2

2

0

4
)

4
()()ln( GD

I

I




    (1) 

The measurements were carried out without spinning. Gradient calibration was carried out by 

means of a diffusion measurement of HDO in D2O (D(HDO) = 1.902 x 10
-9

 m
2
 s

-1
).

59
 To check 

reproducibility, three different measurements with different diffusion parameters ( and/or ) 

were always carried out. The experimental error in D values was estimated to be smaller than 

±2%. All of the data leading to the reported D values afforded lines whose correlation 

coefficients were above 0.999. The gradient strength was incremented in 4–8% steps from 2–

10% to 98% so that, depending on signal:noise, 12–25 points could be used for regression 

analysis. The recovery delay was set to 5 s. DOSY NMR data were acquired using the Oneshot
60

 

pulse sequence with a total diffusion encoding pulse duration  of 2-4 ms, a diffusion delay  of 

100-200 ms, and 12-24 nominal gradient amplitudes ranging from 5 to 95% of G to give equal 

steps in gradient squared. Experiments were carried out without active temperature regulation, at 

the probe ambient temperature of 25 ± 1 °C. DOSY spectra were constructed by standard 

methods,
61

 using fitting to a modified Stejskal-Tanner equation parameterized to take into 

account the effects of pulsed field gradient non-uniformity. DOSY spectra were processed and 

evaluated by using the exponential fit implemented in Topspin 2.0. The diffusion dimension was 

zero-filled to 1K, sine window function with line broadening of 0.5 Hz and sine bell shift equal 

to zero. This dimension was exponentially fitted according to a preset window (log D = −12.0 to 

−8.0). Gaussian line shapes were chosen to optimize the resolution of neighboring signals in F2 

and no reference deconvolution was used. 
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NOESY experiments. Selective 1D DPFGSE NOE experiments were carried out by using the 

double pulse field gradient echo sequence
51

 with different mixing times varying from 0.1 to 1.0 

s. The data were collected using a spectral width of 5000 Hz and 16384 complex data points for 

a 1.64 s acquisition time with a 1 s recycle delay. Selective Gaussian pulses of 20 ms were used 

to invert the target resonances. Processing of the spectra was accomplished by zero filling to 64 

K followed by an exponential multiplication using a line width of 1 Hz. All NOESY peaks areas 

were subsequently divided by the area of the inverted signal at the same mixing time. This 

ensures that the enhancements are corrected for relaxation effects. Inter-proton distances were 

obtained from the slopes of the normalized growing rates versus mixing time obtained by linear 

regression, and applying the isolated spin pair approach (ISPA) using the rigid H6-H8 distance 

as reference and the peak at the same mixing time to account for relaxation effects. All the 

distances were calculated from  ratios by including the appropriate correction factors to account 

for the number of protons involved, i.e. those involving SDSCH2, the IS was calculated dividing 

the slope of the normalized growing rate by a factor of two. All the fits have R
2
 values higher 

than 0.99 and the estimated error for a single IS value was about 10%. 2D NOESY spectra were 

collected with 0.5 seconds of mixing time using a spectral width of 7508 Hz in F2 and 2048 

complex data points for an acquisition time of 0.136 s with a 2 s recycle delay. 256 points were 

collected in the indirect F1 dimension for a 0.025 s acquisition time. 80 scans were collected per 

F1 increment and F1 quadrature detection was achieved using the States-TPPI method. Time 

domain data were apodized using squared sine bell functions in both dimensions and zero-filled 

in the indirect dimension to a final data matrix size of 1024 (F1) x 2048 (F2) after Fourier 

transformation. 
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Supporting Information. NMR and MS full structural characterization, comparison of our 

NMR data with literature data sets, DLS measurements, NOESY maps and DFT optimized 

structures and energies. This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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Two compounds, kaempferol-3-O-rhamnopyranoside (1) and quercetin-3-O-arabinofuranoside 

(2), have been isolated for the first time from leaves of Persea caerulea. Matrix Assisted DOSY 

and PGSE have been applied to exploit differential binding to separate the NMR signals. 

Calculated average inter-proton distances derived from 1D NOESY  values revealed a 

differential insertion of both flavonoid glycosides into the micelles. 
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