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Abstract 

We perform a theoretical and numerical study of the Coulomb-driven electroconvection flow of a 

dielectric liquid between two coaxial cylinders. The specific case where the inner to outer 

diameter ratio is 0.5 is analyzed. A strong unipolar injection of ions either from the inner or outer 

cylinder is considered to introduce free charger carriers into the system. A finite volume method 

is used to solve all governing equations including Navier-Stokes equations and a simplified set of 

Maxwell’s equations. The flow is characterized by a subcritical bifurcation in the finite amplitude 

regime. A linear stability criterion and a nonlinear one that correspond to the onset and stop of 

the flow motion, respectively, are linked with a hysteresis loop. In addition, we also explore the 

behavior of the system for higher values of the stability parameter. For inner injection, we 

observe a transition between the patterns made of 7 and 8 pairs of cells, before an oscillatory 

regime is attained. Such a transition leads to a second finite amplitude stability criterion. A 
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simple modal analysis reveals that the competition of different modes is at the origin of this 

behavior. The charge density as well as velocity field distributions are provided to help 

understanding the bifurcation behavior.  

 Key words: Electroconvection; stability analysis; charge injection; numerical simulation; 

dielectric liquid, annular geometry. 

1. INTRODUCTION

   Coulomb-driven convection is a classic example of electroconvection in dielectric liquids [1]. 

The Coulomb force exerting on free charge carries drives the fluid into motion. For ohmic or 

quasi-ohmic liquids, the free charges are considered to come from a thermally induced 

conductivity gradient [2] or the electric field-enhanced dissociation (the Onsager Effect) [3,4]. 

For dielectric liquids of very low conductivity under strong electric field, the ions injected from 

the interface between the liquid and electrode are more relevant [5,6]. The charge injection 

induced convection has received a tremendous attention since four decades because it plays a 

fundamental role in understanding the current voltage characteristic for dielectric liquids 

[7,8,9,10]. 

Various geometries of electrodes have been considered to study electrohydrodynamics (EHD) 

flows [ 11 ]. Three configurations of symmetrically placed electrodes (i.e. parallel plates, 

concentric cylinders and spheres) are especially interesting. This is because, under the 

assumption of homogeneous unipolar injection, the system possesses a hydrostatic state that is 

potentially unstable, implying a linear instability bifurcation. Therefore the linear stability 

analysis approach can be used to gain a first insight of the problem by predicting the onset of the 

flow motion. Atten and Moreau treated the case of parallel plates [12]. They showed that the 

stability criterion is highly dependent on the injection strength (i.e. the amount of charges 
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injected into the bulk) and independent of the dimensionless mobility parameter. The 

experimental results reported in [13,14] partially verified the prediction of the stability analysis. 

The cases of concentric cylinders and spheres were considered later in [15,16,17,18] and [19], 

respectively. These analyses clearly showed that, for the latter two configurations, two factors 

including the ratio between the radii of cylinders or spheres and the injection direction (from the 

inner or outer electrode) make the problem more intricate than the planar geometry. Later, 

Pontiga and Castellanos extended the study to dielectric liquids with impurities by 

simultaneously considering the ion injection and electric field enhanced dissociation in the 

cylindrical geometry [20]. 

   Another feature of the injection induced electroconvection in the planar configuration lies in its 

subcritical bifurcation [21,22]. Associated to this bifurcation there exists a nonlinear stability 

criterion in the finite amplitude regime corresponding to the stop of the flow motion. This 

subcritical bifurcation is essentially related to the two transport mechanisms for ions, i.e. drift by 

the electric field and convection by the velocity field of fluid. The competition between the two 

mechanisms leads to the formation of regions free of charges [22,23].  In the planar geometry, 

Atten and Lacroix performed a weakly nonlinear stability analysis and determined the nonlinear 

criteria for various injection strengths [22]. The nonlinear phenomenon was also confirmed by 

the experimental results in the space-charge-limited (SCL) regime [24]. However, as far as we 

know, no attempt has been conducted for the investigation of the nonlinear instability of 

electroconvection in the annular geometry. 

   In recent years, several numerical simulations have been successfully conducted to study the 

electroconvection in the planar configuration [25,26,27,28,29,30,31,32,33]. A key component in 

designing the numerical algorithm for Coulomb-driven flows is the method employed to solve the 
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charge transport equation. Since the molecular diffusion mechanism is often neglected, the 

charge density equation is essentially hyperbolic, which requires special treatment to obtain 

accurate and oscillation-free solutions [34,35]. Several alternatives such as the particle-in-cell 

(PIC), flux corrected transport (FCT), method of Characteristic (MoC), discontinuous Galerkin 

(DG) and total variation diminishing (TVD) schemes have been used to compute the charge 

density distribution; see the review papers [11,36]. Recalling the early failures with low-order 

schemes (for example, [23,37]), the success of recent algorithms is highlighted through the 

accurate determination of the charge-free region and the finite amplitude criterion. Very recently, 

Fernandes et al. performed the numerical study of the two-dimensional charge injection induced 

annular electrocovnvection [38]. Though a good agreement between their numerical predictions 

of the linear stability criteria and the ones provided by the stability analysis was shown, they did 

not investigate the subcritical bifurcation and did not determine the finite amplitude stability 

criterion. As a matter of fact, we noticed that an upwind scheme was used in [38] to solve the 

charge density equation. This low order scheme seriously limited the ability of their numerical 

solver in studying the nonlinear bifurcation.   

   In this paper, we extend our previous studies of electroconvection between parallel plates 

[29,32,33] to the annular electroconvection between two concentric cylinders. Comparing to the 

planar geometry, the extra interests of the cylindrical geometry include two main aspects. First, 

no lateral-wall effect makes the experimental set-up more realizable and the interpretation of 

experimental results easier [39,40,41]. Second, the cylindrical geometry represents a situation 

that is closer to practical applications, considering the case of electrohydrodynamically enhanced 

heat transfer with the forced flows in pipes (wire/cylinder) [42,43]. The first work on the annular 

Coulomb-driven convection was concerned with the experimental study of the heat transfer 
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augmentation in circular pipes [44]. Up to 1200% increase of the heat transfer rate due to the 

imposed electric field was observed. Another experimental set-up was developed to preliminarily 

characterize the annular convection [45] and its effect on heat transfer [46]. Other studies include 

the linear stability analysis [15,16,17,18] and a numerical simulation [38] mentioned above. We 

contribute to this topic by investigating the bifurcation behavior of the motion in the finite 

amplitude regime. 

   The remainder of this paper is organized as follows. In the next section the physical problem, 

governing equations and boundary conditions are stated. Section 3 briefly explains the numerical 

methods. Results and discussions are presented in Section 4. Finally a conclusion is drawn in 

section 5.  

2. PROBLEM FORMULATION 

2.1 Physical problem and governing equations  

   The system under consideration is a dielectric liquid layer enclosed between two concentric 

infinite cylinders of radius Ri and Ro respectively (Figure 1). The fluid of density ρ0, dynamic 

viscosity η and permittivity ε, is assumed to be incompressible and perfectly insulating. The layer 

is subjected to an electrical potential difference 0 1V V V    which will induce a radial electric 

field E
r

 and charge injection into the bulk from the emitter electrode. We consider the case of 

unipolar injection, which means that ions are injected from one electrode only. The emitter 

electrode can be the inner cylinder or the outer one. The complete formulation of a dielectric 

liquid subjected to electric field is governed by the following EHD equations [1],  

 0 u


, (1) 
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The flow is considered to be two dimensional. Here ],[ vuu 


 is the fluid velocity and q is the 

charge density. p% denotes the modified pressure which includes the dynamic pressure and the 

scalar from which the electrostriction force derives [10]. As the fluid is assumed to be isothermal, 

the dielectric force vanishes and only the Coulomb force qE
r

is retained. There are three distinct 

mechanisms for the transport of free charges: convection with the fluid velocity ( uq


), drift under 

the influence of the electric field ( EqK


, K being the ionic mobility) and the molecular diffusion 

( qD , D being the diffusion coefficient). We neglect as it is often the case the molecular 

diffusion [47], aiming to keep consistent with previous studies (e.g., [15,16,17]). Consequently, 

Eqn. (3) becomes hyperbolic. We further assume the injection to be homogeneous and 

autonomous, which means that the density of charge at the emitter electrode is constant in time 

and always equals to q0. In other words, the injecting process is neither influenced by the electric 

field nor by the liquid motion.  

For universality in the description of the problem it is particularly convenient to work with 

non-dimensional equations. We take as units the interelectrode spacing L=(Ro-Ri) for length, ∆V 

for electrical potential, ionic velocity scale K∆V/H for velocity, ρK
2
∆V

2
/H

2
 for pressure, H

2
/K∆V 

for time and ε∆V/H
2 

for charge density, leading to the following set of dimensionless numbers: 
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The electric Rayleigh number T represents the intensity of the driving Coulomb force. The 

injection strength parameter C is a measure of the injection level. According to the definition in 

[48], the injection can be classified into three regimes: strong (5 < C), medium (0.2 < C < 5) and 

weak (C < 0.2). The dimensionless mobility parameter M is defined as the ratio of the so-called 

hydrodynamic mobility and the true mobility of ions. Typical values for dielectric liquids obey M 

≥ 3 [10]. In addition, the problem also depends on the geometry of the concentric annulus. We 

define the radius ratio Γ =Ri/Ro.  

 

FIG. 1 Sketch of the physical domain and boundary conditions. 

 

    The resulting non-dimensional equations are therefore:  
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   To show the strength of the flow motion, the electric Nusselt number Ne will be output. Ne is 

defined as the ratio of the total current Ie to the conductive current I0, i.e. without any flow 

motion. In the cylindrical geometries, Ie can be calculated from 

   




d
t

nE
nEuqI

r

e 
















2

0
constant




, oi RrR  , where n


 is the normal unit vector 

directing outward. The last part in the brackets represents the displacement current. According to 

the Ampère’s law, eI  is independent of the radius r.  

2.2 Boundary and initial conditions  

The non-dimensional computational domain is defined by the annulus 
 

1
1

1 oi RrR  

and  20  . The no-slip conditions ( 0 vu ) for velocities on electrodes are applied. The 

other boundary conditions read as: on the emitter cylinder, V = 1 and q = C; on the collecting 

cylinder, V = 0.  

As the governing equations are time-dependent, we have to provide initial conditions. 

According to the purpose one could start from the zero-field for all variables, the hydrostatic state 

or a convective state obtained in previous simulations. The hydrostatic state means that the liquid 

stays at rest while ions solely move with the drift velocity, and it can be expressed as [17],  
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where 1  and -1 for the inner and outer injection, respectively. eA  and eB  are two constants 

depending on Γ, C and the injection direction. The implicit functions giving the coefficient eA  

and eB  can be found in [17]. In the case of strong injection C=10, the values for eA  and eB  can 

be found in the Table I. 

TABLE I. eA  and eB  coefficients in the hydrostatic solution of Eqn.(12). 

Γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Inner injection  

Ae 1.009 1.099 1.193 1.302 1.439 1.622 1.886 2.325 3.309 

Be -0.0022 -0.050 -0.169 -0.427 -0.979 -2.224 -5.409 -15.946 -80.890 

Outer injection 

Ae 0.450 0.608 0.759 0.919 1.104 1.333 1.644 2.134 3.177 

Be -1.237 -1.566 -2.047 -2.786 -4.012 -6.268 -11.138 -25.046 -100.101 

 

3. NUMERICAL METHODS 

The whole set of partial differential equations (7) - (11) are discretized using a 2nd order in 

time and space finite volume method [49]. The computational domain is discretized with a 

structured grid consist of nonorthogonal quadrilaterals. All variables are stored at the center of 

each control volume, i.e.  colocated arrangement. The central differencing (CD) scheme and the 

improved deferred correction (IDC) scheme [ 50 ] are used to compute the convective and 

diffusive fluxes in the Navier-Stokes equations, respectively. The 2nd order semi-implicit three 

time levels (I3L) scheme [49] is used for the time integration. As the fluid is assumed to be 
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incompressible, the velocity-pressure coupling algorithm is undertaken by the SIMPLE algorithm 

[51]. 

The solving of the equations (9)-(11) has been well detailed in [29,52]. To prevent the 

development of possible oscillations in the charge density distribution, it is recommended to use 

non oscillating, non diffusive and bounded schemes in solving Eqn. (3) [35,53]. Total Variation 

Diminishing (TVD) schemes have these desirable properties [54]. In this study we have chosen 

the 3rd order Smooth Monotonic Algorithm for Real Transport (SMART) scheme of Gaskell & 

Lau [55]. The interested readers may refer to [29,52] for additional details. The improved Least-

squares approach [56] is used to compute all gradients including the electric field. 

4. RESULTS AND DISSCUSIONS 

We consider a typical injection strength of C = 10 that has been extensively discussed in the 

plate-plate configuration. This strong injection regime can also been viewed as an approximation 

of the SCL regime, which can be achieved experimentally by using the ion-exchange membranes 

[13,57]. The radius ratio is fixed, Γ = 0.5, (i.e. Ri = 1.0 and Ro =2.0), while the injection can be 

either from the inner or the outer side. All numerical results are obtained with M = 10 unless 

stated otherwise.  

4.1 Steady hydrostatic solutions  

   The validity and accuracy of our numerical solver is first checked by comparing the practicable 

analytical solution and the numerical one. To this end, the computation runs starting from zero-

field values and without computing the fluid velocity. On figure 2 we have displayed the profiles 

of charge density and electric field along a radial line. Excellent agreements are obtained between 

our numerical solutions and the analytical ones. It is shown that both the charge density and 
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electric field show a dramatic variation within the region close to the emitter, which is due to the 

strong Coulomb repulsion between charges [23]. In addition, an even more rapid decrease is 

readily shown in the charge density profile of the outer injection than in the inner case. 

The different distribution characteristics of the charge density induced by the inner and outer 

injections imply different requirements for the grid design. The use of non-uniform grids in the 

radial direction is desirable for better accuracy. After several grid independence tests, we finally 

choose a non-uniform grid with 400×150 cells (finer near the inner electrode) and a non-uniform 

grid with 400×175 cells (finer near the outer electrode) for the results of the inner and outer 

injection, respectively.  

 

(a)                                                                         (b)  

FIG. 2. Comparison between the numerical and analytical solutions of the hydrostatic state, (a) 

charge density; (b) electric field.  

4.2 Linear instability of the hydrostatic state 

We alternatively consider the electroconvection induced by the charge injection from the inner 

or outer electrode. In [17] Agrait and Castellanos considered the complete 3D linear stability 
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problem. In order to compare the results from our numerical simulations with the analytical 

results, we have adapted their study to the 2D case with longitudinal modes. We have solved the 

resulting eigenvalue problem using the bvp4c function in MATLAB. This function implements a 

collocation method with C1 piecewise cubic polynomials [58]. For the case C = 10,  = 0.5 we 

obtain the critical values Tc = 122.84 (mc = 7, mc being the critical Fourier mode) for inner 

injection and Tc = 221.38 (mc = 8) for outer injection. A comment must be made when comparing 

these results with those of Richardson in [16]. In this paper the author analyzes the inner injection 

case with the same configuration as us. For  = 0.5 and an injection parameter C* = 10 he obtains 

a critical value Tc = 144.18, which seems to differ from our results. The reason of this 

discrepancy lies in the fact that the injection parameter C* is defined in a different way than C. 

Richardson gives the expression relating these two values. It turns out that the C* = 10 used in 

Richardson’s paper corresponds to C = 4.342. For this value of C, our computation of the linear 

stability analysis gives Tc = 144.18, in perfect agreement with Richardson’s result. 

It is also worth mentioning that in in both cases, inner and outer injection, the critical values 

are higher than the values obtained for 3D instabilities [17]. In the 3D case, for inner injection it 

is Tc = 119.8 (2.5% of difference) and for outer injection it is Tc = 200.5 (10% of difference). The 

explanation for these discrepancies is the value of the critical 3D wavenumber kc. For inner 

injection is kc = 1.79, while for the outer injection is kc = 4.33. Therefore, the inner injection case 

is closer to a 2D geometry, where the flow does not depend on the coordinate along the axis and 

kc would be 0. 

To obtain numerically the critical values Tc, we gradually increase T from zero until the onset 

of motion. Experimentally this would be done by continuously adjusting the applied voltage. For 

both injection directions, we observe that the convection only takes place when T is higher than 
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some critical values. Figure 3 plots the time histories of the maximum vertical velocity for 

several values of T higher than Tc. For all cases, there are three different stages: initially a 

hydrostatic one, then an exponential growth (the scale of Y-axis is logarithmic), and finally a 

steady convection state. At the final state, the maximum value of the radial velocity is greater 

than 1, and a pattern of stationary convective vortices is formed. In Figures 4 and 5 we have 

depicted the charge density, and the corresponding velocity field and isocontours of stream 

function for inner and outer injection, respectively. There are 7 and 8 pairs of counter-rotating 

vortices in Figures 4b and 5b. These values are consistent with the critical Fourier modes mc 

[59].The exponential growth rate can be used to determine the linear stability criterion [29,31,37]; 

see the insets of Figure 3. The critical values for inner and outer injections are found to be 123.06 

and 222.20, respectively. These values are in good agreement with the ones obtained from the 

linear stability analysis. 

  

      (a)                                                                           (b) 

FIG. 3. Temporal evolutions of the maximum vertical velocity in the logarithmic scale for (a) 

inner and (b) outer injection. 
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                                             (a)                                                               (b) 

FIG. 4. Distributions of (a) charge density and (b) stream function and velocity field for the inner 

injection with T = 131.  

 

   

 (a)                                                           (b) 

FIG. 5. Distributions of (a) charge density and (b) stream function and velocity field for the inner 

injection with T = 260.  

 

The charge density distributions shown in Figure 4a and 5a share strong analogy with the case 

of the planar configuration. For both directions, there are sharp variations in the radial direction, 
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especially in the region close to the emitter. In addition, we observe some central regions which 

are almost free of charges (q→0). These charge-free regions are very characteristic feature of 

Coulomb-driven convection, and they are closely related to the finite amplitude bifurcation 

behavior of the convection [22]. There are 7 and 8 charge-free cells in Figure 4a and 5a, same as 

the numbers of vortex pairs. It should be noted that each charge void region is not closed but with 

an opening on the collecting electrode. This opening is due to the Coulomb repulsion of charges 

[47], and it has already been detected numerically in the planar configuration [25,29,31]. 

4.3 Finite-amplitude instability of the convective state 

We restart the computation from the previously obtained steady convection and gradually 

decrease T to determine the route of the system back to rest. It is observed that the strength of the 

flow motion gradually decreases with the decrease of T. At another critical value which is smaller 

than Tc, the motion suddenly stops. This second critical value corresponds to the suppression of 

the finite amplitude perturbations, and it is defined here as the nonlinear stability criterion Tf1. 

The linear and nonlinear stability criteria together with the hysteresis loop linking them fully 

define the subcritical bifurcation of the annular Coulomb-driven convection. The subcritical 

convection with the planar geometry has been well explained analytically [22,60], observed 

numerically [25,27,29,31,32] and confirmed experimentally [13]. In the present study, the 

nonlinear bifurcation with the annular electroconvection has been determined numerically. 

On Figure 6 we have plotted profiles of the radial velocity Vr along the mid-section circle r = 

(Ri+Ro)/2. Figure 7 shows the change of the charge-free region represented by the area of q<0.05. 

The isoline of q = 0.05 represents the separatrix between the region filled with charges and the 

region without charges. 
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                                     (a)                                                                          (b)  

FIG. 6. Radial velocity Vr at r = (Ri+Ro)/2  for different electric Rayleigh numbers, (a) inner and (b) outer 

injection.  

   

                                     (a)                                                                          (b)  

FIG. 7. Variations of the region free of charges (q < 0.05) for different electric Rayleigh numbers 

T for (a) inner and (b) outer injection. 

Along with the decrease of T, both Vr and the area of the charge-free region decreases, while 

the number of charge-free region remains the same. The area of the charge-free region is an 
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increasing function of the electric torque that drives the motion. The decrease of T results in the 

decrease of the torque and consequently the decrease of the area of the charge-free region [23]. 

At T smaller than Tf1, the small electric torque is unable to sustain the flow motion, and then the 

charge-free region suddenly disappears. Meanwhile the velocity amplitude jumps from a finite 

value to zero, which means the system returns back to the hydrostatic state. The nonlinear 

stability criteria for the inner and outer injection are found to be about 86.5 and 143.0, 

respectively. Figure 8 plots the hysteresis loops expressed by the electric Nusselt number Ne.  

 

                                     (a)                                                                          (b)  

FIG. 8. Hysteresis loops respresented by the electric Nusselt number Ne versus T for (a) inner and 

(b) outer injection. 

     In Table II we have summarized the values of Tc and Tf1 obtained from our numerical 

simulations for different values of M. The linear stability analysis proved that Tc is independent 

of M. Our present numerical results have verified this point. It is shown that the maximum 

discrepancy between the analytical value of Tc and our numerical ones is less than 1%. Up today 

there is no nonlinear stability analysis in the annular geometry, and the relationship between Tf1 
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and M has not been theoretically investigated yet. However, our numerical results reveal that Tf1 

only weakly depends on M when M is small. For example, the nonlinear criterion is Tf1 = 141.0 

for M = 5 and Tf1 = 144.5 for M = 50, 100, 200, showing a difference of 2.4%. This is the 

maximum difference we observed in all cases. It appears that the flow motion of M ≥ 20 are 

viscous dominated and are close to the case of purely viscous case [32,37]. 

TABLE II. Dependence of the linear and nonlinear stability criteria on the mobility number M. 

 
 

 Mobility number, M 

5 10 20 50 100 200 

Linear 
Inner 122.56 (7) 122.42 (7) 122.40 (7) 122.73 (7)  122.61 (7) 122.55 (7) 

Outer 221.85(8) 219.04 (8) 219.02 (8) 220.63 (8)   220.43 (8) 221.05 (8 ) 

Nonlinear 
Inner 86.0   86.9 87.0 87.1 87.1 87.1 

Outer 141.0 143.3 144.0 144.5 144.5 144.5 

Note: the analytical values of Tc (mc) for the linear stability criterion is 122.54 (7) and 221.38 (8) 

for inner and outer injection, respectively. The numbers in parenthesis correspond to the number 

of vortex pairs observed numerically, and they are the same as mc, the dominating Fourier mode.   

4.4 A complete bifurcation diagram 

We have explored the behavior of the system for higher values of T. The results for the inner 

injection case are summarized in figure 9. Starting from the fully developed flow at T=123.06, 

with 7 pairs of vortices, we increase the value of T. The electric Nusselt number Ne increases 

while keeping the structure of the flow. At T ≈ 205 (point A in the figure) the system jumps to 

another steady state with 8 pairs of vortices (point B). Further increasing T to T ≈ 300, the flow 

becomes oscillatory, and the flow pattern changes periodically between 8 and 9 pairs of vortices. 

If now we decrease T, the system does not jump back to the branch with 7 cells, but keeps the 8 

cells structure until the electric torque is not strong enough to sustain the motion (point C). The 
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plots at the bottom of the figure show the flow structure and charge distribution for the three 

points. The critical value Tf2 ≈ 88.5 is slightly higher than Tf1, the value corresponding to the 

structure of 7 pairs of vortices. If this same procedure is applied to the outer injection case, the 

system keeps all the time the 8 cells pattern, up to T ≈ 350, above which the flow becomes 

oscillatory, and 8 and 9 pairs of vortices alternatively appear. If the value of T is now decreased 

we recover the descending branch in figure 8b. 

 

FIG.9. The complete bifurcation diagram for the inner injection case.  
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Previous numerical results in the planar configuration have shown the oscillatory flow pattern 

with varying numbers of vortices in the finite [29,31,33] and large [27,28,30] computational 

domains. In addition, a very similar phenomena have been observed in [38] with the cylindrical 

configuration. The difference lies in the critical values separating different states. Our values of T 

are always smaller than the ones presented in [38]. For example, with the inner injection case, the 

value of T separating the steady state of 8 pairs of vortices and the oscillatory state is higher than 

500, much higher than the value we find (about 300). We attribute the discrepancy to the effect of 

physical and numerical diffusion embedded in the solutions of [38]. Generally the diffusion tends 

to stabilize the system and puts off the transition from steady to unsteady states [33,61]. On the 

one hand, the physical model used in [18,38] keeps the molecular diffusion term though with a 

small diffusion coefficient in the charge density equation. On the other hand, the uniform grid 

and the low order schemes used in [38] to solve the charge density equation inevitably introduce 

some numerical diffusion. 

4.5 Modal analysis of the bifurcation 

Figure 9 shows another way to reach the 8 cells branch (see the blue dashed line with upward 

arrow) in the inner injection case. Starting from the hydrostatic solution, we set the value of T at 

132. Experimentally this can be achieved through a step voltage. In this case the the system 

jumps directly to the 8 cells branch. This new behavior has never been reported before and it can 

be explained with a simple modal analysis. Figure 10 shows the critical values for the modes with 

6, 7, 8, and 9 cells as a function of  for the inner and outer injection cases. These curves are 

obtained from the 2D linear stability analysis. Table II gives the accurate numerical values. We 
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can see that the values corresponding to the 7 and 8 cells modes are very close in both cases. That 

means that just above the value of Tc both modes tend to be excited. 

 

                                         (a)                                                                          (b)  

FIG. 10.  Critical values of T for modes with 6, 7, 8  and 9 cells as a function of  for inner (a) 

and outer (b) injection. 

 

TABLE II. The critical electric Rayleigh number Tc and dimensionless wave number mc, Γ = 0.5. 

Direction 
Number of modes, m 

 m=6 m=7 m=8 m=9 

Inner 130.961 122.844 123.306 129.503 

outer 236.652 222.342 221.376 228.733 

 

We have used a simple phenomenological modal analysis to understand the evolution of the 

modes. The velocity field can be expressed as a superposition of modes 

    m mm rutAtru  ,)(,,


,     (13) 

where r and θ are the cylindrical coordinates. The velocity field for each mode can be derived 

from the stream function 
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the cylindrical components of the modal velocities being 
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    The stream function is chosen so that the no slip boundary conditions on the inner and outer 

cylinders are fulfilled. Also, with this choice the modal velocities are orthogonal, that is, when 

integrating in the computational domain we have: 

  0dSuu nm
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The constant Bm is computed so that the maximum velocity of each modal velocity is 1. 

    The component Am(ti) is computed at each time step by projecting the computed velocity field 
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Figure 11 plots the time evolution of the modal components for the inner injection case and 

T=125 and T=150. We made these simulations using the top half cylinders with symmetric 

boundary conditions on the horizontal sides. The reason to do that is that the velocity field issued 

from the simulations with the complete domain is not necessarily aligned with the axis of figure 1. 

In the first case the system stays on the 7 cells branch and in the second one it jumps directly to 

the 8 cells branch. For T=125 the mode with m=7 becomes dominant, after a competition with the 

mode m=8. In the steady state the amplitudes of all the other modes are very small. For T=150 it 

is the mode m=8 which becomes dominant. In this case the amplitudes of the other modes are not 

as small as previously, and even the mode m=9 gets an amplitude greater than the mode m=7. 

Figure 11c plots the amplitudes for the modes m=7 and m=8 for T=300, showing the oscillation 
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between these two modes, as observed in the simulations for the whole domain. The other modes 

have also significant contributions in this case, but we have chosen to plot only two modes, for 

the sake of clarity. 

 

(a)                                                                        (b)   

 

(c) 

FIG. 11.  Time evolution of the modal amplitudes for inner injection, (a) T=125, (b) T= 150 and 

(c) T=300. 
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For the outer injection case, following the same procedure, we have also tried different values 

of T (>Tc = 221.38) in a wide range. However, up to T = 325,  only one type of flow pattern 

showing 8 pairs of steady counter-rotating vortices (similar to Figure 5) is observed. Further tries 

with T > 325 lead to oscillatory flow patterns. This means that the mode of m=8 is always 

dominant in the range of ]325,[ cTT   for the outer injection case. 

5. CONCLUSIONS 

We have performed a theoretical and numerical analysis of the two-dimensional annular 

electroconvection induced by a strong unipolar injection of ions in a dielectric liquid contained 

between two coaxial cylinders. Compared to the problem of the planar configuration, two extra 

factors arise: the injection direction and the radius Γ. We consider a representative case with Γ = 

0.5, and the injection can be either from the inner or outer cylinder. It is shown that for both 

injection directions the flow is characterized by the subcritical bifurcation, which means that 

there exist a linear stability criterion and a finite amplitude one corresponding to the onset and 

stop of the flow motion, respectively. The flow structure is characterized by a number of counter-

rotating vortices and regions free of charges. We have determined the linear stability criteria 

expressed with the critical electric Rayleigh number T and the critical mode number from our 

direct numerical results and have compared them with the values predicted by the linear stability 

analysis. An excellent agreement is found. We have also extended the numerical study to higher 

values of T. For the inner injection, the system experiences a transition from a steady state with 7 

pairs of vortices to another steady state with 8 pairs of vortices. Such a transition results in a new 

subcritical criterion, corresponding to the stop of the motion with 8 pairs of vortices. This 

behavior can be understood phenomenologically projecting the computed velocity field on a 
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simple modal expansion. As T increases the dominant mode changes, and eventually the flow 

oscillates between modes with 8 and 9 cells. 

Till now there is no direct way to experimentally visualize the charge density distribution, the 

numerical results provided in this study may help gaining deeper insight of the electro-convective 

phenomena. In addition, the finite stability criteria we obtained numerically may serve as 

references for the coming weakly nonlinear stability analysis. This work may be extended in 

several interesting directions. In a future work, we will investigate the effects of the radius ratio 

on the linear and nonlinear stability criteria.  
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