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Abstract
This paper presents a modification to the original ART 1 algorithm [Carpenter, 1987a] that is

conceptually similar, can be implemented in hardware with less sophisticated building blocks, and

maintains the computational capabilities of the originally proposed algorithm. This modified ART 1

algorithm (which we will call here ART 1m) is the result of hardware motivated simplifications

investigated during the design of an actual ART 1 chip [Serrano, 1994, 1996]. The purpose of this paper

is simply to justify theoretically that the modified algorithm preserves the computational properties of the

original one and to study the difference in behavior between the two approaches.

  I.  Introduction

In 1987 Carpenter and Grossberg published the ART 1 algorithm in a brilliant and well-founded paper

[Carpenter, 1987a], the first of a series ofAdaptiveResonanceTheory (ART) architectures. ART 1 is an

architecture capable of learning (in an unsupervised way) recognition codes in response to arbitrary orderings of

arbitrarily many and complex binary input patterns. The ART 2 [Carpenter, 1987b] and Fuzzy-ART [Carpenter,

1991a] architectures do the same but for analog input patterns. ART 3 [Carpenter, 1990] introduces a search

process for ART architectures that can robustly cope with sequences of asynchronous analog input patterns in

real time. ARTMAP [Carpenter, 1991b] and Fuzzy-ARTMAP [Carpenter, 1992] can be taught to learn (in a

supervised way) predetermined categories of binary and analog input patterns, respectively. This paper focuses

only on the ART 1 architecture. This architecture has a collection of interesting computational properties:

• Self-Scaling: The self-scaling property discovers critical features in a context-sensitive way. For example, if

two binary input patterns haveM bits set to ‘1’, and all except form of them are at the same location, these

two different input patterns can be classified into the same category ifm/M is sufficiently small, or as two

different categories ifm/M is not so small.

• Vigilance or Variable Coarseness:There is a vigilance parameter ( ) that adjusts the coarseness of

the categories that will be formed. If the vigilance parameter is set close to ‘1’, more attention will be

dedicated to distinguishing very similar input patterns and classifying and learning them as belonging to

different categories. However, if the vigilance parameter is close to ‘0’, there must be a significant difference

between two input patterns for the system to separate them into two different categories.

0 ρ 1≤<
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• Subset and Superset Direct Access: Suppose the system has learned two different categories such that one is

represented by a binary pixel image that is a subset of the image representing the other. The first is a subset

of the second, which is a superset of the first. Under these circumstances, the system can classify a new input

pattern as belonging to either the subset or the superset category, depending on global similarity criteria. No

restrictions on input orthogonality or linear predictability are needed.

• Stable Category Learning:In response to an arbitrary list of binary input patterns, all interconnection weights

subject to learning approach limits after a finite number of learning trials. Learning is guaranteed to stabilize,

and it does so for a small number of training patterns presentations.

• Biasing the Network to form New Categories:When a new pattern arrives, a competition starts between

stored patterns to capture it. One of the competing categories is theempty or uncommitted category. There

exists a parameter that can bias the tendency of theuncommitted category to initially capture a new pattern,

before thevigilance parameter plays any role.

In the original ART 1 paper [Carpenter, 1987a], the architecture is mathematically described as sets of Short

Term Memory (STM) and Long Term Memory (LTM) time domain nonlinear differential equations. The STM

differential equations describe the evolution of and interactions between processing units or neurons of the

system, while the LTM differential equations describe how the interconnection weights change in time as a

function of the state of the system. The time constants associated with the LTM differential equations are much

slower than those associated with the STM differential equations. A valid assumption, also presented by

Carpenter and Grossberg [Carpenter, 1987a], is to make the STM differential equations settle instantaneously to

their corresponding steady state and consider only the dynamics of the LTM differential equations. In this case,

the STM differential equations must be substituted by nonlinear algebraic equations that describe the

corresponding steady state of the system. Furthermore, Carpenter and Grossberg also introduced the fast

learning mode of the ART 1 architecture, in which the LTM differential equations are also substituted by their

corresponding steady-state nonlinear algebraic equations. Thus, the ART 1 architecture, originally modelled as

a dynamically evolving collection of neurons and synapses governed by time-domain differential equations, can

be behaviorally modelled as the sequential application of nonlinear algebraic equations: an input pattern is given,

the corresponding STM steady state is computed through the STM algebraic equations, and the system weights

are updated using the corresponding LTM algebraic equations.

At this point three different levels of ART 1 implementations (in either software or hardware) can be

distinguished:

Type-1 Full Model Implementation:Both STM and LTM time-domain differential equations are realized.

This implementation is the most expensive and requires a large amount of computational power.

Type-2 STM Steady-State Implementation:Only the LTM time-domain differential equations are

implemented. The STM behavior is governed by nonlinear algebraic equations. This
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implementation requires less resources than the previous one. However, proper sequencing of STM

events must be assured, which is architecturally implicit in theType-1 implementation.

Type-3 Fast Learning Implementation:This implementation is computationally the least expensive. In this

case, STM and LTM events must be algorithmically sequenced.

Regarding hardware implementations of the ART 1 architecture, several attempts have been reported in the

literature. Ho et al. proposed a circuit technique for aType-1 implementation [Ho, 1994]; Tsay and Newcomb

proposed a CMOS circuit technique that would realize a partialType-2 implementation [Tsay, 1991]; Wunsch et

al. [Wunsch, 1993] have built an optical-basedType-3 implementation; elsewhere [Serrano, 1994, 1996] we

present a CMOS VLSIType-3 circuit.

This paper presents a modification to the original ART 1 algorithm [Carpenter, 1987a] (which we will call

from now on ART 1m, as referring to “ART 1 - modified”) that is conceptually similar, can be implemented in

hardware with less sophisticated building blocks, and maintains the same computational capabilities as the

originally proposed algorithm. This modification was motivated by aType-3hardware implementation and was

investigated during the design process of an actual ART 1Type-3 chip [Serrano, 1994, 1996]. However, such

modifications can be extended toType-2 and Type-1 implementation versions as well, as shown at the end of this

paper.

The paper is organized as follows: Section II develops the ART 1m architecture starting from the original

ART 1Type-3(orFast Learning) description and driven by hardware implementation considerations. Section III

shows that all computational properties present in the original ART 1 architecture are preserved in the modified

version. Section IV studies the differences in behavior between the two descriptions and provides simulation

results, and Section V indicates how to extend the ART 1m Type-3description toType-2and Type-1 models.

  II. From the Original ART 1 Algorithm to the Modified One

Let us start by describing theType-3 model of the original ART 1 architecture. The ART 1 topology is shown

in Fig. 1 and consists of two layers: layerF1 is the input layer and hasM nodes (one for each binary “pixel” of

the input pattern), and layerF2 is the category layer and hasN nodes. Let us call the nodes in layerF1 , and

the nodes in layerF2 . In the original ART 1 paper specific notations were used to distinguish betweeninternal

state, output,andnode name for F1 andF2 nodes. In this paper, since we are concerned exclusively withType-3

descriptions, we will use a single notation to refer to eitherinternal state, output,andnode nameof F1 nodes ( )

andF2 nodes ( ). Each node in theF2 layer represents a “cluster” or “category”. In this layer, only one node will

become active after presentation of an input pattern . TheF2 layer category that will become

active is that which most closely represents the input patternI . If no preexisting category is satisfactory for a

given input pattern, a new category will be formed. EachF1 nodexi is connected to allF2 nodesyj through

bottom-up connections of weight1 zij
bu, so that the input received by eachF2 nodeyj is given by

xi

yj

xi

yj

I I1 I2 … IM, , ,( )≡
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 . (1)

LayerF2 acts as a Winner-Take-All network2 so that all nodesyj remain inactive, except that which receives the

largest bottom-up inputTj,

(2)

Once anF2 winning node arises, a top-down pattern is activated through the top-down weights3 zji
td. Let us call

this top-down pattern . The resulting vectorX is given by the equation,

 . (3)

Since only oneyj is active, let us call this winningF2 nodeyJ, so thatyj=0 if  andyJ=1. In this case we can

state

 , (4)

where . This top-down template will be compared with the original input patternI

according to a predeterminedvigilance criterion, tuned by avigilance parameter , so that two

alternatives may occur:

1.  Bottom-up weightszij
bu may take any real value in the interval [0,K], where , and  [Carpenter, 1987a].

2.  In principle, layerF2 is not restricted to act as a Winner-Take-All network. Contrast enhancement is another possible
choice [Carpenter, 1987a].

3.  In theFast Learning (Type-3) model top-down weightszji
td may take only the values ‘0’ or ‘1’.

K
L

L 1– M+
-----------------------= L 1>

z ij
bu

|I|ρ

Tj

x1 x x

1y y y

2 3

2 3

|X|

comparator

RESET

z
td
ji

F1

F  (WTA)2
y

x

I I I1 2 3 I

N

M

M

 Fig. 1: Simplified block diagram of the architecture of aType-3 ART 1 system

Tj zi j
bu

I i
i 1=

M

∑=

yJ 1 if TJ maxj Tj{ } ,= =

yj 0 otherwise .=

X X1 X2 … XM, , ,( )≡

Xi I i zj i
td

yj
j

∑=

j J≠

Xi I izJi
td

= or X I z J
td∩=

zJ
td

zJ1
td

zJ2
td …zJM

td, , 
 ≡

0 ρ 1≤<
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a)If , the active categoryJ is accepted, and the system weights will be updated to incorporate

this new knowledge4.

b)If , the active categoryJ is not valid for the given value of thevigilance parameterρ. In this

caseyJ will be deactivated (reset) making , so that anotheryj node will become active through the

Winner-Take-All action of theF2 layer.

Learning takes place when an activeF2 node is accepted by the vigilance criterion. The weights will be updated

according to the following algebraic equations,

(5)

or, using vector notation,

(6)

where  is a constant parameter. Note that only the weights of the connections incident to the winningF2

nodeyJ are updated. Therefore, the operation of theType-3 (or Fast Learning) implementation of the ART 1

architecture is described by the algorithm depicted in Fig. 2(a).

From a hardware implementation point of view, one of the first issues that comes into consideration is that

there are two templates of weights to be built. The set of bottom-up weightszij
bu, each of which must store a real

value belonging to the interval [0,K], and the set of top-down weightszji
td, each of which stores either the value

‘0’ or ‘1’. The physical implementation of the bottom-up template memory presents the first hardware difficulty

because the weights need either an analog or a digital memory with sufficient bits per weight so that the digital

discretization does not affect the system performance. However, it can be seen from eqs. (6) that the bottom-up

set {zij
bu} and the top-down set {zji

td} contain the same information: each of these sets can be fully computed by

knowing the other set. The bottom-up set {zij
bu} is a normalized version of the top-down set {zji

td}. Therefore,

from a hardware implementation point of view, it would be desirable to implement physically only a binary

valued set (one bit per weight) and introduce the normalization of the bottom-up weights during the computation

of {Tj}. This way, the two sets {zij
bu} and {zji

td} can be substituted by a single binary valued set {zij}, and eq.

(1) modified to take into account the normalization effect of the original bottom-up weights,5

4.  The notation |a| represents the cardinality of vectora, i.e., .

5.  This type of modification is employed in the Fuzzy-ART model [Carpenter, 1991a], which operates with analog patterns,
instead of binary ones. Making Fuzzy-ART to work with binary patterns results in ART 1 behavior, but using only one set
of weights, similar to the system described in this paper.

ρ I I z J
td∩≤

a ai
i

∑=

ρ I I z J
td∩>

TJ 0=

ziJ
bu

new( ) L

L 1– zJ
td

old( ) I∩+
-----------------------------------------------------Xi

L

L 1– zJ
td

old( ) I∩+
-----------------------------------------------------I izJi

td
old( )= =

zJi
td

new( ) Xi I izJi
td

old( )= =

zJ
bu

new( )
LI zJ

td
old( )∩

L 1– I zJ
td

old( )∩+
-----------------------------------------------------=

zJ
td

new( ) I zJ
td

old( )∩=

L 1>
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 . (7)

Considering this minor “implementation” modification, the algorithm of Fig. 2(a) would be transformed into that

depicted in Fig. 2(b). The system level performance of the algorithms described by Fig. 2(a) and (b) is identical.

There is no difference in the behavior between the two diagrams, and the one in Fig. 2(b) offers more attractive

features from a hardware (as well as software) implementation point of view. For the remainder of this paper we

will consider the original ART 1Type-3 architecture as described by the algorithm of Fig. 2(b).

However, in Fig. 2(b), an extra division operation, , needs to be performed

for each node in theF2 layer. This is an expensive hardware operation and would probably constitute a

performance bottleneck in the overall system for both analog and digital circuit implementations. If possible, it

would be very desirable to avoid this division operation. The main idea of this paper is precisely to substitute this

Initialize weights:

zj i
td

1 , zi j
bu L

L 1– M+
-----------------------==

Read input pattern:
I I1 I2 …IM, ,( )=

Tj zi j
bu

I i
i 1=

M

∑=

Winner-Take-All:
yJ 1 if TJ maxj Tj{ }==

yj 0 if j J≠=

ρ I I z J
td∩> TJ 0=

YES

NO

 Fig. 2: Type-3 implementation algorithms of the ART 1 architecture: (a) original ART 1, (b)
ART 1 with a single binary valued weights template, (c) and VLSI-friendly ART 1m
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division operation by another, less expensive one, and, although this results in a system with a slightly different

behavior, we will show that it preserves all the computational properties of the original ART 1 algorithm.

Fig. 3(a) shows the curves that represent the division operation of eq. (7). A first simplification could be to

substitute these curves by a piece-wise linear approximation as shown in Fig. 3(b). Such an approximation still

presents some hardware difficulties and could also limit the performance of the overall system. A more drastic

simplification would be to substitute the original operation by the operation represented by the set of curves of

Fig. 3(c). Mathematically, the division operation has been substituted by a subtraction operation6,

 , (8)

whereLA andLB are positive parameters that play the role of the originalL (andL−1) parameter. As we will see

in the next Section, the condition  must be imposed for proper system operation.  is a constant

parameter needed7 to ensure that  for all possible values of  and .

Replacing a division operation with a subtraction one is a very important hardware simplification with

significant performance improvement potential. Fig. 2(c) shows the finalType-3 ART 1m algorithm, the object

of this paper. In the next sections, we will try to show that the price paid for this drastic simplification, although

it yields a system with slightly different input-output behavior, is insignificant since all the computational

properties of the original ART 1 architecture are preserved.

It is worth mentioning here that substituting a division operation by a subtraction one means a significant

performance boost from a hardware implementation point of view. Implementing physically division operators

6.  During the writing of this paper, similarTj functions (also calleddistances orchoice functions) have been proposed by
other authors for Fuzzy-ART. Since ART 1 can be considered a particular case of Fuzzy-ART when the input patterns are
binary, Fuzzy-ARTchoice functionscan also be used for ART 1. In the Appendix we show how these otherchoice
functionsalso yield to ART 1 architectures that preserve as well all the original computational properties. However, the
choice function purpose of this paper is computationally less expensive and is easier to implement in hardware.

7.  In reality, parameter  has been introduced for hardware reasons [Serrano, 1994, 1996]. In a software ART 1m

implementation parameter  can be ignored.

 Fig. 3: Illustration of simplification process of the division operation: (a) original division
operation, (b) piece-wise linear approximation, (c) linear approximation

T j T j T j
I    z j I    z j I    z j

z j z j z j

(b) (c)(a)

Tj LA I z j∩ LB zj– LM+=

LA LB> LM 0>

Tj 0≥ I z j∩ zj

LM

LM
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in hardware constraints significantly the whole system design and imposes limitations on the overall system

performance.

In the case of digital hardware, a division circuit can be built using either sequential techniques or large size

higher speed special purpose circuits [Cavanagh, 1985]. Sequential techniques use simpler hardware but are

slower, while a dedicated circuit is very large compared to the former and requires much more power

consumption. As an example, and for a sequential type division circuit, in order to realize the following division

, (9)

q addition/substractions operation would be needed, whereq is the number of bits needed for the result of the

division. If, for example, there are  nodes in theF1 layer, numerator and denominator in eq. (9)

should be represented by 10-bit words. If, for a given input , we want to differentiate between two terms

and  whose respective templates  and  differ in one bit, theF2 layer (WTA) would need to resolve

. (10)

The worst case occurs when , . In this case

. (11)

A reasonable minimum value forL is 1.01. Therefore, if  then . On the other hand,

it is easy to see that  is close to but less than one. Consequently, for each  a dynamic range of

(12)

is needed. Such dynamic range requires aq=27 bit representation. Thus, for each division operation we need to

realize 27 10-bit addition/subtractions. Furthermore, the WTA in theF2 layer would need to choose the

maximum amongN 27-bit words. On the other hand, if the ART 1m algorithm is used, instead of the

11-bit addition/subtractions, we need only to realizeN 11-bit subtractions, and the WTA has to choose the

maximum amongN 11-bit words.

In the case of analog hardware, there are ways to implement the division operation with compact dedicated

circuits [Bult, 1987], [Sánchez-Sinencio, 1989], [Gilbert, 1990], [Sheingold, 1976], but they usually suffer from

low signal-to-noise ratios, limited signal range, noticeable distortion, or require bipolar devices which are

available for more expensive VLSI technologies. In any case, the performance of the overall ART system would

be limited by the lower performance of the division operators. If the divison operators are eliminated the

performance of the system would be limited by other operators which, for the same VLSI technology, render

considerable better performance figures. Furthermore, in the case of analog current mode signal processing

[Serrano, 1996], the addition and subtraction of currents does not need any physical components. Consequently,

Tj

L I z j∩
L 1– zj+
-------------------------=

M 1000=

I Tj1

Tj2
zj1

zj2

∆Tj1j2 min

L I z j1
∩

L 1– zj1
+

---------------------------
L I z j2

∩
L 1– zj2

+
---------------------------–

min

=

zj1
I z j1

∩ M= = zj2
I z j2

∩ M 1–= =

∆Tj1j2 min
L L 1–( )

L 1– M+( ) L 2– M+( )
-------------------------------------------------------------=

M 1000= ∆Tj1j2 min
10

8–≈

∆Tj1j2 max
Tj

Tj max

Tj min

--------------- 10
8

=

N 24×
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by eliminating the need of signal division, the circuitry is dramatically simplified and its performance drastically

improved.

  III. On the Computational Equivalence of the Original and the Modified Models
Throughout the original ART 1 paper [Carpenter, 1987a], Carpenter and Grossberg provide rigorous

demonstrations of the computational properties of the ART 1 architecture. Some of these properties are

concerned withType-1 andType-2 operations of the architecture, but most refer to theType-3 model operation.

From a functional point of view, i.e., when looking at the ART 1 system as a black box regardless of the details

of its internal operations, the system level computational properties of ART 1 are fully contained in its

Fast-Learning or Type-3 model. The theorems and demonstrations given by Carpenter and Grossberg

[Carpenter, 1987a] relating toType-1 andType-2 models of the system only ensure properType-3 behavior. The

purpose of this Section is to demonstrate that the modifiedType-3 model developed during the previous Section

preserves all theType-3 computational properties of the original ART 1 architecture. The only functional

difference between ART 1 and ART 1m, is the way the termsTj are computed before competing in the

Winner-Take-All block. Therefore, the original properties and demonstrations that are not affected by the terms

Tj will be automatically preserved. Such properties are, for example, theSelf-Scaling property and theVariable

Coarseness property tuned by theVigilance Parameter. But there are other properties which are directly affected

by the way the termsTj are computed:Subset and Superset Direct Access, Stable Category Learning, Biasing the

Network to form New Categories, and the properties consequent of the theorems in the original ART 1 paper

[Carpenter, 1987a]. In the remainder of this Section we will show that these properties remain in the ART 1m

architecture.

Let us define a few concepts before demonstrating that the original computational properties are preserved.

a) Direct Access:an input patternI  is said to haveDirect Access to a learned categoryyj if this category is

the first one selected by the Winner-Take-AllF2 layer and is accepted by thevigilance subsystem, so

that no reset occurs.

b) Subset Template: an input patternI  is said to be aSubset Template of a learned category

 if . Formally,

(13)

c) Superset Template: an input patternI  is said to be aSuperset Template of a learned category  if

.

zj z1j z2j …zMj, ,( )≡ I z j⊂

zi j 0= I i⇒ 0= i∀ 1 …M,,=

I i 1 zi j⇒ 1= = i∀ 1 …M,,=

there are some values of i such that I i 0 and zi j 1.==

zj

zj I⊂
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d) Mixed Template:  andI  are said to be mixed templates if neither  nor  are satisfied, and

.

e) Uncommitted node:anF2 nodeyj is said to be uncommitted if all its weightszij  ( ) preserve

their initial value ( ), i.e., nodeyj has not yet been selected to represent any learned category.

A. Direct Access to Subset and Superset Patterns

Suppose that a learning process has produced a set of categories in theF2 layer. Each categoryyj is

characterized by the set of weights that connect nodeyj in the F2 layer to all nodes in theF1 layer, i.e.,

. Suppose that two of these categories,  and , are such that  (  is a subset

template of ). Now consider two input patternsI (1) andI (2) such that,

(14)

TheDirect Access to Subset and Superset property assures that inputI (1) will haveDirect Accessto category

and that inputI (2) will haveDirect Access to category .

Proof:

If patternI (1) is given as the input pattern we will have

(15)

Since , it follows that (rememberLB>0) . If patternI (2) is presented at the input layer of

the network, it would be,

(16)

In order to guarantee that  , the condition

(17)

must be satisfied.

zj I z j⊂ zj I⊂

I z j≠

i 1 …M,=

zi j 1=

zj z1j z2j … zMj, , ,( )≡ yj1
yj2

zj1
zj2

⊂ zj1

zj2

I
1( )

zj1
z1j1

z2j1
…zMj1

, ,( ) ,≡=

I
2( )

zj2
z1j2

z2j2
…zMj2

, ,( ) .≡=

yj1

yj2

Tj1
LA I i

1( )
zi j 1

i 1=

M

∑ LB zj1
– LM+ LA I

1( )
LB I

1( )
– LM ,+= =

Tj2
LA I i

1( )
zi j 2

i 1=

M

∑ LB zj2
– LM+ LA I

1( )
LB I

2( )
– LM .+= =

I
1( )

I
2( )< Tj1

Tj2
>

Tj1
LA I i

2( )
zi j 1

i 1=

M

∑ LB zj1
– LM+ LA I

1( )
LB I

1( )
– LM ,+= =

Tj2
LA I i

2( )
zi j 2

i 1=

M

∑ LB zj2
– LM+ LA I

2( )
LB I

2( )
– LM .+= =

Tj2
Tj1

>

LA LB>
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B. Direct Access by perfectly learned patterns (Theorem 1 of original ART 1):

This theorem, when adapted to aType-3 implementation, would state the following:

An input pattern  has direct access to a node  which has perfectly

learned .

Proof:

In the case of the ART 1m algorithm, in order prove that  has direct access to  we need to show that: (i)

 is the firstF2 node to be chosen, (ii)  is accepted by the vigilance criterion, and (iii)  remains active as

learning occurs8.

To prove property (i), we must establish that, at the start of each trial,  for all . Since ,

we need to prove

 . (18)

Suppose first that . Since  is always true, then eq. (18) is satisfied,

. (19)

Suppose that . Then, since , it follows that . Finally, since  is always

true, it follows that,

 . (20)

Property (ii) is directly satiesfied because,

 . (21)

Finally, property (iii) also holds, because after node  is selected as the winning category, its weight template

 will remain unchanged (because ), and consequently the inputs to

theF2 layer  will remain unchanged.

C. Stable Choices in STM (Theorem 2 of original ART 1):

Whenever an input patternI  is presented for the first time to the ART 1 system, a set of {Tj} values is formed

that compete in the Winner-Take-AllF2 layer. The winner may be reset by thevigilance subsystem, and a new

winner appears that may also be reset, and so on until a final winner is accepted. During this search process, the

Tj values that led to earlier winners are set to zero. Let us callOj the values ofTj at the beginning of the search

process, i.e., before any of them is set to zero by the vigilance subsystem. Theorem 2 of the original ART 1

architecture states:

8.  In the original ART 1 paper it also shown that read out of the top-down template does not deactivate node  as the winning

node. This is because there the proof was developed for aType-1 implementation where activation of anF2 node results

in a change of  terms through the influence of the top-down connections.

I yJ

I

I yJ

yJ yJ yJ

yJ

Tj

TJ Tj> j J≠ zJ I=

TJ LA I LB I– LA I z j∩ LB zj–> Tj= =

zj I> I I z j∩≥

TJ LA I LB I– LA I z j∩ LB I– LA I z j∩ LB zj–>≥ Tj= =

zj I≤ zj I≠ I I z j∩> zj I z j∩≥

TJ LA I LB I– LA I z j∩ LB I z j∩– LA I z j∩ LB zj–≥> Tj= =

I z j∩ I ρ I≥= , ρ∀ 0 1,[ ]∈

yJ

zj zJ new( ) I z j old( )∩ I z j old( )= = =

Tj
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Suppose that an  node  is chosen for STM storage instead of another

node  because . Then read-out of the top-down template preserves

the inequality  and thus confirms the choice of  by the bottom-up

filter.

This theorem has only sense for aType-1 implementation, because there, as a node in theF2 layer activates,the

initial values of  (immediately after presenting an input pattern ) may be altered through the top-down

“ feed-back” connections. In aType-3 description (see Fig. 2) the initial terms  remain unchanged,

independently of what happens in theF2 layer. Therefore, this theorem is implicitely satisfied.

D. Initial Filter Values determine Search Order (Theorem 3 of original ART 1):

Theorem 3 of the original ART 1 architecture states that (page 92 of [Carpenter, 1987a]):

The Order Function ( ) determines the order of search no

matter how many times F2 is reset during a trial.

The proof is the same for the ART 1 and the ART 1m (both Type-3) implementations9. If  is reset by the

vigilance subsystem, the values of  will not change. Therefore, the new order sequence is

 and the original second largest value  will be selected as the winner. If  is now set to zero,

 is the next winner, and so on.

This Theorem, although trivial in aType-3 implementation, has more importance in aType-1 description

where the process of selecting and shutting down a winner alters all valuesTj [Carpenter, 1987a].

E. Learning on a Single Trial (Theorem 4 of original ART 1):

This theorem (page 93 of [Carpenter, 1987a]) states the following, assuming aType-3 implementation is

being considered10:

Suppose that an  winning node  is accepted by the vigilance subsystem.

Then the LTM traces  change in such a way that  increases and all other

 remain constant, thereby confirming the choice of . In addition, the

set  remains constant during learning, so that learning does not

trigger reset of  by the vigilance subsystem.

Proof:

In this case, ifyJ is the winning category accepted by thevigilance subsystem, from eq. (8) we obtain

 . (22)

9.  However, note that the resulting ordering {j1, j2, j3, ...} may differ for the original and the modified architecture.
10.  A more sophisticated demonstration for this theorem is provided in the original ART 1 paper [Carpenter, 1987a]. This is

because the demonstration is performed for aType-1 description of ART 1.

F2 yJ

yj OJ Oj>

TJ Tj> yJ

Tj I

Tj

Oj1
Oj2

Oj3
…> > >

Tj1

Tj2
Tj3

…, ,

Oj2
Oj3

…> > Oj2
Tj2

Oj3

F2 yJ

zi j TJ

Tj yJ

I zJ∩

yJ

TJ LA I zJ∩ LB zJ– LM+=
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The update rule is

 , (23)

and the newTJ value is given by,

(24)

Therefore, learning confirms the choice ofyJ, and by eq. (23) the set  remains constant.

F. Stable Category Learning (Theorem 5 of original ART 1):

Suppose an arbitrary list (finite or infinite) of binary input patterns is presented to an ART 1m system. Each

template set  is updated every time categoryyj is selected by the Winner-Take-AllF2 layer

and accepted by the vigilance subsystem. Some times templatezj may be changed, and others it may remain

unchanged. Let us call the timeszj suffers a change . Since the vector (or template)zj of a

committed node hasM components (of which, at the most,M−1 are set to ‘1’), and by eq. (23) each component

can only change from ‘1’ to ‘0’ but not from ‘0’ to ‘1’, it follows that templatezj can, at the most, sufferM−1

changes,

 . (25)

Since templatezj will remain unchanged after time , it is concluded that the complete LTM memory will

suffer no change after time

 . (26)

If there is a finite number of nodes in theF2 layertlearn has a finite value, and thus learning is completed after a

finite number of time steps.

This is true for both the ART 1 and the ART 1m architectures. Therefore, the following theorem (page 95 of

[Carpenter, 1987a]) is valid for the two algorithms:

In response to an arbitrary list of binary input patterns, all LTM traces

 approach limits after a finite number of learning trials. Each

template set  remains constant except for at most  times

 at which it progressively loses elements, leading to the

Subset Recoding Property: . (27)

The LTM traces  such that  decrease to zero. The LTM traces

 such that  remain always at ‘1’. The LTM traces such that

 but  stay at ‘1’ for times  but will change to and

stay at ‘0’ for times .

zJ new( ) I zJ old( )∩=

TJ new( ) LA I zJ new( )∩ LB zJ new( )– LM+= =

LA I I z J old( )∩ ∩ LB I zJ old( )∩– LM+ LA I zJ old( )∩ LB I zJ old( )∩– LM+ ≥= =

LA I zJ old( )∩ LB zJ old( )– LM+≥ TJ old( ) .=

I zJ∩

zj z1j z2j …zMj, ,( )≡

t1
j( )

t2
j( ) … tr j

j( )< < <

r j M 1–≤

tr j

j( )

tlearn maxj tr j

j( ){ }=

zi j t( )

zj M 1–

t1
1( )

t2
2( ) … tr j

j( )< < <

zj (t1
j( )

) zj (t2
j( )

) … zj (tr j

j( )
)⊃ ⊃ ⊃

zi j t( ) i zj (t1
j( )
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zi j t( ) i zj (tr j

j( )
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1( )≤
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j( )≥



A Modified ART 1 Algorithm. Page: 14

November 23, 1995 12:57 pm

G. Direct Access after Learning Stabilizes (Theorem 6 of original ART 1):

AssumingF2 has a finite number of nodes, the present theorem (page 98 of [Carpenter, 1987a]) states the

following:

After recognition learning has stabilized in response to an arbitrary list

of binary input patterns, each input pattern  either has direct access to

the node  which possesses the largest subset template with respect to ,

or  cannot be coded by any node of . In the latter case,  contains no

uncommitted nodes.

Proof:

Since learning has already stabilizedI  can be coded only by a nodeyj whose templatezj is a subset template with

respect toI . Otherwise, onceyj becomes active, the setzj would contract to , thereby contradicting the

hypothesis that learning has already stabilized. Thus, ifI  activates any node other than one with a subset

template, that node must be reset by thevigilance subsystem. For the remainder of the proof, letyJ be the firstF2

node activated byI . We need to show that ifzJ is a subset template, then it is the subset template with the largest

OJ; and if it is not a subset template, then all subset templates activated on that trial will be reset by the vigilance

subsystem:

 . (28)

If yJ andyj are nodes with subset templates with respect toI , then

 . (29)

Since  is an increasing function of ,

(30)

and,

 . (31)

Therefore, ifyJ is reset ( ), all other nodes with subset templates will be reset ( ).

Now suppose thatyJ, the first activated node, does not have a subset template with respect toI

( ), but another nodeyj with a subset template is activated in the course of search. We need to show

that , so thatyj is reset. We know that,

 , (32)

which implies that . SinceyJ cannot be chosen, it must be reset by thevigilance subsystem, which

means that . Therefore,

 , (33)

I

yj I

I F2 F2

zj I∩

I z j∩ zj ρ I<=

Oj LA zj LB zj– LM+= OJ< LA zJ LB zJ– LM+=

LA LB–( ) zj zj

zj zJ<

Rj

I z j∩
I

----------------
zj

I
------- RJ<

I zJ∩
I

-----------------
zJ

I
-------= = = =

RJ ρ< Rj ρ<

I zJ∩ zJ<

I z j∩ zj ρ I<=

Oj LA LB–( ) zj LM+ OJ< LA I zJ∩ LB zJ– LM+ LA LB–( ) zJ LM+<= =

zj zJ<

I zJ∩ ρ I<

LA zj LB zj– LA I zJ∩ LB zJ– LAρ I LB zJ– LAρ I LB zj–< < <
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which implies that

 . (34)

H. Search Order (Theorem 7 of original ART 1):

The conditions expressed in the original Theorem 7 must be changed to adapt this theorem to the ART 1m

architecture. The modified theorem states the following:

Suppose

 , (35)

and that input pattern  satisfies

 . (36)

Then  nodes are searched in the following order, if they are searched at

all.

Subset templates with respect to  are searched first, in order of

decreasing size. If the largest subset template is reset, then all subset

templates are reset. If all subset templates have been reset and if no

other learned templates exist, then the first uncommitted node to be

activated will code . If all subset templates are searched and if there

exist learned superset templates but no mixed templates, then the node with

the smallest superset template will be activated next and will code . If

all subset templates are searched and if both superset templates  and

mixed templates  exist, then  will be searched before  if and only if

. (37)

If all subset templates are searched and if there exist mixed templates but

no superset templates, then a node  with a mixed template will be

searched before an uncommitted node  if and only if

. (38)

where . The proof has several parts:

a) First we show that a nodeyJ with a subset template ( ) is searched before any nodeyj with a

non-subset template. In this case,

 . (39)

Now, note that

I z j∩ zj ρ I<=

LA

LB
------ M

M 1–
--------------<

I

I M 1–≤

F2

I

I

I

zJ

zj yj yJ

zj zJ< and
I I z j∩–

zJ zj–
----------------------------

LB

LA
------<

yj

yJ

LA I z j∩ LB zj– LM+ TJ I t=0,( )>

TJ I t=0,( ) LA I iziJ 0( )∑ LB ziJ 0( ) LM+∑–=

I zJ∩ zJ=

Oj LA I z j∩ LB zj– LM+ I z j∩ LA LB

zj

I z j∩
----------------– 

  LM+= =
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(40)

because11

 . (41)

From eqs. (35), (39) and (41), it follows that

. (42)

On the other hand,

 . (43)

Therefore,

 . (44)

b) Subset templates are searched in order of decreasing size:

Suppose two subset templates ofI , zJ andzj such that . Then

 . (45)

Therefore node  will be searched before node . By eq. (45), if the largest subset template is reset,

all other subset templates are reset as well.

c) Subset templates  are searched before an uncommitted node :

(46)

Therefore, if all subset templates are searched and if no other learned template exists, an uncommitted

node will be activated and code the input pattern.

11.  We assume thatyj is not an uncommitted node ( ).

zj

I z j∩
---------------- M

M 1–
-------------->

zj M<

zj

I z j∩
----------------

min

zj

zj 1–
----------------

min

M 1–
M 2–
-------------- M

M 1–
-------------->= =

Oj I z j∩ LB

LA

LB

------ M
M 1–
--------------– 

  LM+ LM< <

OJ LA LB–( ) zJ LM+ LM>=

OJ Oj>

zJ zj>

OJ LA LB–( ) zJ LM+= LA LB–( ) zj LM+> Oj=

yJ yj

yJ yj

Oj LA I LBM– LM+ LA M 1–( ) LBM– LM+≤ LB

LA

LB

------ M 1–( ) M– 
  LM+ <= =

LB
M

M 1–
-------------- M 1–( ) M– 

  LM+< LM LA LB–( ) zJ LM+< OJ .= =
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d) If all subset templates have been searched and there are learned superset templates but no mixed

templates, the node with the smallest superset template  will be activated (and not an uncommitted

node ) and codeI :

 . (47)

If there is more than one superset template, the one with the smallest  will be activated. Since

, there is no reset, andI  will be coded.

e) If all subset templates have been searched, and there exist a superset template  and a mixed template

, then  if and only if eq. (37) holds:

 . (48)

e.1)  If eq. (37) holds:

 . (49)

e.2) If :

Assume first that . Then, by eq. (49), it has to be

 . (50)

Since  it had to be , which is false. Therefore, it must be that

, and

 . (51)

f) If all subset templates are searched, and if there are mixed templates but no superset templates, then a

node  with a mixed template ( ) will be searched before an

uncommitted node  ( ) if and only if eq. (38) holds:

(52)

This completes the proof of the modified Theorem 7 for the ART 1m architecture.

yJ

yj

OJ LA I LB zJ– LM+ LA I LBM– LM+> Oj= =

zJ

I zJ∩ I ρ I≥=

yJ

yj Oj OJ>

Oj OJ– LA I z j∩ I–( ) LB zJ zj–( )+=

Oj OJ– LA

LB

LA

------
I I z j∩–

zJ zj–
----------------------------– 

  zJ zj–( ) 0>=

Oj OJ>

zJ zj– 0<

LB

LA

------
I I z j∩–

zJ zj–
----------------------------<

LA LB 0> > I I z j∩– 0<

zJ zj– 0>

LB

LA

------
I I z j∩–

zJ zj–
---------------------------->

yj Oj LA I z j∩ LB zj– LM+=

yJ OJ LA I LBM– LM+=

Oj OJ– LA I z j∩ I–( ) LB zj M–( )– 0 ⇔>=

LA I z j∩ LB zj– LM+ LA I LBM– LM+>⇔ TJ I t=0,( ) .=
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I. Biasing the Network towards Uncommitted Nodes:

In the original ART 1 architecture, choosingL large increases the network’s tendency to choose

uncommitted nodes in response to unfamiliar input patternsI . In the ART 1m architecture, the same effect is

observed when choosing  large. This can be understood through the following reasoning.

When an input patternI  is presented, an uncommitted node is chosen before a coded node  if

 . (53)

This inequality is equivalent to

 . (54)

As the ratio  increases it is more likely that eq. (54) be satisfied, and hence uncommitted nodes are chosen

before coded nodes, regardless of thevigilance parametervalueρ.

J. Remarks:

Even though this Section has shown that the computational properties of the original ART 1 system are

preserved in the ART 1m system, the response of both systems to an arbitrary list of training patterns will not be

exactly the same. The main underlying reason for this difference is that the initial ordering

(55)

is not always exactly the same for both architectures. The next Section will study the differences between the two

ART 1 systems.

  IV. On the Functional Differences between Original and Modified Model

As stated previously, the difference in behavior between the ART 1 and ART 1m models is caused by the

different orderings of the terms of eq. (55). Assuming that both models, at a certain time, have identical weight

templates { }, and the same input pattern  is given, eq. (55) has the following two formulations:

(56)

where  might be different than . The ordering resulting for the original ART 1 description is modulated by

parameter . For example, if  is very large compared to all  terms, then the ordering depends

exclusively on the values of ,

(57)

If  is very close to 1, then the ordering depends on the ratios,

LA/LB

yj

LA I z j∩ LB zj– LA I LBM–<

LA

LB

------
M zj–

I I z j∩–
---------------------------->

LA/LB

Oj1
Oj2

Oj3
…> > >

zj I

Original ART 1:
I z j1

∩
L 1– zj1

+
---------------------------

I z j2
∩

L 1– zj2
+

---------------------------
I z j3

∩
L 1– zj3

+
--------------------------- …> > >

Modified ART 1:
LA

LB

------ I z l1
∩ zl1

–
LA

LB

------ I z l2
∩ zl2

– …> >

jk lk

L 1> L zj

I z j∩

I z j1
∩ I z j2

∩ I z j3
∩ …> > >

L
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(58)

Likewise, for the ART 1m description, the ordering is modulated by a single parameter . Ifα is

extremely large, the situation in eq. (57) results. However, forα very close to 1, the ordering depends on the

differences,

(59)

Obviously, the behavior of the two ART 1 descriptions will be identical for large values of  andα. However,

moderate values ofL andα are desired in practical ART 1 applications. On the other hand, it can be expected that

the behavior will also tend to be similar for very high values ofρ: if ρ is very close to 1, each training pattern will

form an independent category. However, different training patterns will cluster into a shared category for smaller

values ofρ. Therefore, a very similar behavior between ART 1 and ART 1m will be expected for high values of

ρ, while more differences in behavior might be apparent for smaller values ofρ.

In order to compare the two algorithms’ behavior, we have performed exhaustive simulations using

randomly generated training patterns sets12. As an illustration of a typical case where the two algorithms produce

different learned templates, Fig. 4 shows the evolution of the memory templates, for both the ART 1 and the ART

1m algorithms, using a randomly generated training set of 10 patterns with 25 pixels each. Weight templates for

original ART 1 are named , while for ART 1m they are named . The vigilance parameter was set to

for the original ART 1 , and for the ART 1m . In Fig. 4, boxed category templates are those that

met the vigilance criterion and had the maximum  value. If the box is drawn with a continuous line, the

correponding  template suffered modifications due to learning. If the box is drawn with dashed line, learning

did not alter the corresponding  template. Both algorithms stabilized their weights in 2 training trials. Looking

at the learned templates we can see that input patterns 4 and 5 clustered in the same category for both algorithms

(  for original ART 1 and  for ART 1m ). This also ocurred for patterns 6 and 8 (  and ) and for patterns

3, 9 and 10 (  and ). However, patterns 1, 2, and 7 did not cluster in the same way in the two cases. In the

original ART 1 algorithm patterns 1 and 7 clustered into category , while pattern 2 remained independent in

category . In the ART 1m algorithm patterns 1 and 2 clustered together into category , while pattern 7

remained independent in category .

To measure a distance between the two templates  and , let us use the Hamming distance between two

binary patterns  and ,

 , (60)

12.  For all simulations in this paper, randomly generated training patterns sets were obtained with a 50% probability for a
pixel to be either ‘1’ or ‘0’.
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∩
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Inputs
Original ART 1 ART 1m

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

z1 z2 z3 z4 z5 z1’ z2’ z3’ z4’ z5’

 Fig. 4: Comparative Learning Example (ρ=0.4, L=5,α=2)

1,7 2 6,8 4,5 3,9,10 1,2 6,8 4,5 7 3,9,10
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where

(61)

We can use this metric to define the distance between two sets of patterns  and  as that which

minimizes

 . (62)

For this purpose, the optimal ordering of indexes  must be found. In the case of Fig. 4 (where

), the distanceD between the two learned patterns sets is given by,

 . (63)

In general, we can define the distance between two patterns sets  and  as,

 . (64)

In the case of Fig. 4, both algorithms produced the same number of learned categories. This does not always

occur. For the case where a different number of categories results, we measured the distance between the two

learned sets by adding as many uncommittedF2 nodes to the set with less categories as necessary to equal the

number of categories. An uncommitted category has all its pixels set to ‘1’. Thus, having a different number of

committed nodes drastically increases the resulting distance, and is consequently a strong penalty.

We have repeated the simulation of Fig. 4 many times for different sets of randomly generated training

patterns and sweeping the values ofρ, L, andα. For each combination ofρ, L, andα values, we repeated the

simulation 100 times for different training patterns sets, and computed the average number of learned categories,

learning trials, and distance between learned categories, as well as their corresponding standard deviations. Fig.

5 and Fig. 6 present the results of these simulations. Fig. 5(a) shows how the average number of learned

categories changes withL (from 1.01 to 40) for different values ofρ, for the original ART 1. Asρ decreases,

parameterL has more control on the average number of learned categories. Fig. 5(b) shows the standard

deviation for the number of learned categories of Fig. 5(a). As the number of learned categories approaches the

number of training patterns (10 in this case), standard deviation decreases. This happens for large values ofL

(independently ofρ) and for large values ofρ (independently ofL). Fig. 5(c) and Fig. 5(d) show the same as Fig.

5(a) and Fig. 5(b) respectively, for the ART 1m algorithm. As we can see, parameterα (swept from 1.01 to 5.0)

of ART 1m has more tuning power than parameterL of the original ART 1. On the other hand, ART 1m presents

a slightly higher standard deviation than the original ART 1. Nevertheless, the qualitative behavior of both
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algorithms is similar. Fig. 5(e) and Fig. 5(f) show the average number of learning trials and their corresponding

deviations, needed by the original ART 1 algorithm to stabilize its learned weights. Fig. 5(g) and Fig. 5(h) show

the same for the ART 1m algorithm. As we can see, the ART 1m algorithm needs a slightly higher average

number of learning trials to stabilize. Also, the standard deviation observed for the ART 1m algorithm is slightly

higher. Finally, Fig. 6 shows the resulting average distances (as defined by eq. (64)) between learned categories

of the ART 1 and the ART 1m algorithms. Forρ changing from 0.0 to 0.7 in steps of 0.1, each sub-figure in Fig.

6 depicts the resulting average distance for different values ofL while sweepingα between 1.01 and 5.0 .

It seems natural to expect that, for a given value ofρ and a given value of the original ART 1 parameterL,

there is an optimal value for the ART 1m parameterα that will minimize the difference in behavior between the

two algorithms. To find this relation betweenL andα for eachρ, we computed (for a givenρ andL) the value

of α that minimizes the average distance between the learned patterns sets generated by the two algorithms. The

results of these computations are shown in Fig. 713. Fig. 7(a) shows a family of curves (one for each value of

ρ), that shows the optimal value ofα as a function ofL. Fig. 7(b) shows the resulting minimum average distance

between learned sets for the same family of curves. As shown in Fig. 7(a), the optimum fit between parameters

α andL is very slightly dependent on the value ofρ.

As can be concluded from Fig. 5, Fig. 6, Fig. 7, and the discussion in this Section, the behavior of the two

algorithms is qualitatively the same although some slight quantitative differences can be observed. ART 1m

parameterα has a wider tuning range than original ART 1 parameterL. On the other hand, ART 1m needs a

slightly higher number of learning trials than the original ART 1. Also, there is an optimal adjustment between

parametersα andL that minimizes the difference in behavior between the two algorithms, and this adjustment

appears approximately independent ofρ.

13.  Note that high values ofρ andL were omitted in this analysis, since in these cases the behavior of the two algorithms
tends to be similar, regardless of the fit between parametersL andα.
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  V. Extending the ART 1m Model to Type-2 and Type-1 Descriptions

The great advantage of the ART 1m algorithm is its ability to produce a very simpleType-3 hardware

implementation, requiring only a binary valued memory template and only addition, subtraction and comparison

operations, as well as a Winner-Take-All competition. AlthoughType-2 andType-1 descriptions can be found

that lead to theType-3 behavior of the ART 1m algorithm described in this paper, these descriptions do not

possess the hardware-attractive features of theType-3 implementation. Nevertheless, briefType-2 and aType-1

descriptions for this ART 1m algorithm are presented in this Section.

A. A Type-2ART 1m Implementation

The change in weights must be smooth in aType-2 description. Every time an input patternI  is presented and

anF2 category node is selected for LTM storage, only a partial change in LTM traces is allowed. In this case, it

is obvious that we can no longer use a binary valued weight template.

As seen in Section II, Fig. 2(c) shows the flow diagram of aType-3 implementation of the ART 1malgorithm.

Extending this diagram to aType-2 description is straightforward. The only box that needs to be changed is that

corresponding to the update of weights. Instead of using the algebraic formula  we

have to use a time domain differential equation that would lead to the same steady state. The following set of

differential equations fulfills this requirement,

zJ new( ) I zJ old( )∩=

 Fig. 8: ART 1m algorithm Type-2 implementation

Update weights:

Apply LTM differential equations

during a time intervalτ

Initialize weights:

zj i 1=

Read input pattern:
I I1 I2 …IM, ,( )=

Tj LA I z j∩ LB zj– LM+=

Winner-Take-All:
yJ 1 if TJ maxj Tj{ }==

yj 0 if j J≠=

ρ I I z J∩> TJ 0=
YES

NO
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 , (65)

whereK is a positive constant,  a sigmoidal function, and  an STM variable given by,

 . (66)

If  is the time required for the LTM eqs. (65) to settle to their steady state, the update of weights (i.e., the

simulation of eqs. (65)) would be allowed only for a time interval  for each input patternI  presentation.

As τ approaches , application of eqs. (65) or the update weights equation of Fig. 2(c) would become

equivalent. Fig. 8 shows the flow diagram corresponding to thisType-2 implementation of the ART 1m

algorithm.

B. A Type-1ART 1m Implementation

For aType-1 implementation, an appropriate set of STM equations must be found that leads to the flow

diagram of Fig. 8 when the STM time constants are very small compared to the LTM ones. The following time

domain STM differential equations would serve our purpose,

(67)

where,

(68)

Parameters , , , , , , , and  are positive and constant. Functions  and  are

sigmoidal. Note that . Functions  will be responsible for the resulting Winner-Take-All action

of theF2 layer. These STM equations are identical to those of the original ART 1 algorithm [Carpenter, 1987a],

except that we use one weight template instead of two. However, the main difference lies in the way the terms

 are computed. In this case  will be given by the following equation,

 . (69)

where  is constant and positive. Using eqs. (67)-(69) together with an STMReset System will assure that if

the STM time constants are very small compared to the LTM ones, theType-2 description of Fig. 8 results. The

Reset System can be identical to that used in the original ART 1 system: each active input ( ) sends an

żi j Kyj zi j h xi( )+–[ ]=

h ·( ) xi

xi I i yjzi j
j

∑ I iziJ= =

T∞

τ T∞«

T∞

F1: εẋi xi– 1 A1xi–( ) Ji
+

B1 C1xi+( ) Ji
-

–+=

F2: εẋj xj– 1 A2xj–( ) Jj
+

B2 C2xj+( ) Jj
-

–+=

Ji
+

I i D1 f xj( ) zi j ,
j

∑+=

Ji
-

f xj( )
j

∑ ,=

Jj
+

g xj( ) Tj ,+=

Jj
-

g xk( ) .
k j≠
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ε A1 B1 C1 A2 B2 C2 D1 f ·( ) g ·( )
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excitatory signal of sizeP to an orienting subsystemA. EachF1 node  which exceeds zero generates an

inhibitory signal of sizeQ and sends it toA. The orienting subsystemA generates a nonspecific reset wave toF2

whenever

 , (70)

whereI  is the input pattern and  is the number ofF1 nodes such that . The nonspecific reset wave shuts

off activeF2 nodes until the input patternI  shuts off.

  VI. Conclusions

This paper has presented, analyzed, and studied a modification to the original ART 1 algorithm. Such

modification has drastic consequences from a hardware implementation point of view, in the sense that it

extraordinarily simplifies the hardware requirements and components of the overall system and provides a very

important increased performance potential. Although the modification produces some changes in the original

behavior of the system, we have shown that all the computational properties of the original ART 1 algorithm are

preserved. We have also performed exhaustive simulations to highlight the differences in behavior introduced by

the modified system. Finally, we have sketched how to extend conceptually such a modified system to a non-Fast

Learning description although this would lead to the loss of important hardware advantages.

We have used this ART 1m model to implement a high performance, analog current mode, real-time

clustering chip in a standard low cost 1.5µm CMOS process [Serrano, 1994, 1996]. Although we have used a

specific circuit design technique (analog current mode), the ART 1 model described in this paper can be used

with other circuit techniques. The only functions needed are binary storage, sums and/or subtractions,

comparisons, and a Winner-Take-All action. The advantages of the ART 1m model can be exploited using any

hardware technique. We hope that the modifications introduced in this paper can be used by other neural

hardware engineers regardless of the circuit design technique they choose to use.
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Appendix
During the writing of this paper other alternatives to the computation of the terms  of eq. (7) have been

proposed [Carpenter, 1994] for a Fuzzy-ART architecture. Since ART 1 reduces to a particular case of

Fuzzy-ART when the input patternI  is binary valued, any valid way of computing  in Fuzzy-ART should, in

principle, be valid for ART 1 as well. The different  functions (also called ‘distances’ or ‘choice functions’)

proposed in [Carpenter, 1994] when particularized for ART 1 result in the following formulations:

(71)

Note that these functions are also based on the subtraction operation, as in ART 1m, but are computationally

more expensive since either  or  has to be computed as well. Thechoice function that we have used

in this paper would be equivalent to the following,

 , (72)

and parameter  would have been equivalent to

 . (73)

If all the original ART 1 properties are to be preserved, we know now that  has to be greater than one. This

implies,

 . (74)

Tj

Tj

Tj

Function 1: I z j∩ zj– ε zj I z j∪–( ) ,+

Function 2: I z j∩ zj– ε zj I–( ) .+

I z j∪ I
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-----------=
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With respect to thechoice functions in eq. (71), Function 2 is mathematically equivalent to eq. (72), because

the only difference between the two is the term . Since the input is common to all of the category nodes and

does not change during a single presentation, this term effectively acts as a uniform negative bias on all of the

category nodes, regardless of the pattern coded in their templates. Eq. (72), therefore, is more efficient because

the input size computation is unnecessary.

Function 1 of eq. (71) is another validchoice function, but is also computationally more expensive than eq.

(72). It can be shown that the original ART 1 computational properties are preserved when this function is used

(provided ). To see this, substitute the equations of Section III whose numbers appear in the first column

of Table 1 by the equations in the second column, and note that

(75)

are always satified (if we know that  then the ‘≥’ and ‘≤’ signs in eq. (75) can be substituted by ‘>’ and ‘<’,

respectively). Table 1 only provides the demonstrations for propertiesA, B, E, G,andI of Section III. Properties

C, D,andF are automatically satisfied since they do not depend on the explicit formulation of . With respect

to propertiesH (Search Order) it can be shown that all of them are fulfilled if eqs. (35), (37), and (38) are changed

to

 , (76)

 , and (77)

, (78)

respectively.

ε I–

ε 0>

I z j∪ zj I,≥

I z j∩ zj I,≤
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original
equation

new equation

(15)

(16)

(18),(19)

(24)

(29)

(32)

(33)

(53)

(54)

Table 1
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