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RESUMEN 

 

En este trabajo proponemos el uso de mixturas de distribciones beta para modelizar la 

severidad impícita en el mercado. En nuestro análisis extraemos las tasas de recuperación de 

la cotización de los credit default swaps (CDS) en lugar de utilizar bonos que han impagado. 

La principal ventaja de obtener la estructura temporal implícita de tasas de recuperación de 

los CDS en lugar de utilizar los bonos impagados es que nos permite identificar tasas de 

recuperación para empresas con baja probabilidad de impago. Del análisis empírico se 

obtienen resultados que no permiten aceptar que una única distribución beta sea capaz de 

representar las tasas de recuperación implícitas mientras que la propuesta basada en mixturas 

de distribuciones beta si que es aceptada. Además, hay que destacar la importancia de utilizar 

esta metodología de ajuste por su importancia para una correcta estimación del Valor en 

Riesgo de crédito. 
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THE ROLE OF MARKET-IMPLIED SEVERITY MODELING FOR CREDIT VaR 

 

ABSTRACT 

 

In this paper we propose to use beta-component mixtures to model the market-implied 

severity. In our analysis we extract and identify recovery rates from credit default swaps 

instead of using defaulted bonds. The main advantage of extracting implied, endogenous and 

dynamic functions of recovery rates from credit default swaps versus using defaulted bonds is 

that it allows to identify recovery rates of low probability of default companies. We carry out 

an empirical analysis and our results show that a single beta distribution is rejected as a 

correct specification for implied recovery rates while a beta-component mixture is accepted. 

Futhermore, we highlight the importance of this modeling approach by focusing on its role for 

credit VaR. 
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1. INTRODUCTION 
At present there is a growing interest in modeling severity, which is defined as one minus the recovery 

rate. It is essential to approximate the severity distribution because risk quantities, such as expected credit loss, 

loss given default and credit VaR, rely on it. Usually in credit risk practice, it has been approximated by the 

analysis of recovery rates on defaulted bond issues (Altman et al. 2005; Acharya et al., 2007), eventhough there 

exists a lack of data on recoveries. The main weakness of this approach is that it does not allow to estimate the 

severity distribution of low probability of default companies, which have not enough defaulted bonds to estimate 

recovery rates accurately. Most of the industry-sponsored models, such as Portfolio Manager, CreditMetrics and 

Moody's KMV model, treat recovery rates as stochastic variables modeled through a beta distribution. Although 

there is no theoretical reason that this is the right shape, it has been widely used in practice to describe the 

observed behavior of recovery rates since beta distribution is one of the few common “named” distributions that 

give probability 1 to a finite interval. Nevertheless, in the related literature, there is strong evidence that the 

recovery rate distribution may exhibit several local modes (Asarnow and Edwards, 1995; Gourieroux and 

Monfort, 2006; Hagmann et al., 2005; Renault and Scaillet, 2004; Schuermann, 2005, among others). The 

several modes can arise from different periods (recession and expansion), different types of collateral securing 

the instruments or from various seniority levels in the same data set (senior secured, senior unsecured, 

subordinated and junior subordinated). Using data from Moody's Default Risk Service Database, Schuermann 

(2005) illustrates that recovery rate distributions conditioned to the stage of the business are clearly multimodal. 

Renault and Scaillet (2004) shows that nonparametric plots of the recovery function frequently exhibit more than 

two local modes using data from Standard & Poor's PMD classified by seniority and by industry. The presence 

of multimodality can be suggestive of more than one underlying unimodal distribution, each referring to a certain 

group of recovery rates. These groups can be estimated by means of beta-component mixtures. They have simple 

tractability for modeling and flexibility enough to describe unknown and multimodal distributional shapes which 

apparently can not be modeled by a beta distribution. 

The rapid growth of credit derivative market enables to make use of credit default swaps (CDS) as 

market indicators. As Düllmann and Sosinska (2007) pointed out credit default swaps are less limitated as 

market indicators than credit spreads of subordinated debt issues, since CDS represent insurance premia for 

default events and measure credit risk more directly. Most of studies on analyzing the usefulness of CDS as 

market indicators infer probability of default from CDS, imposing an exogenously constant recovery rate. The 

market convenction is to assume that the average recovery rate is around 50%. Under such assumption, the term 

structure of CDS spreads can be used to extract the term structure of risk-neutral default probabilities either 

using a structural model (Finger et al., 2002; Düllmann and Sosinska, 2007) or a reduced-form framework 

(Duffie and Singleton, 1999; Jarrow et al., 1997; Jarrow, 2001; Madan et al, 2003). However it is unrealistic to 

consider that recovery rates held fixed given that the pattern of recovery rate distribution can vary significantly 

across seniority level, industries, stages of business cycle, etc. 

At present recovery rate extraction from CDS is relatively scarce. The approaches which focus on 

extracting simultaneously both the probability of default and recovery rates may be classified into time-series 

dependent approaches, cross-sectional approaches and panel data approaches (Christensen, 2005; Pan and 

Singleton, 2008; Chava et al., 2006; Acharya et al., 2007). Das and Hanouna (2008) adopts a calibration 

approach for bootstrapping implied recovery rates from CDS spread curves at any single point in time. Their 
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procedure uses information from the equity market, the credit default swap market and it also uses the forward 

curve of riskless rates, thereby incorporating information from the interest rate market as well. In contrast to the 

above approaches only information on a given trading day is used, an entire forward term structure of recovery is 

delivered and a dynamic model of recovery is offered through a functional relation between recovery and state 

variables. Das and Hanouna (2008) model is flexible and robust. It is flexible in the sense that it can be used with 

different state variables, alternate recovery functional forms and calibrated to multiple debt tranches of the same 

issuer. It is robust because it evidences parameter stability over time, is stable to changes in inputs and provides 

similar recovery term structures for different functional specifications. Finally, their model is easy to calibrate. 

In this paper we approximate the severity distribution of a given company at any single point in time 

using recovery rates implicit in the term structure of CDS. In doing this, we implement the approach introduced 

by Das and Hanouna (2008). Our main objective is to model the market-implied severity as a mixture of beta 

components in order to capture the observed multimodality. Futhermore, we highlight the importance of this 

modeling approach by focusing on its role for credit VaR, which is a commonly used risk quantity. Specifically, 

simulation experiments are carried out to evaluate the implications of computing credit VaR in the case where a 

beta distribuion is wrongly assumed when the true underlying severity distribution is a beta-component mixture. 

The paper is organized as follows. Section 2 describes briefly the methodology developed by Das and 

Hanouna (2008) to extract and identify the implied forward curve of recovery rates. Section 3 describes our 

proposal of modeling market-implied severity by finite mixtures of beta components. This section reports the 

representation, interpretation and estimation of mixture distributions using the Expectation-Maximization (EM) 

algorithm. Section 4 reports empirical results based on four companies which belong to the European stock index 

EUROSTOXX 50. In Section 5 an application to credit VaR estimation for two sets of portfolios is carried out. 

Finally, conclusions are drawn in Section 6. 

 

2. IDENTIFICATION OF IMPLIED RECOVERY RATES FROM CDS 
 The most important instrument in the credit derivative market is the credit default swap (CDS), which 

essentially provides insurance against the default of an issuer (the reference credit) or on a specific underlying 

bond (the reference security). In its most basic form the buyer of the protection pays an annual or semiannual 

premium until either the maturity of the contract or default on the reference entity, whichever comes first. If a 

default occurs, the seller of the protection compensates the buyer for the loss on the reference security by either 

paying the face value of the bond in exchange for the defaulted bond (physical settlement) or by paying an 

amount of cash which compensates the buyer of the protection for the difference between the post-default market 

value of the bond and the par value (cash settlement). Typically, the underlying credit of a default swap is a rated 

firm with publicly traded debt or a sovereign entity. More details on CDS may be found in Lando (2004). 

The steps of Das and Hanouna (2008) methodology to identify implied, endogenous, dynamic functions of the 

recovery rate and default probability from CDS can be sum up as follows: 

1. The standard relationship of CDS spreads to default intensities and recovery rates is presented, 

considering that the fair pricing of a default swap must be such that the expected present value of 

payments made by buyer and seller are equal:  



 4

)1()1(
1

1
1

1 jj

N

j
j

N

j
jjN DeSDSC j φλ −−== −

=
−

=
− ∑∑  (1) 

where N is the number of periods in the model, indexed by Nj ,...,2,1= ; CN is the fair pricing of a 

default swap (is the premium); 
∑

= =

−
j

k
k

eS j
1

λ

 is the survival function of a firm and jλ  denotes the 

default intensity, ),1( jjj −= λλ , constant over forward period j (it is assumed that 1)0( =S ; that 

is, a firm is solvent); jD  is the discount function, written as functions of the forward rates, 

∑
= =

−
j

k
kf

j eD 1 ; ),1( jjj −= φφ  is the recovery rate in the event of default (it is the recovery rate in 

the event that default occurs in period j; then, the loss payment on default is equal to )1( −jφ ); 

)1( jeS j
λ−−  is the probability of surviving until period 1−j  (.e., the expected loss payment in 

period j is based on the probability of default in period j conditional on no default in a prior period). 

2. Default intensities are represented in terms of spreads and recovery rates. Through a process of 

bootstrapping, the general form of the intensity probability is (for all j): 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−+−
−=

−

−

= =
− ∑ ∑

)1(

)1(
ln)1(

1

1

1 1
1

jjj

j

k

j

k
jjkjjj

j DS

HCGDS

φ

φ
λ , 

)1()1(1 jjjj DeSG j φλ −−≡ −
− , 

jjj DSH 1−≡ . 

(2) 

3. A functional relationship of recovery rates to default intensities is choosen, which may generally be 

written as [ ]θλφ ;g= , where both nR∈λφ,  are term structure vectors, and θ  is a parameter set. 

4. An iterative fixed-point algorithm is begun using a starting value for 5.0)( =Tφ , for all T. In the 

iteration process, (i) finding )(Tλ  from equation (2) and (ii) finding )(Tφ  from )(Tλ  using the 

loglinear regression relationship. The system stabilizes rapidly within a few iterations. 

The approach which is taken in this paper is to use information from the equity market through the Merton 

model (Merton, 1974). The identification function between recovery rate and default intensity for the iterative 

process is given by the following loglinear relationship: 

))(ln())(ln( 10 TT λθθφ += . (3) 

The term structure of interest rates is estimated using the commonly used Nelson and Siegel model (Nelson, 

1987), which uses a single exponential functional form over the entire maturity range. This model suggests a 

parsimonious parametrization of the instantaneous forward rate curve given as follows: 
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The parameters α1, α2, α3 and τ can be interpreted as: α1+α2 is the instantaneous short rate; α1 is the consol rate; 
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3. FINITE MIXTURES OF BETA DISTRIBUTIONS IN MODELING IMPLIED 

RECOVERY RATES 
We propose to use finite mixtures of beta distributions in proportions π1,..., πg to model implied recovery rates. 

The mixing proportions represent the percentage of recovery rates belonging to each component of the mixture, 

are non-negative and sum to 1. Such distributions provide an extremely flexible method of modeling unknown 

and multimodal distributional shapes which apparently cannot be modelled by a single beta distribution. Each 

component represents a local area of support of the true distribution which may reflect the behaviour of recovery 

rates, for instance, belonging to a particular industry, with a specific seniority level or during a stage of the 

business cycle. 

The probability density function of the recovery rates is given by 
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in which ),...,( 1 gπππ = , ),...,( 1 gppp = , ),...,( 1 gqqq =  and ),;( jjj qpyf , j=1,…,g, denotes the 

values of the univariate beta probability function specified by the parameters pj and qj, given by: 
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where, ),( jj qpB  denotes the beta function, pj is the shape parameter and qj is the scale parameter. 

For a given value of g the unknown parameters in the beta mixture model are estimated by the EM (Expectation-

Maximization) algorithm (Dempster et al., 1977). Under the assumption that nyy ,...,1  are independent and 

identically distributed random variables following a beta mixture distribution, the log-likelihood function is 

given by 
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With the maximum likelihood approach to the estimation of ),,( qpπψ = , an estimate is provided by an 

appropriate root of the likelihood equation 
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The EM algorithm is used to find solutions of (9) corresponding to local maxima and it is guaranteed to 

converge to the MLE. Overall, it is based on the idea of replacing one difficult likelihood maximization with a 

sequence of easier maximizations whose limit is the answer to the original problem. 

In the EM framework, the observed univariate data vector ),...,( 1 nYYY =  is completed with a component-

label vector ),...,( 1 nZZZ = . The label variable )( jZZ iij = , i=1,…,n, j=1,…,g, is 0 or 1 according to 

whether i corresponds to the component j. Hence, ),...,( 1 nZZZ =  is an unobservable vector of component-

indicator variables, and iZ , i=1,…,n, are assumed to be independent random variables from a multinomial 

distribution consisting of one draw on g categories with respective probabilities gππ ,...,1 . That is, 

nZZ ,...,1 ∼Multg(1,π), (10) 

where ),...,( 11 −= gπππ . The complete-data log-likelihood is 
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The EM algorithm allows us to maximize )|,,( yqpL π  by working with ),|,,( zyqpLc π . The EM 

algorithm is an iterative procedure. Each iteration comprises of the “E-step”, which calculates the expected log 

likelihood, and the “M-step”, which finds its maximum. 

Now, the algorithm starts: From an initial value ),,( )0()0()0()0( qpπψ = , a sequence is created according to 

=+ )1(rψ the value that maximizes [ ] );(,|),|(log )()( rr QyzyLE ψψψψ = , (12) 

which is the conditional expectation of the complete data log-likelihood ),|,,(log zyqpLc π , given the 

observed data y, using the current fit )(rψ  for ψ . 

 

 On the (r+1) iteration, the E-step requires the calculation of );( )(rQ ψψ . Since ),...,( 1 nZZZ =  is 

non observed data, the E-step is affected by replacing zij by its conditional expectation given yj, using )(rψ  for 
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 The hidden key to the algorithm is the application of the information inequality (Demspter et al., 1977, 

lemma 1), which states that )|ˆ()|ˆ( )()1( yLyL rr ψψ ≥+ , with equality holding if and only if successive 
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iterations yield the same value of the maximized expected complete-data log-likelihood, that is, 

[ ] [ ]yzyLEyzyLE rrrr ,ˆ|),|ˆ(log,ˆ|),|ˆ(log )()()()1( ψψψψ =+ . 

 

4. MARKET-IMPLIED SEVERITY: A MODEL BASED ON A BETA-COMPONENT 

MIXTURE 
This study uses data from Bloomberg Financials on CDS spreads for Spanish industrial quoted companies with 

liquid traded CDS, which belong to the EUROSTOXX 50 index, for the period from January 2004 to October 

2007. They are low credit risk companies and are Repsol, Iberdrola, Telefonica and Endesa. The data consist on 

a CDS spread curve with maturities from 1 to 10 years for each company and each day. 

For each of the 935 days in the sample and each company we compute the term structure of forward recovery 

rates by applying (Das and Hanouna, 2008) methodology. Then, we obtain ten implied recovery rate 

distributions for each company, one for each maturity. To examine the shape of the implied recovery rate 

distribution we will restrict ourselves to the most frequently traded CDS maturity of 5 years, other maturities are 

considerably less liquid. 

Figure 1 shows the histograms of the 5-year maturity implied recovery rates which we have identified from (Das 

and Hanouna, 2008) methodology. 

 
 
Fig. 1 Histograms of implied recovery rates 
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Table 1: PURE method 
PURE method g=1 g=2 g=3 g=4 
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sR∈θ  appearing in the postulated null distribution ),(.;θF , either a beta or a mixture distribution, by an 

estimate. Owing to θ  is a vector of unknown parameters, the CVM test statistic is defined as 

{ }
2

1
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j
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where (.)nF  is the empirical distribution function and θ̂  is the maximum likelihood estimate of θ . 

Bootstrap methodology is applied to implement this type of goodness-of-fit tests because the tabulated 

asymptotic critical values have been deduced for the case in which the postulated null distribution is totally 

known and the observations are independent and identically distributed random variables (Shorack and Wellner, 

1986). Nevertheless, those asymptotic critical values are no longer valid when the CVM test statistic is 

constructed substituting the unknown parameters by their maximum likelihood estimates because it is no 

distribution-free. The bootstrap procedure works as follows: 

1. Let nYYY ,...,,. 21  be a sequence of recovery rates. 

2. Considering that the null distribution is a beta distribution ),(.; qpB , estimate by maximum likelihood 

p and q. In this way, )ˆ,ˆ(.; qpB  is obtained. Draw the empirical distribution of jY , nj ,...,2,1= , and 

evaluate 2ˆ
nW  using )ˆ,ˆ(.; qpB . 

3. Repeat B times the following: Generate a sample of random variables **
2

*
1 ,...,, nYYY  from )ˆ,ˆ(.; qpB . 

Using p̂  and q̂  and *
jR  calculate new maximum likelihood estimates *p̂  and *q̂ . Evaluate the test 

statistic using *
jY  and )ˆ,ˆ(.; ** qpB . It is denoted *2ˆ

nW . In this way, a sample of B independent 

(conditional on the original sample) observations of 2ˆ
nW  is obtained, say *2*2

2
*2

1
ˆ,...,ˆ,ˆ

nBnn WWW . 

4. Let *2
)1(

ˆ
BnW α−  the B)1( α− -th order statistic of the sample *2*2

2
*2

1
ˆ,...,ˆ,ˆ

nBnn WWW , given a significance 

level α. Reject the null hypothesis at the significance level α if 2ˆ
nW > *2

)1(
ˆ

BnW α− . 

5. Compute the bootstrap p-value as BWWcardp nnbB /)ˆˆ( 2*2 ≥= , .,...,1 Bb =  

Also the procedure above is repeated when the null distribution is a mixture of three-beta components. Results 

based on B=500 bootstrap samples are shown in Table 2. 

 

Table 2. Goodness-of-fit test results 
p-value REPSOL ENDESA IBERDROLA TELEFONICA 

g=1 0.000 0.000 0.000 0.000 
g=2 0.020 0.000 0.000 0.000 
g=3 0.953 0.611 0.647 0.999 

Bootstrap p-values of testing: (a). H0: “The recovery rate distribution is a beta (g=1)” versus H1: “The recovery rate distribution is not a beta 
distribution”; (b). H0: “The recovery rate distribution is a mixture of two-beta components (g=2)” versus H1: “The recovery rate distribution 
is not a mixture of two-beta components”; (c). H0: “The recovery rate distribution is a mixture of three-beta components (g=3)” versus H1: 
“The recovery rate distribution is not a mixture of three-beta components” 
 

The beta assumption is rejected in all cases while the three-beta mixture is accepted at 1%, 5% and 10% 

significance levels.This is not unexpected given the results reported for the PURE method and the graphical 

analysis. 
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5. BETA-COMPONENT MIXTURE MODEL ROLE IN CREDIT VaR ESTIMATION 
From the viewpoint of credit VaR users it is absolutely relevant to asses the degree of precision in the reported 

VaR. The severity distribution is essential to estimate credit VaR and, obviously, the systematic use of the beta 

distribution to estimate it can lead to mismeasured credit VaR quantity.  

In this section simulation experiments are carried out to show that the assumption of a beta-component mixture 

produces much more accurate measures of credit VaR than the commonly used beta distribution. Some 

simulation results are presented to illustrate the effects of computing credit VaR in the case where a beta 

distribution is wrongly assumed. In these simulation experiments, the number of risk exposures of a portfolio is 

1000, the credit loss is computed as one minus the recovery rate of those exposures at default, the binomial 

default probability is low and equal to 0.5% because we are interested in low probability of default companies 

and the pairwise default probability is 2.8%. Four scenarios are considered: data are generated from four 

different beta-component mixtures, specifically, from the estimated three-beta component mixtures fitted in the 

previous section. Under each scenario the difference between CvaRbeta and the corresponding credit VaR, 

CVaRmixture, is computed. CvaRbeta is calculated using the beta distribution to estimate the data distribution. 

Table 3 illustrates the different scenarios. 

 

Table 3. Four scenarios. Four mixtures of three-beta components 

∑
=

3

1
),(.;

k
kkk qpbλ  Scenario I Scenario II Scenario III Scenario IV 

1p  2.784 1.931 2.906 0.743 

1q  5.879 3.453 13.911 3.721 

2p  20.994 9.165 27.652 34.860 

2q  17.489 8.126 30.001 40.068 

3p  16.505 11.650 6.097 9.943 

3q  1.989 2.358 1.450 1.817 

1λ  0.445 0.307 0.094 0.042 

2λ  0.113 0.546 0.095 0.248 

3λ  0.440 0.145 0.809 0.708 
Note: Each scenario is given by a mixture of three-beta components whose parameter values are selected from estimating recovery rate 
distributions in Section IV. 
 

The steps of the procedure to compute the diffence between CvaRbeta and CVaRmixture are the following 

(Arvanitis et al., 1998):  

1. Generate default indicator functions jX , 1000,...,2,1=j  by drawing correlated standard normal 

random variables jY : 
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where ijλ  is the pairwise default probability, 1000,...,2,1=i , 1000,...,2,1=j . The covariance 

matrix can be factorised as tAAC = , for some A (by Cholesky factorisation or ortogonal diagonalisation on C. 

If u is a multivariate process with components independently drawn from the standard normal distribution, then 

the vector Auv =  has the required matrix C. Having determined the correlation between the normal random 

variables, the default indicator function jX  is defined as 

),( zvIX jj <=  (16) 

where jv  is the j-element of the vector v and )(1
jdNz −= , being jd =1% or 0.5% the binomial default 

probability for all j. 

2. Compute ∑
=

1000

1j
jX . This value gives the number of portfolio assets which present default. 

3. Add the recovery rates corresponding to the assets which present default in each portfolio (which are 

those with 1=jX ). 

4. Repeat the procedure above 10000 times to compute the corresponding credit loss distribution. Given a 

confidence level )1( α− , compute the corresponding )1( α− -quantile or credit VaR, denoted by 

)1( α−q . 

Finally, bootstrap methodology is used to test if the difference mixturebeta qqT )1()1(1 αα −− −=  is statistically significant. 

The steps of the bootstrap procedure are: 

1. Generate a sequence o recovery rates nYYY ,...,,. 21  from the estimated mixture distribution. 

2. Under the null distribution, estimate the unknown parameters by maximum likelihood. In this way, the 

estimated of the null distribution ∑
=

3

1

)ˆ,ˆ(.;ˆ
k

kkk qpbλ  is obtained. 

3. Repeat B=500 times the following: Generate a sample of random variables from ∑
=

3

1

)ˆ,ˆ(.;ˆ
k

kkk qpbλ  to 

obtain a new sequence of recovery rates *
jY , nj ,...,1= . Compute mixtureq )1( α−  and betaq )1( α−  using *

jY  

(following Arvanitis et al., 1998). Calculate the difference, betamixture qqT *
)1(

*
)1(

*
1 αα −− −= . In this way, a 

sample of B independent (conditional on the original sample) observations of 1T , say *
1

*
11 ,..., BTT , is 

obtained. 

4. Let *
)1(1 BT α−  B)1( α− -th order statistic of the sample *

1
*

11 ,..., BTT , given a significance level α. Reject 

the null hypothesis at the significance level α if *
)1(11 BTT α−> . 

5. Compute the bootstrap p-value as BTTcardp bB /)( 1
*

1 ≥= , .,...,1 Bb =  

Table 4 reports the results of this bootstrap test. 
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Table 4. Credit VaR estimation 

95..0q  Scenario I Scenario II Scenario III Scenario IV 
Mixture 0.710062 0.70117 0.60213 0.59132 

Beta 0.72722 0.69027 0.58290 0.57075 
Difference 0.01715 -0.01090 -0.01922 -0.02057 

p-value 0.0879 0.1078 0.0459 0.0519 
     

99..0q  Scenario I Scenario II Scenario III Scenario IV 
Mixture 0.80361 0.79866 0.74282 0.70868 

Beta 0.83100 0.78312 0.69793 0.68880 
Difference 0.02738 -0.01553 -0.04489 -0.01988 

p-value 0.0119 0.0299 0.0019 0.0759 
Note: 95..0q  and 99..0q  denote the credit VaR at 95% and 99% confidence level, respectively. Two probabilities of default are considered: 

1% and 0.05%. For each scenario, the credit VaR values under a mixture of three-beta components and a single beta are reported as well as the 

corresponding difference, given by 
mixturebeta qq )1()1( αα −− − . Bootstrap p-values of testing H0: 

mixturebeta qq )1()1( αα −− =  versus H0: 

mixturebeta qq )1()1( αα −− ≠  are computed. 

 

Table 4 shows that the usual practice of approximating the recovery rate distribution through a beta distribution 

can lead to underestimation of credit VaR (scenarios 2, 3 y 4). It can be observed that credit VaR differences at 

95% loss probability level are statistically significant at 10% significance level for almost all cases. At higher 

loss probability level (99%) credit VaR measures are significant different too: at 5% significant level in 

scenarios 1, 2 y 3, and at 10% significant level in scenario 4. 

 

6. CONCLUSIONS 
In this paper beta-component mixtures have been proposed to model implied recovery rates in order to capture 

the observed multimodality. The empirical analysis reveals that the beta distribution is rejected as a correct 

specification for implied recovery rates while a beta-component mixture is accepted. This analysis is based on 

implied recovery rates which previously have been extracted and identified from CDS spreads versus using 

defaulted bonds. This allows us to identify recovery rates for companies which are blue chips. In addition, it has 

been proved an excellent performance of beta-component mixtures in measuring credit VaR accurately once the 

number of beta components is fixed. We found significant differences in credit VaR estimates at 95% and 99% 

significance levels and 1% and 0.5% default probabilities. Accordingly, the beta distribution assumption should 

therefore be considered with caution for credit VaR estimation. To sum up, this paper provides a framework to 

estimate credit VaR accurately using implied recovery rates extracted from CDS spreads. 
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