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Introduction: State-of-the-art electronic embedded systems extensively 
use storage-class memories as main storage elements due to the maturity 
of the technology, low cost and high capacities; a good example being 
flash memories used in secure digital (SD) cards typically found in con-
sumer electronics. In most cases, especially in high-level applications, 
the storage resources of these devices are used through the file system 
abstraction like in most computer systems.

There exist plenty of file system specifications, such as the file allo-
cation table (FAT) file system [1] which is widely used in embedded 
systems because of its ubiquity and availability in most computer 
systems. However, FAT and most existing file systems were not specifi-
cally designed for embedded systems or storage-class memories, but to 
supply the requirements of desktop computer using magnetic disks. 
Nevertheless, there have been some specific developments targeting the 
embedded systems market. A micro controller implementation of FAT 
for embedded systems has been proposed in [2] with limited success. 
UUFS is a low-cost flash memory file system implemented in C 
language [3]. A file system specification optimised for page-mode flash 
technologies is described in [4]. WIPS is a file system optimised for 
storage-class memories with snapshot support implemented in the Linux 
kernel [5]. In addition, HCC Embedded Inc. offers a commercial range 
of embedded file systems aimed at real-time operating systems and 
micro controllers [6].

On the other hand, some initiatives have made progress in implement-

ing file system operations in hardware using field programmable gate 
array (FPGA) technology like in [7], where the core functionality of a 
UNIX-like file system is implemented in hardware, although this devel-
opment is not specifically targeted to embedded systems but to acceler-
ate file operations in high performance computing systems.

This Letter introduces NanoFS: a novel file system specifically 
designed for embedded systems and consumer-grade (low-cost) storage-
class memory devices. Contrary to the approaches mentioned above, this 
specification is specially tailored to allow an efficient hardware 
implementation, so that arbitrary files can be read by a pure-hardware 
module with a little hardware footprint. In embedded systems, the ability 
to access the file system directly from the system’s hardware even before 
the systems software is booted, or in the absence of a soft-ware stack, 
opens the door to a number of interesting applications like easy boot 
loader implementation or flexible configuration storage. This Letter also 
describes the implementation in an FPGA chip of an all-hardware 
NanoFS reader module for SD high capacity (SDHC) memory cards. 
The implementation results are compared with the existing file system 
hardware implementations.

Nano file system: As with other file systems, NanoFS divides the storage 
device into blocks of a configurable size (the file system’s block size). 
Despite its simplicity, NanoFS provides complete function-ality 
typically found in UNIX-like operating systems: files, directories, fifos, 
permissions, symbolic links and arbitrary metadata. The key feature of 
the NanoFS is that it organises files and directories as a set of linked lists 
using the file system’s blocks as nodes. Each node includes a 32 bits 
pointer that is a reference to the next node/block. There are three types of 
nodes: the superblock node; directory nodes, which hold the file system 
structure and file metadata; and data nodes that hold file contents.

The block layout of the NanoFS is shown in Fig. 1. The example uses 
a block size of 512 bytes, and contains two files in the root directory. 
The superblock is the first block of the file system. It contains critical 
information like the magic number (mn), the block size (bs), the revision 
rv) and the file system’s size (fs). It also provides extra room for 
l metadata and future extensions. The root pointer (rop)
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node and to the list of free blocks, respectively.
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In a directory node, the next pointer (nxp) points to the next directory 
node in the same directory tree level. A directory node may refer to a 
subdirectory entry or a file entry. In the latter, the child pointer (chp) 
points to the first data node of the file; in the former it points to the first 
directory node of the subdirectory. The entry type is in the node flags 
field (nf). File name (fname) and its length in bytes ( fl) is also stored 
together with standard metadata (owner, modification time and so on). 
Additional metadata can be included in dedicated blocks through the 
metadata pointer (mtp). File contents are stored as a forward linked list 
of data nodes. This is implemented through the next pointer (nxp) and 
data length (len) fields in the data node. To opti-mise space, a data node 
can fill several adjacent blocks when there is no fragmentation, as can be 
seen in Fig. 1.

The main advantage of this layout over conventional file systems is 
that the file system can be traversed by reading a single data structure, a 
linked list of directory and/or data nodes, whereas most file systems 
need to read the file allocation structure (FAT, i-node table etc.) and the 
data blocks separately. This normally requires the allocation struc-tures 
to be copied in memory for performance reasons. With the NanoFS, 
when a block is fetched from the device, both data and allo-cation 
information are read in a single operation. As a consequence, both the 
lookup file and file data fetch operations are greatly simplified: the 
lookup file algorithm only needs to follow a linked list of directory 
nodes to locate a given file. Once the file is located, it can be completely 
read by following the linked list of data nodes that contain both the file 
data and the block pointers. From the hardware perspective, the 
implementation of the lookup and data fetch algorithms is greatly sim-

plified since it does not need a complex allocation data structure, but 
only a few registers to store temporary pointers.

File system hardware implementations: In each particular implemen-

tation of the NanoFS, not every file system operation may be required. 
Thus, a modular design is proposed with optional modules for each file 
operation (lookup, read and write) sharing a common control system and 
data path. From the embedded systems perspective, the most useful 
operation to be implemented in hardware is the file read operation which 
may be necessary for system boot up and initialisation, while write 
operations can be handled by higher levels once the system is running. 
Therefore, the example shown here only implements the NanoFS read 
algorithm. Write capabilities can be added by adding the corresponding 
module to the architecture.

Fig. 2a shows the top-level hardware architecture of a NanoFS reader 
core. It consists of two main parts: the medium access unit (MAU) and 
the NanoFS control unit (NCU). The MAU controls the storage device 
that, in this implementation, is an SDHC card host operating in native or 
in SPI mode. The NCU implements the file system algorithms required 
by the application. For a reader module, three read modes are con-
sidered: first-file mode will read the first file stored in the file system; 
fixed-file mode will read a single file whose name is specified at design 
time; while any-file mode will lookup and read an arbitrary file whose 
name is provided through the din line. Fig. 2b depicts the flow control of 
the NanoFS read operation with four stages: (i) host initialisa-tion, (ii) 
NanoFS detection, (iii) lookup file and (iv) file reading. Each stage is 
controlled by a finite state machine that coordinates with the other stages 
by a dedicated handshake protocol. If only the first-file mode is needed, 
the optional lookup file stage (dashed lines in Fig. 2) can be removed to 

save hardware resources.
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Fig. 2 NanoFS reader cores

a Top-level NanoFS architecture
b NanoFS flow control

Fig. 3 shows the internal structure of a NanoFS core reader for first-
file mode with optional fixed-file mode (dashed lines) controlling an
SDHC host unit. The structure consists of two main parts: a shared
data path and a flow CU. Owing to the hardware-optimised NanoFS
layout, the data path is very simple: ptr32 is a simple SDHC host inter-
face that includes a pointer to the current block, next_ptr point to the
next block of the file or directory, cnt32 is a block counter inside the
file or directory and byte_reg is the data and status output register. In
the flow CU, the master CU grants control to the slaves in turn to
complete the requested operation.
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Fig. 3 NanoFS reader for first-file or fixed-file mode with SDHC host unit

Table 1: Resources utilisation on FGPA for NanoFS readers cores
and MAU core
Core
 Device
 Slices FF
 LUTs
 Slices
 Slices (%)
First-file
 XC3S100E
 126/1920
 170/1920
 120/960
 12.5
Fixed-file
 XC3S100E
 147/1920
 278/1920
 192/960
 20
MAU
 XC3S100E
 89/1920
 246/1920
 139/960
 14
First-file
 XC4VFX60
 126/25280
 202/50560
 116/25280
 0.5
Fixed-file
 XC4VFX60
 147/25280
 338/50560
 207/25280
 0.8
MAU
 XC4VFX60
 89/25280
 250/50560
 142/25280
 0.6
Results: Two versions of the core (first-file mode and fixed-file mode)
have been implemented in two different FPGA chips from Xilinx:
XC3S100E, a low-range device with 960 slices and XC4VFX60, a high-
range device with 25 280 slices. The systems are integrated together
with an MAU. The resource utilisation results are summarised in
Table 1. The core results do not include the MAU resources which
are listed separately. Both NanoFS cores easily fit in the smaller
FPGA (26 and 34% slice utilisation, respectively, including the
MAU). The impact on the bigger chip is negligible (1.1–1.4%). In com-
parison, the hardware-implemented functions of the general purpose
UNIX-like file system in [7] use 1335 slices (5.3%) and 3 BRAMS
(512 B block size) in an XC4VFX60 device.

Conclusion: Direct access to the file system from the hardware is of
great interest to embedded systems (boot-up, efficiency and so on).
File system operations can be completely and efficiently performed in
hardware by using specific hardware-friendly file system designs like
the NanoFS introduced in this Letter.
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