
NanoFS: a hardware-oriented file system

n, M

and the free pointer (frp) in the superblock point to the root directory

CORE Metadata, citation and similar papers at core.ac.uk

Provided by idUS. Depósito de Investigación Universidad de Sevilla
P. Ruiz-de-Clavijo, E. Ostúa, J. Jua
NanoFS i
(like flash
NanoFS i
hardware
operations
implemen

number (
additiona
s a novel file system for embedded systems and storage-class memories
) and is specially designed to be directly implemented in hardware.
s based on an original internal layout intended to achieve an optimal
implementation of the file system’s file lookup and data fetch
. File system spe-cification on a sample reader module completely
ted in a pro-grammable device is introduced.
Fig. 1 Nano filesystem internal layout
Introduction: State-of-the-art electronic embedded systems extensively
use storage-class memories as main storage elements due to the maturity
of the technology, low cost and high capacities; a good example being
flash memories used in secure digital (SD) cards typically found in con-
sumer electronics. In most cases, especially in high-level applications,
the storage resources of these devices are used through the file system
abstraction like in most computer systems.

There exist plenty of file system specifications, such as the file allo-
cation table (FAT) file system [1] which is widely used in embedded
systems because of its ubiquity and availability in most computer
systems. However, FAT and most existing file systems were not specifi-
cally designed for embedded systems or storage-class memories, but to
supply the requirements of desktop computer using magnetic disks.
Nevertheless, there have been some specific developments targeting the
embedded systems market. A micro controller implementation of FAT
for embedded systems has been proposed in [2] with limited success.
UUFS is a low-cost flash memory file system implemented in C
language [3]. A file system specification optimised for page-mode flash
technologies is described in [4]. WIPS is a file system optimised for
storage-class memories with snapshot support implemented in the Linux
kernel [5]. In addition, HCC Embedded Inc. offers a commercial range
of embedded file systems aimed at real-time operating systems and
micro controllers [6].

On the other hand, some initiatives have made progress in implement-

ing file system operations in hardware using field programmable gate
array (FPGA) technology like in [7], where the core functionality of a
UNIX-like file system is implemented in hardware, although this devel-
opment is not specifically targeted to embedded systems but to acceler-
ate file operations in high performance computing systems.

This Letter introduces NanoFS: a novel file system specifically
designed for embedded systems and consumer-grade (low-cost) storage-
class memory devices. Contrary to the approaches mentioned above, this
specification is specially tailored to allow an efficient hardware
implementation, so that arbitrary files can be read by a pure-hardware
module with a little hardware footprint. In embedded systems, the ability
to access the file system directly from the system’s hardware even before
the systems software is booted, or in the absence of a soft-ware stack,
opens the door to a number of interesting applications like easy boot
loader implementation or flexible configuration storage. This Letter also
describes the implementation in an FPGA chip of an all-hardware
NanoFS reader module for SD high capacity (SDHC) memory cards.
The implementation results are compared with the existing file system
hardware implementations.

Nano file system: As with other file systems, NanoFS divides the storage
device into blocks of a configurable size (the file system’s block size).
Despite its simplicity, NanoFS provides complete function-ality
typically found in UNIX-like operating systems: files, directories, fifos,
permissions, symbolic links and arbitrary metadata. The key feature of
the NanoFS is that it organises files and directories as a set of linked lists
using the file system’s blocks as nodes. Each node includes a 32 bits
pointer that is a reference to the next node/block. There are three types of
nodes: the superblock node; directory nodes, which hold the file system
structure and file metadata; and data nodes that hold file contents.

The block layout of the NanoFS is shown in Fig. 1. The example uses
a block size of 512 bytes, and contains two files in the root directory.
The superblock is the first block of the file system. It contains critical
information like the magic number (mn), the block size (bs), the revision
rv) and the file system’s size (fs). It also provides extra room for
l metadata and future extensions. The root pointer (rop)
.J. Bellido, J. Viejo and D. Guerrero
node and to the list of free blocks, respectively.

0x0000

0x0200
0x1200

0x2000 0x2800

0x1400 0x1600

0x0400

0x0600

mn

nf

nf

fl fname
standard metadata

fl fname
standard metadata

nxp

nxp len

nxp len

nxp len

data

data nxp len data

nxp len nxp len

nxp

chp

chp

mtp

nf
fl fname
standard metadata

nxp chp mtp

mtp

fsbs rv rop frp
extra superblock infosuperblk

dirnode

dirnode

dirnode

datanode

datanode with several adjacent device blocks

datanode

datanode datanode

fragmented file

free nodes linked list

datanode
In a directory node, the next pointer (nxp) points to the next directory
node in the same directory tree level. A directory node may refer to a
subdirectory entry or a file entry. In the latter, the child pointer (chp)
points to the first data node of the file; in the former it points to the first
directory node of the subdirectory. The entry type is in the node flags
field (nf). File name (fname) and its length in bytes (fl) is also stored
together with standard metadata (owner, modification time and so on).
Additional metadata can be included in dedicated blocks through the
metadata pointer (mtp). File contents are stored as a forward linked list
of data nodes. This is implemented through the next pointer (nxp) and
data length (len) fields in the data node. To opti-mise space, a data node
can fill several adjacent blocks when there is no fragmentation, as can be
seen in Fig. 1.

The main advantage of this layout over conventional file systems is
that the file system can be traversed by reading a single data structure, a
linked list of directory and/or data nodes, whereas most file systems
need to read the file allocation structure (FAT, i-node table etc.) and the
data blocks separately. This normally requires the allocation struc-tures
to be copied in memory for performance reasons. With the NanoFS,
when a block is fetched from the device, both data and allo-cation
information are read in a single operation. As a consequence, both the
lookup file and file data fetch operations are greatly simplified: the
lookup file algorithm only needs to follow a linked list of directory
nodes to locate a given file. Once the file is located, it can be completely
read by following the linked list of data nodes that contain both the file
data and the block pointers. From the hardware perspective, the
implementation of the lookup and data fetch algorithms is greatly sim-

plified since it does not need a complex allocation data structure, but
only a few registers to store temporary pointers.

File system hardware implementations: In each particular implemen-

tation of the NanoFS, not every file system operation may be required.
Thus, a modular design is proposed with optional modules for each file
operation (lookup, read and write) sharing a common control system and
data path. From the embedded systems perspective, the most useful
operation to be implemented in hardware is the file read operation which
may be necessary for system boot up and initialisation, while write
operations can be handled by higher levels once the system is running.
Therefore, the example shown here only implements the NanoFS read
algorithm. Write capabilities can be added by adding the corresponding
module to the architecture.

Fig. 2a shows the top-level hardware architecture of a NanoFS reader
core. It consists of two main parts: the medium access unit (MAU) and
the NanoFS control unit (NCU). The MAU controls the storage device
that, in this implementation, is an SDHC card host operating in native or
in SPI mode. The NCU implements the file system algorithms required
by the application. For a reader module, three read modes are con-
sidered: first-file mode will read the first file stored in the file system;
fixed-file mode will read a single file whose name is specified at design
time; while any-file mode will lookup and read an arbitrary file whose
name is provided through the din line. Fig. 2b depicts the flow control of
the NanoFS read operation with four stages: (i) host initialisa-tion, (ii)
NanoFS detection, (iii) lookup file and (iv) file reading. Each stage is
controlled by a finite state machine that coordinates with the other stages
by a dedicated handshake protocol. If only the first-file mode is needed,
the optional lookup file stage (dashed lines in Fig. 2) can be removed to

save hardware resources.

https://core.ac.uk/display/161255586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

dout

stage 1

stage 2

stage 3

stage 4

a b

init

detect

lookup

read

file

file

of file
end

err

NanoFS

host

8
8 din

busy
err

NCU

MAU

2

start
op

Fig. 2 NanoFS reader cores

a Top-level NanoFS architecture
b NanoFS flow control

Fig. 3 shows the internal structure of a NanoFS core reader for first-
file mode with optional fixed-file mode (dashed lines) controlling an
SDHC host unit. The structure consists of two main parts: a shared
data path and a flow CU. Owing to the hardware-optimised NanoFS
layout, the data path is very simple: ptr32 is a simple SDHC host inter-
face that includes a pointer to the current block, next_ptr point to the
next block of the file or directory, cnt32 is a block counter inside the
file or directory and byte_reg is the data and status output register. In
the flow CU, the master CU grants control to the slaves in turn to
complete the requested operation.

host control lines

start
busy sdhost_err

32

MAU

8

SDHC host unit

ch_err

lf_err

ptr32

32

check

master
lookup file

file reader

rf_eof rf_err

control

unit

unit unit

unit

flow control unit dout shared data path

unit

next_ptr[31:0]

cnt32[31:0]

byte_reg[7:0]

8

sdhost_err
nch_err

lf_err
rf_err
rf_eof

NanoFS

op
err

2

Fig. 3 NanoFS reader for first-file or fixed-file mode with SDHC host unit

Table 1: Resources utilisation on FGPA for NanoFS readers cores
and MAU core
Core
 Device
 Slices FF
 LUTs
 Slices
 Slices (%)
First-file
 XC3S100E
 126/1920
 170/1920
 120/960
 12.5
Fixed-file
 XC3S100E
 147/1920
 278/1920
 192/960
 20
MAU
 XC3S100E
 89/1920
 246/1920
 139/960
 14
First-file
 XC4VFX60
 126/25280
 202/50560
 116/25280
 0.5
Fixed-file
 XC4VFX60
 147/25280
 338/50560
 207/25280
 0.8
MAU
 XC4VFX60
 89/25280
 250/50560
 142/25280
 0.6
Results: Two versions of the core (first-file mode and fixed-file mode)
have been implemented in two different FPGA chips from Xilinx:
XC3S100E, a low-range device with 960 slices and XC4VFX60, a high-
range device with 25 280 slices. The systems are integrated together
with an MAU. The resource utilisation results are summarised in
Table 1. The core results do not include the MAU resources which
are listed separately. Both NanoFS cores easily fit in the smaller
FPGA (26 and 34% slice utilisation, respectively, including the
MAU). The impact on the bigger chip is negligible (1.1–1.4%). In com-
parison, the hardware-implemented functions of the general purpose
UNIX-like file system in [7] use 1335 slices (5.3%) and 3 BRAMS
(512 B block size) in an XC4VFX60 device.

Conclusion: Direct access to the file system from the hardware is of
great interest to embedded systems (boot-up, efficiency and so on).
File system operations can be completely and efficiently performed in
hardware by using specific hardware-friendly file system designs like
the NanoFS introduced in this Letter.

Acknowledgment: This work has been partially supported by the
Ministerio de Ciencia e Innovación of the Spanish Government under
project TEC2011-27936 (HIPERSYS) and by the European Regional
Development Fund (ERDF).

© The Institution of Engineering and Technology 2013
11 June 2013
doi: 10.1049/el.2013.1961

P. Ruiz-de-Clavijo, E. Ostúa, J. Juan, M.J. Bellido, J. Viejo and
D. Guerrero (Departamento de Tecnología Electrónica, E.T.S.
Ingeniería Informática, Universidad de Sevilla, Av. Reina Mercedes
s/n, 41012 Sevilla, Spain)

E-mail: paulino@dte.us.es

References

1 Microsoft Knowledge Base: ‘Description of the FAT32 File System’,
Article 154997, Microsoft Corporation, 2004

2 Bannack, A., and Wolaniuk, G.B.: ‘FAT 16/32 file system driver for
Atmel AVR’, 2004. Available at http://www.sourceforge.net/projects/
fatdriveravr

3 ‘UFFS: an ultra low cost flash file system for embedded system’
Available at https://sites.google.com/site/gouffs, accessed 1 June 2013

4 Ban, A., and Hasharon, R.: ‘Flash file system optimized for page-mode
flash technologies’ United States Patent Number 5937425, 1999

5 Lee, E., Yoo, S., Jang, J., and Bahn, H.: ‘WIPS: a write-in-place snapshot
file system for storage-class memory’, IET Electron. Lett., 2012, 48, (17),
pp. 1053–1054

6 HCC Embedded. Available at http://www.hcc-embedded.com, accessed
June 2013

7 Mendon, A.A., Schmidt, A.G., and Sass, R.: ‘A hardware filesystem
implementation with multidisk support’, Int. J. Reconfigurable
Comput., 2009, 2009, pp. 1–13

