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Abstract

The aim of this paper is to explore the capability of Discontinuous Galerkin

Finite Element methods to solve numerically the charge transport equation

in EHD convective flows, in both strong and weak injection regimes. These

methods are especially suited to treat purely hyperbolic problems, as it is

the charge transport equation in most EHD problems. We consider the 2D

electroconvective flow between two parallel plates. We compare our com-

putations with the analytical results in the hydrostatic regime, the linear

and non-linear stability analysis, computing both the electric and velocity

fields. The stability of the finite amplitude electroconvection is also anal-

ysed. Comparisons are made with computations in the literature obtained

with other numerical techniques. The results show that DG-FEM are a very

good alternative to simulate numerically EHD convective flows.
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1. Introduction

Electrohydrodynamics (EHD) deals with the interaction of fluids, electric

charges and electric fields[1]. It is an interdisciplinary area with important

applications in industrial processes such as the manufacture of electrostatic

precipitators, refrigeration of high voltage transformers, etc[2]. Specifically,

EHD involving fluids is important in the development of pumping devices in

microelectromechanical systems (MEMS), bio MEMS and nanotechnology

applications[3, 4, 5, 6].

In this paper we explore the application of Discontinuous Galerkin Finite

Element methods to the numerical simulation of EHD problems. In particu-

lar, we analyze numerically the classical EHD problem of the 2D flow between

two parallel plates immersed in a dielectric liquid for both strong and weak

injection regimes. When a high voltage is applied between the parallel plates,

the electrodes inject electric charge into the liquid, and the Coulomb force

put the liquid into motion. Experiments and theoretical analysis show that

the pattern of convection in 3D is made of hexagonal cells similar to those

of Rayleigh-Bénard convection, while in 2D the structure of the flow is made

of two-dimensional rolls[7, 8]. The onset of the global motion is controlled

by a non dimensional parameter involving the applied electric potential, the

mobility of the charge carriers and the properties of the fluid.

Several numerical methods have been used to analyse this problem. The

fist attempt was made by Castellanos, Atten and Perez[9]. They used first

finite difference based methods to solve all the equations, but they found

that the strong numerical diffusion introduced invalidates the method due

to the hyperbolic nature of the charge transport equation. To solve this



issue, they turned to Particle-In-Cell methods(PIC)[10, 11] to deal with the

charge transport equation. In this method the electric charge is modelled as

’superparticles’, that moves upon the action of the electric and velocity fields

computed on a mesh. PIC have been extensively used in plasma physics, and

are known to introduce very little numerical diffusion. This technique has

been applied since then to EHD convection problems by the authors both in

2D[12, 13] and 3D[14]. It has been proved to be able to describe accurately

the electric charge distribution in EHD convective problems. However, it

has its drawbacks. It is very expensive computationally, specially in 3D

geometries. Also the injection mechanism needed to maintain a given value

of charge density at the injector is quite delicate.

Others method have been applied to deal with the hyperbolic nature of

the charge transport equation. In two papers [15, 16] the authors, in col-

laboration with Georghiou, have compared the PIC technique with a FCT

method with corrections to minimize the numerical diffusion. Both tech-

niques give similar results for the linear stability criterion and the amplitude

of the velocity roll, although the distribution of electric charge differs. Also,

there are oscillations that appear with PIC (absent with FCT).

In two recent papers[17, 18] Traoré et Pérez have used a finite volume

approach combined with a total vaiation diminishing scheme (TVD) to solve

the equation transport problem. In the reference [18] they consider the EHD

electroconvection between two parallel plates. They analyze the linear and

non-linear stability criteria, the finite amplitude electroconvection and the

dependence of the electric Nusselt number on the parameters of the problem.

All these computations are made for the strong injection regime. They obtain



very good results, reproducing the expected structure of the electric charge

density and a qualitative agreement with the experimental behaviour of the

electric Nusselt number.

A small drawback of finite volume methods is the construction of the mesh

for complicated geometries. In that regard, finite element methods are known

for its ability to adapt easily to complicated geometries. In this paper, we

explore the application of Finite Elements Discontinuous Galerkin methods

to solve numerically the charge transport equation[19]. These methods were

originally developed to deal with hyperbolic problems, although in recent

years have been applied to all kind of problems involving partial differential

equations[20].

The paper is organized as follows. In section 2 we state the problem

and the relevant non-dimensional parameters. In section 3 we describe the

numerical procedures used for each magnitude. Then in section 4 we discuss

the results of our computations. We compare the computed values of the

linear stability threshold with the values obtained theoretically[7, 8] for both

the strong and weak injection regimes. Then we consider the finite amplitude

convection. First we analyze the computed distribution of electric charge, in

order to verify the capability of the numerical method to reproduce the steep

gradients of electric charge. We study the hysteresis problem in the finite

amplitude regime, computing the non-linear stability critical value of the

stability parameter for the strong injection case. Finally, we consider the

stability of the finite amplitude regime for values of the stability parameter

higher than the linear threshold. The conclusions are presented in section

5. We will see that DG methods are able to reproduce closely the analytical



results and the computations made with other numerical methods.

2. Problem formulation

We consider two plane electrodes a distance d apart immersed in a non-

conductive fluid. An electric potential is applied between the plates so that

injection of charge occurs. The electric field forces the charges away from

the injector and in this way a space charge appears. The Coulomb force

pushes the charges, and the liquid with them. If the electric potential is high

enough all the liquid is put into motion. Here we analyze the 2D case, so the

system is considered to be infinite along one of the direction parallel to the

electrodes.

The fluid is incompressible, isothermal and insulating with mass density

ρ, kinematic viscosity ν and permittivity ε. Due the small values of the

electric current, the heating is negligible and these magnitudes can be taken

as constants. An electric voltage Φ0 is applied between the plates. The

charge carriers are considered to be of an unique type, with ionic mobility

K. Unipolar autonomous injection is assumed, that is, injection of charge

occurs only at the bottom plate, the density of charge at the injector is

constant and equal to q0, and the ions discharge instantaneously once they

reach the opposite electrode.

There are three mechanisms responsible for the motion of ions: drift by

the electric field (JE = KqE, K being the ionic mobility, q the electric charge

density and E the electric field), convection by the fluid (Jc = qu, u being

the velocity of the fluid), and molecular diffusion (Jd = −D∇q, D being the

diffusivity). In EHD, diffusion is only important inside a very thin boundary



layer near the electrodes, and it is not relevant for phenomena developing

in the bulk [1]. So in our case the electric charge is transported only by

the electric and velocity fields. The problem becomes purely hyperbolic,

implying the existence of sharp gradients of electric charge density. Therefore

the current density is given by J = q(KE+ u).

The scales for all the involved variables are

x, y ∼ d Φ ∼ Φ0 E ∼ Φ0/d

u ∼ KΦ0/d t ∼ d2/KΦ0 p ∼ ρK2Φ2
0/d

2

q ∼ εΦ0/d
2

(1)

p being the pressure.

The non-dimensional equations defining the problem are

∇2Φ = −q, E = −∇Φ, (2)

∇ · [q(u+ E)] +
∂q

∂t
= 0, (3)

∇ · u = 0, (4)

∂u

∂t
+ (u · ∇)u = −∇p+

M2

T
∇2u+M2qE. (5)

The non-dimensional parameters of the problem are

T =
εΦ0

ρνK
, C =

q0d
2

εΦ0

, M =
1

K

√

ε

ρ
. (6)

T is the ratio of the force term to the viscous term, and will be the sta-

bility parameter. M is the ratio of the hydrodynamic mobility to the ionic

mobility[21] and C measures the injection strength.

In the linear stability analysis, the threshold value for the onset of the

motion depends on the wavelength of the perturbation[7]. The minimum of



these values is the absolute linear stability threshold. The minimum wave-

length depends on the injection parameter C. In the case of strong injection

(C = 10), the critical wavelength turns out to be kmin = 5.113. For weak

injection (C = 0.1) it is kmin = 4.573. We consider as domain a rectangle of

size L = π/kmin, kmin being the value corresponding to each case. This way,

we solve the problem in one half of a convective cell. The non-dimensional

domain and boundary conditions are shown in figure 1. At the lateral walls

the perpendicular components of the electric and velocity field are null. The

value of the charge density at the injector (the bottom plate) is C.

3. Numerical algorithms

We use Discontinuous Galerkin Finite Elements (DG-FEM) to solve the

charge transport equation. These methods were originally developed to deal

with hyperbolic problems, although in recent years have been applied to all

kind of problems involving partial differential equations[19, 20]. The key

idea is to consider internal degrees of freedom inside every element. This

means that the computed magnitudes inside each element do not have to be

continuous across the elements borders. The connection between elements

is achieved using the so called numerical fluxes. In this way, conservation is

imposed locally. These methods have proved to be very stable when treating

hyperbolic problems, and allow to work with complex geometries, as well as

prescribing different orders of approximation inside each element.

We use a third order polynomial approximation inside each DG element.

The order of the polynomial approximation has a great influence in the out-

come of the computations, as will be shown in the paper. Our numerical



experiments show that the third order is a good compromise between accu-

racy and computational cost.

For the choice of the numerical flux, let us point out that, although the

global problem is non-linear, the charge transport equation is linear at each

iteration, as the electric and velocity fields are computed at each time step.

In this linear case all the usual numerical fluxes available in the literature

(Godunov, Engquit-Osher, Lax-Friedrichs) become equivalent to the so called

full upwind flux. Therefore, at each face the value of the numerical flux of a

magnitude is given by the flux of the element where the total ionic velocity

comes from. The total ionic velocity is the sum of the electric and velocity

fields vion = u+ E.

We are applying a very simplified scheme with no slope limiter. So,

although the full upwind scheme gives good results, small oscillations still

may appear in the regions of strong gradients of electric charge. In this way,

non-physical negative values of the electric charge may occur due to these

oscillations. In order to correct these non-physical values, at each time step,

if negative values of the charge density occur we change them to zero. The

time scheme is a backward Euler in order to enhance stability. The resulting

numerical scheme is first order in time.

Both the electric field and the velocity field are computed using Con-

tinuous Galerkin Finite Elements(CG-FEM). We solve the Navier-Stokes

equation using a Incremental Pressure Correction Scheme (IPCS)[22]. We

consider second order elements for the electric potential(CG-FEM) and the

velocity field (CG-FEM). The pressure is approximated using first order CG-

FEM, in order to comply with the LBB condition. The IPCS scheme is first



order in time.

In all the simulations the time-step is chosen so that the Courant number

is always lower than one, changing it during the computations if necessary.

The Courant number is defined as

Cou =
vmax ∆t

hmin

. (7)

Here, vmax is the maximum value of the total ionic velocity and hmin is the

size of the smallest element.

The algorithms have been implemented using the DOLFIN[23] Python

library. This is an interface to FEniCS[24], a framework for automated solu-

tion of differential equations by the Finite Element method. The library is

open sourced under the LGPL license and is freely available from the FEniCS

website.

4. Results and discussion

4.1. Hydrostatic regime

In order to verify the ability of the DG-FEM method to simulate the

charge distribution, and to choose the best mesh to deal with each injection

case, we have run simulations in the hydrostatic regime, that is, without

computing the velocity of the fluid. At the beginning of the computation the

domain has no electric charge. As time progresses, a front of charge advances

from the bottom electrode towards the top electrode, pushed by the electric

field. After some units of non-dimensional time, a steady state is attained,

with distributions of electric charge density and electric field that admit an

analytical solution. We compare the computed steady distributions of charge

and the electric field with these analytical solution.



In the weak injection regime (C = 0.1) the lateral length of the domain

is L = 0.687. The mesh is made of triangles built upon a uniform grid with

40 intervals along each direction. The total number of triangular elements is

3200, with 1681 vertices. Figure 2 shows the charge density along a vertical

line at non-dimensional time t = 0.4. The steady analytical solution is also

plotted. We can see that the DG-FEM is able to describe this front of charge

with no spurious oscillation near the region of the steepest gradient, although

some numerical diffusion is introduced by the upwind scheme. Figure 3

shows the computed and analytical charge densities along a vertical line

when the steady state has been reached. The maximum difference between

the computed value of the charge density and the analytical solution is 0.4×

10−5%. Also the values of the electric current computed at the injector and

the collector differ in 1.4× 10−5%.

In the strong regime case (C = 10) it is L = 0.614. The mesh is uniform

with 40 intervals along the X direction, while for the Y direction it is thinner

near the bottom and coarser near the top electrode. It has 4000 elements and

2091 vertices. Figure 4 shows the computed and analytical charge densities

for C = 10 along a vertical line when the steady state has been reached.

The maximum difference between the computed value of the charge density

and the analytical solution is 0.12%. Also the values of the electric current

computed at the injector and the collector differ in 0.10%.

4.2. Linear stability criteria

The theoretical linear stability analysis studies the stability of the flow

against small perturbations. The magnitudes of the problem are considered

to grow exponentially with a growth factor depending on the stability param-



eter T . When this growth factor is negative the system is stable, and when

it is positive a convective roll develops. The critical value Tc corresponds to

a zero growth factor. The theory shows that the critical value Tc does not

depend on the mobility parameter M .

We have run a set of simulations changing the value of the stability pa-

rameter T for different fixed values of the mobility parameter M , for both

strong (C = 10) and weak (C = 0.1) injection regimes. As initial condition

for the charge density, we set the analytical profile for the hydrostatic regime.

Then we compute the electric field and solve the Navier-Stokes equation. The

electric and velocity fields obtained are used to advance the charge density.

The process is repeated iteratively in time.

4.2.1. Linear stability criterion in the strong injection regime

Figure 5 plots the evolution in time for M = 20 and several values

of T of the global angular momentum of the convective cell, computed as

AM =
∫

|(r − r0)×u| dS, where r0 points to the center of the domain. This

magnitude gives an idea of the strength of the velocity roll. For all values

of T the growth becomes exponential in a certain interval of time (this cor-

responds to the linear sections of the curve in the figure, as the scale of the

Y axis is logarithmic). In this region the angular momentum is considered

to depend on time as AM = Aeσt, where σ is the growth factor. Using a

linear fit for the function σ(T ) the value of Tc corresponding to σ = 0 is

obtained for the different values of M . Table 1 shows the values of Tc from

our simulations for four different values of M . These numbers are to be

compared with T a
c = 164.1, the critical value obtained from the linear sta-

bility analysis, independent of the value of M [7]. The error of our computed



Table 1: Critical values for the onset of instability from the simulations for several values

of M . The value obtained from the linear stability analysis is T a
c = 164.1, independent of

M .

M Tc

5 163

10 163

20 163

100 163

values, estimated from the fitting parameters, is of the order of 8%, so the

theoretical value is inside the error margin for all values of M . The average

of the computed values differs from the theoretical value in 0.67%. Also, the

criterion is independent of M , within the error margins, as it is predicted by

the theoretical analysis.

4.2.2. Linear stability criterion in the weak injection regime

We have run a similar set of simulations for the weak injection regime

(C = 0.1). The numerical procedure is exactly the same as in the strong

injection regime. The only difference is the mesh, that it is the same used

in the hydrostatic computation for C = 0.1. However, a comment must be

made about the choice of the mesh. In this regime, the theoretical value of Tc

is 24148. So, for a mobility parameter M = 20 the Reynolds number at the

onset of the instability is expected to be Re = T/M2 = 60, and this uniform

mesh is able to capture the velocity field. On the other hand, for M = 5

the expected value of the Reynolds number when the rolls starts to develop

is Re = 966, and the mesh is too coarse. As a matter of fact we observe



that the computations diverge for these small values of M . However, this

mesh still allows to compute the linear stability threshold for small values of

M , because the exponential growth of the magnitudes is very slow, and can

be observed even for very low values of the maximum velocity, before the

computation diverges.

Figure 6 plots the evolution in time of the total angular momentum for

T = 25000 and M = 20. The convective roll takes much more time to

develop that for the strong injection regime. This is expected, as the typical

time for the roll to appear scales with T/M2 [12]. Once the roll develops, it

becomes unstable. We discuss this later in the paper. Let us stress that this

behaviour have been observed in [16], where both Particle-In-Cell and FCT

methods have been used for computing the charge transport equation.

Figure 7 plots, using a log scale for the Y axis, the evolution in time of the

total angular momentum for M = 20 and different values of T . The exponen-

tial growth during the early stages of the simulation is clearly observed. As

in the strong injection case, we obtain the growth factor σ(T ) from the slopes

of these curves. Using a linear fit, we get the value of Tc corresponding to a

growth factor σ = 0. Table 2 shows the values of Tc obtained for four values

of M . These numbers are to be compared with T a
c = 24148, the critical

value obtained from the linear stability analysis, independent of the value of

M [7]. The average of the computed values differs from the theoretical value

in 0.38%. Also, the maximum relative difference among the computed values

is 0.50%, which is consistent with the independence with M of the linear

stability criterion. The error of our computed values of Tc, estimated from

the fitting parameters, is of the order of 2%, so the theoretical value is inside



Table 2: Critical values for the onset of instability from the simulations for several values

of M in the weak injection regime. The value obtained from the linear stability analysis

is T a
c = 24148, independent of M .

M Tc

5 24000

10 24050

20 24046

100 24121

the error margins.

4.3. Finite amplitude electroconvection

The precedent sections show the DG methods are able to produce a very

accurate estimation of the critical value of the linear stability analysis for

both strong and weak injection. However, the ability of the method to deal

with the non-linear features of the problem has to be tested too. In this

section we present three results related to the non-linear features of EHD

electroconvection.

4.3.1. Distribution of electric charge

If the value of T is greater than the critical value Tc a velocity roll appears.

Figure 8 show the contour plot of the stream function for M = 20 and t = 15.

The velocity roll is fully developed here, with a maximum velocity greater

than the electric field (umax = 3.33 for T = 170 and M = 10, while the

electric field is Emax ≃ 1). Then, in the bulk, the charge distribution is

controlled mainly by the velocity field. This results in a central region empty

of electric charge. This is a very characteristic feature of electroconvective



flows, and it is important for the numerical method to be able to reproduce

this structure. Figure 9 shows the distribution of electric charge density for

M = 20 and t = 15. The central region empty of charge is clearly seen.

In figures 10 and 11 we plot the electric charge density along the central

vertical line and the central horizontal line, respectively. For comparison

purposes, along with the results of the computations for this paper (in red

color online), we plot the charge distribution for the same lines obtained

with PIC and FCT from reference [15]. In that paper, the velocity field was

computed with an imposed velocity roll, so slightly different values for the

charge density are obtained. But it is interesting to compare the ability of

the different methods to describe the structure of the charge density. We see

that all three methods are able to reproduce the gradient of electric charge.

However, in figure 11 a small nonzero value of electric charge can be seen

near the left corner, for both FCT and DG computations (the results of

DG computations are plotted mirrored with respect to the Y axis to make

them agree with the imposed sense of rotation of the velocity roll in [15])

Although the value of charge density is very small, it is a clear difference with

respect to PIC computations. We have observed that, for DG computations,

this small value depends on the order of approximation of the DG element,

when using the same mesh. This is illustrated in figure 12. Here we plot

the charge density along a horizontal line for three computations with the

same parameters but three different orders of polynomial approximation for

the DG element. The amount of charge in the empty region decreases as

the order of approximation increases. The description of the gradient of

electric charge can be improved either increasing the order of polynomial



approximation or adding elements to the mesh in the regions where sharp

gradients appears. An adaptive meshing process could help to improve the

computations. Anyway, as we shall see in the next section, the computations

with a polynomial of order 3 give very good results when compared with the

theoretical predictions.

4.3.2. Non-linear stability for the strong injection regime

The theoretical non-linear stability analysis shows that, when the roll is

fully developped with a value of T > Tc, if now the value of T is decreased,

the roll persists even for values lower than Tc. In experiments, this would

be equivalent to apply a value of the applied voltage above the threshold for

the instability and then start decreasing the applied voltage. An hysteresis

phenomenon is predicted, with a non-linear criterion for the stability param-

eter Tf < Tc. For the strong injection regime the theory predicts a value

T a
f = 110.

We have simulated this experiment taking as initial condition the steady

state obtained when T > Tc. Then we have decreased slowly the value of T ,

and waited for the system to get a new steady state. While the value of the

maximum velocity in this new stationary state is greater than one (the order

of magnitude of the electric field) the velocity roll is still present, but when

it falls below one the roll disappears. We have plotted in figure 13 the values

of the maximum velocities obtained in this process for C = 10, M = 20,

taking as initial configuration the steady state corresponding to T = 170.

The computed value of the linear stability threshold is Tc = 163. The roll is

still stable when T < Tc and T > Tf , as predicted in the non-linear analysis.

We get a value for the non-linear criterion of Tf = 108.7. In reference [18],



Traoré and Pérez obtain a value Tf = 107.5. Both of them are in excellent

agreement with the theoretically predicted value of 110.

4.3.3. Stability of the convective roll

In 4.2.2 we have seen that a new instability is found when the value of

T increases. The roll pattern becomes unstable in the weak regime for all

the values of T that we have computed. This fact has been described before

in [16], with both PIC and FCT computations. In that paper a similar

phenomena was observed in the strong injection regime. Also, in the recent

paper by Traoré and Pérez[18] this instability has been discussed in detail

for the strong injection case.

Figure 14 plots the evolution in time of the total angular momentum for

C = 10, M = 10 and T = 300, 400, 500, 600. The roll is stable for T = 300,

but for T = 400 and higher, after a time, the roll destabilizes and the angular

momentum oscillates around a null value, showing the emergence of a two roll

pattern. Figures 15 and 16 plot the stream function and the charge density

distribution when the two roll pattern is established.

Similar results were obtained by the authors in [16]. The results obtained

by Traoré and Pérez in [18] are quite similar too, the only difference being

that they find that the roll is unstable for T = 300, while in our computations

it is not. This may be due to the different meshes and order of approxima-

tion used in both computations. We have run three simulations for C = 10,

M = 10 and T = 300, with a uniform mesh of 50x50 (the same used in [18]),

for three different orders of polynomial approximation for the DG elements.

Figure 17 shows the evolution in time of the maximum velocity for the dif-

ferent polynomial orders. We see that the behaviour is quite different. The



roll splits in two rolls for the lower order (the split can be seen in the change

of the maximum velocity). For the highest order the roll is stable, although

it oscillates. These oscillations start earlier for order 2, and are bigger in

magnitude. It is interesting to point out that the curve for the lower order

is almost identical to the figure 17 in [18].

As for the weak injection regime, in all our simulations the roll destabilizes

for all the values of T above Tc that we have tested, and for all values of M .

This is again consistent with the computations made with PIC and FCT in

[16]. However, the behaviour of the system is not the same than for the strong

injection case. While for C = 10 the two roll pattern is essentially stable,

with small oscillations, in the weak injection regime the roll changes the sense

of rotation. In figure 6 we can observe that the angular momentum oscillates

between positive and negative values of similar absolute value. When one

roll is established, a small counter-roll appears and progressively takes the

place of the other one, until a new counter-roll emerges.

5. Conclusions

We have explored the use of Discontinuous Galerkin Finite Element meth-

ods (DG-FEM) to solve numerically the charge transport equation in the 2D

EHD convection between parallel plates in both strong and weak injection

regimes. These methods are specially suited to deal with hyperbolic prob-

lems, as it is this case due to the negligible charge diffusion. We have used a

very simple implementation of DG-FEM, without slope limiter. For the com-

putations of the electric and velocity fields we have used Continuous Galerkin

Finite Element methods.



In the hydrostatic regime, the DG-FEM method is able to describe the

advancing front of charge without spurious oscillations, although introducing

a certain amount of numerical diffusion. But it is able to reproduces with

a very good precision the analytical solution in the steady state for both

injecting regimes.

We have computed the linear stability criteria for strong and weak injec-

tion, solving the electric and velocity fields. The critical values obtained from

the computations agree extremely well with the analytical solution obtained

from the linear stability analysis in both cases. It turns out to be essentially

independent of the value of the mobility parameter, as it is predicted by the

theory.

Then we have studied the non-linear aspects of the problem. When the

velocity roll develops, the computations reproduce the expected distribution

of electric charge, with a bulk essentially empty, as the charge distribution is

controlled by the velocity field. A small deviation is observed from the PIC

computations, as a small quantity of charge enters this empty region. This

effect can be reduced increasing the order of the polynomial approximation

of DG elements, or refining the mesh in the regions where steep gradients are

present.

As for the non-linear stability and the hysteresis predicted theoretically,

our computations are able to reproduce these predictions. We obtain a value

of the non-linear criterion very close to the prediction of the theoretical anal-

ysis.

We have also studied the stability of the convective roll for values of T

greater than the linear threshold Tc. We have reproduced the results obtained



with PIC methods and the computations described in Traoré and Pérez. We

have observed that the order of polynomial approximation in DG elements

can be critical to describe accurately the behaviour of the system in this fully

convective regime.

These results validate the capability of DG-FEM to simulate EHD flows,

even if some numerical diffusion is present. PIC methods are the less diffu-

sive, but they are numerically expensive and difficult to implement, especially

the value of the charge density at the injector. In this regard, the availabil-

ity of an open source package as FEniCS makes very easy to implement the

DG-FEM method. Anyway some improvements can be envisaged in our im-

plementation of DG-FEM. Slope limiters can be introduced, as well as higher

order time integration schemes. Another possible improvement could be to

apply adaptive meshing techniques to get a better description of the distri-

bution of electric charge an reduce the computational cost. In particular, we

must compute magnitudes that can be compared with experiments, as it is

the electric Nusselt numbers for higher values of T . Also, the application of

this technique to the 3D dimensional problem is envisioned in future works.
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Figure 1: Non-dimensional computational domain and boundary conditions for the prob-

lem.
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Figure 2: Charge density along the vertical central line of the domain for the hydrostatic

solution for C = 0.1 and t = 0.4. The analytical solution for the steady state is also

plotted.
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Figure 3: Charge density and vertical electric field along the vertical central line of the

domain for the hydrostatic solution when the steady state is attained for C = 0.1. The

analytical solutions are also plotted.
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Figure 4: Charge density and vertical electric field along the vertical central line of the

domain for the hydrostatic solution when the steady state is attained for C = 10. The

analytical solutions are also plotted.
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Figure 5: (color online) Evolution in time of the total angular momentum for C = 10 and

M = 20. The critical value of T can be estimated from the regions where linear growth is

observed (the scale is logarithmic for the Y axis)
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Figure 6: Evolution in time of the total angular momentum for C = 0.1, T = 25000 and

M = 20. After the velocity roll develops it becomes unstable.
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Figure 7: (color online) Exponential growth in time of the total angular momentum for

C = 0.1 and M = 20. The critical value of T can be estimated from the slopes of the

curves (the scale is logarithmic for the Y axis)
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Figure 8: Contour plot of the stream function for t = 70, C = 10, M = 20, T = 200. The

velocity roll is completely developped.
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Figure 9: (color online) Charge density for t = 70, C = 10, M = 20, T = 200. The contour

plot is plotted on the lower plane. The central region of the convective is void of electric

charge.



Figure 10: (color online) Electric charge density along a vertical line for C = 10, T = 200,

M = 20 and t = 70. Results computed with PIC and FCT with an imposed velocity roll

are also plotted.



Figure 11: (color online) Electric charge density along a horizontal line for C = 10,

T = 200, M = 20 and t = 70. Results computed with PIC and FCT with an imposed

velocity roll are also plotted. A small nonzero value of charge density is observed near the

left corner.
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Figure 12: (color online) Electric charge density along a horizontal line for C = 10,

T = 200, M = 20 and t = 70 for three different orders of polynomial approximation in

DG-FEM. The computations have been made on the same mesh.
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Figure 13: Hysteresis loop for C = 10, M = 20. Starting from a developped roll, when

decreasing the value of T the roll is still stable for Tf < T < Tc. The computed non-linear

stability threshold is Tf = 108.7. The analytical value is T a
f = 110.
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Figure 14: (color online) Evolution in time of the total angular momentum for C = 10,

M = 20 and several values of T . The roll structure becomes unstable for high values of T .
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Figure 15: Contour plot of the stream function for C = 10, M = 20, T = 600 and t = 20,

with the two roll structure.
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Figure 16: (color online) Contour plot of the electric charge density for C = 10, M = 20,

T = 600 and t = 20, with the two roll structure.
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Figure 17: (color online) Evolution in time of the maximum velocity for C = 10, M = 10

and T = 300 for three different order of polynomial approximation in the DG element.

The roll becomes unstable when the order is 1. The behaviour is different for orders 2 and

3. The oscillations start before in the former case.




