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Abstract. In this work we prove the existence of solution for a p-Laplacian non-autonomous
problem with dynamic boundary and infinite delay. We ensure the existence of pullback
attractor for the multivalued process associated to the non-autonomous problem we are
concerned. Finally, we also prove the existence of a more general attractor for the problem
known as D-pullback attractor.

1. Introduction

Let ⌧ 2 R and ⌦ ⇢ RN be a bounded domain with smooth boundary � = @⌦ and N � 3,
consider the following dynamical boundary conditions problem with infinite delay

8
<

:

ut ��pu+ |u|p�2u = f1(t, ut) + g1(t, x), (t, x) 2 (⌧,+1)⇥ ⌦,
ut + |ru|p�2@�!n u = f2(t, ut) + g2(t, x), (t, x) 2 (⌧,+1)⇥ �,
u(⌧ + s, x) =  (s, x), s 2 (�1, 0], x 2 ⌦

(P )

where �!n is the outer normal to �, p 2 [2,+1) and �p denotes the p-Laplacian operator,
defined by �pu = div(|ru|p�2ru). The external forces gi, i = 1, 2, satisfy assumptions that
will be stated later,  is a given function defined in the interval (�1, 0] and the external
force field fi containing some hereditary characteristic denoted by ut, which is a function
defined on (�1, 0) by the relation ut(s) = u(t+ s), s 2 (�1, 0).

The interest for problems with dynamic boundary conditions has been growing over the last
forty years, see [8, 14, 16]. Motivated by mathematicians’ interests and physical applications,
the authors of [10] and [11] studied an autonomous version of Problem (P ). After that, some
works emerged of this problem, with a non-autonomous term just in perturbations gi can
be found in [15, 24] and [25], where the authors have established the existence of a uniform
attractor and pullback attractor for the problems, respectively. In [22] the authors considered
a non-autonomous term in perturbations fi and ensured the existence of solution as well as
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the existence of D-pullback attractor for the generalized process associated with a similar
problem to (P ) without uniqueness of solution.

The delay terms appear naturally in many applications as velocity field in wind tunnel and
population growth, e.g., [17]. The study of the asymptotic behaviour of problems with finite
delay with uniqueness or in multivalued contexts can be found in [5], a version with infinite
delays can be found in [4], both works consider autonomous and non-autonomous problems.
In the work [26] the authors developed a theory of pullback attractors for multivalued process
associated with infinite delay problems and they established conditions to guarantee the
existence of an invariant pullback attractor for this multivalued process. Our work in this
paper will be based on these results. Another thing that motivates us is that there are only
a few delay problems related to operator �p which is a very good example of a nonlinear
maximal monotone operator.

We organize this work as follows. In the next section, we recall some notations, definitions
and properties of suitable spaces for the study of Problem (P ). In Section 3 we present some
definitions and a result that ensures the existence of the pullback attractor in multivalued
context developed in [26]. In Section 4 we prove the existence of weak solution for Problem
(P ). Finally, Section 5 is devoted to ensure the existence of pullback attractor for our problem
and then, in Section 6, we just choose a more general universe of sets to be attracted and
show the existence of a more general attractor known as D-pullback attractor.

2. Preliminaries

In this section, following [9] we define the appropriate spaces to study Problem (P ).
Consider the Lebesgue space

Lr(�) = {v : kvkLr(�) < 1},
where kvkLp(�) =

�R
� |v|pdS

�1/p
, for p 2 [1,1), dS is the surface measure on � induced by

dx and kvkL1(�) = inf{C; |v(x)|  C a.e. in �}.
The phase space to be considered is given by

Xp := Lp(⌦, dx)⇥ Lp(�, dS) = {F = (f, g); f 2 Lp(⌦) and g 2 Lp(�)},
with the norm

kFkXp =

✓Z

⌦

|f |pdx+

Z

�

|g|pdS
◆1/p

,

for 1  p < 1, and
kFkX1 := max

�kfkL1(⌦), kgkL1(�)

 
,

for p = +1. This space can be identified with Lp(⌦, dµ) where dµ = dx� dS, i.e., if A ⇢ ⌦
is µ�measurable, then µ(A) = |A \ ⌦|+ S(A \ �).

Note that the space X2, with the following inner product

h·, ·iX2 := h·, ·iL2(⌦) + h·, ·iL2(�) ,

is a separable Hilbert space.
For p 2 (1,1) we define the fractional order Sobolev space

W 1� 1
p ,p :=

⇢
u 2 Lp(�) :

Z

�

Z

�

|u(x)� u(y)|p
|x� y|p+N�2

dSxdSy < 1
�
.
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Consider the vector subspace of W 1,p(⌦)⇥W 1� 1
p ,p(�), given by

Vp = {U = (u, v); u 2 W 1,p(⌦) and v = �(u)},
where � : W 1,p(⌦) ! W 1� 1

p ,p(�) is the continuous trace operator. In Vp, we can consider the
usual norm kUkVp = kukW 1,p(⌦) + k�(u)k

W
1� 1

p ,p
(�)

. The space Vp is densely and compactly

contained in the Hilbert space X2 for 2  p < +1, as can be seen in [10].
Note that we can identify u 2 W 1,p as a couple U = (u, �(u)) 2 Vp. The continuity of �

ensures the equivalence between the norms of W 1,p(⌦) and Vp. We can show that Vp is a
reflexive and separable space for 1 < p < 1 . Furthermore,

Vp ⇢⇢ X2 ⇢ (Vp)⇤ for 2  p < +1. (2.1)

3. Abstract Results

In this section we present a summary of definitions and results from [26], where the authors
developed a theory of invariant pullback attractors in a multivalued context.

Let (X, ⇢) be a complete metric space. For x 2 X, A,B ⇢ X and " > 0 we define

⇢(x,A) := inf
a2A

{⇢(x, a)}; dist(A,B) := sup
a2A

inf
b2B

{⇢(a, b)};
O"(A) := {z 2 X; ⇢(z, A) < "}.

Denote by P(X) the nonempty subsets of X.

Definition 3.1. A family of mappings U(t, ⌧) : X ! P(X), t � ⌧ , ⌧ 2 R, is said to be a

multivalued process if

(1) U(⌧, ⌧)x = {x}, 8 ⌧ 2 R, x 2 X;

(2) U(t, s)U(s, ⌧)x = U(t, ⌧)x, 8 t � s � ⌧, ⌧ 2 R, x 2 X.

Definition 3.2. Let {U(t, ⌧)} be a multivalued process on X. We say that {U(t, ⌧)} is

(1) pullback dissipative, if there exists a family of bounded sets D = {D(t)}t2R in X
such that for any bounded set B ⇢ X and each t 2 R, there exists a ⌧0 = ⌧0(B, t) 2 R
such that

U(t, ⌧)B ⇢ D(t), 8 ⌧  ⌧0.

The family of sets D is known as pullback absorbing family;

(2) pullback asymptotically upper semicompact in X if for each fixed t 2 R and

B ⇢ X bounded, any sequence {⌧n} with ⌧n ! �1, {xn} ⇢ B, and {yn} with

yn 2 U(t, ⌧n)xn, this last sequence {yn} is precompact in X.

Definition 3.3. A family of nonempty compact subsets A = {A(t)}t2R of X is said to be a

pullback attractor for the multivalued process {U(t, ⌧)} if

(1) A = {A(t)}t2R is invariant, i.e.,

U(t, ⌧)A(⌧) = A(t), 8 t � ⌧, ⌧ 2 R;

(2) A is pullback attracting, i.e., for every bounded set B of X and any fixed t 2 R,

lim
⌧!�1

dist(U(t, ⌧)B,A(t)) = 0.
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Definition 3.4. Let {U(t, ⌧)} be a multivalued process on X. We say that U(t, ⌧) is upper
semicontinuous (or U.S.C.) in x for fixed t � ⌧ , ⌧ 2 R, if xn ! x, then for any

yn 2 U(t, ⌧)xn, there exist a subsequence ynk
2 U(t, ⌧)xnk

and y 2 U(t, ⌧)x such that ynk
! y

in X.

Theorem 3.5. ([26, Theorem 7, p. 88]) Let X be a Banach space and let {U(t, ⌧)} be a

pullback dissipative, pullback asymptotically upper semicompact and upper semicontinuous

multivalued process on X with [⌧tD(⌧) bounded for all t 2 R, where D = {D(t)}t2R is a

absorbing family. Then {U(t, ⌧} possesses a minimal pullback attractor A = {A(t)}t2R.
4. Existence of Solution

Let � > 0 be fixed and H a Hilbert space. One possibility to deal with infinite delays is
to consider the space:

C�(H) =

⇢
' 2 C((�1, 0];H) : 9 lim

s!�1
e�s'(s) 2 H

�
,

which is a Banach space with the norm

k'k� := sup
s2(�1,0]

e�s||'(s)||H .

This space was considered in [18, 26], the properties of this space that will allow us to deal
with infinite delays can be found in [12]. Later we will set a more appropriate � to our
particular problem.

Let fi : R ⇥ C�(Li) ! Li, for i = 1, 2, where L1 = L2(⌦) and L2 = L2(�), and satisfies
the following assumptions:

(F1) for all ⇠ 2 C�(Li), the mapping R 3 t ! fi(t, ⇠) 2 Li is mensurable;
(F2) for each t 2 R, fi(t, 0) = 0;
(F3) there exists Ki > 0 such that 8 t 2 R, 8⇠, ⌘ 2 C�(Li),

kfi(t, ⇠)� fi(t, ⌘)kLi  Kik⇠ � ⌘kC�(Li).

See [20] for examples of functions with these properties. And for gi,s we have the following
assumption:

(G1) let g1 2 Lp0

loc(R;Lp0(⌦)), g2 2 Lp0

loc(R;Lp0(�)) where p0 denotes the conjugate exponent
of p, i.e., 1

p
+ 1

p0 = 1.

Remark 4.1. Let  2 C�(X2), then notice that there exists  (s) 2 L2(⌦) and �(s) 2 L2(�)
for each s 2 (�1, 0] such that  = ( ,�). Moreover,

k k2C�(L1) + k�k2C�(L2) = sup
s2(�1,0]

⇣
e2�sk (s)k2L2(⌦)

⌘
+ sup

s2(�1,0]

⇣
e2�sk�(s)k2L2(�)

⌘

= sup
s2(�1,0]

⇣
e2�s

⇣
k (s)k2L2(⌦) + k�(s)k2L2(�)

⌘⌘

= sup
s2(�1,0]

e2�sk (s)k2X2 = k k2C�(X2).

Remark 4.2. For ⇠ 2 C�(W 1,p(⌦)) and each s 2 [�1, 0] we have �(⇠)(s) = �(⇠(s)). Then,
from the continuity of trace,

�(⇠) 2 C�

⇣
W 1� 1

p ,p(�)
⌘
.
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Definition 4.3 (Weak Solution to Problem (P )). Given  = ( ,�) 2 C�(X2), ⌧ 2 R, the
couple U(t) = (u(t), w(t)) is said to be a weak solution to Problem (P ) if w(t) = �(u(t)) a.e.
in (⌧, T ) for each T > ⌧ , and U satisfies

(i)

U 2 C([⌧,+1);X2) \ L1(⌧,+1;X2);

(ii)

@tU 2 Lp0

loc(⌧,+1; (Vp)⇤);

(iii) for all V = (v, �(v)) 2 Vp
,

h@tU, V iX2 +
⌦|ru|p�2ru,rv

↵
L2(⌦)

+
⌦|u|p�2u, v

↵
L2(⌦)

=
⌦
f1(t, u

t), v
↵
L2(⌦)

+
⌦
f2(t, �(u

t)), �(v)
↵
L2(�)

+ hg1(t), viL2(⌦) + hg2(t), �(v)iL2(�)

(4.1)

a.e. in (⌧, T ), for each T > ⌧ ;
(iv) U ⌧ =  in C�(X2), which means, u⌧ =  in C�(L2(⌦)) and w⌧ = � in C�(L2(�)).

Before showing the existence of a weak solution to Problem (P ), we obtain a priori esti-
mates for a weak solution in the space X2.

Lemma 4.4. Assume hypotheses (F1)-(F3) and (G1) are satisfied and let U(t) = (u(t), �(u)(t))
be a weak solution to Problem (P ) with initial delay condition  2 C�(X2) in ⌧ 2 R. Then,
there is a finite constant K(t, ⌧, ) such that

kU(t)kX2 +⇥

Z t

⌧

kUkpVpds  k k2C�(X2)

+ C1

Z t

⌧

⇣
kg1(t)kp0p0 + kg2(t)kp0p0,�

⌘
ds+K(t, ⌧, ),

(4.2)

and

kU tk2C�(X2)  eC(t�⌧)
⇣
k kC�(X2) + C̃(t� ⌧)

⌘

+ C"

Z t

⌧

e2C(t�s)
⇣
kg1(t)kp0p0 + kg2(t)kp0p0,�

⌘
ds,

(4.3)

for all t � ⌧ , with C, C", C1, C̃ and ⇥ positive constants independent of ⌧ and t.

Proof: Let U be a weak solution of Problem (P ). Take V = U in (4.1), and from Hölder’s
and Young’s inequalities we have

1

2

d

dt
kUk2X2 + krukpLp(⌦) + kukpLp(⌦) =

⌦
f1(t, u

t), u
↵
2
+
⌦
f2(t, �(u

t)), �(u)
↵
2,�

+ hg1(t), ui2 + hg2(t), �(u)i2,�
 C"kf1(t, ut)kp0p0 + C"kf2(t, �(ut))kp0p0,� + C"kg1(t)kp0p0 + C"kg2(t)kp0p0,�
+ 2"kukpp + 2"k�(u)kpp,�
 C"

⇣
kf1(t, ut)kp0p0 + kf2(t, �(ut))kp0p0,� + kg1(t)kp0p0 + kg2(t)kp0p0,�

⌘
+ 2"kUkpVp .
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Then, as the norm of Vp is equivalent to the norm of W 1,p(⌦), there is a constant M⌦ such
that

1

2

d

dt
kUk2X2 +M⌦kUkpVp

 C"

⇣
kf1(t, ut)kp0p0 + kf2(t, �(ut))kp0p0,� + kg1(t)kp0p0 + kg2(t)kp0p0,�

⌘
+ 2"kUkpVp .

Take " > 0 such that

⇥ :=
1

2
(M⌦ � 2") > 0, (4.4)

and multiplying by 2, incorporating the constants, and integrating between ⌧ to t

kU(t)k2X2 +⇥

Z t

⌧

kUkpVpds  kU(⌧)k2X2

+ C"

Z t

⌧

⇣
kf1(t, ut)kp0p0 + kf2(t, �(ut))kp0p0,� + kg1(t)kp0p0 + kg2(t)kp0p0,�

⌘
ds.

Thus, from Lemma 2.1 of [22], (F2) and (F3), there are 1,2 > 0 and C1 , C2 > 0, such
that

kU(t)k2X2 +⇥

Z t

⌧

kUkpVpds  kU(⌧)k2X2

+ C"

Z t

⌧

⇣
1kf1(t, ut)k22 + 2kf2(t, �(ut))k22,� + kg1(t)kp0p0 + kg2(t)kp0p0,�

⌘
ds

+ C"(t� ⌧)(C1 + C2)

 kU(⌧)k2X2 + C"

Z t

⌧

�
1K

2
1kutk2C�(L1) + 2K

2
2k�(ut)k2C�(L2)

�
ds

+ C"

Z t

⌧

⇣
kg1(t)kp0p0 + kg2(t)kp0p0,�

⌘
ds+ C"(t� ⌧)(C1 + C2).

Take K := max{1K2
1 ,2K

2
2} and let

C := C"K (4.5)

and C̃ := C" (C1 + C2). From Remark 4.1 we have

kU(t)k2X2+⇥

Z t

⌧

kUkpVpds  kU(⌧)k2X2

+ C"

Z t

⌧

⇣
kg1(t)kp0p0 + kg2(t)kp0p0,�

⌘
ds+ C

Z t

⌧

kU sk2C�(X2)ds+ C̃(t� ⌧).

(4.6)

for t � ⌧ .
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Further

kU tk2C�(X2)  max

(
sup

l2(�1,⌧�t]
e2�lk (l + t� ⌧)k2X2 ,

sup
l2(⌧�t,0]


e2�l
✓
kU(⌧)k2X2 + C"

Z t+l

⌧

⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds

+C

Z t+l

⌧

kU sk2C�(X2)ds+ C̃(t� ⌧)

◆��

 max

(
sup

l2(�1,⌧�t]
e2�lk (l + t� ⌧)k2X2 ,

kU(⌧)k2X2 + C"

Z t

⌧

⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds

+C

Z t

⌧

kU sk2C�(X2)ds+ C̃(t� ⌧)

�
,

and, note that

sup
l2(�1,⌧�t]

e2�lk (l + t� ⌧)k2X2 = sup
l0

e2�(l�(t�⌧))k (l))k2X2 = e�2�(t�⌧)k kC�(X2)  k kC�(X2),

and kU(⌧)kX2 = k (0)kX2  k kC�(X2). From Gronwall’s Lemma

kU tk2C�(X2)  eC(t�⌧)
⇣
k kC�(X2) + C̃(t� ⌧)

⌘
+ C"e

C(t�⌧)

Z t

⌧

⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds,

ensuring estimate (4.3) for all t � ⌧ , with this estimate and (4.6) we can deduce estimate
(4.2).

⌅
Theorem 4.5. Let  2 C�(X2) and ⌧ 2 R. Assume (F1)-(F3) and (G1) hold true. Then

there exists at least one weak solution for Problem (P ) with initial delay condition  in ⌧ .

Proof: We will define some appropriate operators to reformulate expression (4.1) in order
to have a simpler functional formulation of our problem, see [10] and [22] for examples of
the same method. Then let, for U, V 2 Vp, the following operator

�p(U, V ) =
⌦|ru|p�2ru,rv

↵
2
+
⌦|u|p�2u, v

↵
2
.

For each U 2 Vp we have �pU := �p(U, ·) 2 (Vp)⇤ and the operator �p : Vp ! (Vp)⇤ is a
maximal monotone operator, see [22].

And we define

F(t, U t) =

✓
f1(t, ut)
f2(t, �(ut))

◆
, G(t) =

✓
g1(t)
g2(t)

◆
and @tU =

✓
ut

�(u)t

◆

in the usual way, see [22] for more details.
In this way, finding a weak solution of Problem (P ) is equivalent to find a function U with

regularities of weak solution definition, and satisfying the following functional equation

@tU + �pU = F(t, U t) +G(t) (4.7)
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in Lp0(0, T ; (Vp)⇤), see Remark 4.6 in [22].
In order to find a weak solution to Problem (P ), we use the Faedo-Galerkin approximation.

Since X2 is separable and Vp is dense in X2, there is a orthonormal basis of X2 contained in
Vp. We denote such basis by {�n = (�n, n) 2 X2;n 2 N}.

Let

Kn = span{�1, ...,�n}, K1 = [1
n=1Kn,

and Prn : X2 ! Kn be the orthogonal projection.
Given  2 C�(X2) and T > ⌧ we want to find a solution Un =

Pn
i=1 di(t)�i 2 Kn for

an n�dimensional version of problem (4.7), which is equivalent to find a solution of the
following system of ordinary di↵erential equations

⇢ h@tUn,�ii+ h�pUn,�ii = hF(t, U t
n),�ii+ hG(t),�ii

hUn(⌧ + s), V i = hPrn (s), V i , for s 2 (�1, 0],

for all 1  i  n and a.e. in [⌧, T ], where h·, ·i denote the dual product between (Vp)⇤ and
Vp.

The above system of ordinary functional di↵erential equations with infinite delay ful�ls
the conditions for existence and uniqueness of local solution established in Theorem 1.1 of
[13]. A priori estimates ensure that solutions do exist for all time in [⌧, T ].

Estimate (4.3) of Lemma 4.4 ensures that for  2 C�(X2) and R > 0 such that k kC�(X2) 
R, there exists a constant C = C(⌧, T, R), but independent of n and t 2 (⌧, T ), such that

kU t
nk2C�(X2)  C(⌧, T, R). (4.8)

In particular, the previous limit and estimate (4.2) imply the existence of another constant
(relabelled the same) C = C(⌧, T, R) such that

⇢ kUn(t)kL1(⌧,T ;X2)  C
kUn(t)kLp(⌧,T ;Vp)  C.

(4.9)

Then, this guarantees that �pUn is bounded in Lp0(⌧, T ; (Vp)⇤), see [22] for more details.
Hypotheses (F2), (F3), (4.8) and recalling that X2 ⇢ (Vp)⇤ continuously imply that F(t, U t

n)
is bounded in Lp0(⌧, T ; (Vp)⇤). Note that,

@tUn = ��pUn + F(t, U t
n) +G(t) in Lp0(⌧, T ; (Vp)⇤). (4.10)

Therefore, the limits of �pUn and F(t, U t
n) ensure that there exists a constant (relabelled

the same) C(⌧, T, R) such that

k@tUnkLp0 (⌧,T ;(Vp)⇤)  C. (4.11)

The limits in (4.9) and (4.11) ensure that there is a subsequence (which we relabel the
same) {Un}, and an element U 2 L1(⌧, T ;X2) \ Lp(⌧, T ;Vp) with @tU 2 Lp0(⌧, T ; (Vp)⇤),
such that 8

<

:

Un
⇤
* U in L1(⌧, T ;X2),

Un * U in Lp(⌧, T ;Vp),
@tUn

⇤
* @tU in Lp0(⌧, T ; (Vp)⇤).

(4.12)
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From compactness results, see Theorems 1.4 and 1.5 page 32 of [7], the sequences in fact
have the following convergences

⇢
Un ! U in Lp(⌧, T ;X2),
Un ! U in C([⌧, T ];X2).

(4.13)

Note that,
Prn !  in C�(X2),

and thanks to the strong convergence in C([⌧, T ];X2) yield that

U t
n ! U t in C�(X2) 8 t  T,

see, for instance, [18, 19] and [20] for details about both convergences.
The above convergence and hypotheses (F2) and (F3) imply that

F(t, U t
n) ! F(t, U t) in Lp0(⌧, T ;X2),

which together with convergences (4.12) and the theory of maximal monotone operators
allow us to deduce that

�pUn
⇤
* �pU in Lp0(⌧, T ; (Vp)⇤),

see [22] for details.
Therefore, U is solution of the limit equation of (4.10) in the weak star topology of

Lp0(⌧, T ; (Vp)⇤). This ensures that U is a weak solution of Problem (P ) in the interval
(�1, T ] with initial condition U ⌧ =  .

⌅
The existence of solution allows us define the multivalued process {U(t, ⌧)} on C�(X2) by

U(t, ⌧) =
�
U t |U(·) is a solution of Problem (P ) with U ⌧ =  2 C�(X2)

 
.

Indeed, item (2) of Definition 3.1 follows from concatenation and translation of solutions,
see [4] and [5] for details.

Lemma 4.6. The multivalued process {U(t, ⌧)} is upper-semicontinuous in C�(X2).

Proof: Let ⌧ 2 R, { n}n2N and  such that  n !  in C�(X2), and let {Yn}n2N such
that Y ·

n 2 U(·, ⌧) n.
Given T > ⌧ , observe that, as  n !  in C�(X2), given R > 0, except for a finite number

of elements, we have that { n} ⇢ BC�(X2)( , R). Then, from Lemma 4.4 the sequence {Yn}
is bounded in L1(⌧, T ;X2) and Lp(⌧, T ;Vp).

Then, similarly to the proof of Theorem 4.5, we can ensure the existence of an element
Y · 2 U(·, ⌧) such that Y t

n ! Y t in C�(X2) for all t  T .
Therefore, as T > ⌧ is arbitrary, it follows that {U(t, ⌧)} is upper-semicontinuous.

⌅

5. Pullback Attractor for Problem (P )

In this section we develop some estimates to show that the multivalued process generated
by solutions of Problem (P ) possesses a pullback absorbing family and it is pullback asymp-
totically upper semicompact. Therefore, we can ensure the existence of pullback attractor
for the problem.
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First we summary some aspects of the constants that appeared in the development of
Lemma 4.4 and we will develop some technical property with these constants to make easy
our study and understanding of the reader. Consider in this section p > 2.

We choose " > 0 and define ⇥ = 1
2(M⌦ � 2") > 0, see (4.4). Another constant that we

need is C > 0 defined in (4.5).
Note that there is a constant M̃ > 0 such that kUkX2  M̃kUkXp . From Young’s inequality,

see [2] page 92, we can choose a constant � > 0 such that

kUk2X2  �
⇣
M̃2kUk2Xp

⌘ p
2
+ C�.1(

p
2)

0

,

with C� > 0. Then we take � > 0 such that ⇥ > �M̃pC, and define the following constant

� := 2

✓
⇥

�M̃p
� C

◆
> 0. (5.1)

Remark 5.1. Note that

kUkpXp  kUkpVp , and

1

�M̃p
kUk2X2 � C�

�M̃p
 kUkpVp .

Then, consider the following additional assumption:

(G2) sup
r0

e��r

Z r

�1
e�s
⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds < +1,

Remark 5.2. If we assume (G1) and (G2) we have

e��t

Z t

�1
e�s
⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds < +1, 8 t 2 R.

Lemma 5.3. If � > ⇥
�M̃p , then for ⌧ 2 R,  2 C�(X2) and U a weak solution of Problem

(P ) with assumptions (F1)-(F3) and (G1)-(G2), we have that

kU tk2C�(X2)  e�(⌧�t)k kC�(X2) +
2C̃

�
+ 2C"

Z t

�1
e�(s�t)

⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds (5.2)

for each t � ⌧ , with C" and C̃ positive constants independent of t and ⌧ .

Proof:
Following the proof of Lemma 4.4, see (4.6), we have

1

2

d

dt
kUk2X2 +⇥kUkpVp

 C"

⇣
kf1(t, ut)kp0p0 + kf2(t, �(ut))kp0p0,� + kg1(t)kp0p0 + kg2(t)kp0p0,�

⌘

 C"

⇣
kg1(t)kp0p0 + kg2(t)kp0p0,�

⌘
+ C

�kutk2C�(L1) + k�(u)tk2C�(L2)

�
+ C̃

Then, from Remark 5.1, we have

1

2

d

dt
kUk2X2 +

⇥

�M̃p
kUk2X2

 C"

⇣
kg1(t)kp0p0 + kg2(t)kp0p0,�

⌘
+ C

�kutk2C�(L1) + k�(u)tk2C�(L2)

�
+ C̃ +

C�⇥

�M̃p
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relabelled C̃ := C̃ + C�⇥
�M̃p , then multiply by 2 and take ⇥̃ := 2⇥

�M̃p . Now multiplying by e⇥̃t,

integrating from ⌧ to t and multiplying the last expression by e�⇥̃t we have

kU(t)k2X2  e⇥̃(⌧�t)kU(⌧)k2X2

+ 2C"

Z t

⌧

e⇥̃(s�t)
⇣
kg1(t)kp0p0 + kg2(t)kp0p0,�

⌘
ds+ 2C

Z t

⌧

e⇥̃(s�t)kU tk2C�(X2)ds+

Z t

⌧

e⇥̃(s�t)2C̃ds

Consequently,

kU tk2C�(X2)

 max

(
sup

l2(�1,⌧�t]
e2�lk (l + t� ⌧)k2X2 ,

sup
l2(⌧�t,0]


e2�l

✓
e⇥̃(⌧�(t+l))kU(⌧)k2X2 + 2C"

Z t+l

⌧

e⇥̃(s�t)
⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds

+2C

Z t+l

⌧

e⇥̃(s�t)kU sk2C�(X2)ds+

Z t

⌧

e⇥̃(s�t)2C̃ds

◆��

 max

(
sup

l2(�1,⌧�t]
e2�lk (l + t� ⌧)k2X2 ,

e⇥̃(⌧�t)kU(⌧)k2X2 + 2C"

Z t

⌧

e⇥̃(s�t)
⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds

+2C

Z t

⌧

e⇥̃(s�t)kU sk2C�(X2)ds+

Z t

⌧

e⇥̃(s�t)2C̃ds

�
.

Note that, as � � ⇥
�M̃p , we have

sup
l2(�1,⌧�t]

e2�lk (l + t� ⌧)k2X2  e�⇥̃(t�⌧)k kC�(X2),

and e�⇥̃(t�⌧)kU(⌧)k2X2  e�⇥̃(t�⌧)k k2C�(X2), and then

kU tk2C�(X2)  e⇥̃(⌧�t)k kC�(X2) +

Z t

⌧

e⇥̃(s�t)2C̃ds

+ 2C"

Z t

⌧

e⇥̃(s�t)
⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds+ 2C

Z t

⌧

e⇥̃(s�t)kU sk2C�(X2)ds.

Note that � = ⇥̃� 2C, and from Gronwall’s Lemma

kU tk2C�(X2)  e�(⌧�t)k kC�(X2) +
2C̃

�
+ 2C"

Z t

�1
e�(s�t)

⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds.

⌅
Lemma 5.3 ensures that the multivalued process {U(t, ⌧)} is pullback dissipative in C�(X2),

with the following pullback absorbing family.
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Lemma 5.4. Suppose hypotheses of Lemma 5.3 and for each t 2 R define

D(t) =

(
 2 C�(X2); k k2C�(X2)  1 +

2C̃

�
+ 2C"e

��t

Z t

�1
e�s
⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds

)
,

then D = {D(t)}t2R is a pullback absorbing family for the multivalued process {U(t, ⌧)} on

C�(X2).

Note that when the constant � in the estimate (5.2) is positive we can ensure the stability
of the solution for ⌧ 2 R small enough. This kind of property is proved in other works asking
for some restrictions on constants like Ki’s in (F3), see for instance [4, 5, 18, 19, 20] and
[26]. Here, according to the handling presented at the beginning of the section, we obtain
an appropriate � for each choice of Ki’s. It means that the existence of a pullback absorbing
family is independent of the choice of Ki’s.

Lemma 5.5. Let � > ⇥
�M̃p , then the multivalued process {U(t, ⌧)} is pullback asymptotically

upper-semicompact in C�(X2).

Proof: Let t0 2 R fixed, and let {Un(t0, ⌧n, n)}n2N be a sequence of weak solutions
of Problem (P ) with { n}n2N ⇢ C�(X2) a sequence of initial conditions in {⌧n}n2N ⇢ R,
respectively, and ⌧n ! �1. Without loss of generality, we may assume that ⌧n < t0 for all
n 2 N.

Consider {U t0
n } and we will show that such sequence is precompact in C�(X2) in two steps.

See [18, 20] for examples of the same technique.
Step 1: We will show that there exist a function W : (�1, 0] ! X2 and a subsequence

of {U t0
n }, relabelled the same, such that U t0

n ! W in C([�T, 0];X2) for every T > 0.
Let T > 0, there is n0(t0, T ) such that for all n � n0 we have ⌧n < t0 � T , and from

estimate (5.2) there is R(t0, T ) > 0 such that

kU t
nk2C�(X2)  R(t0, T ), 8 t 2 [t0 � T, T ] and n � n0, (5.3)

where

R(t0, T ) = 1 +
2C̃

�
+ 2C"e

��(t0�T )

Z t0

�1
e�s
⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds, (5.4)

and then
kUn(t)k2X2  R(t0, T ), 8 t 2 [t0 � T, t0] and n � n0. (5.5)

Take
Yn(t) = Un(t+ t0 � T ), 8 t 2 [0, T ],

and note that, from (5.5), the sequence {Yn} is bounded in L1(0, T ;X2).
Note that Yn is a solution of functional formulation (4.7) with the following replaced

functions
G̃(t) = G(t+ t0 � T ) and F̃(t) = F(t+ t0 � T, ·), 8 t 2 [0, T ].

with Y 0
n = U t0�T

n and Y T
n = U t0

n .
From (5.3) we have that

kY 0
n k2C�(X2)  R(t0, T ), 8 n � n0(t0, T ),

and, from a priori estimate (4.2) it is possible to find K(t0, T ) such that

kYnkLp(0,T ;Vp)  K(t0, T ). (5.6)
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Thanks to these estimates there exists Y 2 L1(0, T ;X2) \ L2(0, T ;Vp) such that
⇢

Yn
⇤
* Y in L1(0, T ;X2),

Yn * Y in Lp(0, T ;Vp).
(5.7)

Note that, from hypothesis (F3) there exists K̃ = K̃(K1, K2) > 0 such that

kF̃(t, Y t
n)k2X2  K̃kY t

nk2C�(X2), 8 t 2 [0, T ], (5.8)

and (5.5) ensures that F̃(t, Y t
n) is bounded in Lp0(0, T ; (Vp)⇤), and from (5.6) we have that

operator �pYn is bounded in the same space. Then, as it was done in the proof of Theorem
4.5, there exists @tY 2 Lp0(0, T ; (Vp)⇤) such that

@tYn
⇤
* @tY in Lp0(0, T ; (Vp)⇤). (5.9)

From (5.7), (5.9) and Theorems 1.4 and 1.5 in page 32 of [7], we have
⇢

Yn ! Y in Lp(⌧, T ;X2),
Yn ! Y in C([⌧, T ];X2).

(5.10)

Take W (s) := Y (s + T ) for s 2 [�T, 0]. Then U t0
n|[�T,0] ! W in C(�T, 0;X2). Repeating

the same procedure for 2T, 3T , etc. for a diagonal subsequence we can obtain a function
W 2 C((�1, 0];X2) such that U t0

n|[�T,0] ! W in C([�T, 0];X2) on every interval [�T, 0].
Moreover, from estimate (5.3), we have

kW (s)k2C�(X2)  1 +
2C̃

�
+Me�T 8 s 2 [�T, 0], for any T > 0, (5.11)

where

M = 2C"e
��t0

Z t0

�1
e�s
⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds.

Step 2: Now we prove that U t0
n converges to W in C�(X2). In fact, we will show that for

every " > 0 there exists n" such that

sup
s2(�1,0]

e2�skU t0
n (s)�W (s)k2X2  " 8 n � n". (5.12)

Let T" > 0 such that

max

(
e�2�T" , e�Me[��2�]T" , e�2�T"

 
1 +

2C̃

�
+M

!
, e�2�T"

 
1 +

2C̃

�
+ e�T"M

!)
<
"

8
,

note that � � 2� < 0, and take n" � n(t0, T") such that e2�skU t0
n (s) �W (s)k2X2 < " for all

s 2 [�T", 0], and ⌧n  t0 � T", for all n � n". This last choice is possible thanks to Step 1.
Then, in order to prove (5.12) we only need to check that

sup
s2(�1,�T"]

e2�skU t0
n (s)�W (s)k2X2  " 8 n � n"

From (5.11) and the choice of T", for all k � 0 we have that for all s 2 [�(T"+k+1),�(T"+k)]

e2�skW (s)k2X2  e�2�(T"+k)
�
1 +Me�(T"+k+1)

�

= e�2�T" .e�2�k +Me�(T"+k+1)�2�(T"+k)

= e�2�T" .e�2�k + e�Me[��2�]T"e[��2�]k  "

2
+
"

2
.
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Then, to finish, it su�ces to prove that

sup
s2(�1,�T"]

e2�skU t0
n (s)k2X2  "

2
8 n � n".

We recall that

U t0
n =

⇢
 n(s+ t0 � ⌧n), if s 2 (�1, ⌧n � t0)
Un(s+ t0), if s 2 [⌧n � t0, 0].

(5.13)

Thus, the proof is finished if we prove that

max

(
sup

s2(�1,⌧n�t0)
e2�sk n(s+ t0 � ⌧n)k2X2 , sup

s2[⌧n�t0,�T"]
e2�skUn(s+ t0)k2X2

)
 "

2
. (5.14)

But observe that

sup
s2(�1,⌧n�t0)

e2�sk n(s+ t0 � ⌧n)k2X2 = sup
s2(�1,⌧n�t0)

e2�(s+t0�⌧n)e2�(⌧n�t0)k n(s+ t0 � ⌧n)k2X2

 e2�(⌧n�t0)k nk2X2 = e2�(⌧n�t0)kU ⌧n
n k2X2

 e2�(⌧n�t0)

 
1 +

2C̃

�
+ C"e

��⌧n

Z ⌧n

�1
e�s
⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds

!

 e2�(⌧n�t0)

 
1 +

2C̃

�
+ C"e

��t0

Z t0

�1
e�s
⇣
kg1(s)kp0p0 + kg2(s)kp0p0,�

⌘
ds

!

 e2�(⌧n�t0)

 
1 +

2C̃

�
+M

!
 e�2�T"

 
1 +

2C̃

�
+M

!
 "

4
,

thanks to the choice of n" and T".
Finally, from (5.3) with T = T", we also have

sup
s2[⌧n�t0,�T"]

e2�skUn(s+ t0)k2X2 = sup
s2[⌧n�t0+T",0]

e2�(s�T")kUn(t0 � T" + s)k2X2

 e�2�T"kU t0�T"
n k2X2  e�2�T"R(t0, T") = e�2�T"

 
1 +

2C̃

�
+ e�T"M

!
 "

4
.

The proof is completed.
⌅

Theorem 5.6. Assume (F1)-(F3), (G1)-(G2) and also � > ⇥
2�M̃p . Then the multivalued

process {U(t, ⌧)} defined in C�(X2) associated with Problem (P ) has the minimal pullback

attractor A = {A(t)}t2R.
Proof: The existence of minimal pullback attractor is a direct consequence of Theorem
3.5, Lemma 4.6, Lemma 5.4 and Lemma 5.5.

⌅
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Response for Reviewers

First of all, we want to thank the reviewers for his dedication and his great contri-

butions to this work.

One of the reviewers noted that we had not actually shown that the pullback ab-

sorbing family D defined in Lemma 5.4 have the property that [⌧tD(⌧) is boundend for

all t 2 R. To have this property we had to change our G2 hypothesis to

(G2) sup
r0

e��r

Z r

�1
e�s

⇣
kg1(s)kp

0

p0 + kg2(s)kp
0

p0,�

⌘
ds < +1,

like in [1]. With that change the small final section loses its meaning and had to be

removed. But the most important results of the work remain valid.

Furthermore, we have made other minor changes, which are pointed below:

1. page 10, line 3: We added the phrase: ”Consider in this section p > 2” at the end

of the paragraph;

2. page 6 (line 10), page 8 (line -12) and page 9 (line 10): we have replaced “(H2) and

(H3)” by “(F2) and (F3)”;

3. page 6 (line 6) and page 10 (line 4):we have replaced “⇥ := (M⌦ � 2") > 0” by

“⇥ := 1
2(M⌦ � 2") > 0”;

4. page 4, line 10: we have replaced “Banach space” by “Hilbert space”

5. page 12, at the beginning of the demonstration of Lemma 5.5: we have replaced

“U(·; ⌧n, n)” by “U(t0; ⌧n, n)”

6. page 4, line 15: we removed the expressionwe ”another spaces”;

7. page 5, line 8: we removed the ”{”;

8. page 11, line -10: we have replaced “comma” by “period”
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