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ABSTRACT 

Vector-borne pathogens cause important diseases such as malaria and are 

nowadays a major public health concern, because they cause human –and animal- fatalities 

worldwide and have a significant impact on local economies. Factors associated to global 

change, such as habitat alteration and introduction of invasive species, have largely 

contributed to the spread of potential insect vectors and the pathogens they are able to 

transmit, thus creating novel epidemiological scenarios. Therefore, it becomes essential to 

study the factors that modulate the transmission risk of these disease agents involving the 

interactions between vertebrate hosts (humans and other animals), pathogens and insect 

vectors in natural ecosystems.  

In this thesis, I used a multidisciplinary approach combining   molecular tools, 

experimental bioassays and statistical analyses to assess the ecological and evolutionary 

factors that affect the transmission success of two mosquito-borne pathogens. In particular, 

I considered the interactions between insect vectors, vertebrate hosts, the avian malaria 

parasites and the flavivirus Zika virus. I focused on two major steps directly influencing 

the pathogen transmission success: i) the contact rate between mosquitoes and 

infected/susceptible vertebrate hosts and ii) the development of the pathogen in the 

mosquito and its consequences on the pathogen transmission risk.  

To do that, first I tested the potential causes underlying differences in the biting 

patterns of mosquito species. I exposed two bird species to two mosquito species to 

determine the role of mosquito species identity and effect of three host-related factors on 

host-vector contact rates (i.e. body mass, gender, and infection status by avian malaria). I 

found clear interspecific differences in the biting rates of mosquitoes, which were also 

influenced by variation in hosts’ traits, although these effects differed depending on the 

particular mosquito-host assemblage. Therefore, the biting patterns of mosquitoes are far 

from being generalizable. 

Secondly, I assessed the vector competence of different mosquito species for the 

transmission of Zika virus and avian malaria using mosquito saliva. I found that the ability 

of mosquito-borne pathogens to develop in mosquitoes differed between insect species, 

which may be the result of complex co-evolutionary processes. In addition, I assessed the 

consequences of parasite development in the mosquito vectors and their implications for 
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the pathogen transmission risk. I found that host parasite load and parasite identity play 

affect the impact of parasites on mosquito longevity finally determining the transmission 

risk of the parasites.   

With this information mostly derived from studies under controlled conditions, I 

assessed the importance of environmental conditions affecting the host-parasite-vector 

assemblages in the wild. I found that habitat characteristics, which determine the existence 

and abundance of insect vectors, and host related factors (i.e. immune-competence) 

determines the prevalence of avian malaria parasites in insular ecosystems. 

Altogether, in this thesis I identified key factors affecting the transmission success 

of vector-borne pathogen affecting humans or wildlife allowing a better understanding the 

complex transmission dynamics of vector-borne pathogens.      
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RESUMEN 

Los patógenos transmitidos por vectores que causan enfermedades como la 

malaria son a día de hoy un importante problema de salud pública, ya que causan 

numerosas muertes humanas y animales a nivel mundial teniendo un gran impacto en la 

economía local. 

Factores asociados al cambio global, así como la alteración del hábitat y 

la introducción de especies invasoras, han contribuido en gran medida a la expansión 

de posibles insectos vectores y de los patógenos que pueden transmitir, creándose 

nuevos escenarios epidemiológicos. Por lo tanto, es esencial estudiar aquellos factores 

que influyen en el riesgo de transmisión de estos patógenos considerando las 

interacciones entre los huéspedes vertebrados (humanos y otros animales), los patógenos 

insectos vectores en los ecosistemas naturales. 

En esta tesis, mediante un enfoque multidisciplinario que combina 

herramientas moleculares, bioensayos experimentales y análisis estadísticos, se 

evalúan los factores ecológicos y evolutivos que afectan al éxito de transmisión de dos 

patógenos transmitidos por mosquitos. En particular, se han consideraron las 

interacciones entre los parásitos de la malaria aviar y el virus del Zika con sus 

insectos vectores y hospedadores vertebrados. En concreto, me centro en dos procesos 

principales que influyen directamente en el éxito de la transmisión de patógenos: i) 

la tasa de contacto entre mosquitos y hospedadores vertebrados infectados/

susceptibles d e  s e r l o  y ii) el desarrollo del patógeno en el mosquito y sus 

consecuencias sobre el riesgo de transmisión de éstos. 

Para ello, primero he estudiado las posibles causas que subyacen a las diferencias 

en los patrones de alimentación de las especies de mosquitos. Se expusieron dos 

especies de pájaros a dos especies de mosquitos para determinar el papel que tenía la 

especie de mosquito y el efecto de tres factores relacionados con el hospedador 

vertebrado sobre las tasas de contacto entre el hospedador y el vector (masa corporal, 

género e infección por parásitos de la malaria aviar). Encontré claras diferencias inter-

específicas en las tasas de picadura de los mosquitos, que también se vieron 

influenciadas por la variación en los rasgos de los hospedadores, aunque estos efectos 

difirieron dependiendo de la asociación mosquito-hospedador. Por lo tanto, los 

patrones de alimentación de los mosquitos parecen estar lejos de ser generalizables. 
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En segundo lugar, he estudiado la competencia vectorial de diferentes 

especies de mosquitos para la transmisión del virus del Zika y de parásitos de la malaria 

aviar utilizando la saliva del mosquito. Descubrí que la capacidad de desarrollo de los 

patógenos difería entre las especies de mosquitos, pudiendo ser el resultado de complejos 

procesos co-evolutivos. Además, he evaluado las consecuencias que tiene el desarrollo de 

los parásitos en los mosquitos en relación al riesgo de transmisión de éstos. También 

encontré que tanto la carga parasitaria del hospedador vertebrado como la identidad del 

parásito afectan a la longevidad de los mosquitos y consecuentemente determina el riesgo 

de transmisión de los parásitos. 

Con esta información, derivada principalmente de estudios en laboratorio, 

bajo condiciones controladas, he evaluado cómo afectan las condiciones ambientales a 

las asociaciones entre hospedador-parásito-vector en la naturaleza. Descubrí que 

las características del hábitat, las cuales van a determinan la existencia y 

abundancia de insectos vectores, así como los factores relacionados con el huésped 

(inmunocompetencia), determinan la prevalencia de parásitos de la malaria aviar en los 

ecosistemas insulares. 

En general, en esta tesis, he identificado los factores claves que afectan al éxito 

de transmisión de los patógenos transmitidos por insectos vectores que afectan a la salud 

humana o animal, permitiendo un mejor entendimiento de la complejidad de la 

dinámica de transmisión de estos patógenos.
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GENERAL SECTION 

Introduction 
Factors associated to global change, including climate change, habitat alteration 

and the introduction of invasive species have largely contributed to the emergence and re-

emergence of different diseases of public health relevance (Jones et al. 2008; Morens & 

Fauci, 2013). In addition, the increase of international travels and trades also favour the 

spread of disease agents across the globe (Patz et al. 2000; Kilpatrick & Randolph, 2012). 

Some vector-borne diseases such as malaria, filariasis, Dengue fever, West Nile fever or 

Chikungunya fever are nowadays a major health concern, since they cause human fatalities 

worldwide and have a significant economic impact on local economies (Goddard, 2008). 

Many of these infectious diseases have a zoonotic origin, being transmitted by insect 

vectors, such as mosquitoes, ticks, or fleas, from animals (wildlife, livestock) to humans 

(Vorou et al. 2007). One example of that is the re-emergent West Nile virus (WNV) that 

circulates naturally between birds, but occasionally affects humans and horses. Since its 

introduction in 1999 in North America, over 3 million people have been infected with 

WNV in the USA (Petersen et al. 2013). Moreover, the spread of potential insect vectors 

and/or the pathogens they can transmit create novel epidemiological scenarios, such as the 

transmission of locally circulating Dirofilaria parasites by invasive mosquito Aedes 

albopictus in Italy (Cancrini et al. 2003), or imported pathogens such as Dengue and 

Chikunguya viruses by Ae. albopictus in France (Gould et al. 2010; Marchand et al. 2013). 

Therefore, it becomes essential to study the interactions between vertebrate hosts (humans 

and other animals), insect vectors, and pathogens potentially transmitted in natural 

ecosystems to fully understand the ecology and evolution of the transmission of diseases.   

Hosts and pathogens are involved in a permanent evolutionary arms race to 

maximize their own fitness (Thompson, 1998), with pathogens trying to increase their 

transmission success and hosts minimizing the costs of infections (de Roode et al. 2008). 

Nonetheless, due to their relative shorter life cycles, pathogens are usually one step forward 

with respect to their hosts. Under this co-evolutionary scenario, pathogens are usually 

locally and temporally adapted to their most common hosts. However, pathogens often 

come into contact with other uncommon hosts, potentially increasing their host-range and 
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occasionally producing outbreaks (Woolhouse et al. 2005). This arms race between 

pathogens and hosts becomes even more complicated for the case of vector-borne 

pathogens. Pathogen-vector interactions include different physiological, immunological, 

and genetic mechanisms allowing/hampering the development of the infection in the insect 

vector (Beerntsen et al. 2000). Thus, those genetic and phenotypic changes in pathogens 

allowing the adaptation to new hosts (i.e. vertebrate hosts and insect vectors) could affect 

their interactions with their common hosts (Escalante et al. 1998; Waldenstrom et al.. 2002; 

Ricklefs et al. 2002, 2004). For instance, a single point mutation associated with the ability 

of Chikungunya virus to develop in Aedes albopictus has been also associated with a 

reduction in the transmission efficiency by its natural vector Aedes aegypti (Lamballerie et 

al. 2008). Moreover, environmental conditions may influence these interactions finally 

determining the transmission dynamics of vector-borne pathogens (Ferraguti et al. 2018). 

In this thesis, I study the main factors potentially affecting the transmission dynamics of 

pathogens with ecological and public health importance (i.e. virus and protozoa) by 

assessing the role played by different potential vector species. In particular, I focus on two 

factors directly influencing the pathogen transmission success 1) the contact rate between 

insect vectors and infected/susceptible vertebrate hosts and 2) the development of the 

pathogen in the insect vector.  

The basic reproductive number (R0) is an epidemiological parameter frequently 

used to determine the transmission risk of pathogens (Smith et al. 2012). R0 corresponds to 

the average number of secondary infections caused by an infectious host entering a naïve 

population. R0 is estimated from models that incorporate basic information on the 

transmission process that includes, in the case of vector-borne pathogens, host selection by 

vectors, vector survival and the time necessary for the development of the pathogen in the 

insect vectors (Ross, 1911; Macdonald, 1955; Fig. 1). This is especially important for the 

case of multi-vector pathogens for which the relative importance of each vector species for 

pathogen transmission may differ (i.e. mosquitoes, see Chen et al. 1993; Goddard et al. 

2002; Ciota et al. 2017). However, for many pathogen-vector assemblages this information 

is not available. In addition, most parameters available in the literature are derived from 

analyses of the interactions between insect colonies and pathogens maintained by serial 
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passes in the laboratory, which are known to strongly affect the virulence of vector-borne 

pathogens (Mackinnon & Read, 2004).  

Fig 1. Adapted schematic representation of the Ross-Macdonald model to estimate R0 
for human malaria. This formula is applicable for other vector borne pathogens such as 
avian malaria or West Nile virus. Grey boxes with ‘Ch.’ followed by numbers represent the 
variables studied and the chapter/s where they are addressed. Figures in boxes ilustrate the 
interacting organisms (i.e. host, vector and pathogen) that affect each variable considered. 

Mosquitoes have deserved great importance in medicine and veterinary sciences 

due to the important role they play in the transmission of numerous vector-borne pathogens 

to humans and animals (Beerntsen et al. 2010; see below). The blood-sucking behaviour of 

mosquitoes is a highly complex phenomenon that strongly affects the contact rate between 

infected and susceptible hosts. These interactions are driven by both host and vector related 

factors (Takken & Verhulst, 2013) (Fig. 2). Mosquitoes, like other blood-sucking insects, 

show preferences to feed on particular host species or individuals (Muñoz et al. 2012; 

Martínez-de la Puente et al. 2015) but these preferences may in turn be partially modulated 

by host-related factors such as abundance, anti-mosquito defensive behaviour or the 

emission of thermal and chemical cues (Takken & Verhulst, 2013). Altogether, these 

factors may have important consequences for the transmission success of parasites 
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(Kilpatrick et al. 2006; Takken & Verhulst, 2013) and are essential to identify the relative 

importance of each mosquito species as vector of these pathogens. 

Following the ingestion, the development of the pathogen to complete its life cycle 

in the mosquito may differ depending on each group of pathogens, leading to complex 

interactions with the mosquito’s midgut cells. For example, viruses usually come in contact 

with membrane proteins of the mosquito midgut cells (Hardy et al. 1983; Abraham & 

Jacobs-Lorena, 2004), while protozoans require the initial contact between male and female 

gametes to develop zygotes before coming in contact with proteins from the membrane of 

midgut cells to complete their life cycle (Valkiūnas, 2005). In spite of these differences, 

pathogens usually follow the same common steps; i.e. they are ingested, exposed to the 

environment of the middle intestine and the wall of the stomach and finally, reach the 

salivary glands for its transmission to a new vertebrate host (Hardy et al. 1983; Abraham 

& Jacobs-Lorena, 2004). 

 

 
Fig 2. Schematic representation of the main factors affecting host-mosquito-pathogen 
interactions (solid lines). The organisms associated to the factors are illustrated with 
silhouettes. ‘Ch.’ followed by numbers indicates the chapter/s of the thesis in which these 
factors are studied.  
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Pathogens have to pass different barriers in the digestive system and the salivary 

glands of the mosquitoes that could interfere with its development, thus representing a 

major selective force for them (Smith et al. 2014). Therefore, to be successfully 

transmitted, vector-borne pathogens need to reach a competent vector to complete their life 

cycle. The ability of a mosquito to transmit a pathogen is frequently referred to as vector 

capacity or vector competence. Although both terms are indiscriminately used, some 

differences exist between them (BOX 1). However, for simplicity, I will use the term vector 

competence throughout the thesis to describe the ability of mosquitoes to transmit the 

studied pathogens.  

BOX 1. Vector capacity vs vector competence 

Vector capacity should be considered a broader term as it takes into account all factors that 

could influence the interactions between vectors, pathogens and vertebrate hosts, including 

environmental, behavioural, cellular, genetic and biochemical factors (Black et al. 1996; 

Woodring et al. 1996; Figure 1). By contrast, vector competence is governed by factors 

intrinsic to the mosquito, which influence the ability of a vector to transmit a pathogen 

(Hardy et al. 1983; Black et al. 1996; Woodring et al. 1996). Therefore, factors such as 

blood-sucking behaviour or the susceptibility of the mosquitoes to be infected by the 

pathogen, which have a strong genetic basis (Hardy et al. 1983; Woodring et al. 1996), 

may affect the vector competence. 

The identification of factors determining the ability of pathogens to develop in 

different mosquito species remains an open question. The existence of specific mosquito-

pathogen assemblages (Cohuet et al. 2010) often results in interspecific differences in the 

ability of the pathogens to develop in their vectors. In addition, strong controversy exists 

with respect to the costs of pathogen infections in the potential insect vectors. In this regard, 

it is important to highlight that vectors are also hosts for the pathogens and therefore, by 

definition, they are expected to suffer the costs of infections (see Annex 2). For example, 

the mosquito midgut is perforated when ookinetes of malaria parasites pass through, which 

might increase susceptibility to bacterial infections (Vaughan et al. 1996). In addition, 
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infected mosquitoes can mount a diverse array of immune responses when invaded by 

pathogens (Barillas-Mury et al. 2000), which might also affect mosquito survival 

(Ferguson & Read, 2002). However, all these factors affecting the interactions between 

pathogens and potential mosquito vectors have been traditionally neglected, especially for 

those pathogens affecting wildlife. The fact that some pathogens show a very low 

prevalence of infection in wild individuals finally limits the capacity to study these factors 

under field conditions. In addition, the study of these interactions requires biosafety 

laboratories (Level 2 or 3 depending on the risk that the pathogen may pose for humans 

and wildlife), which may limit these studies to those researchers with the ability to access 

these facilities. To partially solve these limitations, in addition to different flavivirus, I have 

used avian malaria parasites as the main study model in this thesis. Avian malaria has 

historically been considered an excellent model system for investigating the biology and 

transmission of Plasmodium parasites (Marzal, 2012).  

Throughout the eight different chapters of this thesis, I assess how the interactions 

between vertebrate hosts, insect vectors, and pathogens affect the transmission of avian 

malaria parasites and flaviviruses, both transmitted by mosquitoes. In order to minimize the 

potential effects of artificial selection in the studied processes, no birds, mosquitoes, or 

avian malaria parasites from colonies maintained in laboratories were used during the 

course of this thesis. 

The protagonists 

The insect vectors 

Mosquitoes are considered the main vectors involved in the transmission of many 

different pathogens (Becker et al. 2003). Viruses including WNV, Chikungunya, and 

Dengue, protozoans (malarial parasites), and nematodes (Dirofilaria worms) are all 

transmitted by mosquitoes (Tolle, 2009), supporting their relevance in studies of medical 

and veterinary entomology, as well as epidemiology and global health (Becker et al. 2003). 

Over 3500 species of mosquitoes have been described worldwide, 34 of them being 

recorded in Spain. In addition to native mosquito species, during the last decades, the 

invasive Aedes aegypti and Aedes albopictus (Asian tiger) have been recorded in the 

country (Bueno-Marí et al. 2012). Aedes aegipty was eradicated during the mid-20th 
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century, until its recent introduction on Fuerteventura (Canary Islands) from where it was 

also apparently eradicated in 2018. However, Ae. albopictus is spreading through the 

Mediterranean coast and rural areas of Spain, including  Andalusia, Valencia Catalonia, 

Madrid, Navarra and Aragon (MSSSI, 2017). Additionally, Ae. albopictus has been 

recorded in the Basque Country and isolated areas of Portugal (Collantes et al. 2015; Osório 

et al. 2018). As in many studies assessing vector competence and patterns of transmission, 

only female mosquitoes were used here, as this is the only blood-sucking gender because 

they require blood proteins for egg laying. In this thesis, I focus on mosquito species with 

clear differences in their blood feeding patterns. While some species feed mainly on birds 

(e.g. Culex pipiens), others prefer to feed on mammals (e.g. Aedes (Ochlerotatus) caspius) 

or humans (e.g. Aedes aegypti or Aedes albopictus) (Muñoz et al. 2012; Martínez-de la 

Puente et al. 2015).  

Hippoboscids (Diptera, Hippoboscidae), commonly known as louse flies, are 

common blood-feeding ectoparasites of mammals and birds (Hutson, 1984). This insect 

group includes more than 200 species distributed all over the world, of which about 60 have 

been cited in the Palaearctic and approximately 20 in Spain, 9 of them in the Canary Islands 

(Hjorth-Andersen Carlés Tolrá, 2002). Hippoboscids are competent vectors of 

Haemosporidian parasites, specifically Haemoproteus protozoans of the subgenus 

Haemoproteus (Valkiūnas, 2005; Levin et al. 2012; Santiago-Alarcon et al. 2012).  

Pathogens 

Avian Haemosporidians (phylum Apicomplexa) are a group of widespread blood 

parasites infecting birds that are transmitted by insect vectors (Valkiūnas, 2005). In addition 

to the avian malaria parasites of the genus Plasmodium, birds are commonly infected by 

the related malaria-like parasite Haemoproteus. The cycle of these parasites requires an 

insect vector for sexual reproduction and sporogonic stage, and a vertebrate host for asexual 

reproduction and merogony stage (Valkiūnas, 2005). When a mosquito feeds on an infected 

bird, parasite gametocytes develop to gametes in the insect midgut and fuse as zygotes to 

form ookinetes. After that, parasites penetrate into the midgut wall of mosquitoes, where 

ookinetes develop into oocysts to form sporozoites. Parasite sporozoites invade the salivary 

glands of the mosquito, located in their thorax. Parasites need approximately 7 to 22 days 
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to complete this cycle, depending on the parasite species (Valkiūnas, 2005; Palinauskas et 

al. 2016; Fig. 3). In the subsequent mosquito blood meal, sporozoites, the parasite infective 

form, are injected to the bloodstream of birds, where they develop asexual reproduction in 

internal organs, until the invasion of erythrocytes where parasites develop into 

gametocytes.  

In addition to avian Haemoporidians, in this thesis I have also studied two strains 

of Zika virus (Flaviviridae). In 2015, the outbreak of Zika virus in Brazil spread into other 

countries of South and North America. Overall, Zika virus probably affected millions of 

people (Zanluca et al. 2015), although it is difficult to determine the exact number of cases 

as Zika infections usually course asymptomatic. Only in some cases, Zika virus infections 

shows symptoms such as fever or rash (Duffy et al. 2009), but more importantly, in 

pregnant women, Zika virus can cross the placentae barrier causing microcephaly and other 

brain anomalies in fetuses (Johansson et al. 2016). In addition, Zika infections can result 

in Guillain-barré Syndrome in adults (Cao-Lormeau et al. 2016). 

Fig 3. Schematic representation of the sexual life cycle of avian malaria parasites 
inside the mosquito (adapted from Baton & Ranford-Cartwright, 2005).  

Aedes aegypti plays a central role in the transmission of Zika virus (Li et al. 2012), 

but Aedes alpobictus may be involved in the occurrence of outbreaks as was the case of 

Gabon (Central Africa; Grard et al. 2014). Furthermore, sexual transmission of Zika virus 

has been documented in different countries, including Spain (Arsuaga et al. 2016). The 

geographical spread of mosquito vectors and the arrival of infected cases in areas with 

competent vectors, stress the necessity to perform further studies on the potential local 
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transmission of Zika virus, as may occur by autochthonous and invasive mosquito species 

present in Spain (Millet et al. 2017).  

The vertebrate (avian) hosts 

The widespread resident passerine house sparrow (Passer domesticus) is the main 

vertebrate study model used in this thesis. The body length of this species is about 14-18 

cm and its body mass ranges from 21 to 31 g. Although body mass does not differ between 

sexes, adult house sparrows present strong sexual dimorphism in plumage coloration during 

the breeding season (Svenson et al. 2010). Additionally, jackdaws (Corvus monedula) were 

used in chapter 1 of this thesis. Jackdaws are non-migratory passerines, resident in Europe, 

Western Asia, and North Africa. This species is bigger than the house sparrow (about 34–

39 cm long and a body mass ranging from 181 to 257 g) and does not present sexual 

dimorphism in plumage coloration (Svenson et al. 2010). Both house sparrows and 

jackdaws are commonly biten by mosquitoes (Muñoz et al. 2011) and are reservoirs and 

competent hosts of avian malaria parasites and related Haemosporidians (Marzal et al. 

2008; Hellgren et al. 2009; Ferraguti et al. 2018) as well as WNV (Hamer et al. 2009; 

Loiseau et al. 2011; Pérez-Ramírez et al. 2014; Del Amo et al. 2014; Lim et al. 2014; 

Martínez-de la Puente et al. 2018).  

In the third section of this thesis I have used the Eleonora’s falcon (Falco 

eleonorae) as the model species to study the transmission dynamics of avian blood parasites 

in a wild bird population. The Eleonora’s falcon is a long-distance migratory raptor that 

breeds throughout the Mediterranean basin and winters in Madagascar (Walter, 1979). This 

species exhibits a striking melanin-based colour polymorphism with individuals displaying 

a pale or dark morph with little variation within these two morphs (Gangoso et al. 2011). 

These two morphs show clear differences in the immune capacity (Gangoso et al. 2015) 

potentially affecting their interactions with pathogens. 
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Objectives 

The main aim of this thesis is the study of the mechanisms of transmission of avian 

Haemosporidians and flaviviruses by mosquitoes, considering the two- and three-way 

interactions between insect vectors, vertebrate hosts, and pathogens.  

First, I have studied some major factors affecting the interaction between 

mosquitoes and avian hosts. I have assessed the role of mosquito species and three host-

related factors affecting the contact rates between mosquitoes and susceptible avian hosts 

in the transmission success of protozoans and arboviruses. In particular, I have assessed the 

effect of bird species, sex, body mass, and infection status by avian malaria parasites on the 

biting rate of two species of mosquitoes with different feeding preferences (section 1, 

chapter 1, objective 1). 

Subsequently, in the second section of this thesis, I have studied how the 

interactions between mosquitoes and pathogens influence the transmission of pathogens. 

In chapter 2, I have studied the role played by alien and native mosquito species in the 

transmission of an emerging flavivirus (objective 2). I have estimated the vector 

competence for the ZIKV of two Aedes mosquitoes from Spain; the native Aedes 

(Ochlerotatus) caspius and the introduced Aedes albopictus. In chapter 3, I have assessed 

the competence of Culex pipiens for the transmission of Plasmodium and Haemoproteus 

parasites (objective 3). I have also investigated whether avian malaria parasites are locally 

adapted to their vectors (objective 4), by studying the competence of Aedes (Ochlerotatus) 

caspius and Cx. pipiens species from Southern Spain for the transmission of different 

Plasmodium lineages circulating in the area considering the impact of bird infection 

intensity and parasite identity on vector competence (chapter 4). Finally, to determine the 

effect of host infection intensity on parasite transmission risk (objective 5), I have 

experimentally determined the influence of Plasmodium load in the birds on parasite 

transmission risk (relative R0) considering its effect on mosquito survival (chapter 5).  

In the third section, I have conducted an observational study to determine the 

dynamics of transmission of avian malaria parasites and related Haemoporidians in a wild 

bird population. I have determined the relative importance of habitat-related vs. host-related 

mechanisms on parasite transmission (chapter 6, objective 6) and the phisiologic and 

genetic mecanisms that determine the infection in Eleonora’s falcons (chapter 7, objective 



GENERAL SECTION: OBJECTIVES 

- 18 - 

7). Moreover, I have assessed how enviroment aspects could determine the infections 

(chapter 8, objective 8).  
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General methods 

Study areas and sampling 

The fieldwork for chapters 1 to 5 was performed in Andalusia (Southern Spain), an 

area characterized by a Mediterranean climate with long dry summers and low precipitation 

in winter. House sparrows and jackdaws were caught in the provinces of Huelva and 

Seville. Mosquito larvae were collected from surrounding areas where the birds were 

captured with the exception of Ae. albopictus included in chapter 2, which were collected 

in the metropolitan area of Barcelona (Northeast Spain). 

Fieldwork was also conducted on Alegranza islet to accomplish chapters 6, 7 and 

8. Alegranza (1050 ha, 289 m a.s.l.) is the northernmost island of the Canary Archipelago,

located 100-km west off the African coast. It has a volcanic origin and the climate is

semiarid, being particularly dry in summer, when strong easterly trade winds prevail. Adult

and/or nestling Eleonora’s falcons were mainly sampled on Alegranza, but also in their

breeding colonies located on islands of the Mediterranean Sea (Andros (Greece), Kef Amor

(Algeria), Sa Dragonera and Illa Grossa (Baleares Islands, Spain)) covering most of the

species’ breeding range. In addition, louse flies were collected from birds breeding on

Alegranza.

Mosquito rearing and maintenance 

The mosquito species used in the different chapters of this thesis were Cx. pipiens, 

Ae. albopictus, Aedes aegypti and Ae. (Oc.)caspius. The genus Ochlerotatus has been 

traditionally classified as an independent group, but a recent taxonomic study included 

Ochlerotatus as a subgenus of Aedes (Wilkerson et al. 2015). Immediately after collection, 

mosquito larvae were maintained under standard conditions (28 ± 1 ºC, 65–70% (RH) and 

12:12 light: dark cycle). Emerged adult mosquitoes were anaesthetized, sexed and 

identified morphologically to species level. Female mosquitoes were starved for 24 hours 

before exposing them to birds or to an infected blood meal (see below) and were maintained 

in insect rearing cages.  

Most studies included in this thesis were conducted using the facilities of the 

Estación Biológica de Doñana (EBD-CSIC), with the exception of the study of chapter 2. 

In this case, experimental procedures were done at the Biosafety Level 3 Laboratory of the 
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Wadsworth Center, Department of Health of the State of New York (Albany, USA). Two 

different fresh virus strains of ZIKV (Cambodia and Puerto Rico strains) were obtained 

from supernatant from infected C6/36 cultures harvested at 120 hours pi (MOI~1.0) and 

diluted 1:1 with blood-sucrose mixture without freezing. Mosquitoes were infected with a 

blood meal warmed to 37 ºC using a Hemotek membrane feeding with an intestine pig 

membrane as feeding system (Discovery Workshops Lancashire, United Kingdom) with 

fresh virus diluted 1:1 in defibrinated sheep blood (Colorado Serum Co.) with 2.5% 

sucrose. Additional, Ae.( Oc.) caspius were also inoculated by thorax microinjection (1ul) 

of supernatant of ZIKV infected C6/36 cultures. 

Saliva isolation 

One of the main methodological approaches used in this thesis is the use of 

mosquito saliva for the identification of vector-borne haematozoa. Since Hurlbut, (1966), 

mosquito saliva has been used to determine the presence of virus in studies on vector 

competence. However, this method has been rarely used for malarial parasites. In brief, this 

method consists in inserting the mosquito proboscis into 1 µL micropipette (microcaps®, 

Drummond Scientific Company, PA, USA) filled with 1 µL of foetal bovine serum (FBS) 

(Mores et al. 2007), although other different types of media such as oil or blood could be 

also employed. Additionally, 1µl of 2% pilocarpine, an analogue of the acetylcholine, could 

be applied on the mosquito thorax to stimulate salivation. After 45 min, the medium 

containing the mosquito saliva could be used as a source of viruses for subsequent 

replication (Nayar et al. 1980) or parasite DNA for further molecular detection or 

quantification (Fig. 4; Gutiérrez-López et al. 2016, Chapter 3). 



- 21 -

Fig 4. Pictures showing the collection of mosquito saliva samples. 

Molecular analyses 

Extraction of genomic DNA is an essential step in molecular analyses, as this may 

determine the subsequent success of DNA amplification and sequencing. After comparing 

the effectiveness of four DNA extraction methods (see Annex 1), in this thesis I isolated 

genomic DNA of blood samples from birds and the head-thorax of insects using the 

Maxwell®16 LEV system Research kit (Promega, Madison, WI). In addition, genomic 

DNA from mosquito saliva (and the parasites potentially present) was isolated using the 

DNeasy® Kit Tissue and Blood kit (Qiagen, Hilden, Germany). Parasite infections by avian 

Haemosporidians were identified following the broadly used protocol described by 

Hellgren et al. (2004). In addition, blood smears were used for the identification of parasites 

infecting birds and their quantification. 
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Effects of host sex, body mass and infection by avian Plasmodium on the 

biting rate of two mosquito species with different feeding preferences. 
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Abstract 

The transmission of vector-borne pathogens is strongly influenced by the contact rates 

between vectors and susceptible hosts. The biting rates of mosquitoes depend on different 

factors including mosquito species and host-related traits (i.e. odour, heat and behaviour). 

However, host characteristics potentially affecting intraspecific differences in the biting 

rate of mosquitoes are poorly known. Here, we assessed the impact of three host-related 

traits (sex, body mass and infection status by the avian malaria parasite Plasmodium) on 

the biting rate of two mosquito species with different feeding preferences: the ornithophilic 

Culex pipiens and the mammophilic Ochlerotatus caspius. Seventy-two jackdaws Corvus 

monedula and 108 house sparrows Passer domesticus were immobilized and individually 

exposed to mosquito bites, to test the effect of host traits on biting rates. Ochlerotatus 

caspius showed significantly higher biting rates than Cx. pipiens on jackdaws, but non-

significant differences were found on house sparrows. In addition, more Oc. caspius fed on 

female than on male jackdaws, while no differences were found for Cx. pipiens. The bird 

infection status and body mass of both avian hosts were not related to the biting rate of both 

mosquito species. Host sex was the only host-related trait potentially affecting the biting 

rate of mosquitoes, although its effect may differ between mosquito species. 
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Introduction 

The blood-feeding behaviour of mosquitoes is a complex phenomenon that involves 

different steps. The initial seeking and location of hosts depends on the integration of 

chemical (CO2, odours) and visual cues (e. g. host’s size and plumage/pelage coloration) 

emitted by the host (Takken & Knols, 1999; Lehane, 2005). In close proximity between 

mosquitoes and their hosts, odour, heat and host defensive behaviour may affect the final 

host choice and blood-feeding success of mosquitoes (Raji & DeGennaro, 2017).  

Under natural conditions, mosquitoes show different innate feeding preferences, with some 

mosquito species feeding mostly on mammals (mammophilic species, and some of them 

can be characterized as anthropophilic), while others preferring to bite on birds 

(ornithophilic species), or even amphibians or reptiles, yet other species show a more 

opportunistic behaviour (Molaei et al. 2017; Burkett-Cadena et al. 2008; Muñoz et al. 

2012; Takken & Verhuls, 2013; Martínez-de la Puente et al. 2015). In addition to this broad 

tendency for particular host classes, mosquitoes bite certain host species at higher rates than 

those expected from their abundance (Kilpatrick et al. 2006; Hamer et al. 2009; Lura et al. 

2012). For instance, Kilpatrick et al. (2006) showed that American robins (Turdus 

migratorius) were more intensely bitten by Culex pipiens mosquitoes than European 

starlings (Sturnus vulgaris) in North America. Similarly, in Europe, the feeding preference 

of Cx. pipiens for blackbirds (Turdus merula) was higher than for European starlings 

(Rizzoli et al. 2015). Within host species, some individuals may receive most mosquito 

bites and, as a result, they may play a role as superspreaders when infected by vector-borne 

pathogens (Liebman et al. 2014). 

This heterogeneity in vector attraction and actual host use by mosquitoes could 

have an important impacts on transmission dynamics of parasites causing human and 

animal diseases (VanderWaal & Ezenwa, 2016). Therefore, factors affecting the contact 

rates between mosquitoes and susceptible vertebrate hosts largely determine the 

transmission success of vector-borne parasites such as protozoans (e.g. Plasmodium) and 

filarial worms (e.g. Dirofiliaria spp.) (Lehane, 2005; Dye, 1992). 

Different non-mutually exclusive mechanisms may determine that an individual 

host receive more mosquito bites, such as the use of habitats with higher abundance of 

mosquitoes, higher emission of attractive thermal or chemical cues, or a less intense or 
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effective antimosquito behaviour than other individuals (Takken & Verhuls, 2013). In 

addition, hosts that are heavier (using body mass, as a correlate of body size), may receive 

more mosquito bites (Gillies & Wilkes, 1972) probably due to the higher amount of cues 

(e.g. CO2) released by larger individuals (Torr et al. 2006).  Different studies at the 

interspecific level have reported a positive relationship between host body mass and the 

feeding rate of different blood-sucking insects (Martínez-de la Puente et al. 2010; 

Schönenberger et al. 2016). However, very few studies have experimentally tested the 

relationship between species variation in body mass and the feeding rate of mosquitoes 

(Simpson et al. 2009). In addition, sex-specific morphological, physiological and/or 

behavioural characteristics could produce differences in the attraction of insect vectors 

(Zuk et al. 1990). These differences in vector attraction between host sexes have been 

argued as a potential explanation for the usually higher prevalence of blood parasites found 

in male than in female birds (Skorping & Jensen, 2004; Zuk & Stoehr, 2010; Calero-Riestra 

& García, 2016). To the best of our knowledge, only Burkett-Cadena et al. (2014) evaluated 

the effect of bird sex on the variation in mosquito biting preferences. By analysing the 

blood meal origin of mosquitoes, authors found that blood meals were biased towards male 

birds, but only in mammophilic mosquitoes. However, the reasons behind these differences 

remain unclear. The patterns found by Burkett-Cadena et al. (2014) could be the result of 

differential susceptibility and/or exposure of bird sexes to mosquito attacks or, simply, an 

unbalanced bird sex-ratio in the field. Finally, the host infection status by vector-borne 

parasites may also influence the mosquito biting patterns, potentially determining the 

pathogen transmission success (Cornet et al. 2013). For example, humans infected by 

Plasmodium vivax were more attractive to mosquito vectors (Batista et al. 2014). However, 

studies with avian Plasmodium are less conclusive, because Culex pipiens, the main vector 

of avian Plasmodium, was reported to preferentially bite chronically infected birds over 

uninfected individuals according to Cornet et al. (2013), while the opposite pattern has also 

also been reported (Lalubin et al. 2012), and even the absence of significant differences 

between infected and uninfected birds (Yan et al. 2017). 

In this study, we experimentally assessed the impact of three host related traits (bird 

body mass, sex and infection status by the avian Plasmodium spp.) on mosquito feeding 

patterns, while removing host antimosquito behaviour. We performed this study using two 
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potential avian malaria mosquito vectors with different feeding preferences: the 

ornitophilic Culex pipiens and the mammophilic Ochlerotatus (Aedes) caspius (Martínez-

de la Puente et al. 2015; Santiago-Alarcon et al. 2012; Ferraguti et al. 2013). We used two 

bird species as host models, the jackdaw (Corvus monedula) and the house sparrow (Passer 

domesticus). Both bird species are common hosts of avian malaria parasites (Hellgren et 

al. 2009; Drovetski et al. 2014). Based on previous evidence (Schönenberger et al. 2016; 

Burkett-Cadena et al. 2014; Cornet et al. 2013), we predict, i) a higher biting rate on birds 

in the ornithophilic Cx. pipiens than in the mammophilic Oc. caspius, ii) a higher mosquito 

biting rate on heavier individuals, iii) a higher biting rate on male birds over females, 

especially for Oc. caspius, and iv) a higher biting rate on Plasmodium infected birds than 

on uninfected individuals.  

 

Material and methods 

Mosquito collection and rearing 

 Culex pipiens and Oc. caspius larvae were collected in the wild from April to 

September in 2014 and 2016 in the natural reserve ‘La Cañada de los Pájaros’ (6°14’W, 

36°57’N, Seville province, Spain) and in marshlands of the Huelva province (6°53' W, 

37°17' N), respectively. Larvae were transferred to the laboratory and kept in plastic trays 

with fresh or brackish water, respectively, and fed ad libitum with Mikrozell 20ml/22g 

(Dohse Aquaristik GmbH & Co.101 KG, D-53501, Gelsdorf, Germany). Larvae and adult 

mosquitoes were maintained at standard conditions (28 ± 1 ºC, 65–70% (RH) and 12:12 

light: dark cycle). Adult mosquitoes were anesthetized with ether and their sex and species 

identified based on morphology, on chilled Petri dishes using a stereomicroscope (Nikon 

SMZ645) following Schaffner et al. (2001). After identification, adult females were placed 

in insect cages (BugDorm-43030F, 32.5×32.5×32.5 cm) and fed ad libitum with 1% sugar 

solution. 24h prior to each experiment, female mosquitoes were deprived from sugar 

solution. Laboratory maintained colonies of mosquitoes were not used to minimize the 

effects of artificial selection of mosquitoes with particular biting preferences (Franks et al. 

2011; Lagisz et al. 2011). 
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Bird sampling and experimental procedure 

The jackdaw is a non-migratory passerine bird, resident in Europe, western Asia 

and North Africa. It is 34–39 cm long and its body mass ranges from 181 to 257 g. This 

species is not sexually dimorphic. The house sparrow is also a non-migratory passerine, 

native to most Europe. It is 14-18 cm long and its body mass ranges from 21 to 31 g. 

Although body mass does not differ between sexes, adults of this species present strong 

sexual dimorphism in plumage coloration (Svensson et al. 2010).  

The jackdaws were caught from May to September 2014 in ‘La Cañada de los 

Pájaros’ using a walk in trap and the house sparrows were caught using mist nets from 

April to June 2014 in the same location, and from June to September 2016 in different 

localities from the Huelva province. Birds were individually ringed with numbered metal 

rings weighed and blood was sampled from the jugular vein using sterile syringes. The 

volume of blood obtained differed between species due to differences in body mass (i.e.1 

ml in jackdaws and 0.2 ml in house sparrows). Female birds with brood patches were 

released immediately after capture and were not included in this study to reduce any impact 

on their reproductive performance. The experimental feeding trials were developed from 

April to September 2014 and 2016 and from 7:30 am to 12:00 am (GMT +1hour). 

Individual birds were enclosed for 30 minutes in an insect cage (BugDorm-43030F, 

32.5×32.5×32.5 cm) containing 54 ± 33.7 (mean±SD) (Range 1-152) mosquito females of 

either Cx. pipiens or Oc. caspius. The experimental feeding trials were developed in an 

environment with low light and no noise that could alter their behaviour. A number of 

previous studies have reported the ability of mosquito species including Cx. pipiens to feed 

on birds maintained in cages (Burkett-Cadena et al. 2010; Gutiérrez-López et al. 2016). 

Each bird was immobilized to prevent defensive behaviours against mosquitoes. Jackdaws 

were immobilized using non-permanent masking tape, with the wings attached to the body, 

the beak closed and legs held together. Un-feathered areas of the body (i.e. legs and eyes) 

remained uncovered during the trials, thus allowing mosquitoes to feed on the birds. House 

sparrows were immobilized using a cylinder made with 1×1 cm mesh, allowing mosquitoes 

to bite through. After the trials, birds were released at the same location of capture without 

any apparent sign of damage. Mosquitoes with a recent blood meal in their abdomen were 

counted and stored in Eppendorf tubes.  
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All experimental procedures were approved by the CSIC Ethics committee and 

Animal Health authorities (439-2016), and complied with Spanish laws. 

Molecular analyses 

Genomic DNA was extracted from blood samples using the MAXWELL® 16 LEV 

Blood DNA Kit (Gutiérrez-López et al. 2015). Birds were molecularly sexed following 

Griffiths et al. (1998). The Plasmodium infection status of birds was assessed by the 

amplification of a 478-bp fragment of the mitochondrial cytochrome b gene following 

Hellgren et al. (2004). The presence of amplicons was verified in 1.8% agarose gels and 

positive samples were sequenced using the BigDye technology (Applied Biosystems) or 

the Macrogen sequencing service (Macrogen Inc., Amsterdam, The Netherlands). 

Sequences were edited using the software Sequencher™ v 4.9 (Gene Codes Corp., © 1991–

2009, Ann Arbor, MI 48108) and assigned to parasite genus after comparison with the 

GenBank database (National Centre for Biotechnology Information).  

Statistical analysis 

The proportion of mosquitoes that bit house sparrows and jackdaws were compared 

separately for the two mosquito species using Chi-Square tests. We used Generalized 

Mixed Linear Models (GLMMs) with binomial error and logit link function to assess the 

effect of mosquito species and bird characteristics on mosquito biting rates. Analyses were 

performed in R software 3.2.5 (R Core Development Team, 2016) with the package lme4 

(Bates et al. 2015). First, we compared the biting rates of the two mosquito species on birds. 

Models included the mosquito biting rate as the dependent variable, expressed as the 

number of mosquitoes that bit on the focal bird with respect to the number of mosquitoes 

that did not bite this individual using the cbind function. Due to the differences in the 

method used to immobilize each bird species and their clear differences in body size, 

separated models were fitted for jackdaws and house sparrows. In each case, mosquito 

biting rate (expressed as reported above) was included as the dependent variable, bird body 

mass as a covariate and bird sex, Plasmodium infection status (infected/uninfected) and 

mosquito species (Cx. pipiens/Oc. caspius) as fixed factors. We also included the 

interaction between mosquito species and host sex and between mosquito species and 
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infection status in the models. Bird identity was included as a random term to correct for 

the overdispersion shown when using both binomial and quasibinomial distributions 

(dispersion parameter > 7.21) (Harrison 2014). Body mass was scaled for each species by 

the standar deviation and mean-centred to normalize the variable distribution. The jackdaw 

population studied here was subjected to a medication experiment with birds either injected 

immediately before exposure to mosquitoes with a sub-curative dose of primaquine or 

treated as controls. This treatment did not affect the mosquito-biting rate (Z = -1.2, est = -

0.62, P = 0.26), thus this factor was not included in further analyses. 

Results 

Seventy-two jackdaws (34 males and 38 females) and 108 house sparrows (71 

males and 37 females) were included in this study. Of them, thirty jackdaws (41.7%) and 

sixty-one house sparrows (56.5%) were infected by avian Plasmodium. A total of 9601 

mosquito females were exposed to the birds, including 6836 Cx. pipiens and 2765 Oc. 

caspius. Of them, 656 (9.6%) Cx. pipiens and 633 (22.9%) Oc. caspius fed on birds (Table 

1), including 294 (44.8%) Cx. pipiens and 436 (68.9%) Oc. caspius feeding on jackdaws 

and 362 (55.2%) Cx. pipiens and 197 (31.1%) Oc. caspius feeding on house sparrows 

(Table 1).  

The biting rate of Oc. caspius on jackdaws was higher than on house sparrows 

(Chi-square = 361.18, d.f. = 1, P <0.001), while no differences were found for Cx. pipiens 

(Chi-square = 0.72, d.f. = 1, P = 0.39; Fig. 1). The mammophilic Oc. caspius showed a 

significantly higher biting rate than the ornithophilic Cx. pipiens (Z = 6.09, est = 2.20, P 

<0.001; Fig. 1).  

The effects of bird traits on mosquito biting rates were studied separately for each 

bird species because the differential methodology used in each species and the differences 

reported above. Oc. caspius showed a significantly higher biting rate than Cx. pipiens in 

jackdaws (Table 2) 
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Table 1. Summary data of mosquitoes biting jackdaws and house sparrows used in 
this study with respect to host sex and infection status by avian Plasmodium parasites. 

In addition, Oc. caspius showed a higher biting rate on female than on male 

jackdaws, while non-statistically significant differences were found for Cx. pipiens (Table 

2, Fig. 1). The variables host infection status by avian Plasmodium and body mass were 

not significantly related to mosquito biting rates (Table 2). For house sparrows, we found 

no differences in the biting rate between Cx. pipiens and Oc. caspius. Host sex, body mass 

and infectious status by avian Plasmodium were not significantly related to mosquito-biting 

rates (Table 2, Fig. 1). 

Jackdaws N

Mean of 
mosquitoes in each 
assay per box (SE)

Mean of engorged 
mosquitoes per box 

(SE)
Cx. pipiens

Male 26 59.1 (6.5) 7.0 (2.6)
Female 29 49.7 (6.2) 3.6 (1.0)
Uninfected 32 58.7 (5.9) 4.9 (2.9)
Infected 23 47.8 (7.1) 6.0 (3.5)

Oc. caspius
Male 8 62.9 (12.0) 17.0 (4.8)
Female 9 58.1 (11.2) 33.5 (6.2)
Uninfected 10 71.9 (10.7) 21.3 (5.8)
Infected 7 45.9 (12.8) 30.3 (7.3)

House sparrows N

Mean of 
mosquitoes in each 
assay per box (SE)

Mean of engorged 
mosquitoes per box 

(SE)
Cx. pipiens

Male 47 57.9 (4.9) 4.8 (0.9)
Female 21 54.2 (7.6) 6.5 (1.3)
Uninfected 25 52.0 (6.8) 4.6 (1.2)
Infected 43 59.5 (7.3) 5.8 (1.2)

Oc. caspius
Male 24 43.8 (7.0) 4.3 (1.2)
Female 16 42.8 (8.8) 5.8 (1.5)
Uninfected 22 33.9 (7.3) 3.5 (1.3)
Infected 18 54.9 (8.3) 6.7 (1.4)

Infectious status

Sex

Infectious status

Infectious status

Sex

Infectious status

Sex

Sex
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Fig 1. Biting rate (%) of Ochlerotatus caspius and Culex pipiens mosquitoes on female and 
male jackdaws and house sparrows.  

Table 2. Results of GLMMs analysing mosquito-biting rates in relation to mosquito species 
(Ochlerotatus caspius and Culex pipiens) and birds’ body mass, sex and Plasmodium 
infection status. The interactions between variables are indicated with *. Significant effects 
are highlighted in bold. 

est std. Error Z P est std. Error Z P
Mosquito species 2.93 0.47 6.26 <0.001 0.33 0.54 0.62 0.54
Body mass 0.22 0.18 1.30 0.21 -0.02 0.13 -0.14 0.89
Sex 0.01 0.40 0.03 0.98 -0.44 0.35 -1.24 0.21
Infection status 0.28 0.31 0.92 0.36 0.08 0.35 0.25 0.81
Mosquito species*sex -1.53 0.68 -2.26 0.02 -0.03 0.56 -0.05 0.96
Mosquito species*infection status 0.72 0.70 1.04 0.30 0.23 0.55 0.41 0.68
Explained variance (R2)

Jackdaws House sparrows
Explanatory variables

0.20 0.02
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Discussion 

Identifying the potential causes underlying the non-random biting patterns of 

mosquitoes is essential to understand the dynamics of transmission of avian Plasmodium 

and other vector-borne pathogens in the wild (Liebman et al. 2014). Here, we tested how 

three important avian traits (i.e. body mass, sex, and the infection status by Plasmodium) 

in two bird species affect the biting rates by two mosquito species potentially involved in 

the transmission of avian malaria parasites (Ferraguti et al. 2013).  

The biting rate of the mammophilic Oc. caspius on jackdaws was higher than the 

biting rate of the ornithophilic Cx. pipiens, while non-significant differences were found 

when mosquitoes faced house sparrows. Although most of the blood meals of Oc. caspius 

analysed in different studies derived from mammals, birds including chickens and house 

sparrows represent between 9.1% and 19.9% of the blood meals in this species (Muñoz et 

al. 2012; Balenghien et al. 2006). This pattern clearly contrasts with that of Cx. pipiens, 

for which birds represent between 85.1% to 91.67% of the bloodmeals (Muñoz et al. 2012). 

Our results clearly support the ability of Oc. caspius to feed on birds, at least when they are 

not allowed to choose between other host classes (i.e. mammals). This result is especially 

relevant, as our study focused on the biting rate of mosquitoes and not on the feeding 

preferences of these species. Contrary to Cx. pipiens, Oc. caspius is traditionally considered 

as an aggressive mosquito producing important nuisance in human populations (Gutsevich 
et al. 1974), but experimental studies supporting this assumption are scarce. Differences in 

the biting rate between mosquito species could be associated with their life history traits 

and breeding requirements, especially those related to the availability of water sources. 

While Oc. caspius depends on tidal cycles and use temporal flooded areas for larva 

development (Ezanno et al. 2015), Cx. pipiens use more permanent water sources (Roiz et 

al. 2014) and, consequently, their life cycle may be less time constrained. In addition, it is 

possible that a differential activity pattern between mosquito species could affect our 

results, with Oc. caspius showing a strong peak of activity during the day while Cx. pipiens 

peak its activity at night and sunset (Balenghien et al. 2006). Although this possibility 

could potentially explain the differences found between species, the biting rates of Cx. 
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pipiens found in this study are similar to those found in a previous experiment developed 

during the night (Yan et al. 2017). 

The fact that differences in biting patterns were only detected when mosquitoes 

faced jackdaws, the larger host species, suggests that these may be related to differences in 

the amounts of cues emitted by each bird species. In close proximity to their hosts, the 

relevance of visual and thermo-sensory stimulation of mosquitoes increases with respect to 

larger distances. Moreover, the use of multiple sensory cues may increase the likelihood of 

mosquito feeding success (Raji & DeGennaro, 2017). Due to their larger size, jackdaws 

may emit a higher amount of attractants, including CO2, heat, and odours than house 

sparrows, potentially leading to the differences found here.  

Previous studies have reported a positive relationship between host body mass and 

biting rates of blood sucking insects (Schönenberger et al. 2016; Estep et al. 2012), 

although, this pattern usually correspond to studies comparing different host species. As 

expected from its larger size, jackdaws were bitten at a higher rate than house sparrows by 

Oc. caspius, but no differences were found for Cx. pipiens. Additionally, we did not find 

any significant relationship between the biting rate of mosquitoes and bird body mass at 

the intraspecific level. In this regard, Lalubin et al. (Lalubin et al. 2012) found that the 

attraction of Cx. pipiens to house sparrows was not significantly associated with their body 

mass. This suggests that, at short distances, the slight intraspecific differences in body mass 

are probably less important than other cues determining mosquito bites, like heat, humidity 

or odour (Raji & DeGennaro 2017). 

Hosts’sex influenced the biting rates of Oc. caspius mosquitoes when facing 

jackdaws. This mosquito species preferred to bite female than male jackdaws, but these 

differences were not found when mosquitoes were exposed to house sparrows. The biting 

rates of Cx. pipiens were not significantly related to host sex. Burkett-Cadena et al. 

(Burkett-Cadena et al. 2014) found male-biased blood meals in mosquitoes (64% of the 

bloodmeals analysed derived from male birds), although they suggested that this could be 

due to skewed sex ratios in wild birds. However, no significant sex-biased differences were 

found in the feeding patterns of bird-biting mosquitoes, including Culex species (Burkett-

Cadena et al. 2014). Moreover, Simpson et al. (2009) concluded that bird sex has no effect 

on the probability of Cx. pipiens to choose an individual over its partner. The preference of 
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mammophilic mosquitoes for a particular sex of bird could be associated with the sexual 

differences in the composition of odour profiles. Among other factors, the volatile and non-

volatile substances of the secretions of the preen gland may affect the feeding preferences 

of blood sucking insects (Russell & Hunter, 2005; Martínez-de La Puente et al. 2011) and 

their composition differ between bird sexes (Jacob et al. 1979; Amo et al. 2012). 

Differences in the response of Oc. caspius and Cx. pipiens to secretions of the preen gland 

could explain, at least in part, discrepancies found between mosquito species (Allan et al. 

2006). 

We did not find support for a relationship between avian Plasmodium infection 

status and mosquito-biting rates. In view of previously reported results, it is unclear 

whether avian malaria infection enhances (Cornet et al. 2013) or decreases (Lalubin et al. 

2012) the mosquito attraction towards the infected host. Thus, the host manipulation 

hypothesis pointing to an increase in Plasmodium transmission success through a higher 

attractiveness of infected host to mosquito bites remains an open question (Hurd, 2003; 

Lefèvre et al. 2009). Differences in the experimental procedure used, as well as in the 

intensity of infection between infected birds and/or the parasite and mosquito species 

studied could potentially explain these discrepancies. The results of our study should be 

interpreted with caution, as the host individuals used in our experiments were naturally 

infected by different lineages of Plasmodium and probably were in different stages of 

infection, which may affect host attractiveness for vectors. In addition to changes in the 

amount and quality of cues emitted by infected hosts, differences in the intensity of 

defensive behaviour associated with the infection status might explain differences in their 

susceptibility to mosquito attacks (Day et al. 1983; Shirasu & Touhara, 2011). For example, 

Day et al. (1983) found that malaria infected mice were more lethargic and less likely to 

defend against mosquitoes. In our study, birds did not show symptoms of lethargy and all 

were immobilized to prevent anti-mosquito defensive behaviour. Therefore, the possibility 

of changes in host defensive behaviour owing to Plasmodium infection was ruled out in 

this study. Additionally, it is possible that the potential differences in the emission of cues 

between infected and uninfected hosts (Kelly et al. 2015) can only be appreciated by 

mosquitoes at large distances, when host-seeking behaviour is mainly based on olfactory 
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clues (Raji & DeGennaro, 2017) or may be only evidenced when performing dual-choice 

experiments  (Cornet et al. 2013), which is not the case in our study. 

Conclusions 

Our study highlights that the magnitude and direction of the effects of hosts’ traits 

such as body mass, sex or the infection status by the mosquito-borne avian Plasmodium on 

the feeding patterns of mosquitoes are far from being generalizable. Only sex was 

associated to differences in mosquito biting rates, and this effect was only detected for one 

of the mosquito species studied here. Consequently, the biting patterns of mosquitoes may 

differ according to vector and host species characteristics. The reasons underlying the 

preference of mammophilic mosquitoes for individuals of a particular sex are unclear and 

need detailed analyses with regard, for instance, to the olfactory cues released by male and 

female birds. 
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Abstract 

Zika virus (ZIKV) is mainly transmitted by Aedes aegypti, although Ae. albopictus 

can also transmit ZIKV. However, the vector competence may vary geographically, and 

the competence of most European mosquitoes for ZIKV is currently unknown. We 

experimentally assessed the vector competence of Ae. albopictus and Ae. caspius from 

Spain for ZIKV strains Puerto Rico and Cambodia, and compared with Ae. Aegypti. We 

also determined the ability of Ae. albopictus to vertically transmit ZIKV. Aedes albopictus 

was a competent vector for ZIKV, with similar transmission rates to Ae. aegypti for both 

strains. However, ZIKV was unable to be transmitted by Ae. caspius. Moreover, ZIKV was 

vertically transmitted to Ae. albopictus progeny. This study highlights the potential of Ae. 

albopictus from Spain to transmit ZIKV and suggest the possibility that ZIKV could be 

transmitted locally in Spain. This is not the case of the non-competent vector for ZIKV Ae. 

caspius. 



  CHAPTER 2 

- 49 - 

Introduction 

Zika virus (ZIKV; Flaviviridae, flavivirus) is an emerging arbovirus associated 

with Guillain-Barré Syndrome and microcephaly in fetuses (Musso and Gubler, 2016). In 

2015-16, the virus spread through the Americas causing an important outbreak (Faria et al,. 

2016). Up to know, Aedes aegypti has been the main vector of most ZIKV epidemics (Li 

et al,. 2012; Calvez et al. 2016), although Ae. albopictus caused an outbreak in Gabon, 

and Aedes polynesiensis in French Polynesia (Grand et al. 2014; ECDC, 2014a). Moreover, 

various Aedes spp. have been suggested as potential vectors of ZIKV in laboratory-based 

studies (Gendernalik et al. 2017; Ledermann et al. 2014). 

Aedes aegypti is absent from most European countries (ECDC, 2014b), but the 

invasive Ae. albopictus and other related native species could create novel epidemiological 

scenarios for ZIKV transmission. Indeed, Ae. albopictus populations from France, Italy and 

Germany are competent vectors for ZIKV (Jupille et al,. 2016; Di Luca et al. 2016; 

Heitmann et al. 2017), while Culex pipiens and Cx. torrentium from Germany are unable 

to transmit the virus (Heitmann et al. 2017). However, the vector competence for the 

transmission of ZIKV in most European mosquito species is currently unknown and may 

vary between virus strains and mosquito populations, which suggest that particular vector-

virus assemblages may be more efficient for the virus transmission than others (Ciota et al. 

2017).  

Since July 2015, over 2,130 imported ZIKV cases have been confirmed in Europe 

(ECDC, 2014), although no autochthonous vector-borne transmission has been reported 

yet. In Spain, 316 ZIKV cases were confirmed in 2016 (MSSSI, 2017), 48 of them occurred 

in Barcelona (González et al. 2017), being all of them imported mainly from travelers 

coming from America and Asia. In this regard, a previous study addressing the risk of 

ZIKV introduction in Europe showed that southern Europe and eastern Spain have a high 

probability of ZIKV outbreak via travellers from America, also fuelled by the presence of 

Ae. albopictus in these regions (Rocklöv et al. 2016). Aedes albopictus has recently spread 

through the Mediterranean coast of Spain (Collantes et al. 2015), being particularly 

abundant in the metropolitan area of Barcelona. Another species of the genus Aedes, which 

is particularly abundant in Spain, is the marshland mosquito Aedes (Ochlerotatus) caspius 
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(Wilkerson et al. 2015). Under this scenario, it becomes essential to assess the actual role 

of these mosquito species in the transmission of ZIKV in Spain. 

Here, we experimentally assessed the competence of Spanish populations of Ae. 

caspius and Ae. albopictus for the transmission of two ZIKV strains as compared with the 

competence of a colonized population of Ae. aegypti. In addition, we determined the ability 

of Ae. albopictus to vertically transmit ZIKV. 

Material and methods 

In 2016, Ae. caspius larvae and Ae. albopictus eggs were collected in Huelva 

(Southwestern Spain) and Barcelona (Northeastern Spain), respectively. Samples were 

shipped to the New York State Department of Health (NYSDOH) Arbovirus laboratory for 

their rearing (Ae. caspius) and colonization (Ae. albopictus). Aedes aegypti (provided by 

Gregory Ebel, Colorado State University) were originally collected in Poza Rica (Mexico) 

and colonized in the same facility. F1 generation of Ae. caspius was used in the experiments 

due to the inability to mate this species under laboratory conditions. F2 and F8 generations 

were used for Ae. albopictus and Ae. aegypti, respectively. Mosquitoes were reared and 

maintained in 30.5 cm3 cages at 27°C, 50-65% relative humidity and 16:8 light:dark cycle. 

ZIKV CAM (strain FSS130325, GenBank Accession # JN860885) was originally 

isolated in 2010 from human serum in Cambodia, and ZIKV PR (strain PRCABC59, 

GenBank Accession # KU501215) was isolated in 2015 from a patient serum infected in 

Puerto Rico (Ciota et al. 2017).  

Four to 10 days old Ae. caspius females were exposed to ZIKV PR in three 

independent trials using different ZIKV concentrations (Table 1). Four to 7 days old Ae. 

albopictus and Ae. aegypti females were exposed to ZIKV CAM or ZIKV PR in an 

independent trial. All mosquitoes were offered blood meals for 2 hours at 37 ºC using a 

Hemotek feeding system (Discovery Workshops Lancashire, UK). Blood meals were 

prepared using ZIKV freshly propagated in C6/36 cells for 4 days and diluted 1:1 in 

defibrinated sheep blood (Colorado Serum Co. USA) with 2.5% sucrose (Ciota et al. 2017). 

Additionally, 16 unengorged Ae. caspius females were intrathoracically injected with 1µl 

of ZIKV PR stock at 5 log10 plaque forming units (PFU/ml). 
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After blood feeding, mosquitoes were sedated with CO2 and engorged mosquitoes 

were transferred to 0.6 L paper cartons and provided cotton pads with 10% sucrose ad 

libitum and maintained at 27°C for experimental testing. Infection, dissemination and 

transmission rates of ZIKV were quantified at 7, 14 and 21 days post-infection (dpi) for Ae. 

albopictus and Ae. caspius, and also at 5 and 9 dpi for Ae. aegypti (Ebel et al. 2005). 

Infection and transmission rates for Ae. caspius infected by intrathoracic injection were 

evaluated at 9 dpi. For each day and mosquito species, 14-40 mosquitoes were sedated, and 

then, its legs removed and placed into 1 ml mosquito diluent [MD; 20% heat-inactivated 

fetal bovine serum (FBS) in Dulbecco’s phosphate-buffered saline (PBS) plus 50 µg/ml 

penicillin/streptomycin, 50 µg/ml gentamicin, and 2.5 µg/ml Fungizone]. Mosquitoes were 

allowed to expectorate for 30 minutes into capillary tubes charged with ~20ul FBS plus 

50% sucrose (1:1), and the mixture was placed into 250ul MD.  Mosquito bodies were then 

placed in individual tubes with MD. All samples were stored at -80°C until analyses were 

performed. 

To assess vertical transmission of the virus, 4-7 days old Ae. albopictus females (n 

= 200) were orally infected with ZIKV PR as described above. Additional non-infectious 

blood meals were offered weekly after the first oviposition. Eggs from the second 

oviposition were hatched and reared. Second instar larvae were grouped in pools of 5 

individuals and tested for ZIKV. Vertical transmission rate, measured as filial infection rate 

(FIR), was estimated using a maximum likelihood estimate based on pool size and the 

number of positive pools for ZIKV per 1,000 larvae (PoolInfRate 4.0; Centers for Disease 

Control and Prevention, Atlanta, GA, USA). 

ZIKV was quantified in bodies, legs and salivary secretion by qRT-PCR using the 

primers ZIKV 1086 and ZIKV 1162 (Lanciotti et al. 2008) to test infection, dissemination 

and transmission, respectively. ZIKV titers were calculated from standard curves based on 

infectious particle standards created from matched virus stocks. 

We performed three similar Generalized Linear Models (GLMs) with binomial 

error distribution and logit link function to assess the effect of mosquito species, virus 

strains (fixed factors) and dpi (covariate) on the infection, dissemination and transmission 

rates. We also included the interactions between virus strain and dpi and between virus 

strain and mosquito species in the models. Differences in mean viral titers between 
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mosquito species, virus strains, and dpi in mosquito body, legs and saliva secretions were 

determined using the Kruskal-Wallis test. Analyses were run in JMP software v9 (SAS 

Institute, Cary, NC). 

Results 

ZIKV infection was detected in Ae. caspius at 7, 14 and 21 dpi (Table 1). However, 

ZIKV was not disseminated or transmitted by Ae. caspius. Mean viral titers in Ae. caspius’ 

bodies were significantly lower than in Ae. aegypti and Ae. albopictus (χ2 = 31.77, d.f. = 2, 

p <0.001). Overall, 87.5% of intrathoracically inoculated Ae. caspius were positive at 9 dpi, 

but only 14.3% of them had positive saliva secretion.  

The infection rate differed between mosquito species and viral strains (Table 2), 

being higher in Ae. albopictus than in Ae. aegypti, and higher for ZIKV PR than for ZIKV 

CAM (Table 1). The dissemination rate increased with dpi, but no differences were found 

between mosquito species or ZIKV strains (Table 2). The transmission rate also increased 

with dpi (Table 2), but in this case, it differed between strains (Table 2), being higher for 

ZIKV CAM than for ZIKV PR (Table 1). Transmission of ZIKV CAM was observed from 

7 dpi in both mosquito species, but transmission of ZIKV PR did not occur in Ae. aegypti 

and Ae. albopictus until 9 and 21 dpi, respectively (Tables 1 and 2).  

The mean viral titers in bodies differed between mosquito species and ZIKV 

strains. Mean viral titers were higher in Ae. albopictus than in Ae. aegypti (χ2 = 5.09, d.f. = 

1, p < 0.02) and mean viral titers of ZIKV PR were higher than those of ZIKV CAM (χ2 = 

6.92, d.f. = 1, p < 0.009). Mean viral titers in legs were similar for both ZIKV strains (χ2 = 

0.95, d.f. = 1, p = 0.33), although higher in Ae. aegypti than in Ae. albopictus (χ2 = 9.53, 

d.f. = 1, p < 0.002). No significant differences in mean viral titers of saliva secretions were

found between mosquito species (χ2 = 1.7, d.f. = 1, p = 0.19) or ZIKV strains (χ2 = 1.02,

d.f. = 1, p = 0.31) (Fig. 1).

Five of 17 (29.4%) F1 larval pools of Ae. albopictus were positive for ZIKV PR, 

with a FIR of 72.2 (95% CI: 27.6-156.1) and mean viral load of 2.5 log10 (PFU/ml). 
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Table 1. Infection, dissemination and transmission rates of mosquitoes experimentally 
infected with ZIKV CAM and ZIKV PR. The number of mosquitoes analyzed is shown in 
brackets. 

Table 2. Results of GLMs analyzing the variation in infection, dissemination and 
transmission rates in relation to mosquito species, ZIKV strains and days post infection 
(dpi). The interactions between different variables are indicated with *. Significant effects 
are highlighted in bold. 

Days post 
infection

Mosquito 
species

ZIKV 
strain

Blood meal titers 
(Log10 (PFU/ml)) % Infected

% Infected 
Disseminating 

% Infected 
Transmitting 

CAM 7.6 27.3 (33) 11.1 0
PR 7.6 37.5 (30) 25 0
CAM 7.6 24.2 (33) 75 12.5 
PR 7.6  61.8 (34) 38.1 0
CAM 7.6 90.5 (21) 42 10.5 
PR 7.6 97.0 (33) 31.3 0

Ae. caspius PR 7.7 21.4 (14) 0 0
CAM 7.6 31.8 (38) 58.3 8.3 
PR 7.6 59.4 (32) 68.4 5.3
CAM 7.6 22.6 (31) 71.4 14.3 
PR 7.6 45(40) 77.8 16.7 
CAM 7.6 81.5 (27) 81.8 9.1 
PR 7.6 93.3 (30) 67.9 0

Ae. caspius PR 8.7 40 (25) 0 0
CAM 7.6 35.7 (28) 100 40
PR 7.6 56.3 (32) 88.9 38.9 
CAM 7.6 94.4 (18) 82.4 23.6 
PR 7.6 96.2 (26) 96 36

Ae. caspius PR 7.6 18.5 (27) 0 0

9 Ae. aegypti

14

Ae. aegypti

Ae. albopictus

21

Ae. aegypti

Ae. albopictus

5 Ae. aegypti

7

Ae. aegypti

Ae. albopictus

χ2 d.f. p χ2 d.f. p χ2 d.f. p
Mosquito species 110.95 1 <0.001 2.08 1 0.15 2.37 1 0.12
ZIKV strain 10.43 1 0.001 1.28 1 0.26 4.91 1 0.03
Dpi 0.15 1 0.70 39.61 1 <0.001 26.77 1 <0.001
ZIKV strain*dpi 1.17 1 0.28 1.34 1 0.25 6.70 1 0.01
Mosquito species*ZIKV strain 0.01 1 0.90 0.76 1 0.39 0.01 1 0.94

Infection rate Dissemination rate Transmission rate
Variables
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Fig. 1. Mean ± SE ZIKV CAM and ZIKV PR titers (Log10 (PFU/ml) in the body (A), legs 
(B) and saliva (C) of Aedes caspius (CAS), Aedes albopictus (ALB) and Aedes aegypti
(AEG) at 7, 14 and 21 days post infection.
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Discussion 
Our results demonstrate that, although ZIKV can infect Ae. caspius, this virus is 

unable to disseminate through the mosquito’s midgut. Consequently, Ae. caspius is 

unlikely to transmit ZIKV when naturally infected, and only a small fraction of these 

mosquitoes could transmit the virus after intrathoracic inoculation. This suggests that Ae. 

caspius has a midgut escape barrier, which prevents that the virus be able to disseminate 

throughout the body of the mosquito and achieve the salivary glands (Hardy et al. 1983). 

Spanish Ae. albopictus, however, had similar vector competence to Ae. aegypti for the 

transmission of two ZIKV strains currently circulating in America and Asia.  

We found that ZIKV CAM had higher transmission rates and was detected in saliva 

before ZIKV PR, a pattern that could be explained by genetic differences between both 

ZIKV strains (Ciota et al. 2017). Although Ae. albopictus from France showed a 

transmission rate of only 4.17% (Jupille et al. 2016), populations from Italy and Germany 

can transmit ZIKV with similar rates to that reported in this study at 14 and 21dpi (Di Luca 

et al. 2016; Heitmann et al. 2017). Nonetheless, our results showed that the Spanish 

population of Ae. albopictus could transmit ZIKV from 7dpi, four days earlier than 

previously reported (Di Luca et al. 2016). It is known that vector competence may vary 

between virus strains and mosquito populations (Ciota et al. 2017), likely explaining 

discrepancies found between studies.  

We found strong evidence for vertical transmission of ZIKV in Ae. albopictus, with 

a ratio of 1:14, which is substantially higher than what previously found for ZIKV in Ae. 

albopictus from New York (Ciota et al. 2017) as well as for other flaviviruses (Thangamani 

et al. 2016). However, vertical transmission was not found in Ae. albopictus from Italy (Di 

Luca et al. 2016). Despite these differences, results found in different mosquito populations 

strongly support the ability of ZIKV to be transmitted vertically, which represents a 

potential mechanism for virus maintenance under natural conditions in seasonal 

environments.  

In conclusion, our results confirm that the invasive populations of Ae. albopictus 

increase the risk of ZIKV transmission in Europe. This is especially relevant in light of the 

rapid spread of Ae. albopictus in the Mediterranean basin, including Spain, and the high 
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number of imported ZIKV cases in the area. In contrast, the risk of ZIKV transmission by 

Ae. caspius may be considered extremely low.  
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Abstract 

The life-cycle of many vector-borne pathogens includes an asexual replication 

phase in the vertebrate host and sexual reproduction in the insect vector. However, as only 

a small array of parasites can successfully develop infective phases inside an insect, few 

insect species are competent vectors for these pathogens. Molecular approaches have 

identified the potential insect vectors of blood parasites under natural conditions. However, 

the effectiveness of this methodology for verifying mosquito competence in the 

transmission of avian malaria parasites and related Haemosporidians is still under debate. 

This is mainly because positive amplifications of parasite DNA in mosquitoes can be 

obtained not only from sporozoites, the infective phase of the malaria parasites that migrate 

to salivary glands, but also from different non-infective parasite forms in the body of the 

vector. Here, we assessed the vectorial capacity of the common mosquito Culex pipiens in 

the transmission of two parasite genera. A total of 1,560 mosquitoes were allowed to feed 

on five house sparrows Passer domesticus naturally infected by Haemoproteus or co-

infected by Haemoproteus/Plasmodium. A saliva sample of the mosquitoes that survived 

after 13 days-post-exposure was taken to determine the presence of parasite DNA by PCR. 

Overall, 31.2% mosquito’s head-thorax and 5.8% saliva samples analysed showed positive 

amplifications for avian malaria parasites. In contrast to Haemoproteus DNA, which was 

not found in either the body parts or the saliva, Plasmodium DNA was detected in both the 

head-thorax and the saliva of mosquitoes. Parasites isolated from mosquitoes feeding on 

the same bird corresponded to the same Plasmodium lineage. Our experiment provides 

good evidence for the competence of Cx. pipiens in the transmission of Plasmodium but 

not of Haemoproteus. Molecular analyses of saliva are an effective method for testing the 

vector competence of mosquitoes and other insects in the transmission of vector-borne 

pathogens. 
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Introduction 

The avian malaria parasite Plasmodium and the malaria like parasites of the genus 

Haemoproteus are pathogens that infect birds worldwide and cause infectious diseases that 

affect birds’ fitness (Merino et al. 2000; Marzal et al, 2005). These parasites reproduce 

asexually in birds but are obliged to complete their sexual and sporogonic phases in their 

insect vectors before being successfully transmitted to a new vertebrate host. Mosquitoes 

(Diptera: Culicidae), especially those of the genus Culex, are the main vectors of avian 

Plasmodium; biting midges Culicoides (Diptera: Ceratopogonidae) and louse flies 

(Diptera: Hippoboscidae), on the other hand, transmit Haemoproteus (subgenera 

Parahaemoproteus and Haemoproteus) parasites, respectively (Atkinson & Van Riper, 

1991; Valkiūnas, 2005). In mosquitoes, after the development of the ookinetes, parasites 

penetrate insects’ mid-gut walls and produce oocysts. These oocysts then divide to produce 

the sporozoites, the infective form of the malaria parasites, which migrate to the salivary 

glands of the mosquitoes. Sporozoites are thus transmitted by mosquito bites into the 

bloodstream of a new host (Valkiūnas, 2005). Since the seminal paper by Bensch et al. 

(2000), a number of different molecular approaches have been developed to study 

interactions between parasites and birds (Bensch et al. 2000; Martínez et al. 2009). These 

molecular methods are also a valuable tool for identifying the potential insect vectors of 

blood parasites under natural conditions (Ishtiaq et al. 2008; Levin et al. 2012). However, 

an intense debate exists regarding the reliability of molecular approaches in the study of 

vector competence (Valkiūnas, 2014; Seblova et al. 2014). This controversy arises from 

the fact that positive amplification of parasite DNA can be obtained from insects due to the 

presence of non-infective forms of the parasite, which are unable to complete their 

multiplicative cycle. For instance, Haemoproteus DNA has been isolated from both 

Culicoides (Martínez-de la Puente et al. 2011; Ferraguti et al. 2013 a) and several mosquito 

species, including Culex pipiens, which have completely digested blood meals (Santiago-

Alarcón et al. 2012; Ferraguti et al. 2013 b; Synek et al. 2013; Zélé et al. 2014). All this 

evidence suggests that mosquitoes (and not only Culicoides) could be involved in the 

transmission of this parasite genus. Therefore, further studies are still required to determine 

the degree to which mosquitoes are competent in the transmission of Haemoproteus 

parasites. We conducted an experimental study to determine, to our knowledge for the first 
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time, the competence of Cx. pipiens mosquitoes in the transmission of avian malarialike 

parasites of the genus Haemoproteus. Culex pipiens is a widely distributed mosquito 

species involved in the transmission of a number of vector-borne pathogens (Farajollahi et 

al. 2011). It is believed to be one of the main vectors of avian malaria parasites, and over 

50 different genetic lineages have been detected in this mosquito species using molecular 

methods (Santiago-Alarcón et al. 2012; Bensch et al. 2009). To assess vector competence, 

mosquitoes were allowed to feed on wild birds naturally infected by Haemoproteus and 

birds co-infected by Haemoproteus and Plasmodium (individuals suffering co-infections 

are commonly found in the wild) (Marzal et al. 2008; Merino et al. 2008; Del Cerro et al. 

2010). After allowing the parasite to develop in the mosquito, we used molecular tools 

(PCR) to detect the presence of parasite DNA in the head-thorax (where the salivary glands 

are located) and saliva of mosquitoes. The detection of pathogens in mosquito saliva is 

frequently used in studies of the vector competence of pathogens such as West Nile virus 

(Goddard et al. 2002) and Chikungunya virus (Dubrulle et al. 2009) but, to the best of our 

knowledge, has never previously been employed to determine the vector competence of 

mosquitoes for avian malaria and malaria-like parasites. 

Material and methods 

Mosquito collection and rearing 

Culex pipiens larvae were collected in La Cañada de los Pájaros, a natural reserve 

near Seville, Spain (6°14′W, 36°57′N). This area lies beyond the main wetlands of the 

Doñana National Park and consists of a freshwater lake (c.5 ha) surrounded by paddy fields. 

Larvae were transferred to the laboratory and kept in plastic trays with fresh water and fed 

ad libitum (Mikrozell 20 ml/22 g; Dohse Aquaristik GmbH & Co. KG, D-53501, Gelsdorf, 

Germany). Larvae and adult mosquitoes were maintained at constant conditions, 28 °C, 

65–70% relative humidity (RH) and 12:12 light: dark cycle. After metamorphosis, adult 

mosquitoes were immediately placed in insect cages (BugDorm-43030F, 32.5 × 32.5 × 32.5 

cm) and fed ad libitum with 1% sugar solution. Five to seven days later, adults were

anesthetised with ether (Lipnick, 1991) and observed under a stereomicroscope (Nikon

SMZ645) to determine their sex and confirm the species, following Schaffner et al.  (2001)

and Becker et al. (2010). The sugar solution was replaced with water 24 h prior to each
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experiment (see below) and completely removed from cages 12 h before experiments 

began. The experiments were conducted using 13–22-day-old female Cx. pipiens. 

Bird trapping and sampling 

Five juvenile (yearlings) house sparrows Passer domesticus were captured using 

mist nets on 15 July 2014 in Huelva province and subsequently ringed with numbered metal 

rings. To determine their haemosporidian infection status, a blood sample (0.2 ml) was 

taken from the jugular vein of each bird using sterile syringes and was then immediately 

transferred to non-heparinized Eppendorf tubes. Birds were transported to the Unit of 

Animal Experimentation at the Estación Biológica de Doñana (EBD-CSIC) and kept 

indoors in birdcages (58.5 × 25 × 36 cm) in a vector-free room under controlled conditions 

(23 ± 1 °C, 40–50% RH and 12:12 light: dark cycle). Birds were fed ad libitum with a 

standard mixed diet for seed-eating and insectivorous birds (KIKI; GZM S.L., Alicante, 

Spain). Three days after the last exposure to mosquitoes, birds were blood sampled again 

(0.2 ml; final blood samples) in the same way as above to detect any infections by blood 

parasites that could have not developed when initially sampled. Samples were not taken 

either immediately before or during the mosquito exposure period due to the stress caused 

by mosquito bites. Immediately after sampling, a drop of blood was smeared, air-dried, 

fixed in absolute methanol and stained with Giemsa for 45 min (Gering et al. 2004). A total 

of 4,000–10,000 erythrocytes from each blood smear were scanned at high magnification 

(×1000) and the intensity of infection by Haemoproteus/Plasmodium parasites was 

estimated as the percentage of parasite cells per 100 erythrocytes. At the end of the 

experiment, birds were released at the capture site 23 days after being captured.  

Experimental procedure 

Eleven days after capture, each bird was placed in a birdcage (38.5 × 25.5 × 26 cm) 

inside an insect tent (BugDorm-2120, 60 × 60 × 60 cm). Over four non-consecutive nights, 

each bird was introduced into an independent tent and exposed to 50 (first night), 57 

(second night), 105 (third night) and 100 (fourth night) unfed Cx. pipiens females, 

summarizing a total of 312 mosquitoes per bird. The number of mosquitoes used each night 

varied according to the availability of unfed 13–22 days old mosquitoes. Birds were 
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exposed to mosquito bites overnight (from 8:00 pm to 8:00 am). After exposure, 

mosquitoes with a recent blood meal in the abdomen were immediately separated and 

placed in unzipped insect cages (BugDorm-43030F 32.5 × 32.5 × 32.5 cm) and maintained 

under standard conditions (28 °C, 65–70% RH and 12:12 light: dark cycle). These 

mosquitoes had ad libitum access to 1% sugar solution during the following 13 days to 

allow parasite development. 

Sampling of mosquito saliva 

Those mosquitoes that survived until 13 days post-exposure (dpe) were 

anesthetised with ether (Lipnick, 1991). Mosquitoes’ legs and wings were removed with 

sterile forceps. The mosquito proboscis was introduced into a 1µl disposable capillary 

(Einmal-Kapillarpipetten, Hirschmann® Laborgeäte, Germany) filled with 1µl of fetal 

bovine serum (Phillips et al. 2010). Then, 1µl of 2% pilocarpine (Novartis 2012, Alcon 

Cusí S.A. Barcelona, Spain) was applied to the mosquito thorax to stimulate salivation 

(Boorman 1987). After 45 min, the medium containing the saliva was placed in 1.5ml 

Eppendorf tubes with 10µl of MQ water and stored at −80 °C. Mosquitoes were kept in 

individual tubes at -80 °C until further molecular analysis. The head-thorax of eight 

mosquitoes and two saliva samples were not analysed due to logistical problems. 

Molecular detection and identification of blood parasites 

DNA was isolated from birds’ blood samples (both the initial and final samples) 

and from the head-thorax of mosquitoes using a semi-automatic procedure (MAXWELL® 

16 LEV Blood DNA Kit) (Gutiérrez-López et al. 2015). The Qiagen DNeasy® Kit Tissue 

and Blood (Qiagen, Hilden, Germany) was used to isolate the DNA from saliva samples. 

A 478 bp fragment (excluding primers) of the mitochondrial cytochrome b gene of 

Haemoproteus/Plasmodium parasites was amplified following Hellgren et al. (2004). This 

procedure is based on a first PCR using primers HaemNFI (5′-CAT ATA TTA AGA GAA 

ITA TGG AG-3′) and HaemNR3 (5′-ATA GAA AGA TAA GAA ATA CCA TTC-3′), 

followed by a nested PCR using primers HaemF (5′-ATG GTG CTT TCG ATA TAT GCA 

TG-3′) and HaemR2 (5′-GCA TTA TCT GGA TGT GAT AAT GGT-3′). This procedure 

is able to detect parasite DNA in infections equivalent to less than one gametocyte per 
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10,000 erythrocytes in blood smears (Hellgren et al. 2004). The presence of amplicons was 

verified in 1.8% agarose gels. Positive amplifications were sequenced in both directions 

using the BigDye technology (Applied Biosystems) or with the Macrogen sequencing 

service (Macrogen Inc., Amsterdam, The Netherlands). Sequences were edited using the 

software Sequencher™ v 4.9 (Gene Codes Corp. © 1991–2009, Ann Arbor, MI 48108, 

USA) and assigned to parasite lineages/morphospecies after comparison with the GenBank 

(National Center for Biotechnology Information) and Malavi (Bensch et al. 2009) 

databases. 

Results 

The five birds included in the study showed positive amplifications of blood 

parasites and there was no difference between initial and final samples. The parasite 

sequences isolated from all five birds had a 100% overlap with lineage Haemoproteus 

PADOM05 (corresponding to H. passeris). No evidence of double peaks in the 

chromatograms was found. The examination of blood smears revealed the presence of both 

Haemoproteus and Plasmodium parasites in two birds (house sparrows 4 and 5), only 

Haemoproteus in two other birds (house sparrows 2 and 3), and a total absence of parasites 

in one bird (house sparrow 1) (Fig. 1, Table 1). 

Overall, 174 of 1560 (11.2%) mosquitoes used in this study fed on birds’ blood, 

149 of them survived until 13 dpe. A total of 141 head-thorax and 139 saliva samples were 

molecularly analysed, of which 44 and 8 samples, respectively, were positive to parasite 

DNA (Table 1). All the saliva samples showing positive amplifications corresponded to 

mosquitoes with head-thorax that were also positive for parasite DNA. 
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Fig. 1. Blood parasites found in house sparrows (a) with details of Haemoproteus 
passeris (lineage padom05) (b) and Plasmodium sp. lineage PADOM01 
(c). Arrows indicate the parasite cell 
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The parasite lineages isolated from the head-thorax and saliva of the mosquitoes 

that fed on the two co-infected birds, as revealed by the blood smears, corresponded to 

Plasmodium lineages. These lineages were identified as SGS1 (also named Rinshi-1, 

corresponding to Plasmodium relictum) and PADOM01. We were unable to detect 

Plasmodium in the blood smear of one bird (identified as house sparrow 3, Table 1), 

probably due to a very low-intensity of infection but did manage to isolate the P. relictum 

lineage GRW11 (= Rinshi-7) in the head-thorax of one of the 36 mosquitoes that fed on 

this bird (Table 1). Parasites isolated from mosquitoes feeding on the same individual 

corresponded to the same Plasmodium lineage. Haemoproteus was not found in either the 

head-thorax or in the saliva of any of the mosquitoes analysed. 

Table 1. Infection status of birds included in this study and number of engorged and 
analyzed Culex pipiens mosquitoes 

Discussion 

Studies of host-parasite co-evolution in the context of avian malaria mainly focus 

on the interactions between parasites and their vertebrate hosts (Charleston & Perkins, 

2003; Pérez-Tris et al. 2008; Martinsen et al. 2008) but tend to ignore the role of 

invertebrate vectors. The development of avian blood parasites in mosquitoes is the 

outcome of a complex evolutionary ‘arms race’ too, in which the probability of encounter 

with mosquitoes and their compatibility are important obstacles for successful infection 

and the proper development of the parasites (Gilbert & Webb 2007; Medeiros et al. 2013). 

Infection 
status (PCR)

Intensity of infection 
and morphological 
identification of 
parasites (blood smear)

Engorged 
mosquitoes

Alive 
mosquitoes 
after 13 days

Head-thorax 
positive/analysed

Saliva 
positive/analysed

House sparrow 1 Haemoproteus Haemoproteus  (0%) 9 (2.9%) 9 (100%) 0/9 0/9

House sparrow 2 Haemoproteus Haemoproteus (0.4%) 39 (12.5%) 35 (89.7%) 0/34 0/34

House sparrow 3 Haemoproteus Haemoproteus (0.2%) 42 (13.5%) 36 (85.7%)  1/36 0/36

House sparrow 4 Haemoproteus Haemoproteus (0.5%) /
Plasmodium (0.2%)

39 (12.5%) 33 (84.6%) 23/26  7/26

House sparrow 5 Haemoproteus 
Haemoproteus (1.3%) / 
Plasmodium (0.3%) 45 (14.4%) 36 (80%) 20/36  1/34
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Although Cx. pipiens females frequently feed on mammals, birds are their main blood-

feeding source (Farajollahi et al. 2011; Muñoz et al. 2012; Martínez-de la Puente et al. 

2015), a preference that may increase their contact rate with Haemoproteus. Nevertheless, 

our results suggest that mosquitoes actually may represent an obstacle to the successful 

development of the life-cycle of species in this parasite genus (Medeiros et al. 2013). Here, 

we provide evidence of the effectiveness of mosquito saliva as a novel way of testing the 

vectorial competence of mosquitoes in the transmission of avian malaria and malaria-like 

parasites. This method has been commonly used in studies of the vector competence of 

mosquitoes in the transmission of a number of viruses that are of public health concern 

(Aitken, 1977; Colton et al. 2005; Vazeille et al. 2010; Vogels et al. 2016) as well as to 

detect proteins of Plasmodium bergehi sporozoites in the saliva of Anopheles stephensi 

(Golenda et al. 1992). However, to our knowledge, this approach has never been used in 

studies of mosquito-avian malaria interactions. Despite being time-consuming (it is 

possible to obtain the saliva of about 15 mosquitoes/h), this method is an excellent 

complementary procedure to the frequently used salivary gland dissection employed in 

studies on vector competence. By using this approach, it is possible to obtain parasite 

sporozoites while reducing/removing the presence of tissues derived from the salivary 

glands present in the sample. This could be of special relevance in studies on Plasmodium 

genotyping where the quantity of parasite DNA in relation to host DNA is an important 

limitation (Schall & Vardo, 2007). Moreover, mosquito saliva could be used in 

transcriptomic studies of the infective forms of avian malaria parasites and/or to study the 

parasite load inoculated by mosquitoes (Kappe et al. 2001). 

The lineages SGS1 (P. relictum) and PADOM01 were amplified in the saliva of 

mosquitoes at 13 dpe. However, a high percentage of mosquitoes with positive DNA 

amplifications in the head-thorax (81.8%) did not show positive Plasmodium DNA 

amplifications in saliva at 13 dpe. A recent study found that 13.3% of infected Cx. pipiens 

had Plasmodium sporozoites in their salivary glands (Palinauskas et al. 2016), indicating 

that these parasites develop sporozoites in only a small percentage of infected mosquitoes. 

The absence of sporozoites in salivary glands could be explained by the fact that the parasite 

does not have enough time to complete its development until this phase. Thus, extracting 

saliva after 13 dpe could have increased the number of positive amplifications in our 
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samples. However, some studies have found Plasmodium sporozoites in the salivary glands 

of mosquitoes from just 7 dpe (Valkiūnas, 2005; Christensen et al. 1983), although 

Kazlauskienė et al. (2013) were unable to isolate sporozoites until 14 dpe in salivary glands 

(yet mosquitoes at 13 dpe were not analysed). The differences found between studies could 

be due to the use of different mosquito species, a differential mosquito microbiota, parasite 

strains, or environmental temperatures, which may greatly affect the ability of parasites to 

complete sporogony (Valkiūnas, 2005; Dong et al. 2009; Murdock et al. 2012). Unlike 

Plasmodium, the possibility that Haemoproteus had not have enough time to develop 

sporozoites is poorly supported. Previous studies using direct observational (microscope) 

and molecular (PCR) techniques found intermediate stages (i.e. ookinetes and oocysts) of 

Haemoproteus parasites in the head, thorax and/or abdomen of Ochlerotatus cantans 

mosquitoes from 4–6 dpe onwards, but presence of sporozoites was not recorded 

(Valkiūnas et al. 2013; (Valkiūnas et al. 2014). By contrast, we found no evidence of 

Haemoproteus DNA in the head-thorax of the mosquitoes analysed. In addition, in their 

known Culicoides vectors, Haemoproteus sporozoites are also present in salivary glands at 

5 dpe (Valkiūnas et al. 2002). Therefore, our results support the inability of Haemoproteus 

lineage PADOM05 to complete its lifecycle in Cx. pipiens. 

Molecular approaches allowing the identification of the parasite lineages 

harboured by insect vectors provide valuable information on the potential transmission 

networks of avian pathogens (Martínez-de la Puente et al. 2011; Santiago-Alarcón et al. 

2012; Synek et al. 2013; Zélé et al. 2014). Such tools enable a huge number of individuals 

(e.g. thousands of mosquitoes) to be handled, which is often necessary for detecting 

positive amplifications due to the low infection prevalence that is typical in mosquitoes 

trapped in the wild (Ferraguti et al. 2013 b, Glaizot et al. 2012; Larcombe & Gauthier-

Clerc, 2015). However, results from these studies should be interpreted with caution when 

attempting to identify the true vectors of avian pathogens, this is especially true when 

pathogen DNA is isolated from an unexpected vector, and highlights the necessity to 

conduct further experimental studies of vectorial competence (Valkiūnas, 2014). Although 

different approaches including cloning and the development of specific primers have been 

employed to identify parasite lineages in co-infected birds (Martínez et al. 2009; Perez-

Tris & Bensch, 2005; Bernotienė et al. 2016), our results show the importance of 
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combining the molecular detection of blood parasites with the analysis of blood smears 

when aimed at identifying potential co-infections in birds (Valkiūnas et al. 2006). 

Conclusions 

The results from this study suggest that Cx. pipiens is unable to transmit 

Haemoproteus parasites. This study also highlights the value of targeting mosquito saliva 

as a means of assessing the competence of potential mosquito vectors in the transmission 

of avian Plasmodium lineages. 
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Abstract 

Mosquito competence for the transmission of malaria parasites may be strongly 

affected by the particular Plasmodium-mosquito assemblages and the parasite load in the 

vertebrate host. Here, we assessed the competence of two mosquito species, i.e Culex 

pipiens and Ochlerotatus caspius, with different feeding patterns, for the transmission of 

four avian Plasmodium lineages infecting wild house sparrows. The lineages identified 

corresponded to the lineages SGS1 and GRW11 belonging to Plasmodium relictum (clade 

A in this study) and the lineage COLL1 and PADOM01, named clade B in this study. In 

addition, we assessed the effects of parasite identity (i.e. clade identity) and parasite load 

on the transmission rate of avian Plasmodium by mosquitoes. We also analyzed the impact 

of Plasmodium infection on mosquito survival as well as parasite development on the 

Plasmodium transmission risk. We found that Cx. pipiens was able to transmit the four 

Plasmodium lineages, but Oc. caspius was unable to transmit any of these parasite lineages. 

However, the parasite transmission rate and cost on Cx. pipiens survival differed between 

the two Plasmodium clades. Mosquitoes fed on birds infected by parasites of the clade A 

showed a lower survival and transmission rate than those fed on birds infected by parasites 

of the clade B, while non-significant associations were found with bird parasite load. Our 

results confirm the existence of inter- and intra-specific differences in the ability of 

Plasmodium lineages to develop in mosquito species. The differences in the transmission 

rate and virulence between parasites of clades A and B led to differences in the transmission 

risk, with higher rates found for Plasmodium lineages of clade B.  
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Introduction 

Parasites of the genus Plasmodium, the causative agents of malaria, are vector-

borne Haemosporidians that largely affect humans and wildlife (Sachs & Malaney, 2002; 

Valkiūnas, 2005). Plasmodium parasites are transmitted by mosquitoes, in which they 

develop the sexual reproductive phase (Valkiūnas, 2005). Consequently, mosquito-

Plasmodium interactions play an important role in the dynamics of parasite transmission 

(Kimura et al. 2010).  

Avian Plasmodium shows a wide range of competent hosts belonging to different 

bird families and orders (Fallon et al. 2005; Pérez-Tris et al. 2007; Hellgren et al. 2009). 

Mosquitoes of the genus Culex are the main vectors of avian malaria parasites, although 

other genera such as Aedes or Anopheles could be involved in their transmission (Santiago-

Alarcón et al. 2012). Genetically related parasite lineages/species have been detected in 

different mosquito genera, suggesting a generalist relationship between Plasmodium and 

mosquitoes (Kimura et al. 2010; Ferraguti et al. 2013; Schoener et al. 2017). Most 

information regarding the vector species involved in avian Plasmodium transmission is 

based on the molecular identification of parasite DNA from wild mosquitoes, without a 

quantitative evaluation of vector/parasite associations (Kimura et al. 2010; Ferraguti et al. 

2013; Schoener et al. 2017). However, molecular detection of parasite DNA from insects 

does not imply these are competent vectors (Martínez-de la Puente et al. 2012; Santiago-

Alarcón et al. 2012). In addition, interspecific differences in competence for the 

transmission of avian Plasmodium could be underestimated, as parasite DNA may also be 

isolated from non-competent mosquito species (Beerntsen et al. 2000; Ishtiaq et al. 2008). 

Thus, it becomes crucial to quantitatively evaluate the actual competence of different 

mosquito species for the transmission of different Plasmodium lineages to better 

understand the transmission of avian malaria parasites in the wild. 

For the successful transmission of avian Plasmodium, vectors must survive long 

enough as to allow parasites to complete their life cycle (between 8-13 days; Valkiūnas, 

2005; LaPointe et al. 2010). The development of Plasmodium in the mosquito may be 

affected by a great variety of abiotic environmental factors, such as temperature and 

humidity (Paaijmans et al. 2010; Lefévre et al 2013). In addition, biotic factors including 

the parasite load in the vertebrate host (Cornet et al. 2014) and the particular parasite-vector 
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assemblage may further determine the success of development of parasites in mosquitoes. 

For example, mosquitoes feeding on birds with high parasite loads develop a higher density 

of ookinetes (a previous non-infective phase of Plasmodium) in their abdomen, likely 

increasing parasite transmission success (Pigeault et al. 2015). However, Plasmodium 

development in the mosquito produces tissue damage, with potential negative 

consequences for mosquito survival. Previous studies on the impact of avian malaria 

parasites on vector survival have reported positive, negative or non-significant effects of 

parasite infection on mosquito longevity (Vézilier et al. 2012; Lalubin et al. 2014; Delhaye 

et al. 2016; Pigeault & Villa 2018). However, most of these studies have focussed on the 

interaction between Culex pipiens mosquitoes and Plasmodium relictum (lineage SGS1). 

Therefore, studies considering potential differences in virulence (i.e. the cost of the 

pathogen infections on their host) between parasite species/lineages on different vector 

mosquito species are necessary (see Lachish et al. 2011). 

Here, we experimentally assessed the competence of two mosquito species Culex 

pipiens and Ochlerotatus caspius for the transmission of different avian Plasmodium 

lineages. Both mosquito species are common in Southern Spain where they show different 

feeding patterns. While Culex pipiens feed mainly on birds (Martínez-de la Puente et al. 

2015), Oc. caspius prefers to bite mammals, although birds may represent up to 19% of 

their diet (Balenghien et al. 2006; Muñoz et al. 2012). Avian Plasmodium DNA has been 

isolated from both mosquito species (Ferraguti et al. 2013; Schoener et al. 2017), and the 

capacity of Cx. pipiens for the transmission of avian Plasmodium parasites is well 

demonstrated (Gutiérrez-López et al. 2016; Palinauskas et al. 2016; Kazlauskienė et al. 

2013). In this study, mosquitoes were allowed to feed on Plasmodium infected birds to 

assess the effects of avian parasite load and parasite identity on the probability of mosquito 

infection and parasite transmission. We also analyzed the impact of parasite development 

on mosquito survival. Finally, we estimated the impact of mosquito survival and parasite 

development on the risk of parasite transmission, based on the quantification of the relative 

basic reproductive number (R0) (Ross, 1911; Macdonald, 1955). 
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Materials and methods 

Mosquito collection and rearing 

Wild larvae of Cx. pipiens and Oc. caspius were collected from April to September 

in 2014 and 2016 in the natural reserve ‘La Cañada de los Pájaros’ (6°14’W, 36°57’N, 

Seville Province, Spain) and in marshlands of the Huelva Province (6°53' W, 37°17' N), 

respectively. Larvae were grown in plastic trays with fresh or brackish water, respectively, 

and fed ad libitum with Mikrozell 20ml/22g (Dohse Aquaristik GmbH & Co.101 KG, D-

53501, Gelsdorf, Germany). Larvae and emerged imagos were maintained at standard 

conditions (28ºC ± 1, 65–70% relative humidity (RH) and 12:12 light:dark photoperiod 

cycle). Adult mosquitoes were anesthetized with ether and subsequently sexed and 

identified to species level based on morphology (Schaffner et al. 2001). Female mosquitoes 

were placed in insect cages (BugDorm-43030F, 32.5×32.5×32.5 cm) and fed ad libitum 

with 1% sugar solution. One day prior to each experiment, 2-3-weeks-old female 

mosquitoes were deprived from sugar solution. Laboratory maintained colonies of 

mosquitoes were not used to minimize the effects of artificial selection of mosquitoes with 

particular biting preferences (Franks et al. 2001; Lagisz et al. 2011). 

Bird sampling and experimental procedure 

Fifty-five wild house sparrows (Passer domesticus) were caught from May to 

September 2014 in ‘La Cañada de los Pájaros’ and from June to September 2016 in 

different localities from the Huelva Province using mist nets. Birds were individually 

ringed and weighed. These birds plus sixteen additional house sparrows from another study 

(see below) were kept indoor in birdcages (58.5 × 25 × 36 cm) in a vector-free room under 

controlled conditions (23 ± 1 °C, 40–50% RH and 12:12 light: dark cycle) in the Unit of 

Animal Experimentation at Estación Biológica de Doñana (EBD-CSIC). The 16 birds had 

been injected with saline solution in the context of a different study addressing the effect 

of parasite load on host selection by mosquitoes (Yan et al. 2017). Since no effects of this 

treatment are expected to influence the biting patterns of mosquitoes, and in accordance 

with animal ethical and welfare policies, these birds were used in this experiment before 

being released. A blood sample was obtained from the jugular vein of each bird using sterile 

syringes (0.2 ml). A drop of blood was smeared, air-dried, fixed with absolute methanol 
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and stained with Giemsa for 45 min (Gering & Atkinson, 2004). The rest of the blood 

sample was transferred to non-heparinized Eppendorf tubes to perform molecular detection 

of parasites (see below). A total of 4000–10000 erythrocytes from each smear were scanned 

at high magnification (x1000) and Plasmodium parasite load was estimated as the 

percentage of parasite cells per 100 erythrocytes. Although the gametocytaemia (proportion 

of red blood cells infected by gametocytes, i.e. the sexual stage of the parasite that is 

transmitted to mosquitoes) may provide a more reliable quantitative measure of parasite 

infection than parasitaemia, both variables are strongly correlated (Pigeault et al. 2015).  

Individual birds were enclosed for 30 minutes in an insect cage (BugDorm-43030F, 

32.5×32.5×32.5 cm) containing either Cx. pipiens or Oc. caspius mosquito females. Birds 

were immobilized to prevent defensive behaviours against mosquitoes using a cylinder 

made with 1×1 cm mesh, allowing mosquitoes to bite through. At the end of each trial, 

birds were released without any apparent sign of damage. After trials, mosquitoes with a 

recent blood meal in the abdomen were immediately separated and placed in unzipped 

insect cages (BugDorm-43030F 32.5 x 32.5 x 32.5 cm) and maintained under the same 

conditions detailed above. Mosquito survival was monitored every 12h until 13 days post-

exposure. At the end of this period, the saliva of surviving mosquitoes was obtained as in 

Gutiérrez-López et al. (2016). Briefly, the mosquito proboscis was introduced into a 1µl 

disposable capillary (Einmal-Kapillarpipetten, Hirschmann® Laborgeäte, Germany) with 

1µl of foetal bovine serum. One µl of 2% pilocarpine (Novartis 2012, Alcon Cusí S.A. 

Barcelona, Spain) was applied to the mosquito thorax to stimulate salivation. After 45 min, 

the medium containing the saliva was placed in 1.5 ml Eppendorf tubes with 10µl of MQ 

water. Samples were kept at -80 ºC until further molecular analyses.  

Molecular analyses 

Genomic DNA was isolated from bird blood samples using the MAXWELL ® 16 

LEV Blood DNA Kit (Gutiérrez-López et al. 2015). The head-thorax of each mosquito, 

containing the salivary glands, was separated from the abdomen, legs and wings in a sterile 

Petri dish. The genomic DNA from the head-thorax of mosquitoes was extracted using the 

same procedure described above. The Qiagen DNeasy® Kit Tissue and Blood (Qiagen, 

Hilden, Germany) was used to isolate the DNA from saliva samples. A 478 bp fragment 
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(excluding primers) of the mitochondrial cytochrome b gene of Plasmodium/ 

Haemoproteus parasites was amplified following Hellgren et al. (2004). The presence of 

amplicons was verified in 1.8% agarose gels. Positive amplifications were sequenced in 

both directions using the BigDye technology (Applied Biosystems) or with the Macrogen 

sequencing service (Macrogen Inc., Amsterdam, The Netherlands). Sequences were edited 

using the software Sequencher™ v4.9 (Gene Codes Corp. © 1991–2009, Ann Arbor, MI 

48108, USA) and assigned to parasite lineages/morphospecies after comparison with the 

GenBank (National Center for Biotechnology Information) and MalAvi databases (Bensch 

et al. 2009). Birds with coinfections were not included in this study to avoid potential 

confounding effects of multiple infections on parasite development and mosquito survival 

(see Lover et al. 2015). 

 

Ethics statements 

All experiments involving birds adhered to the guidelines included in the Spanish 

Legislative Decree “Real Decreto 53/2013 de 1 de Febrero” on protection of animals used 

for experimentation and other scientific purposes, with the guidelines established by the 

European Community Council Directive n° 2010/63/UE on Laboratory Animal Protection. 

Regional Authorities and the CSIC Ethics Committee approved this project (ref. CEBA-

EBD-12-40). Mosquito sampling was done with all the necessary permits from landowners 

and regional Department of the Environment (Consejería de Medio Ambiente, Junta de 

Andalucía). 

 

Statistical analyses 

The four Plasmodium lineages found in this study were grouped into two main 

clades (clades A and B, see results) and uncorrected p-distances between lineages/clades 

were compared using MEGA7 Software (Kumar et al. 2016). We fitted two similar 

Generalized Mixed Linear Models (GLMMs) with binomial error and logit link function to 

assess the effects of Plasmodium clade identity (fixed factor) and the bird parasite load 

(covariable) on the status of Plasmodium infection (infected/non-infected) in the head-

thorax or saliva, respectively. In both models, bird identity was included as a random term. 

The bird parasite load was log-transformed to attain normality. We fitted a Cox mixed-
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effect model by maximum likelihood to assess the effect of parasite infection status 

(infected/un-infected birds) and bird parasite load on mosquito survival (measured as the 

number of surviving mosquitoes per 12-hours-periods), while controlling for the potential 

effect of mosquito age (2 or 3 weeks old). We also conducted other independent Cox 

mixed-effect model using parasite identity (clade A, clade B and controls, see below) 

instead of parasite infection status as the dependent variable. We restricted these analyses 

to Cx. pipiens mosquitoes as parasite development was only observed in this species (see 

results). In these analyses, we included data from mosquitoes fed on 10 un-infected house 

sparrows as controls. Statistical analyses were performed in R software 3.2.5 (R Core 

Development Team, 2016) with the package lme4 (Bates et al. 2015).  

 

Modelling Plasmodium transmission 

We used a simplified equation of the R0 epidemiology model proposed by 

Macdonald (1955) to calculate relative R0 values:  

𝑅",$%& = 	
𝑐

(− ln 𝑝)
𝑝0 

 

where c represents the probability of a mosquito becoming infected after biting an 

infected host, p is the daily survival rate of mosquitoes measured as the probability that a 

mosquito survives for one day, and v is the pathogen incubation period in the mosquito. In 

our study, c was considered as the probability of a mosquito carrying Plasmodium DNA in 

its saliva. Although the presence of oocysts in mosquitoes has previously been used to 

determine vector competence for avian Plasmodium (Pigeault et al. 2015), here we 

identified the presence of parasite DNA in mosquito saliva to determine vector competence, 

a method widely used for assessing vectorial competence for the transmission of different 

pathogens (Ciota et al. 2017; Gutiérrez-López et al. 2016). In addition, we considered v as 

13 days, following Valkiūnas (2005) and LaPointe et al. (2010). The relative R0 value was 

calculated considering the survival rate and the proportion of mosquitoes with positive 

saliva samples infected with lineages of each Plasmodium clade. 
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Results 

 We identified four different parasite lineages in 45 infected birds, including the 

Plasmodium relictum lineages SGS1 (N=27) and GRW11 (N=6), and the lineages COLL1 

(N=8) and PADOM01 (N=4). The morphospecies for COLL1 and PADOM01 is unknown, 

but these lineages clustered with the lineage SEIAUR01 (corresponding to P. cathemerium, 

as found in house sparrows in the same area by Ferraguti et al. (2018)). The uncorrected p-

distance between lineages SGS1 and GRW1 and between COLL1 and PADOM01 was 

0.002 (corresponding to a difference of a single base pair). By contrast, a 0.035 uncorrected 

p-distance was found between lineages SGS1-GRW11 and COLL1-PADOM01. Thus, in 

further analyses these four lineages were grouped into two different clades: clade A 

corresponding to the Plasmodium relictum lineages SGS1 and GRW11, and clade B 

corresponding to the Plasmodium spp. lineages COLL1 and PADOM01. We found a 

similar parasite load in birds infected by parasites of both clades (mean ± SD: clade A: 

1.29±0.21, clade B: 1.15±0.35, ANOVA; F1, 38 = 0.11, p = 0.74) 

 

Parasite development in the mosquitoes  

 Overall, 27 and 12 Plasmodium infected birds were exposed to 1696 Cx. pipiens 

and 990 Oc. caspius, respectively. Of these, 183 (10.8%) Cx. pipiens and 121 (12.2%) Oc. 

caspius fed on blood. The Plasmodium infection status in the head-thorax was analysed for 

126 Cx. pipiens fed on 27 infected individuals (19 infected by parasites of clade A and 8 

infected by parasites of clade B) and 45 Oc. caspius fed on 12 infected birds (2 infected by 

a parasite of the clade A and 10 infected by a parasite of the clade B). Fifty-one (40.5%; 

n=126) Cx. pipiens were positive for Plasmodium in the head-thorax. Eleven out of these 

51 mosquitoes (21.6%) had Plasmodium DNA in their saliva. None of the 45 head-thoraces 

of Oc. caspius analysed showed evidence of Plasmodium infection. 

Further analyses were restricted to Cx. pipiens mosquitoes, the only species with 

positive amplifications of Plasmodium DNA. A higher Plasmodium prevalence was found 

in the head-thorax of mosquitoes fed on birds with higher parasite loads (estimate (est = 

0.86, Z = 2.99, p = 0.003), but parasite prevalence did not differ between clades (est = 0.42, 

Z = 0.98, p = 0.33). Parasites were detected in the head-thorax of 37.6% (35/93) and 48.8% 

(16/33) Cx. pipiens fed on birds infected by Plasmodium lineages of the clades A and B, 
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respectively. By contrast, a higher prevalence of clade B (21.2%, 7/33) than clade A (4.3%; 

4/93) was found in Cx. pipiens saliva (est = 1.81, Z = 2.68, p = 0.007; Fig. 1), while non-

significant associations were found with bird parasite load (est = 0.52, Z = 1.40, p = 0.16).  

All Plasmodium lineages infecting house sparrows were isolated from mosquito 

saliva, supporting the competence of Cx. pipiens for the transmission of these four lineages. 

The same Plasmodium lineages were found in the head-thorax and saliva of each mosquito.   

 

Mosquito survival 

 We monitored the survival up to 13 dpe of 166 Cx. pipiens fed on infected birds 

and 80 Cx. pipiens fed on 10 un-infected birds. The survival of mosquitoes did not depend 

on the bird infection status (Z = -1.58, p = 0.11) or the host infection intensity (Z = 1.43, p 

= 0.15). Mosquito age did not affect variation in survival (Z = 0.23; p = 0.81). However, 

when considering the identity of Plasmodium parasites instead of the infection status, Cx. 

pipiens fed on birds infected by parasites of the clade B survived longer than those fed on 

birds infected by clade A, and on uninfected birds (Z = -2.10, p = 0.04; Fig. 2). Mosquito 

survival was not associated with the bird parasite load (Z = 1.50, p = 0.13) neither with the 

mosquito age (Z = 0.19; p = 0.85)  
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Fig. 1. Percentage of mosquito saliva with presence of Plasmodium DNA (i.e. transmission 

rate) of Plasmodium parasites of clade A and B by Cx. pipiens mosquitoes. 

 

Plasmodium transmission risk 

Both parameters, i.e. transmission rate and vector survival, were affected by the 

parasite clade. Consequently, Plasmodium parasites of the clade A showed a lower relative 

transmission risk number (R0) than those of the clade B. When mosquitos fed on birds 

infected by Plasmodium parasites of the clade B, the R0 value was 1774.6 higher than that 

obtained for mosquitoes fed on birds infected by Plasmodium parasites of the clade A.  
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Fig. 2. Proportion of Cx. pipiens that survived until 13 days-post infections by Plasmodium 
parasites of clade A (red line), clade B (blue line) or control (black line). The shaded areas 
comprise the standard errors. 
 

Discussion 

The successful transmission of vector-borne parasites largely depends on the 

availability of competent mosquitoes in the area (Beerntsen et al. 2010). Molecular 

screening of avian Plasmodium in mosquitoes suggested the potential implication of 

different genera of mosquitoes in the transmission of a number of Plasmodium lineages 

(Kimura et al. 2010; Ferraguti et al. 2013; Kazlauskienė et al. 2013; Palinauskas et al. 

2016; Schoener et al. 2017). Although mosquitoes of the genus Culex are considered the 

main vectors of avian Plasmodium, these parasites may develop in Anopheles, Aedes and 

Lutzia mosquitoes, which may thus play a secondary role in the transmission of these 

parasites (Santiago-Alarcon et al. 2012), suggesting that avian Plasmodium spp. are not 

tightly coevolved with mosquito species (Kimura et al. 2010). However, our results suggest 

that while the four Plasmodium lineages isolated here from birds could be transmitted by 

Cx. pipiens, this was not the case of Oc. caspius mosquitoes. The insect midgut represents 

a strong selective force for the parasites, being able to dramatically reduce the number of 
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viable parasites from those initially ingested (Hardy et al. 1983; Abraham et al. 2004). In 

addition, Plasmodium penetrates the midgut intracellular epithelium by a complex 

mechanism involving numerous proteins of the membrane (Han et al. 2000; Ishino et al. 

2006; Siden-Kiamos et al. 2006; Povelones et al. 2009). Thus, potential differences in the 

presence of these proteins between mosquito species could explain the inability of avian 

Plasmodium to develop in Oc. caspius mosquitoes. Furthermore, differences in the immune 

response against parasites or midgut microbiota between mosquito species may affect 

parasite development (Azambuja et al. 2005; Dong et al. 2009; Weiss et al. 2011), and may 

partially explain our results. Clearly, our results indicate that detection of Plasmodium 

DNA in a particular mosquito species is not a good indicator of the species’ vectorial 

competence, since Plasmodium DNA was previously detected, even at high prevalences, 

in Oc. caspius (Schoener et al. 2017). 

Vector competence depends on both mosquito and parasite intrinsic factors, finally 

affecting the ability of a vector to transmit a pathogen (Hardy et al. 1983; Black et al. 1996; 

Woodring et al. 1996). Culex pipiens is considered a competent vector for different avian 

Plasmodium species (Kimura et al. 2010; Santiago-Alarcon et al. 2012; Ferraguti et al. 

2013; Schoener et al. 2017). However, our results support a differential vector competence 

for the transmission of two clades of avian Plasmodium, with a higher prevalence in 

mosquito saliva of lineages of the clade B (COLL1-PADOM01) than for the Plasmodium 

relictum lineages of the clade A. These differences could be the result of unequal parasite 

development in the mosquitoes. In this respect, it is possible that both clades differ in the 

time required to develop and reach the salivary glands, as has been reported between 

parasite species (La Pointe et al. 2010; Palinauskas et al. 2016), with parasites of the clade 

B producing sporozoites faster than those of the clade A. In this study, mosquito saliva was 

obtained 13 days after parasite exposure, a period that exceeds the time needed for different 

Plasmodium spp. to develop in the mosquito salivary glands (Valkiūnas 2005; LaPointe et 

al 2010). Supporting this possibility, Plasmodium relictum sporozoites in the salivary 

glands of mosquitoes have been recorded as early as 4 and 5 days post infection (Rosen & 

Reeves, 1954; Work et al. 1990). In addition, Kazlauskienė et al. (2013) identified the 

presence of sporozoites of the Plasmodium relictum lineages SGS1 and GRW11 

(corresponding to those of the clade A in this study) 14 days post infection in the salivary 
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glands of Cx. pipiens mosquitoes (yet mosquitoes at 13 dpe were not analysed). In addition 

to parasite identity, the parasite load of the donor host may largely determine the success 

of parasite development in the insect vector and, potentially, its capacity for parasite 

transmission. In humans, Plasmodium gametocytaemia was positively associated with the 

mosquito infection rates (Jeffery & Eyles, 1955; Bousema & Drakeley, 2011), while non-

significant associations between the parasitaemia of avian Plasmodium and the oocyst 

prevalence were found (Pigeault et al. 2015). Our results suggest that Plasmodium load in 

the avian host determine the infection rate in mosquitoes, although its importance for the 

final development of parasites in mosquito saliva may be modulated by other factors, 

including specific mosquito-parasite assemblages. 

The costs of Plasmodium infection in mosquito survival remain a subject of intense 

debate (Ferguson & Read, 2002). Vézilier et al. (2012) reported an increased longevity of 

mosquitoes fed on infected birds, while Pigeault and Villa (2018) did not find any 

association between bird parasite load and mosquito survival. However, these studies 

focused on the interaction between Cx. pipiens and P. relictum. In our study, we failed to 

find any significant difference in mosquito survival when both mosquitos fed on infected 

birds were compared with those fed on uninfected individuals. However, clear differences 

were found when parasite identity was considered in the analyses, with mosquitoes fed on 

birds infected by Plasmodium clade B showing a higher survival than those fed on birds 

infected by clade A (P. relictum) or un-infected birds. Differences in the level of virulence 

between avian Plasmodium lineages on mosquitoes are currently unknown. However, a 

differential impact on bird hosts of parasite lineages/morphospecies have been reported. 

For instance, Lachish et al. (2011) found that P. relictum had a lower virulence on birds 

than P. circumflexum, supporting that different avian malaria species can have very 

different effects on fitness components in a single host species. Our results suggest that this 

may also occur in mosquitoes, with differential cost (i.e. energetic cost; Hurd et al. 2005) 

imposed by different species/lineages of Plasmodium. Further studies should include 

sevaral species of Plasmodium to determine the existence of potential differences in 

parasite virulence. 

We found that Plasmodium transmission risk differed between parasite clades 

mainly due to their differential impact on mosquito survival and transmission rate. Lineages 
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of P. relictum (clade A) had a higher virulence on mosquitoes and also showed a lower 

transmission rate (i.e. presence in saliva) than parasites of the clade B. Consequently, 

transmission of Plasmodium was less effective when mosquitoes fed on birds infected by 

lineages of clade A than when infected by clade B. In addition to the variables measured 

here, the epidemiology of vector-borne parasites depends on a number of factors, such as 

host density (Gubbins et al. 2008), host recovery rate (Macdonald, 1955), and vector 

density (Hartemink et al. 2011). Interestingly, Plasmodium relictum (clade A) is considered 

a generalist parasite infecting more than 300 species of birds belonging to 11 different 

orders worldwide, being transmitted by 20 different species of mosquitoes (Valkiūnas et 

al. 2018). However, generalist behaviour has been associated with reduced parasite fitness, 

due to a reduction of the replication/transmission of the parasite in novel hosts, as well as 

the reduction of fitness in the original hosts (Benmayor et al. 2009). Therefore, specialized 

parasites, with a limited host range, may replicate faster, being more effectively transmitted 

than generalist (less virulent) parasites (Leggett et al. 2013). Our results showed a higher 

efficacy of transmission from infected house sparrows to Cx. pipiens in the case of clade B 

as compared with clade A. This could be due to the generalist character of P. relictum, 

which may decrease its fitness when transmitted by Cx. pipiens, but not when infecting 

birds (Hellgren et al. 2009). 

In conclusion, results from this study confirm the existence of inter- and intra-

specific differences in the ability of Plasmodium lineages to develop in mosquito species. 

While some mosquitoes such as Oc. caspius, completely limit the parasite development, 

Cx. pipiens may play a key role in the transmission of avian Plasmodium. Nevertheless, the 

identity of each vector-parasite assemblage may modulate the transmission success of 

Plasmodium lineages through differences in parasite development rate in the mosquito and 

the costs of infection on mosquito survival.  
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Abstract 

Plasmodium transmission success depends on a trade-off between the use of host 

resources to favour parasite reproduction and the negative effects on host health, which can 

be mediated by infection intensity. Despite its potential influence on parasite dynamics, the 

effects of infection intensity in birds and vectors on Plasmodium transmission risk is still 

poorly understood. Here, we experimentally reduced the Plasmodium load in naturally 

infected wild house sparrows to assess how this would affect Plasmodium transmission. 

We monitored the lifespan of Culex pipiens mosquitoes and their infection status by 

analysing the head-thorax and saliva at 13 days post-exposure in Primaquine-medicated 

and infected-control birds. We found that the proportion of mosquitoes infected by 

Plasmodium and the presence of Plasmodium in saliva were not associated with the 

treatment designed to reduce infection intensity in birds. However, the mosquitoes that fed 

on medicated birds showed a basic reproduction number (R0) 19.66 times higher than those 

that fed on control birds due to the negative impact of the parasite load on vector survival. 

We thus suggest that high Plasmodium infection intensities in hosts may be negatively 

selected due to a reduction in vector survival. Consequently, the transmission risk of avian 

Plasmodium will be higher during the chronic phase of infection in birds than during the 

acute phase of infection. 
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Introduction 

Parasites depend on their hosts to survive and to maximise their fitness (de Roode et 

al. 2008). Vector-borne parasites such as Plasmodium, require two different hosts to 

complete their life cycles; a vertebrate host for asexual replication and an insect vector for 

sexual reproduction and the development of sporozoites (Valkiūnas, 2005). These 

processes occur in two phylogenetically distant organisms and give rise to complex 

interactions between hosts, vectors and parasites, as well as promoting constant coevolution 

between them (Ewald, 1983; Cohuet et al. 2010). Avian Plasmodium infection is 

characterised by an acute phase, in which high parasite loads are reached soon after 

infection, followed by a chronic phase characterised by lower intensities that usually 

continue their course as lifelong infections (Asghar et al. 2012). Greater infection intensity 

has often been associated with higher transmission rates (Mackinnon & Read, 1999; Griffin 

et al. 2010). However, a rapid replication rate could reduce the transmission success of the 

parasite by killing either its vertebrate or invertebrate host (Mackinnon & Read, 1999). 

Parasite virulence may thus be considered as a balance between increasing parasite 

transmission and reducing the costs imposed on their hosts (de Roode et al. 2008). 

The basic reproduction number (R0) –the average number of secondary infections 

caused by an infectious individual in a naïve population (Smith et al. 2012) – is widely 

used to understand the epidemiology of the pathogens that cause malaria (Parham & 

Michael, 2010), Lyme (Hartemink et al. 2008) or bluetongue diseases (Gubbins et al. 

2008). R0 is estimated using different parameters of the disease system in question, some 

of which such as the mosquito survival rate are particularly important (Ross, 1911; 

Macdonald, 1955). Mosquitoes must be able to survive long enough for the Plasmodium 

sporozoites to develop (7–13 days; Macdonald, 1952; Valkiūnas, 2005) to guarantee 

subsequent parasite transmission. Therefore, the lifespan of infected mosquitoes will have 

drastic consequences for the Plasmodium transmission risk (Garrett-Jones & Grab, 1964; 

Smith et al. 2012). However, to the best of our knowledge, the effects of Plasmodium 

infection on pathogen R0 remain untested empirically. 

Although the impact of Plasmodium survival on birds has been experimentally 

demonstrated (Martínez-de la Puente et al. 2010; Asghar et al. 2015), much less is known 

about the effects of infection on vector survival (Ferguson & Read, 2002). Mosquito 
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survival may be reduced by Plasmodium due to tissue damage during the development and 

migration of parasites from the midgut to the salivary glands (Vaughan & Turell, 1996). 

Indeed, positive (Vézilier et al. 2012), negative (Lalubin et al. 2014) and no effects 

(Pigeault & Villa, 2018) of the infections by avian Plasmodium on mosquito survival have 

all been reported. Moreover, infection intensity in the hosts may determine the successful 

development of the parasite in the mosquito (Griffin et al. 2010; Bousema & Drakeley, 

2011), although this relationship is not linear in the case of Plasmodium falciparum 

(Churcher et al. 2013). In avian Plasmodium, Pigeault et al. (2015) found that the 

successful development of oocysts in mosquitoes, which may be considered as a proxy for 

transmission capacity, did not depend on the host infection intensity.  

Here, we used birds naturally infected by avian Plasmodium to experimentally test the 

effect of host infection intensity on mosquito infection and survival. Culex pipiens, the 

main vector of avian Plasmodium, were allowed to bite Plasmodium-infected birds that had 

been either medicated with the antimalarial Primaquine, which reduces infection intensity, 

or non-medicated control birds. The impact of this treatment on the Plasmodium 

transmission risk was quantified by estimating the R0 for each experimental group. 

 

Material and methods 

Mosquito collection and rearing 

 Culex pipiens larvae were collected in July 2014 in the natural reserve La Cañada 

de los Pájaros (Seville, Spain; 6°14´W, 36°57´N). Larvae were transferred to the laboratory 

and maintained in fresh water in plastic trays at uniform density, and fed ad libitum 

(Mikrozell 20ml/22g; Dohse Aquaristik GmbH & Co. KG, D-53501, Gelsdorf, Germany). 

Larvae and adult mosquitoes were maintained at 28±1 ºC, 65–70% Relative Humidity and 

12:12h light:dark cycle. Adult mosquitoes were anesthetised with ether, sexed and 

identified to species level under a stereo-microscope (Nikon SM7645) on chilled Petri 

dishes using morphological keys (Schaffner et al. 2001). Female mosquitoes were placed 

in insect cages (BugDorm-43030F, 32.5×32.5×32.5 cm) and fed ad libitum with 1% sugar 

solution. Sugar solution was replaced with water 24h prior to each experiment and the water 

was removed from the cages 12 hours before the experiment begins. The experiment was 

conducted using 7–15-day-old female mosquitoes.  
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Bird trapping and sampling 

 Yearling house sparrows (Passer domesticus) were captured using mist nets in July 

2014 (6°50' W, 37°18' N). Birds were individually ringed and blood was sampled (0.2 ml) 

from the jugular vein using sterile syringes to assess their Plasmodium infection status 

using molecular methods (see details below). Birds were transported to the laboratory in 

the Doñana Biological Station (EBD-CSIC) and kept in birdcages (58.5×25×36 cm) in a 

vector-free room under controlled conditions (22±1 °C, 40–50 % RH and 17:7 h light:dark 

cycle). Birds were housed for two weeks before the start of the experiments and were fed 

ad libitum with a standard mixed diet for seed-eating and insectivorous birds (KIKI, GZM 

S.L., Alicante, Spain).  

 

Experimental procedure 

 The birds’ infection statuses were determined by the amplification and sequencing 

of a fragment of the parasite cytochrome b gene (cyt b) following Hellgren et al. (2004), 

see details below. Thirty-six house sparrows, naturally infected by Plasmodium, were 

randomly assigned to one of two experimental groups: medicated birds (the experimentally 

reduced infection intensity group, N=17) or control birds (non-medicated group, N=19). 

Medicated birds were injected subcutaneously with 0.1mg of the antimalarial drug 

Primaquine (Sigma, St. Louis, MO, USA) diluted in 0.1ml saline solution while control 

birds were injected subcutaneously with the same volume of saline solution (see Yan et al. 

2017). Primaquine was previously used to reduce the intensity of infection by avian malaria 

and malaria-like parasites in different bird species, including house sparrows (Merino et al. 

2000; Martínez-de la Puente et al. 2010; García-Longoria et al. 2015). In vertebrates, high 

doses of Primaquine produces non-desirable side effects, such as gastrointestinal 

disturbances and the development of methaemoglobinaemia (Mayorga et al. 1997). Thus, 

only a single and low–concentration dose of Primaquine was administered to minimize 

these side effects. A single dose will clear most of the gametocytes within seven days after 

treatment, as reported in humans (Burgess & Bray, 1961). Ten days after the treatment, 

each bird in the two experimental groups was immobilized (using a cylinder of 1×1 cm 

mesh, allowing mosquitoes can bite through) and exposed to 80 unfed female Cx. pipiens 
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in insect cages (BugDorm-43030F 32.5×32.5×32.5 cm) for 30 minutes. Immediately after 

the trials, engorged mosquitoes were captured, placed in insect cages under standard 

conditions (28±1 ºC, 65-70% RH and 12:12 light: dark cycle) and fed ad libitum with 1% 

sugar solution. Mosquito survival was monitored every 12h for 13 days post-exposure to 

allow for parasite development. At the end of this period, saliva from the surviving 

mosquitoes was obtained by introducing the mosquitoes’ proboscis into a 1µl disposable 

capillary (Einmal-Kapillarpipetten, Hirschmann® Laborgeäte, Germany) with 1 µl of fetal 

bovine serum. One µl of 2% pilocarpine (Novartis 2012, Alcon Cusí S.A. Barcelona, Spain) 

was applied to the mosquito thorax to stimulate salivation. After 45 min, the medium 

containing the saliva was placed in 1.5 ml Eppendorf tubes with 10 µl of MQ water (see 

details in Gutiérrez-López et al. 2016). Samples were kept at -80 ºC until further molecular 

analyses.  

 One day after the trial, the birds’ blood was sampled again (0.2 ml) to confirm the 

blood parasite lineages infecting individuals at this stage. This procedure allowed us to 

identify any potential parasite lineage that was not detected during the first sampling. After 

sampling, a drop of blood was immediately smeared, air-dried, fixed in absolute methanol 

and stained with Giemsa for 45 min (Gering and Atkinson, 2004). The intensity of infection 

by haemosporidians parasites was estimated as the percentage of infected red blood cells 

detected after scanning 10,000 erythrocytes from each blood smear at high magnification 

(x10,000). Birds were not blood-sampled immediately before or during the mosquito 

exposure period in order to reduce the stress caused by the blood extraction and mosquito 

bites. Birds were released after the completion of the experiments at the site of capture.  

 

Molecular detection and identification of blood parasites   

 DNA was isolated from blood samples and the head-thorax of each mosquito using 

a semiautomatic procedure (MAXWELL® 16 LEV Blood DNA Kit; Gutiérrez-López et 

al. 2015). The Qiagen DNeasy® Kit Tissue and Blood (Qiagen, Hilden, Germany) was 

used to isolate DNA from mosquito saliva. Based on a previous study showing that saliva 

from uninfected mosquitoes tested negative (Gutiérrez-López et al. 2016), we only 

analysed those saliva samples from mosquitoes with Plasmodium positive head-thoraxes. 

Plasmodium infections were recorded following Hellgren et al. (2004). The presence of 
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amplicons was verified in 1.8% agarose gels and positive samples were sequenced using 

the Macrogen sequencing service (Macrogen Inc., Amsterdam, The Netherlands). 

Sequences were edited using the software Sequencher™ v 4.9 (Gene Codes Corp., © 1991–

2009, Ann Arbor, MI 48108) and assigned to parasite lineages through blast comparison 

with those deposited in the GenBank database (National Center for Biotechnology 

Information) and Malavi (Bensch et al. 2009). 

 

Statistical analyses 

An ANOVA test was used to assess differences in the Plasmodium infection intensity 

between medicated and control birds. We fitted a Cox mixed-effect model by maximum 

likelihood to mosquito survival data (number of surviving mosquitoes /12-hours-period) to 

test the effect of the medication treatment on mosquito survival. The medication treatment 

was considered as a fixed factor and bird identity as a random or ‘frailty’ effect. Two similar 

Generalized Mixed Linear Models (GLMMs) with binomial error and logit link function 

were performed in which the infection status by Plasmodium of the head-thorax or the 

saliva samples were included as the dependent variable, respectively. The medication 

treatment was included as a fixed factor and bird identity as a random term. Mosquitoes 

that fed on birds with coinfections (N=51 mosquitoes fed on 6 birds: 2 medicated, 4 

controls) were removed from the analyses to avoid any potential confounding effects of co-

infections on mosquito survival and the presence of Plasmodium DNA in the mosquito 

saliva (see Marzal et al. 2008). Statistical analyses were performed in R software 3.2.5 (R 

Core Development Team, 2016) with the packages survival (Fox, 2002) and lme4 (Bates 

et al. 2015). 

 

Estimation of the impact on Plasmodium transmission 

We used a simplified equation of the R0 epidemiology model proposed by Macdonald 

(1955) to calculate relative R0 values:  

𝑅",$%& = 	
𝑐

(− ln 𝑝)
𝑝0 
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where c represents the probability of a mosquito becoming infected after biting an infected 

host, p is the daily survival rate of mosquitoes measured as the probability that a mosquito 

survives for one day, and v is the pathogen’s mosquito incubation period. In our study, c 

was considered as the probability of a mosquito carrying Plasmodium DNA in its saliva. 

Although the presence of oocysts in the mosquitoes has previously been used to determine 

vector competence for avian Plasmodium (Pigeault et al. 2015), here we identified the 

presence of parasite DNA in mosquito saliva, a method widely used in studies of vector 

competence for the transmission of different pathogens (Ciota et al. 2017; Gutiérrez-López 

et al. 2016). In addition, we considered v as 13 days, following Valkiunas, (2005) and 

LaPointe et al. (2010). The relative R0 value was calculated considering the survival rate 

and the proportion of mosquitoes with positive saliva samples in each experimental group. 

See Electronic Supplementary Material for further details of this procedure. 

 

Results 

The Primaquine treatment significantly reduced the infection intensity in medicated 

birds compared to the controls (mean±SE control = 1.69±0.26, medicated =0.79±0.23, 

F1,35= 5.77, p= 0.02). The mosquitoes that fed on medicated birds (N= 102) had a higher 

daily survival probability than those that fed on controls (N= 95) (probability=0.99 and 

0.96, respectively, Z = -3.17, p = 0.002; Table 1; Fig. 1). The presence of Plasmodium in 

the head-thorax of surviving mosquitoes was evaluated in 76 and 46 individuals that fed on 

medicated and control birds, respectively (Table 1). The medication treatment did not affect 

the proportion of mosquitoes with Plasmodium-positive head-thorax (est = 0.89, Z = 0.92, 

p = 0.36, Table 1) or saliva (est = 1.31, Z = 1.66, p = 0.10, Table 1). 
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Fig. 1. Percentage of mosquitoes’ survival until 13 days-post exposure to Primaquine-
medicated (blue) and control birds (red). The shaded areas comprise the standard errors. 
 

Table 1. Number of engorged, surviving and analysed Culex pipiens mosquitoes for the 
two experimental groups of birds (i.e. medicated and control). The number of Plasmodium 
positive/analysed head-thorax and mosquito saliva is given for each group. *Three 
mosquitoes fed on control birds and four mosquitoes fed on medicated birds escaped and 
were not included in survival analyses. **Three mosquitoes fed on control birds and ten 
mosquitoes fed on medicated birds were not analyzed due to logistical problems 

 
 

 The reduced infection intensity associated with the medication treatment had a 

large impact on the Plasmodium R0 due to the negative effects on the survival of mosquitoes 

that fed on control birds; the R0 for mosquitoes biting medicated birds was 19.66-times 

higher than those that feeding on control birds.  
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Discussion 

The epidemiology of vector-borne parasites depends on a number of factors 

affecting the transmission risk such as host density (Gubbins et al. 2008), host recovery 

rate (Macdonald, 1955), vector density (Hartemink et al. 2011), and temperature (Parham 

& Michael, 2010). We experimentally manipulated the infection intensity in wild birds in 

order to assess the impact this would have on the Plasmodium transmission risk via effects 

on mosquito lifespan and infection rate. Medication reduced the infection intensity in birds, 

which in turn influenced mosquito survival since higher Plasmodium intensities gave rise 

to greater mortality rates. Consequently, mosquitoes that fed on medicated birds had a 

higher Plasmodium R0 than those that fed on control birds. The alternative interpretation – 

i.e. that the greater survival rates in the mosquitoes that fed on medicated birds was in fact 

due to an effect of the drug itself on mosquito survival – is implausible as the biological 

half-life of Primaquine in plasma is 4–9 h (Baird & Hoffman, 2004), and mosquitoes fed 

on the birds 10 days after medication. Even if the drug had been active when ingested by 

the vectors, it could have not favoured mosquito survival (Butcher, 1997). 

The costs of Plasmodium infection on mosquito survival are still a subject of 

intense debate (Ferguson & Read, 2002). Vézilier et al. (2012) report increased longevity 

in Culex pipiens infected by P. relictum; Pigeault and Villa (2018), in contrast, found that 

there were no effects on mosquito survival when using the same mosquito–parasite 

assemblage. However, these effects could be driven by the access to nutritional resources 

other than blood, and the cost of Plasmodium infection on mosquito survival may only be 

detected in the event of nutritional stress (Lalubin et al. 2014). The consumption of glucose 

has been found to be higher in infected mosquitoes than in uninfected ones (Hurd et al. 

2005), which could be associated with the increased resources required by mosquitoes to 

fight off infections (Ahmed & Hurd, 2006). Parasites may impose additional costs on 

mosquitoes by producing tissue damage during their development, thereby increasing their 

susceptibility to bacterial infections and other diseases (Vaughan & Turell, 1996). 

The infection intensity by Plasmodium in the bird host might determine the success 

of parasite development in the insect vector and, consequently, its parasites transmission 

ability. In humans, the density of Plasmodium gametocytes seen in blood has been found 

to be positively associated with the proportion of mosquitoes harbouring oocysts (Bousema 
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& Drakeley, 2011). However, Pigeault et al. (2015) failed to find any association between 

avian Plasmodium infection intensity and the probability of mosquito infection. The 

absence of significant associations between the experimental reduction of Plasmodium 

infection intensity and the proportion of infected mosquitoes reported here could be due to 

the ability of Plasmodium to develop in mosquitoes that have fed on vertebrate hosts with 

infection intensities that are low or undetectable by microscopy (Churcher et al. 2013; Lin 

et al. 2014). This may also explain the absence of any significant effect of the reduction of 

infection intensity in the presence of Plasmodium in mosquito saliva 13 days after blood 

ingestion, a period that exceeds the time required for Plasmodium to develop in the salivary 

glands (Valkiūnas, 2005; LaPointe et al. 2010). 

In wild bird populations, infections by avian Plasmodium usually typically cause 

an acute phase of infection with high infection intensities followed by a chronic phase with 

low infection intensities (Asghar et al. 2012). According to our results, Plasmodium 

transmission may be more effective during the chronic phase of infection than during the 

acute phase due to the negative effects of high infection intensities on mosquito survival. 

Interestingly, Cornet et al. (2013) found that mosquitoes prefer biting avian hosts in a 

chronic phase of infection to biting uninfected birds or birds with infections in an acute 

phase, which provides further support for our results on how chronically infected birds 

affect the epidemiology of avian Plasmodium. 
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Supporting Information Legends 

SI 1. Estimation of the Plasmodium relative basic reproduction number (R0, rel) 

The relative R0 of Plasmodium transmitted by Culex pipiens to birds was estimated 

using a simplified equation of the R0 epidemiology model derived from the equation 

proposed by Macdonald (1955) for human Plasmodium: 

𝑅" =	
𝑚 ∗ 𝑎5	 ∗ 𝑏 ∗ 𝑐
(− ln 𝑝)	𝑟

𝑝0 

 

where m is the ratio of mosquito to birds; a is the feeding rate of mosquitoes; b the 

proportion of bites by infectious mosquitoes that infect a vertebrate host; c the probability 

a mosquito becomes infected after biting an infected vertebrate host; p is the daily survival 

rate; r the daily rate that birds recovers from infections; and v is the pathogen’s mosquito 

latent period. The variables m, a, b and r were considered constants in our calculations of 

R0, which gave a simplified formula that allowed us to estimate the impact of changes in 

the probability of infection after feeding on an infected bird and of mosquito survival on 

avian Plasmodium transmission: 

𝑅",$%& = 	
𝑐

(− ln 𝑝)
𝑝0 
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SI 2. Avian Plasmodium lineages found in birds 

The mosquitoes that fed on six birds that showed evidence of co-infection by more 

than one Plasmodium lineage were excluded from the experiments. Overall, four different 

parasite lineages were identified in birds: the Plasmodium relictum lineages SGS1 (N=21, 

medicated = 12, control = 9) and GRW11 (N=5, medicated = 1, control = 4), and the 

lineages PADOM02 (N=3, medicated = 2, control = 1) and COLL1 (infecting a control 

bird). Plasmodium lineages isolated from the head-thorax of mosquitoes and their saliva 

were identical. With the exception of the Plasmodium lineage COLL1, all Plasmodium 

lineages infecting house sparrows were isolated from mosquito saliva, supporting the 

competence of Cx. pipiens for the transmission of these lineages.  
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Abstract  

The low prevalence of blood parasites in some bird species may be related to the habitats 

they frequent, the inexistence of the right host-parasite assemblage or the immunological 

capacity of the host. Here, we assess the parasite load of breeding populations of Eleonora’s 

falcon (Falco eleonorae), a medium-sized long-distance migratory raptor that breeds on 

small isolated islets throughout the Mediterranean basin and overwinters in inland 

Madagascar. We examined the prevalence and genetic diversity of the blood parasites 

belonging to the genera Plasmodium, Haemoproteus and Leucocytozoon in Eleonora’s 

falcon nestlings from five colonies and in adults from two colonies from nesting sites 

distributed throughout most of the species’ breeding range. None of the 282 nestlings 

analysed were infected by blood parasites; on the other hand, the lineages of Plasmodium, 

Haemoproteus and Leucocytozoon were all found to infect adults. Our results support the 

idea of no local transmission of vector-borne parasites in marine habitats. Adult Eleonora’s 

falcons thus may be infected by parasites when on migration or in their wintering areas. 

The characteristics of marine environments with a lack of appropriate vectors may thus be 

the key factor determining the absence of local transmission of blood parasites. By 

comparing the parasite lineages isolated in this species with those previously found in other 

birds we were able to infer the most likely areas for the transmission of the various parasite 

lineages.  
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Introduction 

The presence and abundance of insect vectors is a key factor affecting the 

interaction between blood parasites and wild bird populations (Sol et al. 2000; Martínez-

de la Puente et al. 2013). Indeed, habitat characteristics influence both birds’ habitat choice 

during the breeding season and the viability of insect vector populations and may ultimately 

determine the success of blood parasite transmission (Mendes et al. 2005). Piersma (1997) 

has suggested that bird species inhabiting marine habitats such as small isolated islets or 

sea cliffs usually have lower blood parasite prevalence than species inhabiting inland areas 

(i.e. mainland and/or large islands) due to the scarcity of insect vectors in marine habitats. 

Marine habitats whose environments are characterized by high salinity, exposure to winds 

and a lack of vegetation cover are generally unsuitable places for insect vectors that require 

an aquatic larval stage to complete their life-cycles (Super & van Riper 1995). In fact, a 

number of studies on seabirds have found a low prevalence or total absence of blood 

parasites and the suggested cause is the scarcity of insect vectors (Piersma, 1997; Martínez-

Abraín et al. 2002; Jovani et al 2001). However, in addition to the role of vectors, other 

factors such as the existence of the right host-parasite assemblage and/or the immunological 

capacity of the avian host to fight off infections may also affect the outcome of host-blood 

parasite interactions (Mendes et al. 2005; Martínez-Abraín et al. 2002). Migratory bird 

species that use a range of habitats throughout their life-cycles (e.g. marine and freshwater 

inland habitats) are excellent study models for exploring the relative importance of the 

potential mechanisms involved in parasite transmission.  

In this study, we assessed variation in blood parasite prevalence between breeding 

colonies and host status (nestlings vs. breeding adults) in Eleonora’s falcon (Falco 

eleonorae). This long-distance migratory raptor breeds colonially on small isolated islets 

throughout the Mediterranean basin and overwinters in inland Madagascar (Walter, 1979; 

Gschweng et al. 2008; López-López et al. 2009). We used a PCR-based approach to 

determine the prevalence and the genetic identity of three avian blood parasite genera, 

Plasmodium, Haemoproteus and Leucocytozoon, that potentially infect these falcons. 

These parasite genera commonly infect birds and all have similar life cycles that require 

the presence of haematophagous insect vectors if they are to be transmitted (Valkiūnas, 

2005).  
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In the light of Piersma’s hypothesis (Piersman, 1997), we expected to find a general 

paucity of blood parasites in Eleonora’s falcons in marine habitats. To determine the 

relative importance of habitat-related vs. host-related mechanisms on parasite transmission, 

we 1) compared the parasite load in nestlings from five different breeding colonies located 

in sites scattered throughout most of the species’ breeding range (Fig. 1) to determine 

whether or not local transmission of vector-borne blood parasites occurs on marine 

breeding grounds, and 2) compared the blood parasite prevalence in nestlings with that of 

adults from two of these breeding areas. Unlike nestlings, adult Eleonora’s falcons are 

exposed during their annual cycle to a huge range of habitats and their associated 

pathogens. 

 

Material and methods  

The vertebrate host  

Eleonora’s falcon breeds colonially in marine environments, mainly on the sea 

cliffs of small islands and rocky islets in the Mediterranean Basin (from Spain to Greece), 

as well as on several islets in the eastern Atlantic Ocean (the Canary archipelago and the 

Îles Purpuraires off the north coast of Africa) (Walter, 1979). When raising offspring, this 

species is highly specialized in the hunting of migratory birds that are heading to Africa. 

Accordingly, breeding colonies are strategically situated on small islands and islets located 

along the main migratory flyways. This falcon has a delayed breeding season and is the 

tardiest breeder (August–October) of all Northern Hemisphere raptor species (Gangoso et 

al. 2013). They lay a single clutch of 1–4 eggs. Incubation lasts for 31 ± 2 days and nestlings 

fledge at 35–40 days (Wink et al. 2000). After breeding, Eleonora’s falcons undertake a 

long-distance migration across continental Africa to their winter quarters in Madagascar 

(López-López et al. 2009). This migratory journey takes about 1–2 months and passes 

through at least 12 countries where they perform several stopovers (López-López et al. 

2009). In winter, Eleonora’s falcons shift both their choice of food items (from birds to 

insects) and habitat and occupy humid areas of northern-central Madagascar, where the 

high rainfall can lead to an abundance of insects (Mellone et al. 2012a). 
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Study area and blood sampling  

We sampled five Eleonora’s falcon populations located in three different countries 

in the Mediterranean Basin (Figure 1) in 2008–2012. These populations were selected to 

cover most of the species’ breeding range, from the westernmost (Alegranza Islet, Canary 

Islands, Spain) to the easternmost (Andros islet, Cyclades Islands, Greece) breeding sites 

(Figure 1). All birds were measured, bled and released after handling. Wing length (mm) 

was used to estimate nestling age (±1 day) as per Ristow and Wink (2004). When nestlings 

were 25–28 days old, a blood sample (0.2 ml) was extracted with a syringe from the 

brachial vein. In a previous study, it was found that 16–23-days old sparrowhawk (Accipiter 

nisus) nestlings were infected by Haemoproteus and Leucocytozoon (Svobodová et al. 

2015). This supports the idea 25 days is enough time for blood parasites to be detected in 

the peripheral blood of Eleonora’s falcon nestlings. In addition, the adult Eleonora’s 

falcons, i.e., individuals that had performed at least one complete migration and had 

overwintered in inland Madagascar, from both Illa Grossa and Alegranza, were trapped 

using dhogaza nets and a stuffed eagle owl (Bubo bubo) as a decoy. Adult birds were bled 

in the same way as nestlings. Blood samples were preserved in absolute ethanol and stored 

at −20°C until molecular analysis. 

 

DNA extraction and blood parasite analyses  

Genomic DNA was isolated from blood samples using a standard 

chloroform/isoamyl alcohol method (Ferraguti et al. 2013a). A 478 bp fragment of the 

mitochondrial cytochrome b gene of blood parasites was amplified as per Hellgren et al. 

(2004). The presence of amplicons was verified in 1.8% agarose gels. All negative samples 

in a first screening were repeated twice to minimize the possibility of false negatives. 

Positive samples obtained using the standard chloroform/isoamyl alcohol method were 

reextracted using the Qiagen DNeasy® Kit Tissue and Blood (Qiagen, Hilden, Germany) 

and a further PCR was performed to identify blood parasites lineages. 
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Fig 1. Map of the entire breeding range of Eleonora’s falcon. Solid black circles show the 
colonies where blood sampling was carried out for this study. The other colonies of the 
species are represented by white circles. 
 

We used this second step for sequencing because the quality of DNA sequences – 

but not the amplification success – significantly improves using this commercial method 

when compared to the standard chloroform/isoamyl alcohol method (Gutiérrez-López et 

al. 2015). Sequencing reactions were performed according using the BigDye technology 

(Applied Biosystems) and sequenced in both directions through a 3130xl ABI automated 

sequencer (Applied Biosystems). The primers HaemF and HaemR2 for Plasmodium and 

Haemoproteus genera and HaemFL and HaemR2L for Leucocytozoon genus were used. 

Sequences were edited using the SequencherTM v4.9 software (Gene Codes Corp., © 

1991–2009, Ann Arbor, MI 48108). Parasite lineages were identified by comparison with 

sequences deposited in GenBank (National Center for Biotechnology Information, Blast, 

2008). Blood parasite prevalences in adults and nestlings from Alegranza, the only locality 

where blood parasites were detected (see results), were compared using Chi-square tests 

(Statistica V. 7.0, StatSoft, I.N.C. 2001). 
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Ethical approval details  

Corresponding permissions were issued by the Spanish, Algerian, and Greek Regional 

Administrations, according to National laws. Specific permissions numbers: MAOT N° 

11908, MAOT N° 6468, MAOT N° 9723, E-87-10-T, E-59-11-E, and 95144/42. 

 

Results  

Out of the total of 324 individuals sampled (282 nestlings and 42 adults, see Table 

1), blood parasite infections were only found in seven adult falcons (7/42; prevalence in 

adults = 16.7%), all from the Alegranza population (adult intrapopulation prevalence = 

20.0%). None of the nestlings analysed had blood parasites. Parasite infection differed 

significantly between age classes in Alegranza, the only population where infections were 

detected (adults: 7/35, nestlings: 0/173; χ2 = 29.92, d. f. = 1, P < 0.0001). Overall, we found 

four different genetic lineages infecting adult Eleonora’s falcons: two Haemoproteus 

lineages (lineage LK4, which was isolated from three adults, and lineage hBUBIBI01, 

which was isolated from a single individual); Plasmodium lineage LK6 (isolated from two 

adults); and a single individual infected by Leucocytozoon lineage L_CIAE02. None of the 

adults showed any evidence of infection by more than one parasite lineage. 

 

Table 1. Summary of the Eleonora’s falcon breeding populations and sample sizes used 
in this study. 

 
 

 

 

 

Age Locality Infected/Sample Parasite lineages (number of infected birds)
Nestlings

Alegranza 0/173
Illa Grossa 0/36
Sa Dragonera 0/11
kef Amor 0/44
Andros islet 0/18

Aduts

Illa Grossa 0/7

Haemoproteus LK4 (3), Haemoproteus hBUBIBI01 
(1), Plasmodium LK6 (2), Leucocytozoon L_CIAE02 

Alegranza 7/35
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Discussion  

We found that none of the Eleonora’s falcon nestlings from any of the populations 

in the Mediterranean basin was infected by blood parasites; on the other hand, 20.0% of 

the adults from the Alegranza population were infected by at least one of the blood parasite 

genera identified (Table 1). However, the overall prevalence of each blood parasite lineage 

infecting the adults in this population was very low, ranging from 2.86% (Leucocytozoon 

L_CIAE02) to 8.57% (Haemoproteus LK4). The absence of parasite infections in adults 

from Illa Grossa and from nestlings from Sa Dragonera could be due to the low sample 

sizes, which may have biased our estimations of blood parasite prevalence in these two 

populations (Jovani & Tella, 2006). Even so, results from the other populations suggest a 

complete absence of infection by blood parasites in nestlings. In a previous study, Gangoso 

et al. (2010) reported the absence of antibodies against the mosquito-borne West Nile virus 

in Eleonora’s falcon nestlings from Alegranza, despite being detected in 14.8% of adults 

from the same population. This finding agrees with the results of our study regarding 

different vector-borne pathogens. In addition, Martínez-Abraín and Urios (2002) found no 

blood parasites infecting Eleonora’s falcon nestlings from the Columbretes Islands. 

Nevertheless, Wink et al. (1979) found that 18.8% of adult Eleonora’s falcons breeding in 

the Aegean Sea were infected by Leucocytozoon; regretfully, these authors provide no 

information about nestlings. Unlike our study, Martínez-Abraín and Urios (2002) and Wink 

et al. (1979) used blood smears for parasite detection. Nonetheless, our findings, in which 

a molecular approach was used, agree with the results of these authors’ studies. 

Although information regarding the development of blood parasites in nestlings of 

wild bird populations is scarce, studies conducted in different avian groups have detected 

avian blood parasites infecting nestlings after as few as 13 days of life (Martínez-de la 

Puente et al. 2013; Merino et al. 1995; Lobato et al. 2005). Svobodová et al. (2015) found 

Haemoproteus and Leucocytozoon in 16–23-days old sparrowhawk (Accipiter nisus) 

nestlings. Therefore, it is unlikely that the absence of parasites in Eleonora’s falcon 

nestlings was due to time constraints in parasite development. 

The presence of appropriate insect vectors is a crucial factor influencing the success 

of blood parasite transmission in birds (Sol et al. 2000; Martínez-de la Puente et al. 2013). 

Mosquitoes (Fam. Culicidae), biting midges (Fam. Ceratopogonidae) and black flies (Fam. 
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Simuliidae) are the main vectors of Plasmodium, Haemoproteus and Leucocytozoon, 

respectively (Valkiūnas, 2005). Although we did not perform any entomological 

surveillance to quantify insect diversity and abundance in the study areas, no previous study 

has ever found any of these insect vectors on either Alegranza (Gangoso et al. 2010) or the 

Columbretes Islands (Martínez-Abraín et. Al., 2002) Eleonora’s falcons are usually 

parasitized by blood-sucking louse flies (Hippoboscidae) [Gangoso et al. 2010; Wink et al. 

1979), which, in the absence of other vectors, could play a role in the transmission of blood 

parasites in marine habitats. Indeed, a recent study reported that Haemoproteus iwa in 

Galapagos great frigatebirds (Fregata minor) was vectored by a hippoboscid fly, an 

obligate ectoparasite of the bird host (Levin et al. 2012). However, louse flies can transmit 

parasites of the subgenus Haemoproteus, as is the case of H. iwa (Valkiūnas, 2005), but 

not of the subgenus ParaHaemoproteus, which were isolated from the adult Eleonora’s 

falcons in this study. In addition, the subgenus Haemoproteus seems to be restricted to 

pigeons and frigatebirds (Martinsen et al. 2008; Merino et al. 2012) and, to our knowledge, 

have not been found to infect falcons. Therefore, the lack of suitable vectors might explain 

the incapacity of transmission from infected adults to uninfected nestlings in breeding 

areas. 

Alternatively, the lack of blood parasites in Eleonora’s falcon nestlings in these 

five populations could be due to host-related immune mechanisms, as suggested by 

Martínez-Abraín et al. (2004). However, this possibility is poorly supported by our results, 

since the prevalence of infection in adults found in this and previous studies (Wink et al. 

1979) showed that Eleonora’s falcons are indeed susceptible to blood parasite infections. 

The Eleonora’s falcon possesses a very specialized Major Histocompatibility Complex 

(MHC), characterized by a complete lack of variability at both MHC class I and II, probably 

due to pathogen-driven selection (Gangoso et al. 2012) The MHC system may play a key 

role in the defence of birds against blood parasites (Westerdahl et al. 2005). Further studies 

should be conducted to identify the role of the specialized MHC system in the mechanisms 

used by Eleonora’s falcon against blood parasite infections. 

We suggest that either during migration or in wintering areas, adult Eleonora’s 

falcons may encounter a diversity of vectors transmitting Plasmodium, Haemoproteus and 

Leucocytozoon. After breeding, Eleonora’s falcons perform a long-distance migration 
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across continental Africa to reach Madagascar (Gschweng et al. 2008; Mellone et al. 2013), 

thus crossing and stopping in areas with a high abundance of potential insect vectors during 

the rainy season (Mellone et al. 2013; López-López et al. 2010). Njabo et al. (2011) and 

Waldenström et al. (2002) isolated Plasmodium and Haemoproteus parasites in wild 

mosquitoes from Cameroon and in migratory and resident birds from Nigeria, respectively. 

In addition, Haemoproteus (17.4% prevalence), Leucocytozoon (9.4%) and Plasmodium 

(1.9%) have been found in birds from different families in Madagascar (Savaje et al. 2009). 

In their wintering quarters, Eleonora’s falcons inhabit degraded humid forests and 

cultivated areas close to pristine humid forest (Mellone et al. 2012a) where, due to their 

suitability for insect vector reproduction, blood parasite transmission may occur. 

Furthermore, during the pre-breeding and breeding seasons, adult Eleonora’s falcons often 

travel inland (i.e. the main islands of the Canary and Balearic archipelagos, continental 

Africa and continental Europe) to visit freshwater ponds and other water bodies (Mellone 

et al. 2012b), where the presence of suitable vectors such as biting midges (Martínez-de la 

Puente et al. 2012a) and mosquitoes (Martínez-de la Puente et al. 2012b) has been recorded. 

By comparing the parasite lineages isolated from Eleonora’s falcons with those previously 

found in other wild bird species, it is possible to infer areas of parasite transmission and 

determine the host-range of these parasite lineages. In this respect, Plasmodium LK6 and 

Haemoproteus LK4 lineages have been isolated from adults of the closely related lesser 

kestrel (Falco naumannii) in Spain (Ortego et al. 2007a,b), with a parasite prevalence of 

4.6% and 0.7% in adults, respectively. Like Eleonora’s falcon, the lesser kestrel is a long-

distance migratory species that winters in Africa, which suggests that parasite-vector 

interactions in wintering quarters may facilitate the transmission of blood parasites in these 

species. In addition, the Leucocytozoon L_CIAE02 lineage was found in both adults and 

juveniles of the migratory black kite (Milvus migrans) in Tarifa (South Spain) (Pérez-

Rodríguez et al. 2013), which suggests that this parasite lineage could be transmitted in 

both Africa and Europe. Interestingly, the two additional parasite lineages that we found in 

Eleonora’s falcons have previously been isolated from non-raptor species. Haemoproteus 

hBUBIBI01, which only differs in a single nucleotide from the lineage LK4, has been 

isolated for the first time from cattle egrets (Bubulcus ibis) in southern Spain (Ferraguti et 

al. 2013b). Likewise, Illera et al. (2008) have reported the presence of Plasmodium TF413, 
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which is identical to lineage LK6, in Berthelot’s pipits (Anthus berthelotii), a resident 

species presents in all the islands in the Canary archipelago. These latter authors (Illera et 

al. 2008) suggest that lesser kestrels, the only species previously found to be infected by 

the Plasmodium linage LK6, could have spread this lineage to Berthelot’s pipits. However, 

lesser kestrels do not breed in the Macaronesian islands and only vagrant individuals are 

ever observed in this area. In this respect and according to our results, a long-distant 

migratory raptor such as Eleonora’s falcon could spread blood parasites to resident birds 

on the main islands, where insect vectors are present (see Waldenström et al. 2002). 

 

Conclusions  

Our results support the hypothesis proposed by Piersma (1997) that explains the 

low prevalence of parasites in avian species living in marine environments and strongly 

indicates that in Eleonora’s falcons habitat characteristics affect the transmission of blood 

parasites. 
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Abstract 

Individual genetic diversity is predicted to influence host–parasite interactions. 

Together with the genes directly associated with immune responses, variation in genes 

regulating vertebrate melanin-based pigmentation may play an important role in these 

interactions, mainly through the pleiotropic effects that affect colour- specific physiology, 

behaviour and immunity. Here, we test the hypothesis that the prevalence of avian malarial 

parasites differs between phenotypes in a raptor species in which the genetic basis of colour 

polymorphism and its pleiotropic effects over immune functions are known. We found that 

dark morphs had a higher prevalence of Plasmodium parasites than pale ones but detected 

no such association for Haemoproteus. This pattern may be associated with unequal 

exposure to vectors or, as suggested by our circumstantial evidence, to a differential ability 

to mount an immune response against blood parasites.  
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Introduction 

Understanding the role of individual genetic diversity in resistance to infectious 

dis- eases is crucial for forecasting evolutionary responses and long-term conservation of 

host populations (Carius et al. 2001; Thompson et al. 2005). In birds, genetic colour 

polymorphism—defined as a highly heritable variation in expressed plumage coloration 

that is independent of age and sex—is often associated with variation in life-history traits, 

including physiology, behaviour and immunity (Ducrest et al. 2008; Roulin & Ducrest, 

2011). These associations may result from pleiotropic effects of genes regulating 

melanogenesis, such as the melanocortin-1-receptor (Mc1r). For example, pharmacological 

research has shown that melanocortin receptors and their ligands are key regulators of 

immune functions. Mc1r is constitutively expressed on monocytes/macrophages, but also 

on dendritic cells and lymphocytes with anti- gen-presenting and cytotoxic functions. The 

activation and binding of the peptide alpha-melanocyte-stimulating hormone (a-MSH) to 

its receptor MC1R in non- melanocytic immune cells modulates both the innate and the 

acquired immune responses, with overall anti-inflammatory and, apparently, 

immunosuppressive effects (Gangoso et al. 2015). On the other hand, it has been proposed 

that the phagocytic function of melanocytes could confer higher protection from pathogens 

to more melanized individuals (Chakarov et al. 2008). 

Parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon are all 

pathogenic to some degree, yet Plasmodium is considered as the most virulent one (van 

Riper et al. 1994). Parasite lineages exhibit antigenic differences that will influence the 

effectiveness of the bird immune system. Consequently, virulence strongly depends on the 

interplay between specific lineages and the ability of the avian host to cope with the parasite 

infection (Bensch et al. 2007). In birds that survive infection, the initial acute phase, when 

severest fitness consequences generally occur, is followed by a rapid decline in 

parasitaemia to chronic levels with lower fitness consequences for the bearer (van Riper et 

al. 1994; Bensch et al. 2007). Immune response to malarial infection is mainly cell-

mediated through the lymphoid-macrophage system, while anti- bodies play an important 

supportive role (Bensch et al. 2007). Although the precise mechanism is unclear, a number 

of studies have proposed that the adaptive function of melanin-based colour polymorphism 
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is associa- ted with parasite resistance and could cause differences in vector-borne parasite 

loads between morphs (e.g. (Galeotti & Sacchi, 2003; Jacquin et al. 2011).  

Eleonora’s falcon (Falco eleonorae) is a migratory raptor that breeds throughout 

the Mediterranean basin and winters in Madagascar. It occurs in two distinct melanin-based 

colour morphs owing to variation in the Mc1r gene (Gangoso et al. 2011). Although the 

relationship between coloration and blood parasite infection in this species is unknown, 

both inflammatory and humoral immune responses are lower in dark than in pale nestlings 

(Gangoso et al. 2011, 2015). Therefore, in the light of the link between Mc1r-genotypes 

and both arms of the immune system, we hypothesize that the two morphs will differ in 

parasite prevalence because dark morphs are less able to cope with parasite infections 

(genetic link hypothesis). Alternatively, parasite prevalence could differ due to morph-

specific exposure to vectors, either if both morphs exploit different habitats with different 

vector abundances or if both morphs are differently appealing to vectors, thus creating 

unequal infection probabilities (exposure hypothesis).  

 

Material and methods 

Sampling was conducted in July – October in Alegranza islet (Canary Islands; 1050 

ha, 289 m above sea level). Adult Eleonora’s falcons were captured every year (mean 1⁄4 

23.22 individuals, range 1⁄4 5 – 47), and their colour morph was determined visually 

(Gangoso et al. 2011). All birds were weighed and their wing length measured. Blood 

samples were preserved in absolute ethanol and stored at 2208C until molecular analysis 

was performed. All birds were marked with numbered rings and released after 

manipulation. 

 

DNA extraction and blood parasite determinations 

We analysed 209 blood samples from 183 individuals: 151 pale morphs (91 

females and 60 males) and 32 dark morphs (22 females and 10 males). The remaining 26 

samples belonged to 19 individuals recaptured in successive years. Genomic DNA was 

used to determine the prevalence of Plasmodium, Haemoproteus and Leucocytozoon 

parasites following (Hellgren et al. 2004) (see the electronic supplementary material). 

Statistical analyses 
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The probability of different morphs being infected by blood parasites was assessed 

using generalized linear mixed models (GLMMs) with binomial error and logit link 

function in R v. 3.0.2 (R Core Team, 2015) using the dataset available in (Gangoso et al. 

2016). To prevent pseudo- replication, we used a random subsampling (1000 iterations) of 

the 19 resampled birds for each parasite genus (see the electronic supplementary material; 

https://figshare.com/articles/Extended_methods_from_Genetic_colour_polymorphism_is

_associated_with_avian_malarial_infections/4308098). The infection by Plasmodium and 

Haemoproteus, respectively, was defined as a binary variable (0/1) and used as the response 

variable. The morph type, sex (only for Plasmodium) and their interaction were included 

as fixed factors. We also included a body-condition index as a covariate, estimated for each 

sex separately as the standardized residuals of a linear regression of body mass on wing 

length. Year was included as a random term. We did not perform a third model for 

Leucocytozoon, because only one individual was found to be infected by this para- site. 

Parameter estimates and standard errors from the resulting GLMMs were averaged and the 

range of p-values and percentage of models where each term was statistically significant 

calculated. 

 

Results  

Overall, the prevalence of blood parasites was 12.9% (figure 1; electronic 

supplementary material, table S1 for details on parasite lineages, Gangoso et al. 2016). Of 

the 19 resampled individuals, 13 (10 pale females and three dark females) were never 

infected. However, one and two pale females became infected by Plasmodium and 

Haemoproteus, respectively, between the first and second sampling period. By contrast, 

three pale females, two infected by Haemoproteus and one by Plasmodium, were found to 

be uninfected 1 year later.  

Dark falcons had a greater Plasmodium prevalence than pale ones (mean estimate 

= 2.50+0.01 s.e., p-range = 0.001–0.01; figure 1). Sex was not significant (mean estimate 

= 0.75+ 0.01 s.e., p-range = 0.59 – 0.99), whereas body condition (mean estimate = 0.011 

+ 0.001 s.e., p-range = 0.02 – 0.59) and the interaction between sex and morph (mean 

estimate = 22.20 + 0.012 s.e., p-range = 0.03–0.22) were significant only in 6.5% and 

16.6% of the models, respectively. There was no significant relationship between the 
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probability of infection by Haemoproteus and any explanatory variable (in all cases p-range 

= 0.30–0.99). 

 

 
Figure 1.  Prevalence (number of infected/total  100) of the two blood parasite genera 
infecting adult Eleonora’s falcons of pale (white) and dark (grey) morph. 
 

Discussion 

We found that dark falcons had a higher prevalence of Plasmodium, the commonest 

parasite genus, than pale ones but found no significant relationship for Haemoproteus. 

Different factors such as differential exposure to vectors, the differing virulence of parasite 

genus/lineages and/or the host’s capacity to fight infections may influence this result. In 

the support of the first possibility, Galeotti & Sacchi (2003) found that rufous-morph tawny 

owls (Strix aluco) hosted higher total blood parasite burdens than grey morphs owing to 
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both greater exposure to vectors and greater susceptibility to parasites. In feral pigeons 

(Columba livia), alternative morphs were distributed non-ran- domly across an urban 

gradient and had different parasite risks (Jacquin et al. 2013). However, the different 

Eleonora’s falcon morphs inhabit small islands sympatrically during the breeding season 

and local transmission of blood parasites at breeding grounds is absent, owing to the lack 

of suitable vectors (Gutiérrez-López et al. 2015). Therefore, differences in the exposure to 

vectors must occur during migration and/or in their wintering quarters, where insect vectors 

abound (Tantely et al. 2016) and the parasite transmission is likely to be higher.  

The most prevalent Plasmodium LK6 is thought to be trans- mitted by Culex 

pipiens, while P_ACCTAC01 is transmitted by Coquillettidia aurites (see the electronic 

supplementary material, table S1), and these are common mosquitoes in Africa and 

Madagascar (Tantely et al. 2016). The lineage LK6 was recently iso- lated from passerines 

from Macaronesian archipelagoes, the Iberian Peninsula and Morocco (electronic 

supplementary material, table S1). Although the transmission areas remain unclear, it has 

been proposed that migratory birds such as Eleonora’s falcon could spread blood parasites 

to resident birds on the main islands, where insect vectors are present (Gutiérrez-López et 

al. 2015). It has been suggested that darker colours are more attractive to mosquitoes than 

light colours and so entirely dark plumages could increase host–vector contact rates. 

However, feeding preferences of these mosquitoes with regard to colour attractive- ness 

are unknown. In addition, data on GPS-tagged falcons do not indicate the existence of 

morph-specific habitat exploitation during winter (L Gangoso, J Figuerola 2015, 

unpublished data).  

This suggests that the difference in prevalence between morphs is unlikely to be 

due to morphspecific exposure to vectors but probably results from differential abilities to 

mount an immune response. Pale falcons could be more susceptible to Plasmodium 

infection than dark ones and their lower prevalence could in turn be the reflection of greater 

mortality. No study has addressed the effects of LK6 on host survival (electronic 

supplementary material, table S1; 

https://figshare.com/articles/Parasite_lineages_from_Genetic_colour_polymorphism_is_a

ssociated_with_avian_malarial_infections/4308092). However, we cannot rule out a 

selective disappearance of pale morphs due to a higher mortality during the acute phase of 
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infection. Dark Eleonora’s falcons have poorer immune responses than pale ones from the 

nestling stage onwards (Gangoso et al. 2011, 2015). It is thus likely that dark falcons have 

lower immune capacities in adulthood since this negative relationship is due to their Mc1r 

derived genotype and not to the environment (Gangoso et al. 2015). The fact that three 

infections found in pale females became undetectable in successive years partially supports 

the idea of greater immune competence in pale falcons for fighting infections. Nonetheless, 

the effects of infection can greatly depend on the parasite load. Previous studies addressing 

the relationship between plumage coloration and blood parasites have found differences in 

infection intensity rather than in prevalence, thereby suggesting that differences are due to 

resistance to parasites rather than exposure to vectors (Chakarov et al. 2008; Jacquin et al. 

2011; Lei et al. 2013). However, we estimated prevalence rather than infection intensity 

because birds were caught during a relatively long period (from arrival at breeding grounds 

to fledglings’ emancipation) and across years. Infection intensity may vary greatly along 

and between breeding seasons (Merino et al. 2004), thus making between-individuals 

comparisons difficult to interpret. Further experimental approaches would be needed to 

clarify the relationship among colour polymorphism, blood parasite intensity and immune 

competence.  

In conclusion, our results are in accordance with the genetic link hypothesis, yet 

we cannot completely rule out the exposure hypothesis and both mechanisms could contrib- 

ute to the skewed prevalence of Plasmodium to the dark morph. To the best of our 

knowledge, this is the first study addressing the relationship between colour polymorphism 

and parasite prevalence in which both the gene responsible for colour polymorphism and 

its pleiotropic effects on immune functions are known, which thus enabled us to infer 

potential mechanisms underlying this covariation.  
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Abstract 

Host shifts are widespread among avian Haemosporidians. Nonetheless, the 

success of transmission to a new host depends on the parasite-host and parasite-vector 

compatibility. Insular avifaunas are characterized by the low prevalence and diversity of 

Haemosporidians, although the underlying ecological and evolutionary processes remain 

unclear. Here, we investigated the role of louse flies in the transmission networks of 

Haemosporidians in an insular ecosystem. Owing to the low diversity of parasites 

previously found infecting Eleonora’s falcons and the presence of only one potential vector 

on the island, we expected to find a limited host-vector-parasite system. However, we found 

an apparent transmission failure of great diversity of parasite lineages. Phylogenetic 

analyses showed that the 23 lineages found in louse flies spread across the existent 

Haemoproteus and Plasmodium clades, all of them typical of Passeriformes. Seven of 18 

parasite lineages isolated from bird preys were not found in louse flies. We found molecular 

evidence that louse flies also feed on passerines hunted by Eleonora’s falcons and the 

commonest parasites of louse flies were found in the more frequent prey species. The lack 

of infection in nestlings and the mismatch between the lineages isolated here and those 

previously found in adult falcons suggest that despite louse flies contact with a diverse 

array of parasites, no successful transmission to Eleonora’s falcon occurs. This could be 

due to the falcons’ resistance to infection, the inability of parasites to develop in these 

phylogenetically distant species and/or the inability of Haemosporidian lineages to 

complete their development in louse flies. 
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Introduction 

Hosts and parasites are engaged in a pervasive evolutionary arms race to maximize 

own fitness (Thompson, 1998). At ecological time scales, parasites tend to be locally and 

temporally adapted to their hosts, but host shifts are widespread across parasite taxa (e.g. 

fungi (McTaggart et al. 2016), bacteria (Delaney et al. 2012) and viruses (Longdon et al. 

2014)). Host shifts have the potential for rapid parasite diversification and also for causing 

emerging infectious diseases (Woolhouse  et al. 2005). This becomes more complicated 

when parasites require a vector to be transmitted between vertebrate hosts, such as 

protozoan blood parasites, yet host switchings are also frequently observed (Escalante et 

al. 1998; Fecchio et al. 2018; Ricklefs & Fallon, 2002; Ricklefs et al. 2004; Waldenström 

et al. 2002). Nonetheless, factors determining the success or failure of these events are 

complex and strongly dependent on ecological (e.g. climate, geographic or vector-imposed 

barriers) and finely tuned parasite/host-related processes, such as host specificity and 

adaptability of the parasite as well as host immune mechanisms (Gager et al. 2008; Lee et 

al. 2017; Moens et al. 2016; Sieber & Gudelj, 2014).  

The biting behavior of blood-feeding arthropods can largely determine the host-

parasite contact rates and hence, the transmission networks of vector-borne parasites 

(Martínez-de la Puente et al. 2015; Takken & Verhulst, 2013; Yan et al. 2017). Blood 

parasites infecting a particular host may interact with a diversity of blood feeding 

arthropods that are competent or refractory for the transmission of the pathogen. Avian 

malaria parasites of the genera Plasmodium and the phylogenetically related 

Haemoproteus, although having similar life cycles, are transmitted by different dipterian 

insect vectors. While mosquitoes (Culicidae) transmit Plasmodium, Culicoides 

(Ceratopogonidae) and louse flies (Hippoboscidae) are the main vectors of Haemoproteus 

parasites of the sub-genera Parahaemoproteus and Haemoproteus, respectively 

(Valkiūnas, 2005). However, insect vectors of these avian parasites seem to have a 

relatively opportunistic behavior, feeding on blood of different bird species potentially 

leading to host-switches. Indeed, host shifts are frequent and fast processes that have 

actually shaped the evolutionary history of avian Haemosporidians (Alcala et al. 2017; 

Ricklefs et al. 2014). Bird-parasite interactions have been intensively studied to identify 

the specificity among avian Haemosporidians and different hosts (Clark et al. 2014; 
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Križanauskienė et al. 2006; Palinauskas et al. 2008; Valkiūnas, 2005). However, very little 

attention has been paid to the occurrence of vector shifts and, in general, to the role of the 

feeding behavior of vectors in enabling or hampering host shifts (Gager et al. 2008; Ishtiaq 

et al. 2008; Kim & Tsuda, 2010). This is partially due to the fact that vector breadth of the 

astounding diversity of within-genera avian malaria lineages is poorly known (Atkinson & 

van Riper, 1991; Njabo et al. 2011; Valkiūnas, 2005).  

Environmental conditions and their effects on vector populations strongly affect 

the transmission dynamics of avian Haemosporidians (Ferraguti et al. 2018). On oceanic 

islands, where populations of insect vectors are usually limited by the prevailing conditions 

of high wind speeds and salinity, louse flies may play a key role in haematozoan 

transmission. For example, frigate birds are commonly infected by Haemoproteus 

parasites, including Haemoproteus (Haemoproteus) iwa, which are vectored by louse flies 

(Levin et al. 2011; Merino et al. 2012). Likewise, Haemoproteus (Haemoproteus) 

multipigmentatus infecting endemic Galápagos doves (Zenaida galapagoensis) is 

transmitted by the louse fly Microlynchia galapagoensis (Valkiūnas et al. 2010). In an 

insular ecosystem, the opportunities for parasite spillover and diversification can be limited 

owing to the low number of interacting species and diversity of habitats. On the other hand, 

vacant niches in the form of new vectors and hosts become available for new arriving 

parasites, either for generalist strategists capable of exploiting new opportunities and for 

parasites able to co-evolve in new host-vector assemblages, thus broadening host ranges or 

promoting parasite diversification, respectively (Agosta & Klemens, 2008; Drovetski et al. 

2014; Medeiros et al. 2014; Santiago-Alarcon et al. 2014). In this context, it is known that 

louse flies are able to move between host individuals of the same or even different species, 

potentially increasing the probability of host switching by Haemosporidians (Jaramillo, 

Rohrer, & Parker, 2017; Levin & Parker, 2014). This may be the case of H. 

multipigmentatus, for which louse flies could have allowed parasites to jump from doves 

to distantly related avian hosts on oceanic islands (Jaramillo et al. 2017; Levin et al. 2011; 

Levin & Parker, 2014).  

In this study, we investigated the role of louse flies in the transmission networks of 

avian Haemosporidians in an insular ecosystem. The Eleonora’s falcon (Falco eleonorae) 

is a medium-sized long-distance migratory raptor that breeds on islands over the 
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Mediterranean basin and winters in Madagascar (Kassara et al. 2017; Walter, 1979). 

During the breeding season, Eleonora’s falcons feed on European migratory birds 

intercepted over the ocean while heading to Africa, and hunted prey are stored in larders 

around the nest sites (Viana et al. 2016). Adult Eleonora’s falcons are commonly infected 

by Plasmodium and Haemoproteus parasites (Gangoso et al. 2016) while nestlings are 

uninfected (Gutiérrez-López et al. 2015a), suggesting the lack of transmission at breeding 

areas. In addition, both adult and nestling Eleonora’s falcons are heavily parasitized by the 

louse fly Ornithophila gestroi (Gangoso et al. 2010), potentially affecting the transmission 

dynamics of blood parasites at breeding grounds, as in the case of different Haemoproteus 

lineages in marine ecosystems (Levin et al. 2011; Levin et al. 2012; Valkiūnas et al. 2010). 

Ornithophila gestroi had been reported only on Eleonora’s falcon and the closely related 

Common and Lesser kestrels (Falco tinnunculus and F. naumanni) (Beaucournu et al. 

1985; Gangoso et al. 2010; Walter, 1979). Consequently, we hypothesize that Eleonora’s 

falcons and O. gestroi louse flies will share infection by the reduced number of 

haemosporidian lineages reported in the Eleonora’s falcon. 

 

Methods 

We sampled louse flies in September 2011–2013 on Alegranza islet (Canary 

Islands; 1050 ha, 289 m.a.s.l.). Nestling Eleonora’s falcons of 20-25 days-old were 

inspected for louse flies during 5-min, focusing on the area peri-cloacal, where these insects 

usually concentrate (authors’ pers. ob.). Louse flies (range 1-9) were removed from each 

individual bird and immediately introduced in absolute ethanol (2011; 159 louse flies 

sampled from 50 nests) or kept alive during four days in empty plastic recipients before 

introducing them in Eppendorf tubes filled with absolute ethanol (2012 and 2013, 

corresponding to 369 louse flies from 64 nests and 499 louse flies from 63 nests, 

respectively). This later procedure allowed the digestion of a blood meal potentially present 

in the insect abdomen. Host DNA is usually degraded after few days post ingestion 

(Martínez-de la Puente et al. 2013 and references therein). A single louse fly species has 

been collected in the study area corresponding to O. gestroi, according to morphological 

and genetic characterization of specimens (Gutiérrez-López et al. 2015b).  
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To identify the bird hosts of blood parasites potentially isolated from louse flies, 

blood samples from both adult and nestling Eleonora’s falcons and bird preys were 

obtained. The blood parasites infecting Eleonora´s falcons sampled from 2006 to 2014 were 

previously analyzed (Gangoso et al. 2016; Gutiérrez-López et al. 2015a). In addition, in 

September 2013 we sampled 90 fresh preys of 12 bird species belonging to 7 different 

families. We obtained a fresh blood sample (N= 14) or heart tissue with nearly coagulated 

blood (N = 76) from each bird that were immediately stored in Eppendorf tubes filled with 

absolute ethanol. We left the sampled prey in the same place where found for later 

consumption by the falcons. All samples were preserved at -20ºC until molecular analysis 

was performed. 

 

Molecular analyses 

 Was extracted genomic DNA from whole louse flies collected in 2011 using a 

common chloroform/isoamyl alcohol protocol and DNA from the head-thorax of louse flies 

collected in 2012-13 with the MAXWELL® 16 LEV Blood DNA Kit (see Gutiérrez-López 

et al. 2015b). For the louse flies collected in 2012-13, the head-thorax of each fly was 

separated from the abdomen using sterile scalpel blades and forceps on sterile Petri dishes. 

The abdomens were kept in individual tubes with absolute ethanol. We isolated genomic 

DNA from blood samples or heart tissue from fresh bird preys of Eleonora´s falcons by 

using the Maxwell-based protocol. Fresh organs including heart can be successfully used 

to identify exoerythrocytic stages of avian malaria infections using molecular tools, 

although the prevalence of infection could be underestimated (Mendes et al. 2013). 

We determined the presence and identity of Haemoproteus and Plasmodium DNA 

in head-thorax of louse flies and bird preys following Hellgren et al. (2004). The presence 

of amplicons was verified in 1.8% agarose gels and positive samples were sequenced using 

the BigDye technology (Applied Biosystems) or the Macrogen sequencing service 

(Macrogen Inc., Amsterdam, The Netherlands). Sequences were edited using the software 

Sequencher™ v 4.9 (Gene Codes Corp., © 1991–2009, Ann Arbor, MI 48108) and 

assigned to parasite lineages/morphospecies after comparison with GenBank (National 

Centre for Biotechnology Information) and MalAvi (Bensch, Hellgren, & Pérez-Tris, 2009) 
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databases. Sequences identified for the first time in this study were deposited in the 

GenBank database. 

 The abdomen of 80 louse flies with a positive amplification of parasites (see below) 

in the head-thorax was further analyzed to discriminate if the parasite identified could be 

due to any rest of an undigested blood meal. To do that, we extracted genomic DNA using 

the Maxwell-based protocol described above and determined their blood parasite infection 

status following Hellgren et al. (2004). For those abdomens (n=18) showing positive 

amplifications of parasite DNA, we performed a nested PCR to identify the host species of 

any potential remain of a previous blood meal (Alcaide et al. 2009).  

  

Statistical and phylogenetic analyses 

We assessed differences in prevalence in louse flies across years by means of 

contingency tables in JMP software (SAS Institute, Cary, NC). The similarity and diversity 

of lineages sequenced in the louse flies and the migratory birds were compared with the 

Jaccard similarity index (Jaccard, 1902), which ranges from 0 (no similarity) to 1 (complete 

similarity). For these calculations, we removed a single Haemoproteus sequenced from a 

louse fly in 2011 because it was not possible to identify the precise lineage due to the low 

quality of the sequence. The statistical significance of the result was established using the 

critical value of Jaccard's similarity index at the 95% confidence level (Real, 1999).  

We assessed the phylogenetic relationships of the 21 Haemoproteus and 10 

Plasmodium lineages found here with sequences from 69 Haemoproteus and 29 

Plasmodium lineages of known morphospecies deposited in MalAvi (Bensch et al. 2009; 

accessed May 2018). Sequences were aligned using the CLUSTALW algorithm 

implemented in MEGA7 (Kumar et al. 2016). We used 478 pb fragments to analyze the 

phylogenetic relationships between lineages using the maximum likelihood algorithm 

based on the Jukes-Cantor model (Jukes & Cantor, 1969). Nodal support was estimated by 

bootstrap analysis with 1000 replicates (Felsenstein, 1981). We used one sequence of 

Leucocytozoon corresponding to the lineage L_CIAE02 as out-group. 
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Results  

Haemosporidian parasites were isolated from 28 % of the analyzed louse flies (N 

= 1027). Infected flies were found in 32, 42 and 39 different nests in 2011, 2012 and 2013, 

respectively. Parasite prevalence was significantly higher in 2011 (40.25%) than in 2012 

(24.12%) and 2013 (26.85%) (Pearson χ2 = 14.94, df = 2, p = 0.0006) but did not differ 

between these later two years (Pearson χ2 = 0.83, df = 1, p = 0.36). It is important to note 

that the higher prevalence found in 2011 could result from the different methodology used 

this year (see methods). The prevalence of Haemoproteus was much higher than that of 

Plasmodium in all study years, accounting for 259 and 18 of total infections, respectively 

(Pearson χ2 = 6.26, df = 1, p = 0.01). The prevalence of Haemoproteus differed across 

years (Pearson χ2 = 13.45, df = 2, p = 0.001), with the highest prevalence found in 2011 

(36.60 %) and the lowest in 2012 (21.25 %). Nonetheless, prevalence of Haemoproteus did 

not differ between 2012 and 2013 (Pearson χ2 = 1.78, df = 1, p = 0.18). The prevalence of 

Plasmodium did not differ over time (Pearson χ2 = 1.55, df = 2, p = 0.46). Ten louse flies 

showed evidence of coinfection by Haemoproteus and Plasmodium based on the double 

peaks found in the chromatograms and were not included in previous statistical tests. 

Overall, 24 different parasite lineages were identified in louse flies (18 

Haemoproteus spp. and 6 Plasmodium spp., Table 1). One amplification was only 

identified to the genus level, corresponding to a Haemoproteus parasite. The commonest 

parasite lineage isolated from louse flies was H. PFC1 (48.8% of total infections, N= 287), 

followed by H. HIPOL1 (24.7%). The remaining parasites were found in ≤ 7 louse flies 

(see Table 1). Sixteen of the parasite lineages isolated from louse flies were previously 

found infecting avian species (see Table S1) and two new lineages were also shared with 

bird prey (see below), while other five isolated only from louse flies are described here for 

the first time (lineages named as: ORGES1, ORGES2, ORGES3, ORGES4 and ORGES5, 

GenBank accession numbers: MH271176-80). 
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Table 1. Identified Haemoproteus and Plasmodium lineages found in louse flies and bird 
preys in this study. The new lineages isolated are indicated with an *. 

 
 

Of the 80 louse flies collected in 2012 with infected head-thoraxes, 18 abdomens 

(22.5%) showed positive amplifications of parasites corresponding to the Haemoproteus 

lineages PFC1 (11.3%, N=9), HIPOL1 (3.8%, N=3), WW1 (2.5%, N=2), SFC1 (1.3%, 

N=1) and LK4 (1.3%, N=1), and the Plasmodium lineage LK6 (2.5%, N=2). Seven louse 

flies showed different parasite lineages in the abdomens than in the head-thorax. From these 

18 positive abdomens, DNA from birds of the Falco genus and Hippolais polyglotta was 

Bird prey
Lineages 2011 2012 2013 Total 2013

H. sp. LANSEN1* 0 0 3 3 5
H. sp. ACDUM2 0 1 1 2 3
H. sp. HIPOL4* 1 2 5 8 2
H. attenuatus ROBIN1 1 0 0 1 3
H. balmorali COLL3 1 3 1 5 2
H. balmorali SFC1 0 2 0 2
H. sp.  ERU-15H 1 1 7 9
H. sp.  HIPOL1 20 15 36 71 12
H. sp. ORGES1* 0 1 0 1
H. sp. ORGES2* 0 1 0 1
H. sp. ORGES3* 0 0 1 1
H. sp. ORGES4* 0 0 1 1
H. sp. ORGES5* 1 0 1 2
H. pallidus PFC1 27 50 63 140 19
H. palloris WW1 0 2 4 6
H. payevsyi RW1 0 0 1 1
H. sp. RBS3 2 0 1 3 1
H. (unidentified lineage) 2 0 0 2
H. sp. HIPOL5* 2
H. sp. PHYBON1* 1
H. sp. PHYTRO1* 1
H.  sp. SYCAN02* 1
P. sp. AFTRU5 1 1 0 2
P. sp. LK6 0 2 0 2
P. relictum GRW11 0 1 1 2 1
P. relictum SGS1 1 2 4 7 6
P. sp. SYAT24 0 0 1 1
P. vaughani SYAT05 0 3 1 4 1
P. sp. COLL1 1
P. sp. GRW9 1
P. sp. MOALB1 1

Louse flies
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amplified from 11 and three louse flies, respectively. The blood meals of the remaining 

four louse flies were not possible to identify probably due to the high degradation of host 

DNA.  

Overall, 74.44% (N = 90) of Eleonora´s falcon preys were infected by parasites 

corresponding to 6 lineages of Plasmodium spp. and 12 lineages of Haemoproteus spp, 

including 6 newly described lineages, two of which also shared with louse flies (i.e. 

LANSEN1 (MH271174) and HIPOL4 (MH271173), see Table 1). Blood parasites were 

isolated from all 12 bird species but two, i.e. Coturnix coturnix (N=2) and Phoenicurus 

phoenicurus (N=1) (Table 2). The bird species recorded more frequently as preys across 

years were the European pied flycatcher (Ficedula hypoleuca) and the Common 

whitethroat (Sylvia communis), while the frequency of other species differed over time 

(Table 2). European pied flycatchers were recorded in all nests where positive louse flies 

were found, while Common whitethroats were found in 35 out 38 nests. The most prevalent 

parasite lineages isolated from passerines were the same commonest lineages found in 

louse flies, i.e. H. PFC1 (28.4% of total infections, N= 67) and H. HIPOL1 (17.9%). The 

remaining lineages were found in ≤ 6 birds (see Table 1). Passerines had seven parasite 

lineages that were not found in louse flies, including the Plasmodium lineages COLL1, 

GRW9 and MOALB1 and the newly described Haemoproteus lineages HIPOL5 (GenBank 

reference: MH271175), H. PHYBON1 (MH271181), H. PHYTRO1 (MH271182) and H. 

SYCAN02 (MH271183). 

Parasite faunas isolated in bird preys and louse flies showed moderate but not 

significant similarity, both when considering only parasite lineages isolated from louse flies 

collected in 2013, when preys were sampled (Jaccard coefficient = 0.40), and when 

combining parasites isolated in louse flies from all years (Jaccard coefficient = 0.37). 

According to the phylogenetic analyses, parasites found in louse flies in this study showed 

close relationship with those previously isolated from Passeriformes (Fig, 1; see Table S1). 

The new lineages found in louse flies were distributed in different clusters including 

phylogenetically related lineages of known morphospecies: ORGES2 and ORGES5 were 

closely related to a lineage of H. pallidus, while H. ORGES3, H. ORGES4 and H. 

LANSEN1 (also isolated from bird prey) were closely related to H. lanii. The lineage H. 

ORGES1 was closely related to lineage H. SYCAN02, which was isolated from a bird prey 
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(Sylvia cantillans). The lineage H. HIPOL4 isolated from louse flies and birds was closely 

related to the morphospecies H. belopolsky. Of the lineages isolated only in bird preys, H. 

HIPOL5 was closely related to the morphospecies H. palloris, while the lineages H. 

PHYBON1 and H. PHYTRO1 clustered with lineages of H. killagoi and H. majoris, 

respectively. 

 

Table 2. Bird species hunted by Eleonora’s falcons during the study period and their 
relative frequency in 2013. The number of nests sampled each year is indicated below. The 
number of individuals of each species sampled in this study and the prevalence within each 
species of the different parasite lineages isolated (next to each parasite lineage, in 
parenthesis) are also shown. 

 
 

2011 2012 2013
N=57 N=43 N=99

Acrocephalus paludicola 2 0.002 2 H. pallidus PFC1 (0.5), P. sp. COLL1 (0.5)
Acrocephalus scirpaceus 2 0
Actitis hypoleucos 7 4 44 0.05
Anthus trivialis 1 1 0
Apus sp. 1 18 0.02
Bulweria bulwerii 1 32 0.04
Cercotrichas galactotes 1 0
Clamator glandarius 1 0.001
Coturnix coturnix 10 12 34 0.04 2 0
Crex crex 7 0.008
Cuculus canorus 3 9 0.01

Ficedula hypoleuca 73 118 177 0.21 27
H. pallidus PFC1 (0.48), H. sp. LANSEN1 (0.04), 
H. balmorali COLL3 (0.07), H. sp. HIPOL1 (0.07), 
P. sp. GRW9 (0.04)

Hippolais polyglotta 33 44 59 0.07
Hippolais sp. 3 0
Hydrobates pelagicus 2 14 0.02
Jynx torquilla 2 5 14 0.02

Lanius senator 22 14 67 0.08 9
H. sp. LANSEN1 (0.44), H. attenuatus ROBIN1 
(0.11), H. sp.  RBS3 (0.11), P. relictum SGS1 
(0.11)

Locustella naevia 21 3 7 0.008
Luscinia megarhynchos 60 7 49 0.06 2 H. attenuatus ROBIN1 (1)
Motacilla flava 1 8 0.009 1 P. sp. MOALB1 (1)
Muscicapa striata 8 3 0
Oenanthe hispanica 5 0.006
Oenanthe oenanthe 38 0.05
Phalaropus fulicarius 2 4 0.005
Phoenicurus ochruros 34 0.04
Phoenicurus phoenicurus 6 4 3 0.004 1 0

Phylloscopus bonelli 4 4 3 0.004 5 H. sp. HIPOL5 (0.2), H. sp. PHYBON1 (0.2), P. 
relictum SGS1 (0.2)

Phylloscopus collybita 8 4 0.005
Phylloscopus sp. 13 11 39 0.05
Phylloscopus trochilus 5 4 3 0.004 2 H. pallidus PFC1 (0.5), H. sp. PHYTRO1 (0.5)
Streptopelia turtur 2 12 0.01
Saxicola rubetra 1 0
Sylvia cantillans 2 0.002 2 H. pallidus PFC1 (0.5), H. sp. SYCAN02 (0.5)

Sylvia communis 70 47 139 0.17 21
H. pallidus PFC1 (0.14), H. sp. ACDUM2 (0.05), 
H. sp.  HIPOL1 (0.09), P. relictum GRW11 (0.05), 
P. relictum SGS1 (0.2), P. vaughani SYAT05 

Sylvia sp. 1 1 0
Upupa epops 3 3 1 0.001

Bird species Frequency 
2013

N 
sampled

Parasite lineages and prevalence within each bird 
species
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Discussion 

The prevalence and diversity of haemosporidian lineages in birds from islands are 

usually lower than that found in the mainland (Hellgren et al. 2011; Padilla et al. 2017; 

Pérez-Rodríguez et al. 2013; Sari et al. 2013). It has been proposed that the establishment 

of haemosporidian parasites into new areas strongly depends on vector distribution and 

vector switches (Ricklefs et al. 2002, 2004). However, the ecological and evolutionary 

processes underlying the colonization of new host-vector insular networks by blood 

parasites remain largely unknown. On the basis of the low prevalence and diversity of 

hemosporidian parasites infecting Eleonora’s falcons (Gangoso et al. 2016; Gutiérrez-

López et al. 2015a) and the presence of only one potential vector species on the island, we 

expected to find an essentially simple host-vector-parasite system. 

However, we faced a rather complex scenario of apparent transmission failure of a 

great diversity of avian Haemosporidians. The unexpected high diversity of Haemoproteus 

and Plasmodium lineages found in louse flies were probably the result of the not so 

specialized feeding behavior of O. gestroi. We found a high prevalence and moderate 

similarity between the parasite faunas of passerine bird prey and louse flies. However, the 

lineages isolated in louse flies did not match with those previously found infecting 

Eleonora’s falcons, with the exception of Plasmodium LK6. However, louse flies are not 

competent vectors for Plasmodium and consequently, Eleonora’s falcon infections by this 

parasite should be the result of contacts with infected mosquitoes outside the breeding 

quarters (see Gangoso et al. 2016). 
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B) 

 
Fig. 1. Bootstrap consensus tree inferred from 100 replicated for Plasmodium (A) and 
Haemoproteus (B) lineages found in this study (black dots) with respect to available 
sequences from known morphospecies deposited in MalAvi (Bensch et al. 2009).  
 

The success of transmission of a particular parasite lineage to a new host depends 

to a large extent on the susceptibility of the host, but also on the compatibility between 

blood-feeding insects and parasite lineages (Beerntsen et al. 2000; Martínez-de la Puente 

et al. 2011). Indeed, only a fraction of the parasites that contact with potential vectors are 

effectively transmitted (Gutiérrez-López et al. 2016), since this process may be hampered 
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by environmental, behavioral, genetic, and physiological factors limiting the development 

of parasites in blood-sucking insects (Beerntesen et al. 2000; Molina-Cruz et al. 2013a). 

For example, in human malaria, it has been found that the immune system of its natural 

vector, the mosquito Anopheles gambiae, is able to eliminate some strains of Plasmodium 

falciparum, while other strains can evade this immune barrier through the function of a 

particular parasite gene (Molina-Cruz et al. 2012, 2013a). However, some blood parasites 

may overcome genetic and physiological barriers of new, often evolutionarily distant 

vectors, as has been shown for different avian Plasmodium spp. transmitted by anopheline 

and culicine mosquitoes under laboratory conditions (Molina-Cruz, Lehmann, & Knöckel, 

2013b and references therein), but also for Plasmodium vivax and different Anopheles 

species in natural environments (Joy et al. 2008). The process of adaptation to a new vector 

following environmental changes may be fuelled by the high evolutionary potential of 

blood parasites (Bensch et al. 2004; Joy et al. 2008) and fast mutations rates at some loci, 

such as those involved in the evasion of vector immune system (Molina-Cruz et al. 2015). 

In the parasite-vector arms race and from the parasite point of view, the benefits of adapting 

to a new –likely more abundant– vector must exceed the costs ensuing, as may be the 

reduced transmission efficiency in the original vector (Cohuet et al. 2010). On the other 

hand, the infection-induced fitness costs should not reduce vector survival as to prevent 

parasite transmission (Frank & Schmid-Hempel, 2008). Although studies dealing with this 

issue in the louse fly-Haemoproteus system are very few, Waite et al.  (2012) showed that 

survival and fecundity of female Pseudolynchia canariensis flies decreased when feeding 

on birds infected by H. columbae, although these flies effectively transmit the parasite. We 

do not know to what extent the infections by blood parasites may impose fitness costs to 

O. gestroi and whether the ecological and evolutionary processes associated may affect 

susceptibility to the parasite and potential levels of transmission (Tripet et al. 2009). In any 

case, in a novel habitat, the continuous interaction between blood parasites and highly 

abundant potential vectors, within which extensive reproduction may occur at early stages 

of coadaptation (Ewald, 1983) would increase the likelihood of vector switching. 

The contact rates between infected and new hosts are largely influenced by the 

feeding preference of insects and their host specificity (Gager et al. 2008; Malmqvist et al. 

2004; Medeiros et al. 2013; Whiteman et al. 2006). Louse flies of the genus Ornitophila 
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include only two species, O. metallica and O. gestroi. While O. metallica has been recorded 

in different bird species and geographic regions (Maa, 1969), O. gestroi had been 

exclusively reported in three Falco species: Eleonora’s Falcons, Common and Lesser 

kestrels (Beaucournu et al. 1985; Gangoso et al. 2010; Walter, 1979). Despite the clear 

specificity of these obligate ectoparasites, we found molecular evidence that O. gestroi also 

fed on passerines hunted by Eleonora’s falcons. This fact may increase the contact rate with 

blood parasites carried by these bird species and hence, the likelihood of parasite spillover. 

But the question arises as to how the louse flies become infected. Migratory birds are 

hunted over the ocean by male Eleonora’s falcons and subsequently transported to the 

breeding colony from varying distances of up to 50 km (Viana et al. 2016). During this 

travel, preys are attached to the falcon’s body (Fig. 2) and louse flies have then the 

opportunity to feed on the immobilized –usually still alive– bird prey. The high prevalence 

and diversity of lineages found in louse flies suggest that this opportunistic feeding 

behavior is rather common. After that, louse flies may be able to reach nestlings from adult 

birds or even stored preys. In support of this possibility, Levin & Parker (2014) reported 

the ability of both infected and uninfected louse flies to move between nestlings within a 

bird colony. In addition, louse flies may be involved in the transmission of Haemoproteus 

parasites between distantly related species as in the case of seabirds (i.e. frigates) and 

passerines (Jaramillo et al. 2017; Santiago-Alarcon et al. 2014). The alternative hypothesis 

that louse flies are carried by the migratory passerines is unlikely, as this louse fly species, 

to our knowledge, have not been recorded in any other bird different than the above 

mentioned Falco species. 
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Fig. 2. Male Eleonora’s falcon carrying a hunted passerine bird, which is attached to the 
falcon’s body during transport.  
 

In spite of differences in the sample sizes analyzed, we found a moderate similarity 

between the parasite lineages isolated from louse flies and bird preys. The commonest 

parasites of louse flies, i.e. the Haemoproteus lineages HIPOL1 and PFC1 were found in 

the more frequent species hunted by Eleonora’s falcons, i.e. the European pied flycatcher 

and the Common whitethroat (see Tables 1 and 2). These findings together with the fact 

that most parasite lineages isolated from louse flies correspond to lineages infecting 

Passeriformes (see Table S1) support the hypothesis that the origin of the parasites isolated 

from O. gestroi are preys hunted by falcons. The phylogenetic analyses also showed that 

the parasite lineages found in louse flies were intermingled with lineages typical from 

Passeriformes. Moreover, the new lineages isolated from louse flies in this study were 

closely related to lineages of H. pallidus and H. lanii, both parasites of passeriforms 

(according to MalAvi, Bensch et al. 2009), including species recorded as prey of Eleonora’s 

falcons (see Table 2 and Table S1). This suggests that louse flies are in continuous contact 



SECTION 3 

 - 166 - 

with a diverse array of parasite lineages through the occasional feeding on Eleonora’s 

falcons’ preys. The Haemoproteus parasites infecting passerine birds across the globe 

belong to the subgenus ParaHaemoproteus, which are transmitted by Culicoides (Beadell 

et al. 2006; Martinsen et al. 2008). In contrast, louse flies are thought to transmit 

Haemoproteus of the subgenus Haemoproteus, which infect Columbiformes and some 

seabird species (i.e. Suliformes, Charadriiformes) and a passerine (Myiarchus 

magnirostris) from the Galápagos archipelago (Levin et al. 2011; Sari et al. 2013; 

Valkiūnas et al. 2010). This suggests that the ecological factors associated to insularity may 

challenge the evolutionary relationships between geographically restricted hosts, potential 

insect vectors and avian Haemosporidians. In our case, it is possible that infections of louse 

flies do not contribute to parasite transmission beyond limiting parasite spread through the 

infection of a non-competent vector. The finding of parasites in the head-thorax of louse 

flies suggests that parasites are able to cross some barriers and survive to some extent within 

the louse flies. However, since we did not look for sporozoites, we cannot rule out that we 

amplified abortive infections in these hippoboscids (Valkiūnas, 2011; Valkiūnas et al. 

2014), which would thus be dead-end invertebrate hosts of these parasites or near-

successful events of vector switching. 

It has been proposed that the main filter hampering the spread of haemosporidian 

parasites across bird species is in the parasite-host compatibility, since the vector offers a 

wide diversity of parasites, but only a few succeed (Medeiros et al. 2013). A newly 

colonized host represents a novel habitat for the parasite, probably having a new blood 

cellular and immunological profile that can hamper the ability of the parasite to invade host 

cells or lead to abortive development of the parasite in the tissue stage (Olias et al. 2011; 

Valkiūnas et al. 2014). For instance, Jaramillo et al. (2017) found that the introduced H. 

multipigmentatus, a parasite thought to be specific to columbiform birds (Valkiūnas et al. 

2010) was able to infect six different species of passerines co-occurring with the parasite 

main host, i.e. the endemic Galapagos dove. However, and in spite of the successful 

spillover from introduced rock pigeons (Columba livia) to doves and the subsequent 

spillover from doves to passerines, the absence of parasite gametocytes in passerine bird 

blood suggest that these are not competent hosts for this Haemoproteus lineage (Jaramillo 

et al. 2017). Likewise, Moens et al. (2016) found gametocytes of the generalist H. witti 



  CHAPTER 8 
 

 - 167 - 

only in Andean hummingbirds, but not in passerines being likely infected by the parasite 

spillover. Molecular detection of stages of parasites including sporozoites in the bird 

peripheral blood could explain these results (Valkiūnas et al. 2009). 

Beyond the filtering effects exerted by parasite-vector compatibility and parasite-

host compatibility, the host immune system could also prevent falcons to become infected 

by new parasite lineages. Alternatively, we cannot exclude a scenario of rare transmission 

events associated with high parasite virulence, with infected hosts rapidly purged by high 

mortality (Poulin, 2006). The lack of parasites in Eleonora’s falcon nestlings (Gutiérrez-

López et al. 2015a) and the mismatch between the lineages isolated here and those 

previously found in adult falcons (Gangoso et al. 2016) support the absence of successful 

transmission to this raptor species. This fact is observed despite louse flies enter in contact 

with hemosporidian parasites coming from a wide taxonomic range of avian species. This 

could be due to falcons’ resistance to infection, the inability of parasites to develop in these 

phylogenetically distant species, and/or the inability of some hemosporidian lineages to 

complete their development in the louse flies. 
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Parasites F. eleonorae
Parasite 
lineage

Order Family Genus Species Continent Prey

A. agricola As, Eu
A. dumetorum As

Hippolais H. polyglotta Eu *
Sylvia S. communis Eu *

Haemoproteus 
sp. HIPOL4 

Passeriformes Sylviidae Hippolais H. polyglotta Eu *

Laniidae Lanius L. senator Eu *

Muscicapidae Ficedula F. hypoleuca Eu *
Phylloscopidae Phylloscopus P. bonelli Eu *
Sylviidae Hippolais H. polyglotta Eu *
Laniidae Lanius L. senator Eu *

Erithacus E. rubecula Af, As, Eu *
L. luscinia As, Eu
L. megarhynchos Eu *

Saxicola S. rubetra Af, Eu *
F. albicollis Eu
F. hypoleuca As
F. speculigera Af

Muscicapa M. striata As
Muscicapidae Muscicapa M. striata Af, As, Eu *

Paridae Cyanistes C. caeruleus Eu

Haemoproteus 
sp. ERU-15H

Passeriformes Laniidae Lanius L. collurio Eu-As
Muscicapidae Ficedula F. hypoleuca Eu *

H. icterina Eu
H. polyglotta Eu, Af *

Sylvia S. communis Eu *
Ploceidae Ploceus P. nigricollis Af

Fringillidae Coccothraustes C. coccothraustes As

F. albicollis Eu
F. hypoleuca Af, As, Eu *

Phylloscopidae Phylloscopus P. trochilus Eu *
Acrocephalus A. paludicola Eu *
Sylvia S. communis Eu *

Anseriformes Anatidae Cygnus C. olor Eu
Muscicapidae Ficedula F. hypoleuca As
Estrildidae Uraeginthus U. bengalus Af
Panuridae Panurus P. biarmicus As

Cyanistes C. caeruleus Eu
Poecile P. montanus As

Ploceidae Euplectes E. macroura Af
Phylloscopidae Phylloscopus P. trochilus Af, As, Eu *

Acrocephalus A. scirpaceus As
Sylvia S. borin Eu *

Upupiformes Upupidae Upupa U. epops As
Laniidae Lanius L. meridionalis Eu
Cinclidae Cinclus C. cinclus Eu
Cisticolidae Cisticola C. nigriloris Af

A. baeticatus Af
A. scirpaceus As, Eu *

A. schoenobaenus Eu

A. palustris As
Tudidae Luscinia L. svecica Eu *

L. collurio Eu
L. minor
L. senator Eu *

Haemoproteus 
sp. ORGES1 

Acrocephalus

Haemoproteus 
sp. RBS3

Passeriformes Laniidae Lanius

Haemoproteus 
palloris WW1

Passeriformes
Paridae

Sylviidae

Haemoproteus 
payevsyi RW1

Passeriformes
Sylviidae

Haemoproteus 
sp. HIPOL1

Passeriformes Sylviidae
Hippolais

Haemoproteus 
pallidus PFC1

Passeriformes
Muscicapidae Ficedula

Sylviidae

Haemoproteus 
balmorali 
COLL3

Passeriformes Muscicapidae Ficedula

Haemoproteus 
balmorali 
SFC1

Passeriformes

Haemoproteus 
sp. HIPOL5

Passeriformes

Haemoproteus 
attenuatus 
ROBIN1

Passeriformes Turdidae Luscinia

Bird hosts

Haemoproteus 
sp. ACDUM2

Passeriformes Sylviidae
Acrocephalus

Haemoproteus 
sp. LANSEN1

Passeriformes
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Haemoproteus 
sp. ORGES2 
Haemoproteus 
sp. ORGES3
Haemoproteus 
sp. ORGES4
Haemoproteus 
sp. ORGES5
Haemoproteus 
sp. PHYBON1

Passeriformes Phylloscopidae Phylloscopus P. bonelli Eu *
Haemoproteus 
sp. PHYTRO1

Passeriformes Phylloscopidae Phylloscopus P. trochilus Eu *
Haemoproteus 
sp. SYCAN02 

Passeriformes Sylviidae Sylvia S. cantillans Eu *
Luscinia L. svecica As

T. merula Eu, Af
T. pelios Af

Muscicapidae Erithacus E. rubecula Eu *
Psitaciformes Psittacidae Melopsittacus M. undulatus Oce

F. eleonorae Eu
F. naumanni Eu

Alaudidae Galerida G. cristata Af
Emberiza E. cirlus Af
Serinus S. canarius Eu

A. berthelotti Eu
A. campestris Eu *

Muscicapidae Phoenicurus P. moussieri Af
Periparus P. ater Af
Cyanistes C. teneriffae Af

Phylloscopidae Phylloscopus P. canariensis Eu
S. conspicillata Af, Eu
S. melanocephala Af, Eu

Alaudidae Alauda A. arvensis Eu
M. alba *
M. flava Eu *

Charadriiforme
s

Scolopacidae Philomachus P. pugnax Eu

Lophophorus L. impejanus As
Chrysolophus C. amherstiae As

Alaudidae Alauda A. arvensis Eu
Certhiidae Troglodytes T. troglodytes Eu

C. corone As, Eu

C. macrorhynchos As

Garrulus G. glandarius As
Carduelis C. carduelis As
Emberiza E. cirlus Eu
Fringilla F. coelebs As, Af, Eu
Pyrrhula P. pyrrhula As
Ficedula F. albicollis Eu
Phoenicurus P. ochruros Eu *

D. urbicum Af, Eu
D. dasypus As

Laniidae Lanius L. collurio Eu
P. domesticus Af, Eu
P. hispaniolensis Af, Eu
P. montanus As, Eu
C. caeruleus Eu
C. teneriffae Af

Parus P. major As, Eu
Periparus P. ater Af

Pycnonotidae Pycnonotus P. capensis Af
A. agricola Eu
A.arundinaceus Eu
A. scirpaceus Eu *

Cettia C. cetti Eu

Pariidae
Cyanistes

Sylviidae

Acrocephalus

Corvus

Fringiliidae

Muscicapidae

Hirundinidae Delichon

Passeridae Passer

Sylvia

Plamodium sp. 
MOALB1

Passeriformes Motacillidae Motacilla

Plasmodium 
relictum 
GRW11

Gruiformes PhAsnidae

Passeriformes

Corvidae

Plasmodium 
sp. LK6

Falconiformes Falconidae Falco

Passeriformes

Fringillidae

Motacillidae Anthus

Paridae

Sylviidae

Plasmodium 
Aftru5

Passeriformes Turdidae Turdus
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S. atricapilla Eu
S. borin As, Af, Eu *
S. cantillans Eu *
S. communis As *
S. conspicillata Eu
S. curruca As
S. melanocephala Eu
S. nisoria As

Erithacus E. rubecula Eu *
L. luscinia Eu
L. svecica Eu *

Saxicola S. rubetra As
Anas A. acuta Eu
Marmaronetta M. angustirostris Eu

L. argentatus Eu
L. cachinnans Eu
L. mongolicus As

Recurvirostrida
e

Himantopus H. himantopus Eu

Scolopacidae Gallinago G. gallinago Eu
Botaurus B. stellaris As
Bubulcus B. ibis Eu

Ciconiidae Ciconia C. ciconia Eu

Columbiformes Columbidae Columba C. livia Eu

Gallus G. gallus Eu
Lophophorus L. impejanus As
Perdix P. perdix Eu
Tragopan T. temminckii As

Gruiformes Gruidae Grus G. nigricollis As
Alaudidae Alauda A. arvensis Eu

Certhia C. brachydactyla Af, Eu
T. aedon S Am
T. troglodytes Af, As, Eu
C. corone As, Eu

C. macrorhynchos As

Cyanopica C. cooki Eu
Garrulus G. glandarius As, Eu
Pica P. pica Eu

Estrildidae Estrilda E. astrild Eu
C. chloris Af, As, Eu
C. carduelis As, Eu
C. spinus As

Carpodacus C. erythrinus As, Eu

Coccothraustes C. coccothraustes As

Conirostrum C. cinereum S Am
E. calandra As
E. cia Eu
E. cirlus Eu
E. citrinella Oce
E. elegans As
E. godlewskii As
E. hortulana As
E. tahapisi Af

Fringilla F. coelebs Af, As, Eu
Loxia L. curvirostra As
Pyrrhula P. pyrrhula Eu

S. canaria Eu
S. serinus Af, Eu

Zonotrichia Z. capensis S Am
Furnariidae Phleocryptes P. melanops S Am
Hirundinidae Delichon D. urbicum Af, Eu

L. collaris Af
L. senator Eu *

Lanius

Passeriformes

Certhiidae Troglodytes

Corvidae

Corvus

Fringillidae

Carduelis

Emberiza

Serinus

Laniidae

Plasmodium 
relictum SGS1 
(Rinshi-1)

Anseriformes Anatidae

Charadriiforme
s

Laridae Larus

Ciconiiformes
Ardeidae

Galliformes PhAsnidae

Sylviidae

Sylvia

Turdidae Luscinia

Plasmodium 
relictum 
GRW11

Passeriformes
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Motacillidae Motacilla M. flava Eu *
C. coryphoeus Af
C. galactotes Af *
C. podobe Af
F. albicollis Eu
F. hypoleuca As, Eu *

Muscicapa M. striata Af, As *
Oenanthe O. oenanthe Af *

P. moussieri Af
P. ochruros Eu *
P. phoenicurus As, Eu *
C. caeruleus As, Eu
C. teneriffae Af

Lophophanes L. cristatus Eu
P. major Af, As, Eu
P. venustulus As
P. palustris As

Periparus P. ater Af, Eu
P. montanus As
P. varius As

P. domesticus
Af, As, Eu, 
Oce

P. griseus Af
P. hispaniolensis Eu
P. luteus Af
P. melanurus Af
P. montanus As, Eu
P. rufocinctus Af

Prunella P. modularis As
Phylloscopidae Phylloscopues P. bonelli Eu *

Euplectes E. orix Af
P. capensis Af
P. 
melanocephalus

Eu

P. velatus Af
Microscelis M. amaurotis As
Pycnonotus P. capensis Af
Hypsipetes H. amaurotis As

Sittidae Sitta S. europaea As
S. cineraceus As
S. tristis As, Oce
A. agricola Eu
A. arundinaceus Eu
A. palustris As

A. schoenobaenus Af

A. scirpaceus Af, As, Eu *
Cettia C. cetti As, Eu
Hippolais H. polyglotta Eu *

S. atricapilla Eu
S. borin Af, As, Eu *
S. communis As, Eu *
S. curruca Af, As
S. deserticola Af
S. melanocephala Af, Eu
S. nisoria Eu
S. undata Eu

Erithacus E. rubecula As, Eu *
Luscinia L. svecica Eu, As *
Monticola M. saxatilis As

S. rubetra Af, Eu *
S. maura As
T. merula Eu
T. viscivorus Af

Sayornis S. nigricans S Am
Serpophaga S. cinerea S Am

Tyrannidae

Sylviidae

Acrocephalus

Sylvia

Turdidae Saxicola

Turdus

Passeridae
Passer

Ploceidae Ploceus

Pycnonotidae

Sturnidae Sturnus

Muscicapidae

Cercotrichas

Ficedula

Phoenicurus

Paridae

Cyanistes

Parus

Poecile

Passeriformes

Plasmodium 
relictum SGS1 
(Rinshi-1)
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Procellariforme
s

Procellariidae Pachyptila P. belcheri S Am

Spheniciformes Spheniscidae Spheniscus S. humboldti As

Strigiformes Strigidae Athene A. noctua Eu
Amazilia A. chionogaster S Am
Colibri C. coruscans S Am

E. cia Eu
E. cirlus Eu

Anthus A. campestris Eu *
Motacilla M. flava Eu *

Paridae Cyanistes C. caeruleus Eu
P. domesticus Eu
P. hispaniolensis Eu

Ploceidae Euplectes E. orix Af
Acrocephalus A. paludicola Eu *
Locustella L. luscinioides Eu
Sylvia S. atricapilla Eu

Cisticolidae Camaroptera C. brachyura Af
Dicrurus D. adsimilis Af
Rhipidura R. rufifrons Oce

E. astrild Af
E. melpoda Af

Lonchura L. cucullata Af
Pyrenestes P. ostrinus Af
Spermophaga S. haematina Af
Uraeginthus U. angolensis Af
Crithagra C. capistrata Af
Serinus S. mozambicus Af
Delichon D. urbicum Eu
Hirundo H. rustica Eu
Phedina P. borbonica Af
Psalidoprocne P. albiceps Af

Laniidae Lanius L. collurio Eu
Motacillidae Motacilla M. flaviventris Af

Copsychus C. albospecularis Afica

C. heuglini Af
C. niveicapilla Af
F. albicollis Eu
F. hypoleuca As, Eu *
F. semitorquata Eu

Muscicapa M. olivascens Af
Pogonocichla P. stellata Af
Chalcomitra C. rubescens Af

C. chloropygius Af
C. fuelleborni Af
C. mediocris Af
C. olivacea Af
C. verticalis Af

Deleomis D. fraseri Af
Hedydipna H. collaris Af
Nectarinia N. chloropugia Af

Passeridae Gymnoris G. supercilliaris Af
Philepittidae Philepitta P. castanea Af
Platysteiridae Batis B. mixta Af

Euplectes E. hordeaceus Af
F. hypoleuca Af
F. 
madagascariensi
s

Af

Malimbus M. nitens Af
P. cucullatus Af
P. nelicourvi Af

Quelea Q. quelea Af
A. chlorigula Af

Ploceidae

Foudia

Ploceus

Pycnonotidae

Andropadus

Fringillidae

Hirundinidae

Muscicapidae

Cossypha

Ficedula

Nectariniidae

Cinnyris

Cyanomitra

Emberiza

Motacillidae

Passeridae Passer

Sylviidae

Plasmodium 
sp. GRW9

Passeriformes

Dicruridae

Estrildidae

Estrilda

Trochiliformes Trochilidae

Plasmodium 
sp. COLL1

Passeriformes

Fringillidae

Plasmodium 
relictum SGS1 
(Rinshi-1)



SECTION 3 

 - 180 - 

 

A. gracilis Af
A. latirostris Af
A. masukuensis Af
A. milanjensis Af
A. virens Af

Bernieria
B. 
madagascariensi
s

Af

B. eximius Af
B. notatus Af
B. syndactylus Af
C. calurus Af
C. chloronotus Af

Hypsipetes
H. 
madagascariensi
s

Af

Nicator N. chloris Af
Phyllastrephus P. icterinus Af
Pycnonotus P. barbatus Af
Acrocephalus A. arundinaceus Eu
Bradypterus B. baboecala Af
Nesillas N. typica Af
Sylvia S. borin Eu *

Timallidae Modulatrix M. stictigula Af
A. fuelleborni Af
A. poliocephala Af
N. fraseri Af
N. poensis Af
N. rufus Af
S. rubetra Eu *
S. torquata Af

Sheppardia S. sharpei Af
Stiphrornis S. erythrothorax Af
Zoothera Z. camaronensis Af

Plasmodium 
sp. SYAT24

Passeriformes Sylviidae Sylvia S. atricapilla Eu

Columbiformes Columbidae Hemiphaga
H. 
novaeseelandiae

Oce

Alaudidae Alauda A. arvensis Eu
Cinclidae Cinclus C. cinclus Eu
Fringillidae Fringilla F. coelebs Eu
Melipgagidae Anthornis A. melanura Oce
Muscicapidae Ficedula F. parva Eu

Cyanistes C. caeruleus Eu
Parus P. major Eu

P. australis Oce
P. macrocephala Oce

Sturnidae Sturnus S. unicolor Eu
Cettia C. cetti Eu 

S. atricapilla Eu
S. borin Eu *
S. communis Eu *

S. malanocephala Eu

Erythacus E. rubecula Eu *
Saxicola S. maura As

T. merula
Af, As, Eu, 
Oce

T. migratorius N Am
T. pelios Af
T. philomelos Eu
T. viscivorus Af

Zosteropidae Zosterops Z. lateralis Oce
Psittaciformes Psittacidae Melopsittacus M. undulatus Oce

Sylviidae
Sylvia

Turdidae
Turdus

Sylviidae

Turdidae

Alethe

Neocossyphus

Saxicola

Plasmodium 
vaughani 
SYAT05 
(Rinshi-11)

Passeriformes

Paridae

Petroicidae Petroica

Pycnonotidae

Andropadus

Bleda

Criniger

Plasmodium 
sp. GRW9

Passeriformes
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Discussion 

The transmission of vector-borne pathogens embraces several complex processes 

where biotic and abiotic factors modulate the evolutionary arms race between hosts, vectors 

and pathogens (Thompson 1998, de Roode et al. 2008). Most studies on the transmission 

of vector-borne pathogens of health concern have been performed under laboratory 

conditions. Although these studies have provided valuable information, they may, 

however, under-represent the diversity of interactions found under natural conditions 

(Anderson & May 1992, Grenfell & Dobson 1995, Beerntsen et al. 2000). Therefore, to 

better understand the actual transmission networks of pathogens, further studies should 

consider the diversity of parasite species/lineages and vector/host species as well as the 

different factors potentially influencing their interactions. During the course of this thesis, 

by combining knowledge and methodologies from different disciplines including ecology, 

virology and epidemiology (e.g. sampling of wild birds and mosquitoes, mosquito rearing 

and maintenance in climatic chambers, taxonomic identification, traditional analyses of 

blood smears, molecular analyses for the detection and identification of parasite lineages, 

experiments under semi-natural and safety laboratory conditions and different statistical 

approaches), I assessed the relative importance of factors such as host, mosquito, and 

pathogen strain/species and levels of parasite load, on the transmission of two important 

vector-borne pathogens, i.e. the avian malaria parasites Plasmodium and the Zika virus. 

Despite its crucial importance for human and wildlife health, basic information 

necessary to quantify the transmission risk of most mosquito-borne pathogens is currently 

lacking. The interactions between mosquitoes and vertebrate hosts modulate the pathogens’ 

transmission success (Ross, 1911; Macdonald, 1955). In this regard, mosquito feeding 

behaviour represents the first step for pathogen transmission, which may be influenced by 

both mosquito (i.e. mosquito species, life cycle, chapter 1) and host-related traits (i.e. 

odour, heat, morphological traits, behaviour, and intensity of infection by vector-borne 

pathogens; Takken & Verhuklst, 2013; Cornet et al. 2013; Yan et al. 2017, 2018). 

However, most studies have focused on the study of the inter-specific variation in host´s 

traits affecting their interactions with vectors (Kilpatrick et al. 2006; Rizzoli et al. 2015), 

while host intra-specific variability has been traditionally neglected. Therefore, identifying 

the potential factors causing differences in the biting patterns of different mosquito-host 
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assemblages, including those occurring at the intra-specific level, would allow us to 

identify the super-spreaders, which is essential to understand the transmission risk of 

mosquito-borne pathogens in the wild. In this thesis, using two mosquito species with 

different feeding patterns and two bird hosts (chapter 1), I found clear differences in the 

biting rate of the two mosquitoes, which could be in turn influenced by hosts’ traits such 

as body mass and gender, although these effects may differ depending on the specific 

mosquito-host assemblage. Therefore, the biting patterns of mosquitoes seem to be far from 

being generalizable. Recent studies have found support for the potential role of some 

factors, such as the avian infection status by mosquito-borne pathogens and the bird 

metabolic rate in the variation in mosquito biting behavior (Yan et al. 2017, 2018). The 

mechanisms underlying this differential susceptibility of hosts to mosquito bites requires 

further attention, but could be mediated by differences in the emision of cues (e.g. olfactory 

cues) between individuals (Takken & Verhuklst 2013; Robinson et al. 2018). In addition, 

the discrepancies found between studies regarding the relative importance of different host 

traits on mosquito’s feeding preferences could be due to methodological differences. While 

some studies identified the origin of the blood meals of mosquitoes trapped under natural 

conditions (Burket-Cadena et al. 2014), others identifed the mosquito feeding preferences 

by comparing the attraction of mosquitoes to different cues (Lalubin et al. 2012). Exposing 

host individually or in pairs, may also partilly affect the conclusions obtained in different 

studies. For example, in contrast to what found in studies that identified the biting 

preferences of mosquitoes by exposing them to both experimentally infected and un-

infected birds (Cornet et al. 2013), I did not find any relationship between host infection 

status by avian malaria and the feeding preference of mosquitoes after exposing them to 

naturally infected single host (chapter 1). Therefore, methodological differences may 

explain the different results of these studies. 

In epidemiological studies, after identifying the potential factors affecting the 

mosquito-host interactions (i.e. biting rates), the next essential step is to understand the 

factors that determine the development of pathogens in mosquitoes (Ross, 1911, 

Macdonald, 1955). Once ingested, the mosquito midgut acts as the first barrier for parasite 

development, representing an important selective force for pathogens (Abraham et al. 

2004). In addition, pathogens must evade the insect’s immune system to complete its 
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development to finally reach the mosquito salivary glands for its successful transmission. 

Under natural conditions, mosquitoes can feed on birds infected by a diversity of 

pathogens, including some that can infect and develop in the insect species, but also other 

pathogens that could not develop in this particular insect species and require a different 

vector species. However, information on the spectrum of the competent vectors for the 

transmission of pathogens affecting wildlife is certainly scarce, as may be the case of insect 

species involved in the transmission of avian malaria parasites and related 

Haemosporidians. The identification of intermediate non-infective stages of the parasite 

(i.e. oocysts) or parasite DNA through molecular techniques have been traditionally used 

to assess the potential mosquito vectors (Njabo et al. 2011, Ferraguti et al. 2013, Pigeault 

et al. 2015). However, although these methods provide valuable information, they are not 

suitable for the correct identification of the actual competent vectors of these pathogens 

(Gamage-Mendis et al. 1993; Valkiūnas et al. 2018), because often DNA correspond to 

forms of the parasite that can not be effectively transmitted. In this thesis, I used a more 

robust method based on the analysis of the mosquito’s saliva to assess the vector 

competence of different mosquito species for different parasite species/lineages. The 

results obtained here support that from two phylogenetically related pathogens (i.e. 

Plasmodium and Haemoproteus) only Plasmodium can develop in Culex pipiens 

mosquitoes feeding on infected birds (chapter 3). In addition, the ability of mosquito-borne 

pathogens to develop in mosquitoes differs between mosquito species (Palinauskas et al. 

2016; Ciota et al. 2017). The capacity of a particular pathogen to develop in a certain 

mosquito species is the result of complex co-evolutionary processes (Leggett et al. 2013). 

Some mosquitoes are completely unable to transmit some pathogens despite being exposed 

to them (e.g. Zika virus and avian Plasmodium by Ae. caspius; chapters 2 and 4) while 

these same pathogens complete its life cycle in other mosquito species (e.g. Zika virus in 

Ae. albopictus and avian Plasmodium in Cx. pipiens; chapters 2 and 4). Differences in the 

vector competence of different mosquitoes for the transmission of each pathogen might be 

affected by a number of physiological and biochemical processes (Abraham et al. 2004), 

including the interactions of pathogens with proteins of the membrane of the mosquito 

midgut epithelium (Ishino et al. 2006, Siden-Kiamos et al. 2006, Povelones et al. 2009). 

The interspecific differences in the vector competence of mosquitoes for the transmission 



GENERAL SECTION: DISCUSSION 
 

 - 186 - 

of Zika virus (chapter 2), avian Plasmodium (chapter 4) and Haemoproteus (chapter 3) 

could be the result of inter-specific variations in the presence/abundance of these proteins 

in the mosquito. Furthermore, differences in the immune responses elicited by mosquitoes 

against pathogens or in the insect microbiota may also affect pathogen development in the 

mosquito (Ramirez et al. 2012, Molina-Cruz et al. 2013), and could partially explain results 

found here (see Annex 2). In fact, previous studies have pointed to the role of Wolbachia 

bacteria in the transmission of Zika virus and avian Plasmodium (Hughes et al. 2011, Zélé 

et al. 2012, Zéle et al. 2014, Dutra et al. 2016, Aliota et al. 2016). Moreover, in this thesis, 

I also found important differences in the ability of pathogen strains/lineages to develop in 

the same mosquito species (i.e. Zika virus strains Puerto Rico and Cambodia by Ae. 

albopictus or avian Plasmodium lineages in Cx. pipiens) (chapters 2 and 4). These patterns 

could be due to genetic differences between strains/lineages, finally affecting the efficacy 

of parasite development in the mosquitoes. It is possible that both Zika virus strains and 

avian Plasmodium lineages differ in the time required to develop and reach the salivary 

glands, with the Zika virus strain Cambodia being faster than the Puerto Rico strain 

(chapter 2) or avian Plasmodium lineages of clade B (morphospecies relictum) being faster 

than those of the clade A (generically related to morphospecies cathemerium) (chapter 4)) 

as found by previous studies (LaPointe et al. 2010, Palinauskas et al. 2016, Ciota et al. 

2017, Ohm et al. 2018). These results highlight the necessity to identify the mechanisms 

determining the capacity of the different pathogens to be successfully transmitted by 

particular mosquito species. 

The parasite load of the vertebrate host may also determine the ability of the 

parasite to develop in the insect vector and, consequently, its transmission success. In 

humans, Plasmodium gametocytaemia (i.e. proportion of red blood cells infected by 

gametocytes, the sexual stage of the parasites ingested by mosquitoes) was found to be 

positively associated with the mosquito infection rate, supporting the association between 

host parasite load and transmission success (Bousema & Drakeley 2011). However, in 

avian Plasmodium, Pigeault et al. (2015) did not find any significant association between 

the host parasitaemia (i.e. proportion of red blood cells infected by the parasite, which is 

strongly correlated with gametocytaemia) and the prevalence of oocysts in the mosquito 

midgut. The results obtained in chapter 4 support the role of host parasite load on the 
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infection prevalence in mosquitoes, but not this effect is only significant when analysing 

the final development of Plasmodium in mosquito saliva (chapter 4). However, even at 

very low parasite loads, undetectable by microscopy, Plasmodium parasites have the ability 

to infect and develop in the mosquitoes (Haji et al. 1996; Churcher et al. 2013; Lin et al. 

2014). Additionally, by experimentally reducing the Plasmodium parasite load in the 

vertebrate host, I observed that this variable influenced the virulence (i.e. the cost of the 

pathogen infections on their host) of the pathogen on the mosquito in terms of survival 

probability (chapter 5). It is generally assumed that vector-borne parasites produce 

minimal costs to their vectors compared to those induced in their vertebrate hosts (Ewald 

& Schubert 1989). However, our results provide evidence of the impact of Plasmodium 

infections on mosquito longevity (chapter 5, but see chapter 4), providing new insights 

into a currently debated question (Vézilier et al. 2012; Pigeault & Villa 2018, annex 2). In 

addition to mosquito linked-factors, including the insect nutritional status and microbiota 

(annex 2), results from this thesis support the importance of using experimental 

manipulations of the avian Plasmodium load to identify the impact of infections in 

mosquitoes, as previously done in vertebrate hosts (Merino et al. 2000; Martínez-de la 

Puente et al. 2010; Asghar et al. 2015). Interestingly, in this thesis I also found support for 

differences according to parasite-vector assemblage on the virulence of Plasmodium 

parasites in mosquitoes (Mackinnon & Read, 2004). The use of particular lineages 

(especially the Plasmodium relictum SGS1 lineage) may partially explain the discrepancies 

in the effects of Plasmodium infection on the survival of mosquitoes found between studies 

(Pigeault et al. 2015, Pigeault & Villa 2018, Lalubin et al. 2014). Although differences in 

the level of virulence between avian Plasmodium lineages on bird hosts have been recorded 

(Lachish et al. 2011), its relevance for mosquito survival is currently unknown. In this 

thesis, I found differences in the level of virulence on mosquitoes of Plasmodium lineages 

corresponding to, at least, two morphospecies (i.e. the Plasmodium relictum lineages SGS1 

and GRW11 and the Plasmodium spp. lineages PADOM01 and COLL1) (chapter 4). 

These results support the importance of considering the parasite identity in further studies 

of the virulence of avian Plasmodium parasites in mosquitoes, which is especially relevant 

due to the diversity of avian Plasmodium-mosquito species assemblages found in the wild. 
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The epidemiology of vector-borne pathogens depends on different factors 

potentially affecting pathogen transmission risk between hosts, including host density 

(Gubbins et al. 2008), host recovery rate (Macdonald, 1955) and density of vectors 

(Hartemink et al. 2009), among others (see Fig. 1 in General Introduction). Nonetheless, 

the transmission risk of a vector-borne pathogen is largely determined by different features 

of the disease system concerned, including vector daily survival rates and the probability 

of a vector of becoming infected after biting an infected individual (Smith et al. 2012). 

However, to the best of our knowledge, no study has addressed the effects of the last two 

factors on the transmission risk of avian Plasmodium before. In this thesis, I provided an 

important contribution to this regard. I found that the transmission risk of avian 

Plasmodium was strongly affected by the mortality imposed by Plasmodium on Cx. pipiens 

as well as by the development of Plasmodium parasites in the mosquito reaching the insect 

salivary glands (chapters 4 and 5). I identified the impact of these two variables on the 

transmission risk of Plasmodium parasites through the estimation of the basic reproductive 

ratio (R0), an epidemiological parameter that reflects the number of secondary infections 

expected from an infectious individual entering into a naïve population (Ross, 1911; 

Macdonald, 1955). These models suggest that parasite load in the vertebrate and parasite 

lineage (or morphospecies) had an important impact of Plasmodium transmission 

dynamics. Nonetheless, other factors, such as the feeding preferences of mosquitoes should 

be also considered in epidemiological studies.  

 In addition to studies conducted under laboratory conditions, it is essential to 

identify how environmental factors may shape pathogen transmission dynamics under 

natural conditions (Ferraguti et al. 2018). I dealt with this issue in the last section of the 

thesis. I performed a study using the Eleonora's falcon as a study model to assess the 

importance of the environmental conditions as well as genetic and immunological factors 

in determining the dynamics of transmission of avian malaria parasites. I found that the 

environmental characteristics of marine habitats (i.e. strong winds, high salinity, and the 

scarcity of fresh water sources in which competent insect vector can develop) may 

determine the unsuccessful transmission of vector-borne pathogens. Using molecular 

screening of blood samples from birds, I found that while adult Eleonora´s falcons were 

infected by avian malaria parasites and related Haemosporidians (chapters 6 and 7) these 
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parasites were absent in nestlings (chapter 6).  In addition, the identity of avian malaria 

parasites lineages found in the only potential insect vector present in the study area, i.e. the 

louse fly Ornithophila gestroi (chapter 8), support the importance of the parasite-vector 

assemblages for the transmission of avian malaria parasites. The positive amplification of 

parasite DNA from the head-thorax of louse flies (chapter 8) could derive from non-

infective forms of the parasites, which are unable to complete their multiplicative cycle 

(Valkiūnas et al. 2005, Seblova et al. 2014, Martínez-de la Puente et al. 2011, Ferraguti et 

al. 2013). In chapter 8, I found that the preys hunted by the Eleonora’s falcons were the 

source of parasites isolated in the head-thorax of louse flies. The infection of adult 

Elenora’s falcons by avian malaria parasites of the genus Haemoproteus and Plasmodium 

likely took place in the wintering areas or during migration, where falcons enter in contact 

with competent vectors for these parasites (i.e. mosquitoes and biting midges). This model 

study species shows a particular trait, the presence of genetic colour polymorphism that 

made it suitable for assessing the importance of host genotype and associated phenotypic 

traits on exposure or resistance to parasites. I found that the adult falcons of dark morph 

had a higher prevalence of avian Plasmodium that pale ones, suggesting a possible unequal 

exposure to mosquito bites (chapter 7). Although in chapter 2 I failed to find the 

intraspecific host-related traits that modulate the biting rate of mosquitoes when studying 

house sparrows and jackdaws, in chapter 7, the colour seems to be a host characteristic 

attractive to insect vectors in the Eleonora falcon, that presents a more extreme variation in 

coloration that the other two avian species. In fact, it has been suggested that darker colours 

are more attractive to mosquitoes than light colours and so, entirely dark plumages could 

increase host–vector contact rates (Allan et al. 1987). However, the different prevalence of 

infection found between alternative colour morphs might be also the result of immune 

related processes associated with the presence of specific allelic variants. In fact, a previous 

study showed that nestling dark Eleonora’s falcons presented poorer innate and acquired 

immune responses than pale morphs (Gangoso et al. 2015).  

Altogether, this thesis identified the factors that determine the successful 

transmission of two important vector-borne pathogens, and the impact of these factors on 

their transmission dynamics. With the use of a multidisciplinary approach that integrates 

knowledge from disciplines such as ornithology, entomology, ecology, virology, genetics, 
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and epidemiology, I contributed to a better understanding of the ecology of vector-borne 

diseases under natural conditions. This thesis also highlighted the need to better 

characterize the successful vector-pathogen and host-pathogen assemblages under natural 

conditions and the mechanisms that determine the vector competence for different 

pathogens. This will allow to reveal the complex transmission network of pathogens and 

the importance of environmental conditions in these continuously co-evolving interactions.  
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Conclusions 

 

1. The magnitude and direction of the effects of the hosts’ body mass, gender and the 

infection status by the mosquito-borne avian Plasmodium on the feeding patterns of 

mosquitoes are far from being generalizable. Only sex was associated with differences 

in mosquito biting rates, and this effect was only detected for Ae. caspius. 	
2. Aedes albopictus is a competent vector for Zika virus and its presence determine the 

risk of Zika virus transmission in Europe. This is especially relevant given the rapid 

expansion of Ae. albopictus in Spain, and the high number of imported Zika virus 

cases in the area. In contrast, the risk of Zika virus transmission by native Ae. caspius 

is considered to be extremely low.	
3. Culex pipiens is a competent vector for avian Plasmodium, but it is unable to transmit 

Haemoproteus parasites. The analysis of saliva samples from potential mosquito 

vectors represents a useful method to determine the transmission of avian Plasmodium 

parasites in studies of vector competence. 

4. There are important inter-specific and intra-specific differences in the competence of 

mosquitoes for the transmission of Plasmodium lineages. While some mosquitoes such 

as Ae. caspius, completely inhibit the parasite development, Cx. pipiens may play an 

important role in the transmission of avian Plasmodium parasites. Vector-parasite 

assemblages may modulate the transmission success of each Plasmodium lineage 

through different processes that affect the required time for parasite development and 

the virulence on the insect vector.	
5. Avian Plasmodium imposes deleterious effects on mosquito survival, although the 

costs imposed may differ depending on the species/lineages of Plasmodium. Pathogen-

induced costs on mosquito survival has a great impact on Plasmodium transmission 

risk. 

6. Different environmental conditions shape the transmission success of vector-borne 

pathogens to vertebrate hosts. In insular ecosystems, the prevailing environmental 

conditions limit the presence of competent vectors and hence, hamper the transmission 

dynamics of Haemosporidian parasites.  
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7. Differences in host genotype and associated phenotypic traits (i.e. melanin-based 

colouration and immune-competence) explain the intra-specific differences in the 

prevalence of avian malaria parasites.  

8. The lack of infection by avian malaria parasites in Eleonora’s falcon nestlings and the 

mismatch between the lineages found in the louse flies Ornithophila gestroi and those 

found in adult Eleonora’s falcons suggest that louse flies are not competent for the 

transmission of avian Haemosporidians infecting a wide taxonomic range of avian 

species.  
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Abstract  

The barcoding of life initiative provides a universal molecular tool to distinguish 

animal species based on the amplification and sequencing of a fragment of the subunit 1 of 

the cytochrome oxidase (COI) gene. Obtaining good quality DNA for barcoding purposes 

is a limiting factor, especially in studies conducted on small-sized samples or those 

requiring the maintenance of the organism as a voucher. In this study, we compared the 

number of positive amplifications and the quality of the sequences obtained using DNA 

extraction methods that also differ in their economic costs and time requirements and we 

applied them for the genetic characterization of louse flies. Four DNA extraction methods 

were studied: chloroform/isoamyl alcohol, HotShot procedure, Qiagen DNeasy® Tissue 

and Blood Kit and DNA Kit Maxwell® 16LEV. All the louse flies were morphologically 

identified as Ornithophila gestroi and a single COI-based haplotype was identified. The 

number of positive amplifications did not differ significantly among DNA extraction 

procedures. However, the quality of the sequences was significantly lower for the case of 

the chloroform/isoamyl alcohol procedure with respect to the rest of methods tested here. 

These results may be useful for the genetic characterization of louse flies, leaving most of 

the remaining insect as a voucher. 
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Introduction 

Taxonomy currently uses multidisciplinary approaches that combine both 

morphological and molecular techniques (Bisby et al. 2002; Besansky et al. 2003; 

Hajibabaei et al. 2007). DNA barcoding provides a useful tool for rapid and accurate 

identification of species applicable to a wide range of organisms from all fungi, plant, and 

animal kingdoms (Hebert et al. 2003a,b; Hajibabaei et al. 2007). In animals, this tool is 

based on the characterization of a 658bp fragment of a standardized region of the 

mitochondrial cytochrome c oxidase subunit I (COI) that shows low intraspecific but large 

interspecific variability (Hebert et al. 2003b; Ratnasingham & Hebert, 2007; but see Meier 

et al. 2006; Shearer & Coffroth, 2008).  

DNA extraction has been recognized as a critical step for DNA barcode 

characterization (Ball & Armstrong, 2008) but also may be important in studies using other 

approaches, including restriction fragment length polymorphism (RFLP) (Möller et al. 

1992), amplified fragment length polymorphism (AFLP) (Reineke et al. 1998), or new 

generation sequencing (NGS) (Pompanon et al. 2012). Current DNA extraction methods 

can be differentiated into two main groups: commercial kits and standard/traditional 

methods. Most of these methods are constrained by factors such as the use of hazardous 

chemicals for human and environmental health (i.e., phenol, chloroform), the need of 

specialized laboratory equipment (automated DNA extraction), high costs (commercial kits 

(Petrigh & Fugassa 2013)), and/or time-consumption (Rohland et al. 2010). The latter may 

become an important factor for studies comprising large sample sizes, where automated 

DNA extraction protocols may significantly reduce manpower requirements (Lee et al. 

2010). Therefore, it is necessary to evaluate the pros and cons of different DNA extraction 

procedures to characterize DNA barcodes. Here, we compared the eficacy of four DNA 

extraction protocols for the genetic characterization of the barcoding region of 

hematophagous louse flies (Diptera: Hippoboscidae). In spite of the importance of louse 

flies as blood feeders and potential vectors of different blood parasites (Valkiunas, 2005, 

Lehane, 2008), precise information regarding the barcode characterization of this insect 

group is absent for the majority of the species. First, we identified the louse fly species on 

the basis of distinctive morphological features. Secondly, we used a small leg fragment of 

these louse flies that were preserved in ethanol during a relatively long period (over six 
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years) to compare the eficacy of four DNA extraction protocols: two standard protocols, 1) 

based on the use of chloroform/isoamyl alcohol, and 2) the HotShot (Truett et al. 2000), 

and two commercial kits, 3) a Qiagen kit, and 4) a semiautomatic Maxwell Kit.  

 

Material and methods  

We collected 32 louse flies during August and September, 2007 on the islet of 

Alegranza (10.5 km2, 289 m a.s.l.) in the Canary Islands (27o 37’ N, 13o 20’ W), Spain. 

Louse flies were collected from 25-day-old Eleonora’s falcon (Falco eleonorae) nestlings. 

Immediately after collection, each individual louse fly was transferred to a 2 ml Eppendorf 

tube with ethanol and stored at room temperature until molecular analyses in November, 

2013.  

 

Morphological identification of louse flies  

Louse flies were identified to species level using available taxonomic keys 

(Hutson, 1984; Muñoz et al. 1993). Nineteen morphological characters were measured in 

16 louse flies using a stereo microscope connected to a camera and compared with those 

previously reported (Muñoz et al. 1993).  

 

DNA extraction  

We separated the tibia and tarsomere from the middle and hind legs of each louse 

fly in individual Petri dishes using sterile blades, obtaining a tissue fragment weighing 

under 0.1 mg. Subsequently, each leg (including tibia and tarsomere) of each louse fly was 

assigned to one of each four DNA extraction treatments. As a result, 32 segments (eight 

from the right middle legs, eight from the left middle legs, eight from the right hind legs, 

and eight from the left hind legs) were assigned for each of the four DNA extraction 

treatments. According to the chloroform/isoamyl alcohol procedure (Gemmell & Akiyama, 

1996), with minor modifications, each sample was introduced into individual tubes 

containing 300 µl of lysis buffer (100 mM NaCl, 50 mM Tris-HCl pH 8, 50 mM EDTA pH 

8, 1% SDS), 5 µl of proteinase K (20 mg/ml), and 10 µl of DDT (1 M) and then kept on a 

shaker incubating at 55° C overnight. The following day, an equal volume (320 µl) of 5 M 

LiCl was added to each tube and then each sample was mixed by inversion for 1 min after 
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adding 630 µl chloroform/isoamyl alcohol (24:1). After shaking the tubes, the samples were 

centrifuged for 15 min at 13,000 rpm and the supernatant (500 µl) was carefully removed 

and transferred into a new tube, where 1 ml of absolute ethanol was added to precipitate 

the DNA overnight at -18° C. The next day, the DNA was recovered by centrifugation at 

13,000 rpm for 15 min. The pellet was dried and washed with 70% ethanol, and 

resuspended in 20 µl of milliQ water. According to the HotShot procedure (Truett et al. 

2000), each sample was introduced into individual tubes containing 50 µl of lysis solution 

(25 mM NaOH, 0.2 mM EDTA, pH 8) and then incubated at 95o C for 30 min. After 

incubation, the solution was put on ice for 5 min and 50 µl of neutralization solution (40 

mM Tris-HCl) was added to each sample. Manufacturer specicfiations were used for both 

commercial kits. These methods allow DNA extraction without organic extractions or 

ethanol precipitations. Qiagen kit method (DNeasy® Kit Tissue and Blood (Qiagen, 

Hilden, Germany)), involves enzymatic lysis using proteinase K followed by column 

purification of DNA using silica-gel-matrix. The semi-automatic Maxwell kit method 

(Maxwell®16 LEV system Research (Promega, Madison, WI)) involves an enzymatic lysis 

using proteinase K followed by a purification of DNA using magnetic beads that bind to 

DNA. The complete process was done in a robot for the simultaneous extraction of 16 

samples. For Qiagen and Maxwell kits, DNA samples were diluted in 20µl milliQ water.  

The average laboratory time requirement for each DNA extraction method was 

calculated based on our own measurements. The approximate cost per sample of each 

procedure was provided by the distributor in Spain (Table 1). Prices could vary depending 

on the country.  

 

Table 1. Estimation of economic costs (€) of components used in each DNA extraction 

method and time devoted for the extraction of DNA from 16 samples. Laboratory 

equipment is not included.  

 
 

Extraction method Ease of operation Cost (per sample) Time
DNeasy® Kit Tissue and Blood (Qiagen) Manual € 5.71 5 Hours
Maxwell®16 LEV system Research (Promega) Semi-automatic € 3.79 1.25 Hours
HotShot Manual < € 1.00 1.5 Hours
Chloroform/isoamyl alcohol Manual < € 2.50 6 Hours in 3 days
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DNA amplification and sequencing  

The primer pair LCO1490 (5’- GGT CAA CAA ATC ATA AAG ATA TTG G -

3’) and HCO2198 (5’- TAA CTT CAG GGT GAC CAA AAA ATC A -3’) (Folmer et al. 

1994) was used to amplify a 658 bp fragment of the COI gene. PCRs were performed with 

a final volume of 50 µl containing 0.3 mM each deoxynucleoside triphosphate (dNTP), 0.6 

µM of each primer, 2.5 mM MgCl2, 1x PCR bu er (Applied Biosystem, Foster City, CA), 

0.6 units of Taq DNA polymerase, and 3 µl of DNA. Following Whiteman et al. (2006), 

PCRs conditions were: an initial denaturation for 4 min (94° C), followed by 35 cycles of 

94° C for 1 min. 40 °C for 1 min, and 70° C for 1 min with a final extension at 72° C for 7 

min. The presence of amplicons was verified on 1.8% agarose gels.  

Sequencing reactions were performed according to the BigDye technology 

(Applied Biosystems). Positive PCR fragments were resolved in both directions through a 

3130xl ABI automated sequencer (Applied Biosystems) using the same primers employed 

in PCR reactions. Sequences were edited using the SequencherTM v4.9 software (Gene 

Codes Corp., ©1991-2009, Ann Arbor, MI 48108). Subsequently, Sequencher software 

was used to quantify the quality value of each sequence obtained by each DNA extraction 

method after removal of the primer. The quality was measured as the percentage of bases 

in each sequence with quality scores >20 (see Fazekas et al. 2010).  

 

Statistical analyses  

Statistical analyses were conducted using General Linear Mixed Models (GLMMs) 

in SAS (GLIMMIX procedure, SAS Institute Inc., Cary, NC), including a random factor to 

account for non-independence of samples coming from the same louse fly. First, we fitted 

a GLMM with binomial error and logistic link function for success (1) or failure (0) of 

positive amplification of the COI gene as the response variable and extraction method as 

explanatory factor. Secondly, we fitted a GLMM with normal error and identity link 

function for the quality of the sequence obtained as the response variable. The DNA 

extraction method, the sequence direction (forward or reverse), and their interaction were 

included as fixed factors. In both analyses, louse fly identity was included as a random 

factor.  
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Results 

All louse flies were identified as Ornithophila gestroi on the basis of morphological 

characters, in particular the patterns of wing venation. In addition, most morphometric 

measures of louse flies were within the range previously reported for this species (Table 

2). A single genetic haplotype of the COI gene was isolated from the 32 louse flies 

[GenBank accession number: KJ174684].  Tree O. gestroi were deposited in the collection 

of the Museo Nacional de Ciencias Naturales (Madrid, Spain) (accession numbers: 

MNCN/ADN: 65231-65233). 

The DNA extraction method used did not affect significantly the number of 

positive amplifications (F3, 93 = 0.43; P = 0.73). Amplification was successful for all the 

samples (n=32) extracted with the Qiagen kit, whereas 29 were successfully amplified 

using the HotShot procedure and Maxwell kit extraction method and only 26 when using 

the chloroform/isoamyl alcohol procedure. However, the quality of the sequence obtained 

was strongly affected by the DNA extraction method (F3, 194 = 8.69; P < 0.0001), while 

both the sequence direction (F1, 194 = 0.85; P = 0.36) and the interaction between the 

method and the sequence direction (F3, 194 = 0.44; P = 0.72) had no effect on the sequence 

quality. The sequence quality obtained when using DNA extracted with the Qiagen kit, the 

Maxwell kit, and the HotShot procedure was similar (post-hoc tests, P>0.61).  The quality 

of the sequences obtained using the chloroform/isoamyl alcohol procedure was 

significantly lower than that obtained using the other three methods. (post-hoc tests, 

P<0.0001; Fig. 1). 
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Table 2. Measurements (mm) of different morphological characters of the 16 Ornithophila 

gestroi (W= width; L= length). 

 
 

Discussion 

Genetic characterization of louse flies  

Ornithophila gestroi, the species genetically characterized here for the first time, 

parasitizes different raptor species belonging to the genus Falco, that includes species like 

the Common Kestrel (Falco tinnunculus), the Lesser Kestrel (Falco naumanni), and the 

Eleonora’s Falcon (Gil Collado, 1932; Walter 1979,;Beaucournu et al. 1985; Gangoso et 

al. 2010), thus representing an important piece for studies on host-pathogen interactions on 

this avian group. Our results showed the presence of a single genetic haplotype in the louse 

fly population studied in the Canary Islands. This pattern of low variability at this gene had 

been previously reported in the louse fly Trichobius major (Wilson et al. 2007). We cannot 

Structure Mean (SD) Range 
Body length 7.94 (1.02) 6.69-9.80
Wing length 6.62 (0.43) 5.76-7.13
Antennae (W) 0.29 (0.03) 0.26-0.34
Lunula (L) 0.32 (0.08) 0.47-0.23
Lunula (W) 0.68 (0.07) 0.54-0.79
Internal orbital width 
(medium vertex level) 0.19 (0.02) 0.15-0.20

Eye (L) 0.88 (0.08) 0.73-0.97
Eye (W) 0.51 (0.07) 0.38-0.61
Head (L) 1.46 (0.29) 1.34-1.90
Head (W) 2.03 (0.09) 1.88-2.17
Postvertex (L) 0.31 (0.05) 0.23-0.40
Postvertex (W) 0.88 (0.09) 0.77-1.05
Mediovertex (L) 0.52 (0.1) 0.36-0.62
Mediovertex (W) 0.55 (0.05) 0.48-0.63
Prescutum (L) 0.95 (0.11) 0.79-1.12
Scutellum (L) 0.63 (0.07) 0.51-0.72
Scutellum (W) 1.38 (0.18) 1.07-167
Palpi lenght 0.32 (0.1) 0.16-0.43
Minimal distance 
between ocular 
margins

0.94 (0.06) 0.84-1.01
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discriminate whether this lack of variation is due to a generally low divergence at the COI 

gene, the fact that samples were obtained from a single island, or to demographic 

constraints associated with the geographic isolation of the studied population (e.g., 

Dasmahapatra & Mallet, 2006). Further studies on the genetic diversity of this species, 

considering samples from different localities, would be necessary to clarify this issue.  

 

Efficacy of DNA extraction methods  

By comparing four different DNA extraction procedures, we found that there were 

no significant differences in the number of amplifications obtained. However, the quality 

of the sequences was strongly affected by the method used, with the chloroform/isoamyl 

alcohol procedure resulting in significantly lower sequence qualities than the other three 

methods. By using the Qiagen kit, we successfully amplified the 658 bp fragments of all 

louse flies with high sequence quality. These results are in accordance with previous studies 

comparing DNA extraction procedures from samples with poorly preserved or degraded 

DNA (Yang et al. 1996; Martínez-de la Puente et al. 2013). These results might be 

especially useful for studies on valuable specimens held in museums, as only a small 

fragment of tissue was necessary for barcoding while retaining the rest of the specimen as 

a voucher. However, this procedure is the most expensive of the four methods compared 

here, which probably may hinder its widespread use (Table 1). To reduce the overall costs 

of DNA extractions, cleaning methods could be employed to remove any remaining DNA 

from silica-gel-columns used (Siddappa et al. 2007), although this could result in traces of 

contamination (Fogel & McNally, 2000).  
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Fig 1. Percentage (± SE) of sequence quality from DNA samples obtained with four 

different extraction methods (Q= DNeasy® Kit Tissue and Blood (Qiagen); M= 

Maxwell®16 LEV system Research (Promega); HS= HotShot; Cl= Chloroform/isoamyl 

alcohol). Dissimilar letters over bars represent significant differences in sequence quality. 

 

Furthermore, we found that the semi-automatic Maxwell kit presented a similar 

efficacy than the Qiagen kit in terms of the sequence quality, although the amplification 

success was slightly, but not significantly, lower. These results support those previously 

obtained by Khokhar et al. (2012), who reported that the Maxwell kit is suitable for the 

extraction of small-size DNA fragments and has the advantage that it requires a limited 

sample handling (Silva et al. 2013). The Hotshot procedure presented similar results to 

those obtained with the Maxwell kit. Previous studies have already demonstrated the utility 

of the Hotshot procedure for DNA barcoding using complete individuals (Montero-Pau et 

al. 2008; Lassaad et al. 2013). Our results confirmed that the Hotshot procedure yields 

enough DNA of high quality for barcoding even when using very small quantities of tissue, 

consequently retaining most of the individual as a voucher.  



  ANNEX 1 
 

 - 221 - 

Finally, we obtained the lowest efficacy, in terms of sequence quality but not in 

terms of amplification success, using the chloroform/isoamyl alcohol method. This result 

was unexpected because this method is considered one of the best to obtain DNA of high 

quality and yield and has been used in studies on barcoding characterization of insects 

(Gilbert et al. 2007). However, the lower performance could be due to the handling of the 

extremely small samples in our study, which may result in DNA loss and degradation 

through the DNA extraction process that involves several steps transferring the supernatant 

from one tube to another. In this respect, this method may be considered useful in those 

studies requiring organism identification to the species level, where it is not necessary to 

obtain a complete barcoding sequence (Vesterinen et al. 2013).  

In conclusion, the commercial Qiagen kit was the most suitable method of DNA 

extraction of the four tested here. Additionally, the Maxwell method (due to its reduced 

manpower requirements) and the Hotshot procedure (due to their lower cost) provided 

similar performance but at significantly lower economic costs. Thee usefulness of the 

chloroform/isoamyl alcohol method for the characterization of louse fly barcodes is poorly 

supported by our results.  

 

Acknowledgments  

We thank J.J. Moreno for his help during eldwork and also I. Martín and F.J. 

Oficialdegui for their help with molecular analysis and graph design, respectively. 

Members of the bank of tissues and DNA of the Museo Nacional de Ciencias Naturales de 

Madrid (MNCN-CSIC) also helped in the deposition of samples.  

 

References 

Ball, S. L., & Armstrong, K. F. (2008). Rapid, one-step DNA extraction for insect pest 
identification by using DNA barcodes. Journal of economic entomology, 101(2), 523-
532.  

Beaucournu, J. C., Beaucournu-Saguez, F., & Guiguen, C. (1985). Nouvelles données sur 
les diptères pupipares (Hippoboscidae et Streblidae) de la sous-région 
mediterranéenne occidentale. Annales de parasitologie humaine et comparée, 60(3), 
311-327. 



ANNEX 

 - 222 - 

Besansky, N. J., Severson, D. W., & Ferdig, M. T. (2003). DNA barcoding of parasites and 
invertebrate disease vectors: what you don't know can hurt you. Trends in 
parasitology, 19(12), 545-546.  

Bisby, F. A., Shimura, J., Ruggiero, M., Edwards, J., & Haeuser, C. (2002). Taxonomy, at 
the click of a mouse. Nature, 418(6896), 367. 

Dasmahapatra, K. K., & Mallet, J. (2006). DNA barcodes: recent successes and future 
prospects. Heredity, 97(4), 254-255. 

Fazekas, A. J., Steeves, R., & Newmaster, S. G. (2010). Improving sequencing quality from 
PCR products containing long mononucleotide repeats. Biotechniques, 48(4), 277-
285.  

Fogel, B. L., & McNally, M. T. (2000). Trace contamination following reuse of anion-
exchange DNA purification resins. Biotechniques, 28(2), 299-302. 

Folmer, O., M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek. (1994). DNA primers for 
amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan 
invertebrates. Molecular marine biology and biotechnology, 3(5), 294-299.  

Gangoso, L., Grande, J. M., Llorente, F., Jiménez-Clavero, M. Á., Pérez, J. M., & 
Figuerola, J. (2010). Prevalence of neutralizing antibodies to West Nile virus in 
Eleonora's Falcons in the Canary Islands. Journal of wildlife diseases, 46(4), 1321-
1324.  

Gemmell, N. J., & Akiyama, S. (1996). An efficient method for the extraction of DNA 
from vertebrate tissues. Trends in genetics, 12(9), 338-339. 

Gilbert, M. T. P., Moore, W., Melchior, L., & Worobey, M. (2007). DNA extraction from 
dry museum beetles without conferring external morphological damage. PLoS one, 
2(3), e272.  

Gil Collado, J. (1932). Notas sobre pupiparos de España y Marruecos del museo de Madrid 
(Diptera: Pupipara). Eos, 8, 29-41. 

Hajibabaei, M., Singer, G. A., Hebert, P. D., & Hickey, D. A. (2007). DNA barcoding: how 
it complements taxonomy, molecular phylogenetics and population genetics. Trends 
in genetics, 23(4), 167-172. 

Hebert, P. D., Cywinska, A., & Ball, S. L. (2003a). Biological identifications through DNA 
barcodes. Proceedings of the Royal society of London B: biological sciences, 
270(1512), 313-321. 

Hebert, P. D., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life: 
cytochrome c oxidase subunit 1 divergences among closely related species. 
Proceedings of the Royal society of London B: biological sciences, 270(Suppl 1), S96-
S99.  

Hutson, A. M. (1984). Keds, flat-flies and bat-flies. Diptera, Hippoboscidae and 
Nycteribiidae. Handbooks for the Identification of British Insects, Royal 
Entomological Society, UK.  



  ANNEX 1 
 

 - 223 - 

Khokhar, S. K., Mitui, M., Leos, N. K., Rogers, B. B., & Park, J. Y. (2012). Evaluation of 
Maxwell® 16 for automated DNA extraction from whole blood and formalin-fixed 
paraffin embedded (FFPE) tissue. Clinical chemistry and laboratory medicine 
(CCLM), 50(2), 267-272.  

Lassaad, M., Martínez-Torres, D., & Monia, B. H. K. (2013). Two mitochondrial 
haplotypes in Pterochloroides persicae (Hemiptera: Aphididae: Lachninae) associated 
with different feeding sites. Insect science, 20(5), 637-642. 

Lee, J. H., Park, Y., Choi, J. R., Lee, E. K., & Kim, H. S. (2010). Comparisons of three 
automated systems for genomic DNA extraction in a clinical diagnostic laboratory. 
Yonsei medical journal, 51(1), 104-110.  

Lehane, M. J. (2005). The biology of blood-sucking in insects. Cambridge University Press.  
Martínez-de la Puente, J., Ruiz, S., Soriguer, R., & Figuerola, J. (2013). Effect of blood 

meal digestion and DNA extraction protocol on the success of blood meal source 
determination in the malaria vector Anopheles atroparvus. Malaria journal, 12(1), 109. 

Meier, R., Shiyang, K., Vaidya, G., & Ng, P. K. (2006). DNA barcoding and taxonomy in 
Diptera: a tale of high intraspecific variability and low identification success. 
Systematic biology, 55(5), 715-728. 

Möller, E. M., Bahnweg, G., Sandermann, H., & Geiger, H. H. (1992). A simple and 
efficient protocol for isolation of high molecular weight DNA from filamentous fungi, 
fruit bodies, and infected plant tissues. Nucleic acids research, 20(22), 6115.  

Montero-Pau, J., Gómez, A., & Muñoz, J. (2008). Application of an inexpensive and high-
throughput genomic DNA extraction method for the molecular ecology of 
zooplanktonic diapausing eggs. Limnology and oceanography: methods, 6(6), 218-
222. 

Muñoz, E., Pomarol, M., Castella, J., Gutierrez, J. F., & Galmes, M. (1993). Ornithophila 
gestroi (Rondani, 1878)(Diptera: Hippoboscidae) on Falco tinnunculus and Falco 
naumanni in Monegros (Aragon, Spain). Research and reviews in parasitology, 53(1-
2), 71-72. 

Petrigh, R. S., & Fugassa, M. H. (2013). DNA extraction and a cost-effective detection 
method for Echinococcus granulosus protoscoleces. Veterinary parasitology, 198(3-
4), 410-413.  

Pompanon, F., Deagle, B. E., Symondson, W. O., Brown, D. S., Jarman, S. N., & Taberlet, 
P. (2012). Who is eating what: diet assessment using next generation sequencing. 
Molecular ecology, 21(8), 1931-1950.  

Ratnasingham, S., & Hebert, P. D. (2007). BOLD: The Barcode of Life Data System 
(http://www. barcodinglife. org). Molecular ecology resources, 7(3), 355-364. 

Reineke, A., Karlovsky, P., & Zebitz, C. P. W. (1998). Preparation and purification of DNA 
from insects for AFLP analysis. Insect molecular biology, 7(1), 95-99. 



ANNEX 

 - 224 - 

Rohland, N., Siedel, H., & Hofreiter, M. (2010). A rapid column-based ancient DNA 
extraction method for increased sample throughput. Molecular ecology resources, 
10(4), 677-683.  

Shearer, T. L., & Coffroth, M. A. (2008). DNA BARCODING: Barcoding corals: limited 
by interspecific divergence, not intraspecific variation. Molecular ecology resources, 
8(2), 247-255.  

Siddappa, N. B., Avinash, A., Venkatramanan, M., & Ranga, U. (2007). Regeneration of 
commercial nucleic acid extraction columns without the risk of carryover 
contamination. BioTechniques, 42(2), 186.  

Silva, D. A., Cavalcanti, P., Freitas, H., & de Carvalho, E. F. (2013). High quality DNA 
from human remains obtained by using the Maxwell® 16 automated methodology. 
Forensic science international: genetics supplement series, 4(1), e248-e249.  

Truett, G. E., Heeger, P., Mynatt, R. L., Truett, A. A., Walker, J. A., & Warman, M. L. 
(2000). Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide 
and tris (HotSHOT). Biotechniques, 29(1), 52-54. 

Valkiūnas, G. (2005). Avian Malaria Parasites and Other Haemosporidia. Boca Raton: 
CRC Press.  

Vesterinen, E. J., Lilley, T., Laine, V. N., & Wahlberg, N. (2013). Next generation 
sequencing of fecal DNA reveals the dietary diversity of the widespread insectivorous 
predator Daubenton’s bat (Myotis daubentonii) in Southwestern Finland. PLoS one, 
8(11), e82168.  

Walter, H. (1979). Eleonora’s Falcon: Adaptations to Prey and Habitat in a Social Raptor. 
Chicago: University of Chicago Press.  

Whiteman, N. K., Sánchez, P., Merkel, J., Klompen, H., & Parker, P. G. (2006). Cryptic 
host specificity of an avian skin mite (Epidermoptidae) vectored by louseflies 
(Hippoboscidae) associated with two endemic Galapagos bird species. Journal of 
parasitology, 92(6), 1218-1228.  

Wilson, G. M. (2015, February). Lack of population genetic structure in the bat fly 
(Trichobius major) in Kansas, Oklahoma, and Texas based on DNA sequence data for 
the cytochrome oxidase I (COI) and NADH dehydrogenase 4 (ND4) genes. In 
Proceedings of the Oklahoma academy of science (Vol. 87, pp. 31-36).  

Yang, H., Golenberg, E. M., & Shoshani, J. (1996). Phylogenetic resolution within the 
Elephantidae using fossil DNA sequence from the American mastodon (Mammut 
americanum) as an outgroup. Proceedings of the national academy of sciences, 93(3), 
1190-1194. 



 



 



ANNEX 

 - 228 - 

Abstract 

Avian Plasmodium and malaria-like parasites of the genus Haemoproteus, are widespread 

vector-borne parasites commonly found infecting birds. These parasites impose deleterious 

effects on their vertebrate hosts compromising their survival. While the interaction between 

these parasites and their vertebrate hosts has received much attention, the study of those 

factors determining the consequences of parasite infections in the insect vectors has been 

traditionally neglected. In recent years, factors including the host’s parasite load and the 

mosquito’s nutritional status and microbiota have been recorded to play a key role in 

modulating the impact of parasites on mosquito longevity. Here, we provide a critical 

review of these evidences to identify gaps in current knowledge and propose future research 

directions. Further experimental studies are needed to reveal the impact of avian malaria 

parasites in mosquitoes using realistic conditions found in wild parasite-mosquito 

assemblages. 
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Introduction 

Avian haemosporidians (phylum: Apicomplexa) are blood parasites infecting birds 

that are transmitted by insect vectors (Valkiūnas, 2005). Mosquitoes, especially those of 

the genus Culex, are the main vectors of the avian malaria parasites of the genus 

Plasmodium, although other genera including Anopheles, Aedes and Lutzia may also be 

involved in their transmission (Santiago-Alarcon et al. 2012). In addition to Plasmodium 

parasites, birds are commonly infected by the related malaria-like parasite Haemoproteus. 

Both parasite genera have a similar life cycle but differ in the vectors involved in their 

transmission, where sexual reproduction of the parasite occurs. Contrary to Plasmodium 

parasites, Haemoproteus of the subgenus Parahaemoproteus are transmitted by biting 

midges Culicoides (Ceratopogoniidae) while louse flies act as vectors for the subgenus 

Haemoproteus. After an insect vector bites an infected host, parasite gametocytes develop 

into gametes in the insect midgut and fuse as zygotes to form ookinetes. Subsequently, 

parasites penetrate into the insect midgut wall where ookinetes develop into oocytes to form 

sporozoites, the infective form of the parasites. Parasite sporozoites invade the salivary 

gland of the insect vector where they accumulate until their inoculation to a new host in the 

following blood meal. Parasite development in the insect vectors usually takes from 8 to 

22 days, although Haemoproteus sporozoites have been found in the salivary glands of 

Culicoides at 5 dpe (Valkiūnas et al. 2002, Valkiūnas, 2005).  

 By definition, parasites reduce the fitness of their hosts (Poulin, 2011). However, 

evolutionary theory predicts differential parasite virulence (i.e. the damage done to the 

host) according to the mode of parasite transmission (Ewald 2004). In vector-borne 

parasites, virulence may be different in the vertebrate host and the insect vector (Ferguson 

et al. 2003). In fact, vectors may also suffer an important cost of infection in terms of 

fecundity and survival (Ferguson & Read, 2002), although the impact of avian malaria and 

malaria-like parasites in the longevity of their insect vectors remains an open question.  

 

Current knowledge 

 During the last few years, different studies have provided evidence of the costs of 

avian malaria and malaria-like infections in their insect vectors, including studies on the 

interaction between Plasmodium and mosquitoes (Zélé et al. 2012; Lalubin et al. 2014) as 
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well as Haemoproteus infecting biting midges (Liutkevičius 2000; Valkiunas & Iezhova 

2004; Bukauskaitė et al. 2016) and louse flies (Waite et al. 2012). However, contradictory 

results have been frequently reported, with non-significant effects of parasite infections on 

mosquito longevity (Delhaye et al. 2016; Pigeault & Villa 2018) or, even, infected 

mosquitoes showing an increased lifespan when compared to control-uninfected ones 

(Vézilier et al. 2012). Among other factors, discrepancies between studies could be due to 

three major factors that have been identified in these studies, including the parasite load of 

the donor avian host, the vector’s nutritional status and the gut microbiota of the insect 

vectors.    

 

Parasite load in the vertebrate host 

 Gametocytaemia in birds, defined as the proportion of red blood cells (RBC) 

infected by gametocytes, is considered a major determinant of the success of malaria 

parasite development in the vector (Cornet et al. 2014). However, an elevated 

gametocitemia (or parasitaemia) may also increase vector mortality (Ferguson & Read, 

2002; Lalubin et al. 2014), which becomes evident soon after exposure to infection (i.e. 

days) (Liutkevičius, 2000). In extreme cases, where insect vectors feed on blood from 

highly infected birds (5.2% gametocytaemia), mortality was 98% only twelve hours after 

parasite ingestion (Bukauskaitė et al. 2016). The damage produced by parasites in the insect 

midgut and the immunological costly responses against infections, may explain the high 

mortality rate found in vectors after feeding on highly parasitized birds (Han et al. 2000; 

Dimopoulos et al. 2001) These factors may also explain the pathogenic effect of avian 

malaria parasites in non-competent insects, as may be the case of Ochlerotatus cantans 

mosquitoes fed on birds with heavy infections by Haemoproteus (Vakiūnas et al. 2014).  

 

The vector’s nutritional status 

 Host immune responses to fight off parasite infections are energetically costly with 

nutrition, among other factors, representing a main factor modulating these responses 

(Sheldon & Verhulst, 1996). Much research has been done in order to explain how the 

host’s nutritional status affects parasitic infections; however, the role of nutritional stress 

modulating the cost of avian malaria infections in mosquitoes has been poorly studied. In 
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their seminar paper, Ferguson and Read, (2002) proposed the potential importance of 

controlling diet on studies on mosquito survival because infected mosquitoes use eight 

times as much glucose than un-infected mosquitoes (Hurd et al. 1995). However, the actual 

relevance of resource consumption on the mosquito’s survival has not traditionally been 

quantified. The best evidence for the role of the mosquito’s nutritional resources on the 

impact of avian malaria on mosquito longevity derived from the study by Lalubin et al. 

(2014). Authors from this study assigned mosquitoes to two different treatments, either fed 

with a 2% or a 6% glucose solution diet. A higher mortality rate of naturally Plasmodium-

infected mosquitoes was only found for mosquitoes feeding on the low-quality diet. Under 

laboratory conditions, mosquitoes are supplied with carbohydrates from different sources 

such as fruit juices, honey or 3% to 20% sucrose solutions (Imam et al. 2014). Among 

these, in studies on the effects of avian malaria parasites on mosquitoes, insects are usually 

supplemented ad libitum with 10% glucose solutions (e.g. Zélé et al. 2012), which could 

partially obscure the deleterious effects of Plasmodium infections on mosquito survival 

(Ferguson et al. 2003).  

Under natural conditions, mosquitoes from areas with absence of primary natural 

sugar sources showed reduced longevity when compared with those from an area where 

flowering Acacia raddiana trees were present (Gu et al. 2011). However, under laboratory 

conditions, mosquitoes fed with 6% sucrose solution showed a lower survival rate than 

mosquitoes that were fed on plants (Manda et al. 2007). In this respect, current studies on 

the impact of avian malaria parasites on mosquito longevity are likely obscuring the 

deleterious effects of Plasmodium infections as the impact of infections may be palliated 

by the beneficial experimental conditions. Thus, although the environmental availability of 

nutrients may differ between wild areas, future studies should consider the natural range of 

resources to understand the real impact of these parasites on vector survival.  

 

Insect microbiota  

 Mosquito microbiota modulates the development of human malaria parasites in the 

vectors (Dong et al. 2009) through mechanisms that include direct anti-parasite effects of 

microbiota on the parasites development (Dong et al. 2009) or by stimulating the insect’s 

immune system (Kambris et al. 2010). Furthermore, mosquito microbiota may affect the 
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impact of parasite infections on the mosquito’s survival. In their study, Gendrin et al. 

(2015) showed that antibiotic treated Anopheles gambiae were more susceptible and had 

reduced survival due to Plasmodium infections, suggesting that this effect was due to the 

removal of microbiota. In a similar way, endosymbiotic bacteria are expected to modulate 

the interactions between avian malaria parasites and mosquitoes under natural conditions. 

In particular, Wolbachia bacteria, which is highly prevalent in the gut microbiota 

community in the avian malaria vector Cx. pipiens (80%, n=15, Muturi et al. 2017), may 

affect the development of avian Plasmodium (Zélé et al. 2014) and the pathogenic effect 

of parasites on vector longevity (Zélé et al. 2012). Support for this possibility derived from 

Zélé et al. (2012) who found that Wolbachia bacteria protect mosquitoes from 

Plasmodium-induced mortality in a study on Cx. pipiens quinquefasciatus with different 

strains of Wolbachia and Wolbachia-free mosquitoes. However, the mechanisms 

explaining the interference mediated by Wolbachia on avian malaria development are still 

uncertain, although an upregulation of the mosquito’s immune effect or genes associated 

to the presence of the Wolbachia may modulate the mosquito’s response against parasite 

infections (Moreira et al. 2009).  

Further studies on the role of the mosquito’s microbiota on parasite development 

and their impact on mosquitoes’ survival are necessary, specially focusing on those factors 

potentially affecting Wolbachia-mosquito-parasite assemblages. Under natural conditions, 

the mosquito’s microbiota may largely differ between insect species and geographic 

distribution (Muturi et al. 2017; Thongsripong, 2018). In addition, a recent study on the 

avian malaria-like parasite Leucocytozoon and their blackfly vectors, revealed that 

Wolbachia infections may show positive, negative or, even, neutral associations with 

parasite infections depending on the vector species studied (Woodford et al 2018).  

 

Concluding remarks and future directions 

 Avian Plasmodium and Haemoproteus impact the longevity of their vectors, as 

supported by studies on mosquitoes, biting midges and louse flies (Table 1). However, 

important discrepancies between studies have been reported. Here, we report evidence for 

the role of three major factors determining the impact of parasites on insect vectors, 
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including the parasite load in the vertebrate host and mosquito-related factors (i.e. the 

nutritional stress, gut microbiota).  

 

Table 1. A selection of studies published on the effects of avian malaria and the malaria-
like parasites Haemoproteus on vector longevity. Studies are sorted according to the 
parasite-vector studied and chronologically. NS: non-significant effects of Plasmodium 
infection, - : reduce lifespan of insects; + : increase lifespan of insect. 

 
* The negative effects on mosquito survival were especially evident for the case of 
Wolbachia-free mosquitoes. ** The significant negative effect of parasite infection 
on mosquito longevity was found only on insect supplemented with a low (2%) 
sugar solution. *** Mosquito longevity was positively associated with bird 
parasitaemia, although did not with the bird Plasmodium infection status. 
 

A number of different avian Plasmodium lineages are commonly found harboured 

by wild mosquitoes (Ferraguti et al. 2013). However, most studies conducted until now are 

restricted to a handful of parasite-vector assemblages, most of them focus on the 

extensively studied interaction between Culex pipiens and the Plasmodium relictum lineage 

SGS1, thus under-representing the diversity of interactions found under natural conditions. 

Vectors Parasite (lineage) Effect Ref

Cx. pipiens P. relictum  (SGS1) + Vézilier et al. (2012)
Cx. pipiens quinquefasciatus P. relictum  (SGS1) - * Zélé et al. (2012)
Cx. pipiens Plasmodium  spp. - ** Lalubin et al. (2014) 
Cx. pipiens P. relictum  (SGS1) +*** Pigeault et al. (2015)
Cx. pipiens P. relictum  (SGS1) NS Delhaye et al. (2016)
Cx. pipiens P. relictum  (SGS1) NS Pigeault and Villa (2018)

Haemoproteus dolniki
H. balmorali
H. tartakovskyi
H. belopolskyi
H. fringillae
H. lanii

C. impunctatus H. lanii (hRB1) - Bukauskaitė et al. (2016)

Pseudolynchia canariensis Haemoproteus columbae - Waite et al. (2012)

Louse flies

- Valkiūnas & Iezhova (2004)

Biting midges 

Mosquitoes

C. impunctatus

Culicoides impunctatus - Liutkevičius (2000)
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Therefore, further studies using additional parasite species/lineages and vector 

species are necessary. This is especially important to conduct reliable epidemiological 

studies as information on the costs of parasite infections on insect vectors is essential to 

estimate the transmission risk of malarial parasites under natural conditions. In fact, 

epidemiological models based on the quantification of the basic reproductive ratio (R0, 

defined as the number of secondary infections from an infected individual) requires basic 

data on the longevity of infected mosquitoes (Ross, 1911; Macdonald, 1955), with is 

currently lacking for most of the wild avian parasite-vector assemblages.  

Moreover, it is known that avian Plasmodium species differ in their virulence in 

their vertebrate hosts (Lachish et al. 2011), and this could be the case in the insect vectors 

too. However, Valkiūnas and Iezhova (2004) did not find differences in the mortality rate 

of C. impunctatus infected by three Haemoproteus parasites. In addition, although studies 

conducted until now provide valuable information on the mechanisms underlying the 

parasite costs’ on insect vectors, differences in the magnitude of these impacts may be 

affected by the use of parasite strains-maintained thought serial passages in birds. This 

procedure may affect parasite virulence (Ebert, 1998; Mackinnon & Read 2004). For 

example, for the avian Plasmodium, serial passages slightly increased parasitaemia in birds, 

measured as the proportion of parasite infected RBCs, while gametocitemia remained 

constant (Pigeault et al. 2015). These, together with the differential conditions for vectors 

that may have been used between studies (i.e. supplemented sugar concentration, 

temperature, relative humidity) may partially explain discrepancies found in the literature.  
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El fin de la carrera estaba a la vuelta de la esquina y, aunque muchos de los amigos 

ya tenían muy claro a que querían dedicarse, yo aún tenía mis dudas, ¿enseñanza o 

investigación? Pero un día apareció un cartel en la Facultad que anunciaba la 

posibilidad de hacer prácticas de empresas en la Estación Biológica de Doñana. Dado 

que apenas tenía dos o tres asignaturas ese último cuatrimestre, entregué mi mini 

CV, y a las pocas semanas, ¡sorpresa! una llamada diciéndome que había sido 

seleccionado. Olé tú! 

Miento si digo que no me temblaba todo el cuerpo cuando entré en ese 

edificio por primera vez. Por entonces no lo sabía, pero empezaba una gran etapa en 

mi vida. Durante esos 4-5 meses que estuve como alumno colaborador en la EBD 

conocí a personas increíbles a las que les tengo que agradecer como me recibieron, 

me trataron y todo lo que enseñaron durante ese tiempo (Gracias Eva, Laura, Mireia, 

Bego, Michael Jowers, Isa Martín, Quini y Juanele).  

Tras acabar las prácticas en la EBD, decidí subir mi CV a la bolsa de empleo, 

y apenas unos meses más tarde recibo una llamada de un tal Alfredo Valido que, tras 

una entrevista, decide contratarme como técnico. Paradojas de la vida, volvía a la 

EBD. Fue casi un año y medio que me sirvió, no solo para coger una gran experiencia 

en un laboratorio de molecular como es el LEM, sino también para conocer Mogán, 

su puerto y su vieja al horno, además de conocer a grandes personas. Gracias 

Alfredo, Pedro, Nestor, Manolo Carrión, Cande, Rocío, JuanMi, Cristina, Gasent, 

Antonio, María y Mónica por todos los buenos momentos vividos. Gracias a la 

experiencia vivida con vosotros me di cuenta que algo dentro de mi pedía más caña, 

esas constantes preguntas que me hacía a mí mismo del porqué de las cosas, me 

hicieron ver que quería y que estaba preparado para hacer una tesis doctoral. 

Pero antes de que empezara la tesis, faltaba un pequeño obstáculo. Había que 

hacer un máster. Durante mis largos periodos en el LEM, conocí a un nuevo chaval 

que apareció por la EBD por el 2011 y que de vez en cuando se acercaba por mi 

poyata para preguntar cómo me iba. Siempre iba con una sonrisa en la boca, siempre 

tratando súper bien a sus técnicos, así como a los diferentes alumnos en prácticas 

que estaban con él. Poco a poco fui conociendo con que trabajaba (¡con mosquitos!), 

y la verdad es que me molaba mucho lo que hacía (¿será porque gran parte de mi 

vida había vivido en la Puebla del Rio, cuna de los mosquitos por excelencia en 
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Sevilla? Pudiera ser). Así que le dije que iba a hacer el máster de la UPO y que me 

gustaría hacer el TFM con ellos. Y así fue como empecé en este maravilloso 

grupo/familia a los que tanto les debo y de los que no podría estar más agradecido 

(“LOS FIGUERÓLIDOS”).  

Todo esto se lo debo, en gran parte a esa gran persona y científico llamado 

Jordi Figuerola, que sin duda no sabía en que se metía pillándome para esa FPI 

(¡jajaja!). Sin él no hubiera sido posible todo esto. Gracias Jordi por haberme 

ofrecido la posibilidad de poder realizar la tesis bajo tu supervisión. Sin duda, esta 

tesis me ha servido para madurar, no sé si como científico (¡seguramente no!), pero 

sí como persona, y tú has sido uno de los grandes responsables de que hoy sea la 

persona y el “doctor” que soy. Gracias por tu infinita paciencia conmigo, por tus 

consejos, que siempre han sido de gran utilidad, y por enseñarme a ver más allá de 

lo que tengo delante. Eres un gran ejemplo a seguir. ¡Mil gracias por todo Jordi! 

Pero en realidad, contigo empezó todo Josué. Tú fuiste el primero que confió 

en mí y me abriste las puertas para ser parte vuestra. Me has enseñado todo lo que se 

sobre el mundo de la parasitología y sus vectores, ya sea directa o indirectamente. 

Me has apoyado en todos esos malos momentos que un doctorando pasa a lo largo 

de esta etapa (aunque he de decir, que han sido muy pocos). Gracias por todas esas 

risas en la EBD. Sin duda no tengo palabras que puedan expresar lo que te agradezco 

por todo cuanto has hecho por mí. ¡Gracias Josué! (Gracias también a Isabel Moreno 

por tranquilizarlo los días que lo saturaba). 

Pero esta tesis estaría incompleta sin la supervisión de una gran mujer. Una 

mujer que posiblemente tenga más huevos que muchos de los hombres de la famosa 

serie de Narcos. Pero es todo fachada, como se suele decir, y por dentro es dulce 

como los donuts de chocolate (¡que por cierto tanto le gustan!). Sin duda era y es un 

placer sentarme al lado tuya a aprender de estadística en R o JMP. Todo lo que se de 

estadística es gracias a ti. Me hubiera gustado poder vivir estos últimos meses 

contigo en directo y no por Skype, aunque me temo que son “cosas del directo”. 

¡Gracias Laura! 

He de reconocer que a veces ha sido “difícil” tener tres supervisores. No 

siempre pensabais igual, pero sin duda, esta tesis estaría “coja” si alguno de vosotros 

tres no hubiera estado, pues os complementabais entre vosotros y cada uno es un 
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pilar de esta tesis. Todo ello, unido a la ayuda de Ramón Soriguer (como decimos 

los predoctorales del grupo, el “abuelo”). Gracias Ramón por tener siempre palabras 

de ánimos y por enseñarme de la vida en general (y por esos buenos vinos y quesos 

de la familia Soriguer). Gracias a los cuatro por haber hecho que siga haciéndome 

nuevas preguntas constantemente y que no haya perdido nunca las ganas de 

preguntarme el porqué y el cómo de las cosas. Sé que los cuatro os habéis dejado la 

piel conmigo, y que muchas veces os he exprimido, por ello también os pido, al 

mismo tiempo, disculpas y gracias por dejaros “exprimir”. Ahora llega un punto y 

seguido en esta carrera científica, en donde, tarde o temprano, os tendré que dejar 

(muy a mi pesar, pues nadie que estuviera cuerdo quisiera dejar de estar junto a 

vosotros) y empezar a volar yo solo (es ley de vida o ley de ciencia, según se quiera 

llamar). Aun así, estoy seguro que volveremos a coincidir en el camino. 

Si los supervisores habéis sido cada uno un pilar de esta tesis (junto con 

Ramón), el cuarto pilar ha estado compuesto por todas las personas que componen 

el grupo. 

 Martina, esa muchacha que siempre está sonriendo y que cuida el karma 

como nadie. Dispuesta a ayudarme en todo momento (¡eso sí, a 5 pavos!! Jajaja). 

Estos cuatro años hubieran sido sin duda muy aburridos si tú no hubieras estado aquí. 

Solo nos quedan pendiente dos cosas por hacer: 1) salir de discotequeo del bueno, 2) 

ese Ferraguti & Gutiérrez-López. Grazie mille Marti per essere come sei. 

Pero también está Alazne, la otra predoctoral del grupo. Una persona de las 

que quedan pocas en este mundo, pues me costó la misma vida convencerla para que 

me aceptara invitarla a un café. Esos viajes a por mosquitos a Huelva en la Kangoo 

en donde los dos nos contábamos todo aquello que nos tenía “alterado” y que nos 

hacía volver como nuevo, o ese día de vacaciones captura de larvas por Doñana en 

el que disfrutamos como dos niños chicos, son cosas que no olvidaré jamás de ti. Mil 

gracias Alazne por todos esos momentos.   

Pero este grupo, si se caracteriza por algo es porque es paritario, por lo tanto, 

también había un hombre más predoctoral, mi gran amigo Jiayue Yan. Compañero 

de batallas con los mosquitos y gorriones durante el verano de 2014. Un tío con el 

que no me he podido reír más en mi vida y al cual nunca lo he visto enfadado (salvo 

cuando hablaba en chino, que parecía que estaba enfadado). Me has enseñado mucho 
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más de lo que te puedes imaginar. Has sido para mí un ejemplo de superación 

personal. 谢谢 (xie xie) Jiayue. 

 Por último, pero no menos importante, aunque haya llegado la última, está 

Jéssica, la pequeñaja, y es que ella es como esa hermana pequeña que no tuve, esa 

que, aunque uno esté ahí continuamente “pinchándola”, siempre está al otro lado de 

la mesa para preguntarte que te pasa cuando te ve resoplar delante de la pantalla. 

Eres un solete Jessica, ¡Gracias! 

 Pero falta una pieza fundamental sin la cual no se completaría este puzle, los 

técnicos. Gracias, gracias y gracias a Isa, Laura (Gómez) y Alberto. (Esme, no me 

he olvidado de ti, apareces más abajo).  

Isa y Laura (Gómez), gracias, porque habéis sido mis manos y mis ojos en 

el laboratorio, sin vosotras esto no hubiera sido posible. ¡Sois dos profesionales 

como la copa de un pino! Me siento que tengo una deuda con vosotras imposible de 

devolver. Si algún día soy un investigador con dinero os intentaré contratar (¡si 

vosotras queréis, claro está!)   

Y tú, Alberto, aunque ornitólogo de profesión exterior, eres maestro en el 

interior. Contigo he aprendido de ornitología lo que no está en los escritos, me has 

enseñado a observar la naturaleza de forma diferente, sin duda tienes un don y he 

sido un afortunado al tenerte a mi lado en mi tesis. 

Gracias también a los otros miembros del grupo, que o bien se encuentra en 

otro país trabajando o en Huelva. Gracias Duarte, Esme y Rocío por vuestra ayuda 

cuando la he necesitado. 

No podía olvidarme de todo el equipo del Servicio de Control de Mosquitos 

de Huelva: Santi, Juani, Rafael, y por supuesto a Esme nuevamente. Gracias por toda 

la ayuda cuando necesitaba recolectar larvas de mosquito hasta del más ridículo 

charco y por dedicar gran parte de vuestro tiempo en enseñarme a identificar a estos 

“protagonistas”.  

 Agradecer también a todos los compañeros del Departamento de Humedales 

de la EBD que hacen que el día a día en la segunda planta del edificio haya sido un 

lugar excepcional para desarrollar esta tesis. Así como, a todo el personal de la EBD 

por la gran labor profesional que realizan y que han permitido que el desarrollo de 

esta tesis haya sido sin duda alguna más sencillo. A los técnicos del LEM (Ana, 



ACKNOWLEDGMENT/AGRADECIMIENTOS 
 

 - 244 - 

Mónica, José María, Antonio, María y Marta) por su ayuda cuando os requería. A 

los técnicos del LEF (Nene y Olaya), por todos los consejos aportados. Al LPM (Ana 

Carvajal, Mamen, Iván) por no reñirme cuando se me escapaba algún mosquito (Sigo 

diciendo que ninguno podría transmitir enfermedad alguna (¡creo!)). A los técnicos 

del LAST (David e Isa) por vuestra ayuda y rapidez a la hora de realizar mapas. Al 

LEQ por siempre ofrecer éter para dormir a los mosquitos, o al LEA por su ayuda 

con los microscopios. A todos vosotros, ¡gracias! 

Gracias también al personal de administración y dirección por la ayuda 

otorgada con la interminable burocracia, así como al servicio de informática, 

seguridad y limpieza que hacen una labor imprescindible. 

 

Una de las mejores experiencias que he tenido en el transcurso de esta tesis 

han sido los cerca de 7 meses que he estado de estancia en otros centros y que me 

han permitido madurar de tal madera que hasta mis padres se han sorprendido (¡y no 

exagero!). Por ello, quiero agradecer al CISA-INIA, en concreto a Miguel-Ángel, 

Elisa, Paco y Mamen, así como a Ana Vázquez, el haberme permitido manejar esas 

perdices y la oportunidad de aprender a trabajar dentro de un laboratorio P3 siendo 

esta una de las experiencias más increíble en estos cuatro años. 

Je tiens à remercier Nathalie Pardigon, Valérie Chamonet et tous les 

membres de votre laboratoire pour le merveilleux travail effectué et tout le soutien 

qui m'a été apporté lors de mon séjour de courte durée à l'Institut Pasteur de 

Paris. 

Also, I wish to say thank you to Laura Kramer, Alex Ciota and all the 

member of your lab, for the wonderful work carried out and all the support given to 

me during my PhD short-stay in the Wadsworth Center NYSDOH. Thanks to Mary 

and Sean for pick me up and leave me near home every day. 

 

El lugar de trabajo, en concreto los centros de investigación, son uno de los 

lugares donde las relaciones sociales se hacen más intensas, dado el gran tiempo que 

se pasa en su interior. La EBD, es uno de esos centros, pero tiene algo especial. Algo, 

que hace que se pueda convertir en algo como tu casa. Un compañero me contó que 

hay tres hechos que indican que una persona está convirtiendo su lugar de trabajo en 
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su propia casa. La primera, es traerse el cargador del móvil (dada la duración de los 

móviles de hoy en día, eso sucede el primer día), la segunda es el cepillo de dientes 

(que tampoco es que tardara muchos más días en llevarlo al trabajo), y la tercera es 

que al llegar a casa intentes abrir la puerta con las llaves del despacho. Esto último, 

en mi caso no se ha dado, dado que a la EBD se entra mediante el uso de tarjeta, pero 

este hecho podría ser fácilmente sustituido por el de intentar pagar el autobús con la 

tarjeta de la EBD en vez del bonobús y, tras pasar la tarjeta dos veces o más, ver 

como el conductor te mira con cara de estar llamándote “estúpido”. Dado que los 

tres hechos se han cumplido, y de forma reiterada, puedo decir, y estoy orgulloso de 

ello, que la EBD se ha convertido en mi casa. Y, ¡ole tú! ¡Vaya casa! En esta casa 

no pesan las horas, y no pesan porque cuando empiezan a pesar aparece por la puerta 

Jesús Gómez para decirte cualquier tontería, pedirte un descansito o que vayamos a 

ver a Óscar Gordo (un señor amigo de los de verdad para toda la vida) y hablemos 

del sistema de contratación de las Universidades. Que resulta que Jesús no aparece, 

pues ya voy yo a su despacho, y allí te encuentras también con Burraco, y si estamos 

los tres, (Jesús, Burraco y uno mismo), pues imagínate la conversación Random que 

puede salir de ahí. Eso sin contar que no se sume Fran (el futuro marido de Martina) 

o Lucas, porque entonces ya, como se suele decir “apaga y vámonos”.  

Pero cuando no eran descansos, eran las mesas redondas, organizadas por 

Vane y Edu y posteriormente por Víctor y Vanina. Mesas redondas que hacían que 

desconectaras y tuvieras otra visión de las cosas con las experiencias de los 

investigadores más seniors o personas del exterior. Chapó por los organizadores de 

esas mesas redondas. 

Pero sin duda, los mejores momentos son esos almuerzos donde nos 

reunimos todos y que se pueden alargar lo que uno desee (según Noa, una hora 

mínima, y nada de hablar de trabajo), almuerzos en donde puedes probar variedad 

de riquísimos platos elaborados por Alazne, Martina, Irene o Edu, o quedarte 

embobado contando las historias de J y Edu al estilo chiquito. Almuerzos que no son 

los mismos si no escuchas esas contestaciones tan chulescas entre los madrileños 

(Jesús y Sara principalmente) con sus “ej que”, o esos contraplanes de Rosita, 

pidiendo que comamos fuera ¡que hace solecito! También he de decir que os debo la 

vida a Jesús, Burraco, Noa, Edu, J, Fran, Martina, Alazne, Laura (Gómez) y no 
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recuerdo quién más estaba ese día, pero gracias a todos por como actuasteis. A toro 

pasado todo son risas, pero sé que ese almuerzo lo pasasteis mal.  

Quizás no os nombre a todos, pero eso no significa que no os tenga en mente, 

pues al fin y al cabo lo que quiero manifestar con este último párrafo es el mayor de 

los agradecimientos a todos los doctorandos de la EBD que hace que nos sentamos 

como en casa. GRACIAS DOCTORANDOS 

 

Pero no todo es la EBD, en la universidad coincidimos las mejores personas 

que existían en Sevilla en aquellos momentos (cada uno de su padre y de su madre, 

y con sus propias taritas), fundándose lo que más tarde se llamó “la Gigapandi” (no 

os nombro uno a uno porque seguro que me olvido de Ezequiel, ¡jajaja!). Gracias 

chic@s por los buenos momentos que vivimos cada vez que nos juntamos que hacen 

que el tiempo se pare. ¡Sois únicos! 

 

Y ahora sí que llega el momento de darle las gracias a las personas que me 

han guiado hasta ser lo que soy y a las que les debo todo en esta vida. Gracias Papá 

y Mamá por haberme criado de la forma en la que solo vosotros sabéis, en base a un 

respeto y confianza mutua. Gracias por apoyarme en cada decisión que he tomado 

por mí mismo y por ayudarme en caso de que me cayera. Gracias Papá, Mamá, Óscar 

y resto de familia por alegraros de mis éxitos y apoyarme en esos días negros. 

Y, por último, pero no la menos importante, más bien lo contrario, mi pareja, 

Merche. Gracias por ser paciente, compresiva y atenta conmigo. Gracias por tu 

sinceridad que siempre hace que mejore a mí mismo. Por regular mi Gen y ser capaz 

de apaciguar mis “sirocos”. Gracias por estar siempre ahí y hacerme sentir que 

siempre te tendré a mi lado. Gracias, gracias y gracias por ser como como eres, 

ejemplo de sacrificio. Gracias por que es infinito lo que me das.   

 

Ahora, sí que sí, el último párrafo de la tesis. Con él parece que ya llega el 

final, pero como dijo Fred Brooks “las tesis no se acaban; se abandonan.” Y es que 

en realidad esto no es más que el principio, (sí, leíste bien), el principio de mi carrera 

como investigador. Y, ¿qué es lo que está por venir? Pues, del futuro lo único que sé 
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es que nunca caminaré solo, porqué tengo claro que siempre tendré a gente 

importante a mi lado, Merche, Papá, Mamá, Hermano, Amigos. 

 

“Para conocer el camino que aún te falta por recorrer, 

 pregúntale a los que ya vienen de vuelta”  

 

-proverbio chino- 
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