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 Multi-bit Cascade ΣΔ Modulator for High-Speed A/D Conversion with 
Reduced Sensitivity to DAC Errors

Indexing terms: Multi-bit ΣΔ Modulators, High-speed, high-resolution A/D conversion.

This paper presents a ΣΔ modulator (ΣΔM) which combines single-bit and multi-bit

quantization in a cascade architecture to obtain high resolution with low oversampling

ratio. It is less sensitive to the non-linearity of the DAC than those previously reported,

thus enabling the use of very simple analog circuitry with neither calibration nor trim-

ming required.

Introduction: At present, there is an increased interest in the use of ΣΔ conversion

in mixed-signal CMOS telecom chips [1]. New architectures are required to achieve

high resolution with low oversampling ratio M. Two non-exclusive strategies can

be adopted to this end [2]: high-order filtering of the quantization noise, and multi-

bit (MB) quantization. They make the in-band quantization noise power 

inversely proportional to, respectively,  ( =filter order) and 

( =number of bits in the internal quantizer). Examples of low-oversampling ratio

ΣΔM's using both strategies are reported elsewhere [2]-[7].

These advanced architectures are grouped according to the techniques used to:

a) guarantee stable operation of the high-order filter; b) attenuate the errors due to

the MB DAC non-linearity. A common strategy for the latter case involves using

calibration [2][3][5], while the former requirement can be solved through the proper

choice of scaling factors or resetting circuitry [2][3]. However, some architectures

overcome these problems with neither calibration nor resetting required. The basic

idea consists of: first, performing the high-order filtering through a cascade structure

to guarantee unconditional stability for any input level and initial condition

[4][6][7]; secondly, using MB quantization only at the last stage of the cascade to

attenuate the influence of the MB DAC non-linearity [6][7].

Previous MB cascade ΣΔM's [6][7] are intended to attenuate the DAC error

power by a factor . The architecture in this Letter obtains a  attenuation
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factor. We show that this can be achieved through proper choice of the architecture

coefficients and that the degradation due to mismatch is tolerable for up to .

Hence, this modulator is feasible for obtaining up to 13-bit resolution with

oversampling ratios as low as 16.

Modulator architecture: Fig. 1 shows a generic dual-quantization N-stage cascade

ΣΔM [8]. It includes single-bit quantization in all the stages except in the last one

which incorporates a MB quantizer. After digital cancellation of the quantization

error of the former, the following is obtained for the Z-domain output:

(1)

where  is the Z-transform of the modulator input,  is an scalar larger than

unity (needed to prevent overloading in the cascade),  is the last stage

quantization error,  is the error induced in the last stage DAC, and

. Note that  is -order shaped, which may

significantly reduce the linearity requirement of the DAC.

Based on this idea, two MB ΣΔM architectures have been proposed. The one in

[6] uses a 2-stage 2-1 cascade ( ), while the one in [7] uses a 2-

stage 2-2 cascade ( ). In both cases, following (1),  is 2nd-

order shaped. With the same principle, Fig. 2 shows a novel MB cascade ΣΔM

architecture that better exploits the dual-quantization technique. It is a 3-stage 2-1-

1 cascade ( ) with single-bit quantization in the first two

stages and MB quantization in the last one. Table 1 shows the transfer functions of

the digital blocks in Fig. 2 and the relationships between analog and digital

coefficient that cancel the quantization noise in the first two stages. The analog

coefficients (integrator weights) must be properly chosen to avoid premature

overloading of the stages in the loop and maximize the dynamic range (DR). We

propose the following:

, so

that , . Such a choice can be realized by using
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only 2-branch SC integrators with reduced output swing and dynamic requirements.

After digital cancellation, the Z-domain modulator output results:

(2)

Note that the DAC errors are 3rd-order shaped. Thus, the in-band noise power

at the modulator output results:

(3)

where  and  represent the power of the last stage quantization and DAC

error, respectively. The latter contribution is attenuated by  (instead of  as

in [6][7]).

Influence of Other Non-Idealities: In practice, integrator weight mismatch and finite

DC-gain produce incomplete cancellation of the quantization noise in the first stages

of the cascade, thus degrading the signal-to-(noise+distortion) ratio (SNDR). This

imposes an upper limit on the useful resolution of the last stage quantizer. Above

this limit, the benefits of finer quantization in the last stage may be masked by the

un-cancelled portion of the quantization noise of the previous stages. Fig. 3 shows

the half-scale SNDR obtained by behavioural simulation for the new modulator as

a function of the last quantizer resolution. These simulations include integrator

weight mismatch (sigma = 0.1%) and finite DC-gain (1000); according to them,

using quantizers with more than 3-bit resolution does not make sense. However,

this is enough to significantly reduce the required oversampling ratio respect to the

single-bit case. Fig. 4 compares the worst-case SNDR (sigma = 0.1%) as a function

of the input level for the 2-1-1 3bit ΣΔM with that of those in [6][7], always using

optimized integrator weights; for completeness, we also make a comparison with

the 2-1-1 single-bit. Compared to the 4th-order architectures, the new one features

the largest DR with the lowest oversampling ratio. Particularly, to reach similar

performance with the single-bit approach, M must be at least 24. 

In summary, because the new architecture tolerates the analog non-idealities for

3-bit quantization (with no calibration needed), it is feasible for high-frequency ΣΔ
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ADC's with low oversampling ratio and, hence, low-power consumption.
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Fig. 1 Generic dual-quantization N-stage cascade ΣΔM
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Fig. 3 SNDR vs. last quantizer resolution in presence of non-idealities
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Fig. 4 Worst-case SNDR vs. input level in presence of capacitor mismatch and
finite integrator DC-gain

-90 -80 -70 -60 -50 -40 -30 -20 -10 0
Input / Reference (dB)

0

10

20

30

40

50

60

70

80

90

SN
D

R 
(d

B
)

2-1-1, 3bit, M = 16
2-1-1, M = 24
2-1, 3bit, M = 24
2-2, 3bit, M = 16

INL = 1%FS
Weight mismatch = 0.1%

DC-gain = 1000



 9 of 9

Table 1: Coefficient relationships in Fig. 2
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