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Abstract: Genetics and epigenetics play a key role in the development of several diseases, including
nonalcoholic fatty liver disease (NAFLD). Family studies demonstrate that first degree relatives
of patients with NAFLD are at a much higher risk of the disease than the general population.
The development of the Genome Wide Association Study (GWAS) technology has allowed the
identification of numerous genetic polymorphisms involved in the evolution of diseases (e.g., PNPLA3,
MBOAT7). On the other hand, epigenetic changes interact with inherited risk factors to determine
an individual’s susceptibility to NAFLD. Modifications of the histones amino-terminal ends are key
factors in the maintenance of chromatin structure and gene expression (cAMP-responsive element
binding protein H (CREBH) or SIRT1). Activation of SIRT1 showed potential against the physiological
mechanisms related to NAFLD. Abnormal DNA methylation represents a starting point for cancer
development in NAFLD patients. Besides, the evaluation of circulating miRNA profiles represents a
promising approach to assess and non-invasively monitor liver disease severity. To date, there is no
approved pharmacologic therapy for NAFLD and the current treatment remains weight loss with
lifestyle modification and exercise. In this review, the status of research into relevant genetic and
epigenetic modifiers of NAFLD progression will be discussed.
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1. Introduction

In 1980, a number of patients who had histopathological changes indistinguishable from alcoholic
liver disease were described for the first time, but in whom alcohol intake was nil or non-significant [1].
Nonalcoholic fatty liver disease (NAFLD) comprises a progressive spectrum of diseases ranging from
hepatic steatosis-accumulation of fat in hepatocytes from an initially benign character to nonalcoholic
steatohepatitis, characterized by inflammatory infiltrate and hepatocyte damage (which includes
ballooning and cell death) together with deposition of collagen and fibrosis progression, although
simple steatosis may promote fibrosis progression [2]. This disease is diagnosed in the absence of
significant alcohol consumption, presence of other hereditary diseases, consumption of drugs that
can induce steatosis and viral infections (hepatitis B and C virus, human immunodeficiency virus
(HIV)) [3].

Simple steatosis and steatohepatitis show different natural histories and consequences. This
pathology has been associated with an increased mortality rate, 5–10 times higher than in the
general population [4]. After the establishment of steatohepatitis, up to 30% of patients can develop
cirrhosis and hepatocellular carcinoma (HCC) in 10 years, although HCC may typically also develop
in non-fibrotic livers and simple steatosis may also have a progressive course [4,5]. In addition,
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steatohepatitis is considered the greatest predictor of fibrosis progression and has been described as a
key pathogenic process related to systemic disorders, especially cardiovascular risk [6–9].

NAFLD is currently considered the most common liver disease in developed countries [10].
Its global prevalence in the general population is variable; in the Eastern countries it is 20–30% and in
Asia 5–18% [11]. The reason for this variability is not clear yet, but presumably genetic and epigenetic
factors could play a major role. The incidence of NAFLD is two new cases per 100 people per year, and
up to 50% of the general population is expected to be affected by 2030. Despite being a very common
condition, NAFLD tends to be under-diagnosed.

Its development is closely related to the characteristics of the metabolic syndrome, such as central
obesity, insulin resistance, type 2 diabetes mellitus, arterial hypertension and dyslipidemia [12].
In discussing the biological mechanisms underpinning the relationship between NAFLD and
chronic vascular complications of diabetes mellitus, there is emerging evidence that suggests a link
between dysbiosis, intestinal barrier dysfunction, mediators of the gut microbiota and cardiovascular
diseases [13]. Hepatic fat accumulation generates multiple signals that alter lipid and glucose
metabolism, leading to the presence of intracellular fat vacuoles, lack of the ability to perform the
mitochondrial beta-oxidation process, generation of oxidative stress, development of pro-inflammatory
mechanisms and, finally, hepatocellular apoptosis [14–16].

Liver biopsy is the current reference method for the diagnosis and staging of both fibrosis
and steatohepatitis. It is usually recommended to patients with elevated transaminases with no
affiliated origins and for which other risk factors have been excluded. However, it is an invasive,
expensive and time-consuming method, presenting inherent risks, since it is associated with increased
morbidity, which in some cases can lead to complications such as bleeding and even death [17].
Among pathologists, the most common method for diagnosis is the NAS score (NAFLD Activity
Score) [17] which provides a score based on the degree of steatosis (0–3), lobular inflammation (0–3)
and ballooning degeneration (0–2). A score >5 would be confirmatory of steatohepatitis, whereas if it is
inferior to 3, this injury would be unlikely. In addition, taking into account that common treatments for
this pathology are still ineffective, the first line of action for this type of patients would be weight loss,
which would be achieved with a decrease in caloric intake and an increase in physical activity. Lifestyle
intervention can be effective when treating non-alcoholic fatty liver diseases (NAFLD) patients and
clinical evidence strongly supports the role of lifestyle modification as a primary therapy for the
management of NAFLD and nonalcoholic steatohepatitis (NASH) [18].

To establish proper diagnosis, prognosis and appropriate therapeutic management, it would be
essential to differentiate between steatohepatitis and simple steatosis, taking into account the systemic
complications of this disease. Besides, diagnosing fibrosis represents a key role, since its presence is a
major determinant of the natural course of hepatic and extra-hepatic disease.

2. Genetics in NAFLD

There is a considerable inter-individual variation in terms of severity and risk of morbidity and
mortality associated with NAFLD. The pathogenesis of NAFLD is thought to be a multifactorial and
complicated disease associated with lifestyle habits, nutritional factors and genetics. However, the
pathogenesis and underlying mechanism in the development of NAFLD caused by genetics remains
unclear. The function of gene polymorphisms, which implicate Insulin resistance (IR), fatty acid
metabolism, oxidative stress and hepatofibrogenesis, are reflected in every part of the pathogenesis of
NAFLD [19].

The development of the Genome Wide Association Study (GWAS) technology has allowed the
identification of numerous genetic polymorphisms involved in the evolution of diseases, since they
can alter the stages of development, susceptibility to disease, rate of progression and efficacy of the
treatment. In 2008, the first GWAS was published in NAFLD [20] patients and 9229 single nucleotide
polymorphisms (SNPs) were analyzed in a population of varied ethnicity in order to search for
genetic variants associated with the disease. This study detected that SNP rs738409 of the gene-like
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phospholipase domain-containing protein 3 (PNPLA3) was strongly associated with accumulation
of fat in the hepatocyte in a cohort of more than 2000 ethnically diverse patients. This association
remained significant even though it was adjusted for body mass index (BMI), diabetes mellitus,
alcohol intake and ethnicity. Later, other approaches of this type have been carried out, identifying
new candidate genes, but in which PNPLA3 has always remained significantly associated to disease
development [21]. Numerous studies have validated this relationship, and new findings have been
made, such as its relationship to alananine transaminase (ALT) serum levels and the full spectrum of
NAFLD, including simple steatosis, steatohepatitis, cirrhosis and hepatocellular carcinoma, as well as
systemic disorders more frequent in these patients, such as cardiovascular risk. Numerous studies
have validated this relationship [22,23], and new findings have been made, such as its relationship to
ALT [24] serum levels and the full spectrum of NAFLD, including simple steatosis, steatohepatitis,
cirrhosis and hepatocellular carcinoma [25,26], as well as systemic disorders more frequent in these
patients, such as cardiovascular risk.

In humans, PNPLA3 is located on the long arm of chromosome 22. The specific SNP rs738409
(rs738409 C>G) has the peculiarity that it encodes an amino acid substitution from isoleucine to
methionine at position 148; I148M). PNPLA3 encodes a triacylglycerol lipase, also called adiponutrin,
which is involved in the hydrolysis of triacylglycerol in the adipocytes. Such a hydrolase activity may
not be present in those patients presenting the I148M variant [27], since this amino acid substitution
near the catalytic domain reduces its enzymatic activity and favors the development of steatosis [28],
which in other words would be considered a loss of function. This would have an impact similar to
other factors, such as environmental stress, obesity or alcohol consumption, affecting the predisposition
for the disease to progress. This protein is expressed in the endoplasmic reticulum, hepatocyte lipid
membranes and adipose tissue [29]. It has been also demonstrated that adiponutrin circulates in
human plasma, and that its concentration oscillates between 1.25 and 4 nM, posing as a possible
biomarker of the disease [30].

Basuray et al. [31] have generated a line of knock-in mice introducing a methionine codon at
position 148 of the Pnpla3 gene in female C57BL/6J mice. This study provides solid evidence to
affirm that the presence of this variant favors the development of NAFLD. These mice show normal
levels of fat in the liver while maintained on a standard diet. When a sucrose-rich diet is applied,
intrahepatocyte fat levels were increased 2–3 times more compared to controls, without detecting
changes in glucose homeostasis. In addition, these mice showed an increase of up to 40-fold in the
levels of catalytically inactive adiponutrin in the lipid droplets, without overexpression of PNPLA3
mRNA in the liver.

In recent years, the deleterious effect of the G allele of this PNPLA3 SNP has been described. This
has been associated with an additive effect in the development of a broad spectrum of liver diseases,
such as alcoholic cirrhosis [32], viral hepatitis [33], and even hepatocarcinoma [25]. The carriers of the
G allele are 2.26 times more likely to develop liver cancer, with GG homozygotes up to five times more
at risk. In addition, it has been described that although carriers of the GG genotype have an increased
risk of developing NAFLD, they are also more susceptible to the beneficial effects that an intervention
provides at the level of lifestyle [34].

Recently, it has been shown that the MBOAT7 locus is associated with increased hepatic fat content
in two cohorts and with the entire spectrum of histological liver damage related to NAFLD [35]. This
association is mediated by lower hepatic protein expression of Membrane Bound O-Acyltransferase
Domain Containing 7 (MBOAT7) resulting in changes in the hepatic phosphatidylinositol acyl-chain
remodeling. Moreover, it has been demonstrated that the MBOAT7 rs641738 T allele is associated with
reduced MBOAT7 expression and may predispose to HCC in patients without cirrhosis, suggesting it
should be evaluated in future prospective studies aimed at stratifying NAFLD-HCC risk [36].

Besides PNPLA3 and MBOAT, other genetic variants have been described to promote NAFLD
progression. These variants have been summarized in Table 1. In this sense, transmembrane 6
superfamily member 2 (TM6SF2) is involved in the enrichment of triglycerides to apolipoprotein B100
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in the pathway of very low-density lipoprotein secretion from the hepatocytes [37] . The rs58542926
C>T polymorphism in this gene results in a loss-of-function, inducing higher liver triglyceride content
and lower circulating lipoproteins. In experimental models, silencing of TM6SF2 reduces secretion of
very-low-density lipoproteins (VLDLs) and causes a predisposition to retention of triglycerides (TGs)
in hepatic lipid droplets and fatty liver [37,38]. Dongiovanni et al. [39] have shown that TM6SF2 E167K
variation is associated with NASH, hepatocellular ballooning, and necroinflammation in humans.
Moreover, a robust association between this variant and histological severity of steatosis and fibrosis
has been shown.

Table 1. Genetic variants (SNPs) associated to NAFLD progression.

Gene Function Phenotype Variant

PNPLA3 Lipid droplets ↑ NAFLD, NASH, fibrosis, HCC rs738409 C>G

MBOAT7 Phospholipid metabolism ↑ NAFLD-HCC risk rs641738 C>T

APOB VLDL secretion ↑ NAFLD, NASH, fibrosis, HCC Several

TM6SF2 VLDL secretion ↑ NAFLD, NASH, fibrosis rs58542926 C>T

GCKR De novo lipogenesis regulation ↑ NAFLD, NASH, fibrosis rs780094 A>G

KLF6 De novo lipogenesis regulation;
fibrogenesis ↓ fibrosis rs3750861 G>A

IL28B Innate immunity, alternative
IFNL3/4 transcription ↓ fibrosis rs12979860 C>T

SOD2 Mitochondrial antioxidant ↑ fibrosis rs4880 C>T

APOB, Apolipoprotein B; KLF6, Krueppel-like factor 6; IL28B, interleukin 28B; SOD2, Superoxide dismutase 2;
VLDL: very low-density lipoproteins. ↑—increased, ↓—decreased.

Variation in the glucokinase regulator (GCKR) gene locus has been also associated with
NAFLD [40]. GCKR regulates de novo lipogenesis by controlling the influx of glucose in hepatocytes.
Loss-of-function GCKR mutation (rs1260326) encoding the P446L protein variant, leads to decreased
circulating fasting glucose and insulin levels and increased hepatic fat accumulation by blocking fatty
acid oxidation [39].

The association between the IFN-λ3/IFN-λ4 locus, hepatic inflammation and fibrosis has recently
been confirmed in a large multi-center cohort of patients with NAFLD, in whom the impact of this
variant was larger in non-obese than obese individuals [41,42]

3. Epigenetics in NAFLD

Historically, the term epigenetics was introduced by Conrad Waddington in 1940. It was defined
as the branch of biology that studies the causal interactions between genes and their products that
originate the phenotype. Nowadays, epigenetic phenomena are defined as changes in hereditary gene
expression through mitosis and/or meiosis, caused by an adaptive mechanism that is not related to
alterations of the primary DNA sequence [43]. These mechanisms are considered reversible, since they
are modulated by environmental stimuli, and their imbalance can lead to the development of a wide
spectrum of disorders of varying severity.

3.1. Histone Modifications

Modifications of the histones amino-terminal ends are key factors in the maintenance of chromatin
structure and gene expression. It has been described that aberrant histone modifications promote the
development of insulin resistance and, consequently, NAFLD [44]. Among the main modifications are
acetylations, related to the activation of gene transcription and catalyzed by histone acetyltransferases
(HAT), and deacetylations, involved in repression of genes and catalyzed by histone deacetylases
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(HDAC). Up to date, the greatest findings have been described in mice. The imbalance between both
enzymes seems to influence the phenotypic gene expression in NAFLD, resulting in liver damage [45].

Zhang et al. [46] have defined CREBH to be a stress-inducible transcriptional activator that is
critically involved in inflammation and metabolism. Metabolic stress and acute liver injuries can
induce CREBH cleavage, mediated by the site 1 protease (SP1) and site 2 protease (SP2), the same
enzymes that process sterol regulatory element binding proteins upon the demands of lipid or sterol
biosynthesis [47]. The cleaved N-terminal fragment of CREBH enters into the nucleus and acts as a
potent transcription factor that activates the expression of genes involved in the hepatic acute-phase
response, gluconeogenesis, lipogenesis, fatty acids (FA) oxidation, and lipolysis [48]. Modulation
of CREBH acetylation can significantly affect CREBH transcriptional activity and lead to the altered
lipid homeostasis associated with hepatic steatosis and hyperlipidemia [49]. The deacetylase sirtuin-1
(SIRT1) is known to mediate the nutritional and hormonal modulation of hepatic energy metabolism
through the deacetylation of metabolic regulators. The activation of SIRT1 shows potential against the
physiological mechanisms related to NAFLD, and its plasma levels have been found to be increased in
obese patients with NAFLD [50]. The beneficial effect of SIRT1 activation observed in experimental
models of NAFLD has been linked to modulation of peroxisome proliferator-activated receptor α

(PPARα) activity and fatty acid oxidation [51] more than to chromatin remodeling. Therefore, SIRT1
could play a dual role, on the one hand as a potential therapeutic target and also as a non-invasive
biomarker of NAFLD.

3.2. DNA Methylation

DNA methylation is the addition of a methyl group to a cytosine with guanine as the next
nucleotide (CpG islands). DNA methylation plays a central role in the regulation of gene expression,
representing a level of epigenetic regulation commonly associated with transcriptional repression and
chromatin accessibility. Aberrant patterns of DNA methylation affect cellular homeostasis, such as
hypermethylation, associated with gene repression, and hypomethylation, related to gene activation.
Many methylations take place in the liver, so that hepatic steatosis is commonly seen from the point
of view of the deregulation of carbon metabolism, being related to folate deficiency [52]. In mice, the
onset of steatosis is accompanied by alterations in the expression of DNA methyltransferases (DNMTs)
in the liver [53]. In humans, hepatic DNMT levels have been found to be increased in patients with
steatohepatitis versus those with simple steatosis, and in addition to being significantly associated
with the NAS Score [54].

Abnormal DNA methylation seems to be the starting point for carcinogenesis, especially in
NAFLD-related hepatocellular carcinoma [55]. Metabolites derived from the metabolic syndrome,
such as insulin, glucose or lipids, could disrupt gene regulation at the epigenetic level, leading the
body to a pro-inflammatory state disrupting metabolic pathways [56]. In addition, DNA methylation
can be remodeled by transcriptional factors. They have been evaluated after bariatric surgery and the
massive weight loss that it entails, suggesting that changes in methylation associated with NAFLD
may be partially reversible [57,58]. Differential methylation may contribute to significant differences
in gene expression; 69,247 CpG sites with a different methylation pattern (78% hypomethylated,
24% hypermethylated) have been described in liver tissue of 100 patients with different stages of
disease [59,60]. It has been shown in humans diagnosed with NAFLD that PPARs are hyper-methylated
and fibrogenic TGF-β1 and PDGF-α are hypo-methylated in patients with progressive disease [61].
Moreover, preliminary evidence suggests that circulating cell-free DNA reflects PPARγ methylation
status in the liver, representing a potential non-invasive biomarker of liver damage [62].

3.3. MicroRNAs

MicroRNAs are a class of single chain small non-coding RNA molecules that act as regulators
of gene expression and participate in translation of proteins. They can interfere with every aspect
of cellular activity, such as differentiation and development, proliferation, metabolism, apoptosis
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and carcinogenesis [63]. These molecules are receiving increasing attention since they are commonly
deregulated in pathological situations, and are currently the most intensely studied epigenetic factors
in NAFLD.

The targets of microRNA can be multiple genes (multiplicity), or multiple microRNAs can target
a single gene (cooperativity). In addition, considering their potential in carcinogenesis, microRNAs
can be categorized as oncogenes or onco-microRNAs or as tumor suppressor genes [64]. miRNAs
stability has been demonstrated in serum, plasma, saliva and urine. The microRNAs circulate protected
from the degradation of RNases contained in body fluids, and are currently being widely studied
for the non-invasive diagnosis of a series of liver diseases, including NAFLD [65]. These findings
suggest that aberrant expression of miRNAs may have mechanistic significance in NASH-associated
liver carcinogenesis and may serve as an indicator for the development of NASH-derived HCC.
An overview of the role of miRNAs in NAFLD progression in humans is given in Table 2.

Table 2. Association of specific miRNAs with NAFLD development and progression in humans.

miRNA Pathway Reference

miR-122 Lipid metabolism, carcinogenesis [65]
miR-192 NAFLD progression [66]

miR-34a, miR-16 Lipid metabolism [67]
miR-21, miR-34a Lipid metabolism [68]

miR-1290, miR-27b-3p and miR-192-5p Several (panel) [64]
miR-301a-3p, miR-34a-5p and miR-375 Several (biomarkers) [69]

miR-182 Fibrogenesis [70]
miR-155 Inflammatory pathway and liver injury [71]

Actually, the greatest importance of microphones in NAFLD lies in its potential to discriminate
steatohepatitis and the diagnosis of hepatocarcinoma. In this sense, miR-122, the most expressed
microRNA in human liver, is inhibited in steatohepatitis [72], acting as a suppressor of tumors in the
liver. Silencing of miR-122 is an early event during hepatocarcinogenesis from NASH, and miR-122
could be a novel molecular marker for evaluating the risk of HCC in patients with NASH [73]. It has
been also proposed as a potential therapeutic target in the treatment of hypercholesterolemia and other
dyslipidemias [66].

Besides miR-122, others miRNAs have been identified to be involved in NAFLD progression:
Pirola et al. identified significant fold differences in serum levels of miR-192 (4.4-fold change in
NASH vs. controls) [67]; Cermelli et al. identified increased serum levels of miR-34a and miR-16 in
NAFLD patients compared to controls [68]; Yamada et al. identified in a cohort of NAFLD-diagnosed
patients increased serum abundance of miR-21, miR-34a and miR-451 relative to controls [69]; Tan et al.
identified miR-1290, miR-27b-3p and miR-192-5p as a panel of high diagnostic accuracy for NAFLD [65];
Guo et al. reported three miRNAs (miR-301a-3p, miR-34a-5p and miR-375) as potential biomarkers to
access the severity of NAFLD [74]. Recently, it has been proposed that maintaining miR-155 expression
in inflammatory cells might be a potential strategy to modulate liver injury [71].

There are still some barriers to the therapeutic use of miRNAs, due to their degradation by
endogenous RNases. In addition, they affect several routes in different organs, so one still has to
treat them with caution to avoid possible unwanted side effects. However, by characterizing the
dysregulated miRNAs in the circulation, we might be able to identify key signaling pathways involved
in the pathogenesis of the disease and also identify individuals at risk through miRNA profiling.

4. Concluding Remarks

Genetics and epigenetics play a key role in the development of several diseases, including NAFLD.
New genetic determinants of NAFLD will continue to appear in the coming years, where future
strategies should increase the number of individuals included in GWAS. Moreover, epigenetic changes
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interact with inherited risk factors to determine an individual’s susceptibility to NAFLD. To date,
there is no approved pharmacologic therapy for NAFLD and the current treatment remains lifestyle
modification with dieting and exercise aiming at weight loss. Therapeutic approaches involve potential
modulation of the activity of enzymes responsible for DNA and protein epigenetic modifications.
On the other hand, gene expression regulation is also provided by non-coding RNAs (miRNAs). The
evaluation of circulating miRNA profiles represents a promising approach to assess and non-invasively
monitor liver disease severity, although this issue still requires independent validations.
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