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Abstract

We first study the well-posedness of a non-autonomous incompressible non-Newtonian
fluid with delay. The existence of global solution is obtained by classical Galerkin approxi-
mation and the energy method. Actually, we also prove the uniqueness of solution as well as
the continuous dependence on the initial value. Then we analyze the long time behavior of the
dynamical system associated to the incompressible non-Newtonian fluid. Finally, we establish
the existence of pullback attractors for the non-autonomous dynamical system associated to
the problem.

Key words: Incompressible non-Newtonian equation; pullback attractor; delay; the energy
method.

AMS Subject Classification (2010): 35B40, 35Q35, 37L55, 76D03.

1 Introduction

As it is well known, the Navier-Stokes model of fluid restricts the linear relation between the
stress tensor and the velocity gradient (see [26, 27]). Fluids satisfying such constitutive relation-
ship are called Newtonian fluids, e.g. air, gases, water, motor oil, alcohols, and simply hydrocarbon
compounds. However, for many fluid materials, such as molten plastics, synthetic fibers, paints
and greases, polymer solutions, suspensions, adhesives, dyes, varnishes, and biological fluids like
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blood etc., their flow behavior cannot be characterized by Newtonian relationships in the real
world. By weaken the constraints of the Stokes hypothesis, the mathematical theory of viscous
non-Newtonian fluids generalizes the usual Stokes model in three important aspects: nonlinear
constitutive relations between the viscous part of the stress tensor and velocity gradients, depen-
dence of the viscous stress tensor on velocity gradients of order two or higher, and constitutive
relations for higher order stress tensors which must be present in the balance of energy equations
as soon as higher order velocity gradients are considered into the theory [3, 16].

The purpose of this paper is to study the well-posedness and dynamical behavior of the fol-
lowing non-autonomous incompressible non-Newtonian fluid with delay in a 2D bounded domain

∂u
∂t

+ (u · ∇)u + ∇p = ∇ · µ(e(u)) + f (t, ut) + g(x, t), in (τ,+∞) ×Ω, (1.1)

∇ · u = 0, in (τ,+∞) ×Ω, (1.2)

u(τ + θ, x) = φ(θ, x), θ ∈ [−h, 0], x ∈ Ω. (1.3)

System (1.1)-(1.3) is supplemented by the boundary conditions (νi je = 2µ1
∂ei j

∂xl
, i, j, l = 1, 2, and

n = (n1, n2) the exterior unit normal to ∂Ω)

u = 0, νi jn jnl = 0, i, j, k = 1, 2, on ∂Ω × (τ,+∞), (1.4)

where Ω is a smooth bounded domain of R2, the unknown vector function u = u(x, t) = (u(1), u(2))
denotes the velocity of the fluid, g(x, t) = g(t) = (g(1), g(2)) is a time-dependent external function,
and the scalar function p represents the pressure. The first condition in (1.4) represents the usual
non-slip condition associated with a viscous fluid, while the second one expresses the fact that the
first moments of the traction vanish on ∂Ω, it is a direct consequence of the principle of virtual
work. The time-dependent delay term f (t, ut) represents, for instance, the influences of an external
force with some kind of delay, memory or hereditary characteristics, although we can also model
some kind of feedback controls. Here, ut denotes a segment of the solution, in other words, given
h > 0 and a function u : [s − h,+∞) × Ω → R2, for each t ≥ s we define the mapping ut :
[−h, 0] ×Ω→ R2 by

ut(θ, x) = u(t + θ, x), for θ ∈ [−h, 0], x ∈ Ω.

In this way, this abstract formulation includes several types of delay terms in a unified way. For
example, terms like

F1(t, u(t − h)), F2(u(t − ρ(t))),
∫ 0

−h
F3(t, θ, u(t + θ))dθ, (1.5)

where Fi (i = 1, 2, 3) are suitable functions, and ρ : R 7→ [0, h], can all be described by the
following corresponding fi defined as

f1(t, φ) = F1(t, φ(−h)), f2(t, φ) = F2(φ(−ρ(t))), f3(t, φ) =

∫ 0

−h
F3(t, θ, φ(θ))dθ, (1.6)
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where φ : [−h, 0]→ X (X denotes certain Banach or Hilbert space concerning the spatial variable).
Then, when we replace φ by ut in (1.6), we obtain (1.5). Readers are referred to [6, 10, 11] for
more details.

Problem (1.1)-(1.4) models the motion of an isothermal incompressible viscous fluid with
µ(e(u)) = (µi j(e(u)))2×2, which is usually called the extra stress tensor of the fluid and is a matrix
of order 2 × 2 in which

µi j(e(u)) = 2µ0(ε0 + |e|2)−
α
2 ei j − 2µ1∆ei j, i, j = 1, 2,

ei j = ei j(u) =
1
2

(
∂ui

∂x j
+
∂u j

∂xi
), |e|2 =

2∑
i, j=1

|ei j|
2,

(1.7)

where µ0, µ1, ε0 and α (0 < α < 1) are positive constants which generally depend on the temper-
ature and pressure. In (1.7) if µi j(e(u)) depends linearly on ei j(u), then we say the corresponding
fluid is a Newtonian one. If the relation between µi j(e(u)) and ei j(u) is nonlinear, then the fluid is
said to be non-Newtonian. One can refer to [2, 3, 21, 24] and related references therein for more
physical explanations.

The existence and uniqueness of solution of non-Newtonian flow is studied in [1, 2, 3], while
a maximal compact attractor of a non-Newtonian system in an unbounded channel is obtained
in [4]. In [29, 30, 31, 32, 34, 35] the existence of (compact, global, pullback) attractor for a non-
Newtonian equation without delay has been analyzed, while [20] focused on pullback attractor of a
non-autonomous non-Newtonian equation with variable delays. It is worth mentioning that authors
in [33] obtained pullback attractors for a non-Newtonian fluid model with infinite delays, Caraballo
and Real [7] proved the existence and uniqueness of solution for functional Navier-Stokes models
with delay, and a non-classical non-autonomous diffusion equation with delay was considered in
[6].

Enlightened by [6], in this paper we first aim to show the existence, uniqueness and conti-
nuity of solutions to (1.1)-(1.4) by the energy method (see [6, 14, 15]) and the classical Galerkin
approximation (see [27]). Our second goal is to establish the existence of pullback attractor in
space C([−h, 0]; H2(Ω)) by using pullbackD− ω−limit compactness and a priori estimates.

We would like to mention that we will give a relatively complete proof of the existence,
uniqueness and continuity of solutions to Eq.(1.1), which will be obtained assuming that g belongs
to a more general space than the one in [20], namely, g ∈ L2

loc(R; W ′) instead of g ∈ L2
loc(R; H).

And the assumption g ∈ L2
loc(R; H) is needed only when we show the existence of pullback ab-

sorbing set in the space CW . Moreover, we only need g ∈ L2
loc(R; H) and satisfying (4.14), i.e.,

lim
m→+∞

sup
t≥τ

∫ t

τ
e−2µ1λm+1(t−s)‖g(s)‖2ds = 0, to establish that the process is pullback D − ω−limit com-

pact in CW . However, in some references, the fact that g ∈ C(R; H) is required to prove the pullback
D − ω−limit compactness in CW which is a much stronger assumption than ours. Besides, in [20]
the authors established the existence of pullback attractor for non-Newtonian fluid with variable
delay, and we generalize this result to model more general delay. In other words, our result is true
for variable and distributed delays.
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The structure of the paper is as follows. In the next section, we first introduce some notations,
then recall some definitions and known results concerning pullback attractors for non-autonomous
dynamical systems. In Section 3, we prove the existence, uniqueness and continuity of solutions
to problem (1.1)-(1.4). Section 4 is devoted to establishing the existence of pullback attractor in
space C([−h, 0]; H2(Ω)), while Section 5 provides some conclusions about our work. We also
present some technical lemmas that are used in this paper in an Appendix in Section 6.

2 Preliminaries

We first recall some notations which are necessary for our analysis although they are similar
to those in [1, 3, 4, 20, 34], but we prefer to introduce them here for completeness.

Lp(Ω) will denote the 2D vector Lebesgue space with norm ‖·‖Lp(Ω); particularly, ‖·‖L2(Ω) = ‖·‖,
Hm(Ω) is the 2D vector Sobolev space {φ : φ = (φ1, φ2) ∈ L2(Ω),∇kφ ∈ L2(Ω), k ≤ m} with

norm ‖ · ‖Hm(Ω),
H1

0(Ω) is the closure of {φ : φ = (φ1, φ2) ∈ C∞(Ω) ×C∞(Ω)} in H1(Ω),
V denotes the {φ ∈ C∞(Ω) ×C∞(Ω) : φ = (φ1, φ2), ∇ · φ = 0},
H is the closure ofV in L2(Ω) with norm ‖ · ‖; H′ is the dual space of H,
W denotes the closure ofV in H2(Ω) with norm ‖ · ‖W ; W ′=dual space of W,
(·, ·)−the inner product in H, 〈·, ·〉-the dual pairing between W and W ′.
distM(X,Y)−the Hausdorff semi-distance between X,Y ⊂ M, where M is a normed space,

defined by

distM(X,Y) = sup
x∈X

inf
y∈Y
‖x − y‖M.

Set

a(u, v) =

2∑
i, j,k=1

(
∂ei j(u)
∂xk

,
∂ei j(v)
∂xk

)
=

2∑
i, j,k=1

∫
Ω

∂ei j(u)
∂xk

·
∂ei j(v)
∂xk

dx, u, v ∈ W. (2.1)

On the one hand, from the definition of a(·, ·) and Lemma 6.3 in Section 6, we see that a(·, ·)
defines a positive definite symmetric bilinear form on W. As a consequence of the Lax-Milgram
Lemma, we obtain an isometric operator A ∈ L(W,W ′), via

〈Au, v〉 = a(u, v), u, v ∈ W.

On the other hand, denoting D(A) = {u ∈ W : Au ∈ H}, it turns out that D(A) is a Hilbert space
and A is also an isometry from D(A) to H. Actually, A = P∆2, where P is the Leray projector from
L2(Ω) to H and, for any u ∈ D(A), we have (see [34] and Appendix for more details)

c1‖u‖W ≤ ‖Au‖. (2.2)
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We also define a continuous trilinear form on H1
0(Ω) × H1

0(Ω) × H1
0(Ω) by

b(u, v,w) =

2∑
i, j=1

∫
Ω

ui
∂v j

∂xi
w jdx, u, v,w ∈ H1

0(Ω).

Since W ⊂ H1
0(Ω), b(·, ·, ·) is continuous on W ×W ×W and it is easy to check that (see [27])

b(u, v,w) = −b(u,w, v), b(u, v, v) = 0, ∀u, v,w ∈ W. (2.3)

Now we can define below continuous functional B(u) := B(u, u) from W ×W to W ′, for any u ∈ W,
in the following way,

〈B(u),w〉 = b(u, u,w), ∀w ∈ W. (2.4)

To finish, we set

µ(u) = 2µ0(ε0 + |e(u)|2)−α/2,

for u ∈ W, and define N(u) as

〈N(u), v〉 =

2∑
i, j=1

∫
Ω

µ(u)ei j(u)ei j(v)dx, ∀v ∈ W. (2.5)

Then the functional N(u) is continuous from W to W ′. When u ∈ D(A), we can extend N(u) to H
by setting

〈N(u), v〉 = −

∫
Ω

{∇ · [µ(u)e(u)] · v} dx, ∀v ∈ H. (2.6)

From a physical point of view, the initial boundary problem of Eq. (1.1) can be formulated as

∂u
∂t

+ (u · ∇)u + ∇p = ∇ ·
(
2µ0(ε0 + |e|2)−

α
2 e − 2µ1∆e

)
+ f (t, ut) + g(x, t), in (τ,+∞) ×Ω, (2.7)

∇ · u = 0, in (τ,+∞) ×Ω, (2.8)

u = 0, νi jn jnl = 0, on ∂Ω × (τ,∞), (2.9)

u(τ + θ, x) = φ(θ, x), θ ∈ [−h, 0], x ∈ Ω. (2.10)

As usual, in the variational set-up, we get rid of the pressure and rewrite our problem (2.7)-
(2.10) in a weak formulation as follows (see [3, 31])

∂u
∂t

+ 2µ1Au + B(u) + N(u) = f (t, ut) + g(x, t), in (τ,+∞) ×Ω, (2.11)

u(τ + θ, x) = φ(θ, x), θ ∈ [−h, 0], x ∈ Ω. (2.12)

We now state the assumptions that will be imposed on the function f : [τ,T ]×CH 7→ (L2(Ω))2

containing the delay along our analysis. We will assume that the given delay term satisfies:

(H1) For any ξ ∈ CH, the mapping [τ,T ] 3 t 7→ f (t, ξ) ∈ (L2(Ω))2 is measurable,
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(H2) f (·, 0) = 0,

(H3) ∃ L f > 0 such that for any t ∈ [τ,T ] and all ξ, η ∈ CH,

‖ f (t, ξ) − f (t, η)‖L2(Ω) ≤ L f ‖ξ − η‖CH ,

Remark 2.1. As it is pointed out in [10, 15, 25], (H2) is not really a restriction, and condition
(H2) and (H3) imply that

‖ f (t, ξ)‖L2(Ω) ≤ L f ‖ξ‖CH ,

so that ‖ f (·, ξ)‖L2(Ω) ∈ L∞(τ,T ).

An example of an operator satisfying assumptions (H1) − (H3) is given in [10, 15].
We now recall some definitions and results concerning dynamical systems and pullback at-

tractors. These definitions and results can be found in [7, 8, 9, 10, 12, 13, 19, 23, 34, 36].
Let (X, dX) be a metric space, and denote R2

d = {(t, τ) ∈ R2 : τ ≤ t}. A process U on X is
a mapping R2

d × X 3 (t, τ, x) 7→ U(t, τ)x ∈ X such that U(τ, τ)x = x for any τ ∈ R, x ∈ X, and
U(t, r)(U(r, τ)x) = U(t, τ)x for any τ ≤ r ≤ t and all x ∈ X.

Let P(X) denote the family of all nonempty subsets of X, and consider a family of nonempty
sets D0 = {D0(t) : t ∈ R} ⊂ P(X). Let D be a given nonempty class of sets parameterized in time,
D = {D(t) : t ∈ R} ⊂ P(X). The classD will be called a universe in P(X).

Definition 2.2. For any σ > 0, we will denote by Dσ(X) the class of all families of nonempty
subsets D = {D(t) : t ∈ R} ⊂ P(X) such that

lim
t→−∞

(
eσt sup

u∈D(t)
‖u‖2X

)
= 0.

Definition 2.3. It is said that D0 = {D0(t) : t ∈ R} ⊂ P(X) is pullbackD−absorbing for the process
{U(t, τ) : t ≥ τ} on X if for any t ∈ R and any D = {D(t) : t ∈ R} ∈ D, there exists a τ0(t,D) ≤ t
such that

U(t, τ)D(τ) ⊂ D0(t) for all τ ≤ τ0(t,D).

Definition 2.4. Let {U(t, τ)} be a process on X. We say that {U(t, τ)} is pullback D − ω−limit
compact with respect to each t ∈ R, if for any family B = {B(t) : t ∈ R} ∈ D and for any ε > 0,
there exists t1 = t1(B, t, ε) > 0, such that

κ

⋃
s≥t1

U(t, t − s)B(t − s)

 ≤ ε,
where κ is the Kuratowski measure of non-compactness (see [23] for more information).

Definition 2.5. The familyAD = {AD(t) : t ∈ R} ⊂ P(X) is a pullbackD−attractor for the process
{U(t, τ) : t ≥ τ} in X if :
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(i) for any t ∈ R, the setAD(t) is a nonempty compact subset of X,

(ii) AD is pullbackD−attracting, i.e.,

lim
τ→−∞

distX (U(t, τ)D(τ),AD(t)) = 0, for all D ∈ D, for any t ∈ R,

(iii) AD is invariant, i.e.,

U(t, τ)AD(τ) = AD(t), for all τ ≤ t.

To analyze our problem with delay, we need to construct our process in a Banach space of
segments of solutions. Namely, the space CX which we will define below (see Section 3 for more
details). Let X be a Banach space and let h > 0 be a given positive number (the time delay). Denote
by CX the Banach space C([−h, 0]; X) endowed with the norm ‖φ‖CX = sup

θ∈[−h,0]
‖φ(θ)‖X. To study

the pullback D − ω−limit compactness of the process on CX, we borrow some techniques from
[19, 28].

Proposition 2.6. (see [19]) Let {U(t, τ)} be a continuous process on CX. Suppose that for each
t ∈ R, B = {B(t) : t ∈ R} ∈ D and ε > 0, there exist τ0 = τ0(t, B, ε) > 0, a finite dimensional
subspace X1 of X and δ > 0 such that

(i) for each fixed θ ∈ [−h, 0]∥∥∥∥∥∥∥⋃s≥τ0

⋃
ut(·)∈U(t,t−s)B(t−s)

Pu(t + θ)

∥∥∥∥∥∥∥
X

is bounded;

(ii) for all s ≥ τ0, ut(·) ∈ U(t, t − s)B(t − s), θ1, θ2 ∈ [−h, 0] with |θ2 − θ1| < δ,

‖P(u(t + θ1) − u(t + θ2))‖X < ε;

(iii) for all s ≥ τ0, ut(·) ∈ U(t, t − s)B(t − s),

sup
θ∈[−h,0]

‖(I − P)u(t + θ)‖X < ε,

where P : X → X1 is the canonical projector. Then {U(t, τ)} is pullback D − ω−limit compact in
CX with respect to each t ∈ R.

The following proposition is similar to that of [5, 23, 36].

Proposition 2.7. Let {U(t, τ)}t≥τ be a process on Banach space CX andD be a universe in P(CX).
Then, {U(t, τ)}t≥τ possesses a unique pullback D−attractor AD = {AD(t) : t ∈ R}, for any t ∈ R
and D ∈ D,

AD(t) = ω(D, t) =
⋂
τ0≤t

⋃
τ≤τ0

U(t, τ)D(τ)

if and only if

(a) {U(t, τ)}t≥τ has a pullback D−absorbing set in CX,

(b) {U(t, τ)}t≥τ is pullback D− ω−limit compact in CX.
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3 Existence and continuity of solutions

In this section, by classical Faedo-Galerkin approximation and the energy method, we prove
the existence, uniqueness and continuity of solutions to problem (2.11)-(2.12).

Theorem 3.1. (Existence and uniqueness of solution) Assume (H1)−(H3) hold. Let g ∈ L2
loc(R,W

′)
and φ ∈ CH. Then, for any τ ∈ R,

(a) there exists a unique weak solution u to problem (2.11) satisfying

u ∈ C([τ − h,T ]; H) ∩ L∞(τ,T ; H) ∩ L2(τ,T ; W), ∀T > τ.

(b) If φ ∈ CW , and g ∈ L2
loc(R,H), then there exists a unique strong solution u to problem (2.11)

satisfying
u ∈ C([τ − h,T ]; W) ∩ L∞(τ,T ; W) ∩ L2(τ,T ; D(A)), ∀T > τ.

Proof. We split the proof into several steps.
Step 1. A Galerkin Scheme.
By the definition of A and the classical spectral theory of elliptic operators (see [24]), we

see that operator A possesses a sequence of eigenvalues {λn}
∞
n=1 and a corresponding family of

eigenfunctions {wn}∞n=1 ⊂ W ∩ D(A), which form a basis of W and are orthonormal in H, we
consider the subspace Wm = span{w1,w2, · · · ,wm}, and the projector Pm : H → Wm defined as

Pmu =

m∑
n=1

(u,wn)wn, u ∈ H.

Define

um(t) =

m∑
n=1

γmnwn,

where the upper script m will be used instead of (m) for short, since no confusion is possible with
powers of u, and the coefficients γmn are required to satisfy the following system:(

∂

∂t
um(t),wn

)
+ 2µ1(Aum,wn) + 〈B(um(t)),wn〉 + 〈N(um(t)),wn〉

= ( f (t, um
t ),wn) + 〈g(t, x),wn〉, a.e. t > τ, 1 ≤ n ≤ m,

(3.1)

and where the equations are understood in the sense ofD′(τ,T ), and the initial conditions are

um(τ + θ) = Pmφ(θ), for θ ∈ [−h, 0].

The above system of ordinary differential equations with finite delay fulfills the conditions for
existence and uniqueness of local solution in [10, Theorem A1, p. 2450]. Hence, we can ensure
that problem (3.1) has a unique local solution defined in [τ, tm] with τ < tm ≤ +∞ (see [18] for a
similar result).
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Next, by a priori estimates, we verify that solutions um do exist for all time t ∈ [τ,+∞).
Step 2: A priori estimates
Multiplying (3.1) by γmn, summing from n = 1 to n = m, and using Lemma 6.3 in Appendix,

we obtain, for all t ∈ [τ, tm], that

1
2

d
dt
‖um(t)‖2 + 2c1µ1‖um(t)‖2W + 〈B(um(t)), um(t)〉 + 〈N(um(t)), um(t)〉

≤ ( f (t, um
t ), um(t)) + 〈g, um(t)〉.

(3.2)

Integrating over [τ, t],

1
2
‖um(t)‖2 + 2c1µ1

∫ t

τ

‖um(s)‖2Wds +

∫ t

τ

〈B(um(s)), um(s)〉ds +

∫ t

τ

〈N(um(s)), um(s)〉ds

≤
1
2
‖um(τ)‖2 +

∫ t

τ

( f (s, um
s ), um(s))ds +

∫ t

τ

〈g, um(s)〉ds.
(3.3)

First, by (2.3) and (2.5), ∫ t

τ

〈B(um(s)), um(s)〉ds = 0, (3.4)

and ∫ t

τ

〈N(um(s)), um(s)〉ds ≥ 0. (3.5)

By the fact that ‖v‖W ≥ ‖v‖ for all v ∈ W,∫ t

τ

〈g, um(s)〉ds ≤
c1µ1

2

∫ t

τ

‖um(s)‖2Wds +
1

2c1µ1

∫ t

τ

‖g(s)‖2W′ds. (3.6)

From (H3) and Young’s inequality,∫ t

τ

( f (s, um
s ), um(s))ds ≤

∫ t

τ

‖ f (s, um
s )‖ · ‖um(s)‖ds

≤ L f

∫ t

τ

‖um
s ‖CH‖u

m(s)‖ds

≤
c1µ1

2

∫ t

τ

‖um(s)‖2Wds +
L2

f

2c1µ1

∫ t

τ

‖um
s ‖

2
CH

ds.

(3.7)

It follows from (3.3)-(3.7) that

‖um(t)‖2+2c1µ1

∫ t

τ

‖um(s)‖2Wds ≤ ‖φ‖2CH
+

L2
f

c1µ1

∫ t

τ

‖um
s ‖

2
CH

ds+
1

c1µ1

∫ t

τ

‖g(s)‖2W′ds, ∀ t ≥ τ. (3.8)

Replacing t by t + θ in (3.8) we obtain

‖um
t ‖

2
CH
≤ ‖φ‖2CH

+
L2

f

c1µ1

∫ t

τ

‖um
s ‖

2
CH

ds +
1

c1µ1

∫ t

τ

‖g(s)‖2W′ds, ∀ t ≥ τ,

and therefore, the Gronwall Lemma implies

‖um
t ‖

2
CH
≤ e

L2
f

c1µ1
(t−τ)

(
‖φ‖2CH

+
1

c1µ1

∫ t

τ

‖g(s)‖2W′ds
)
, ∀ t ≥ τ, ∀ m ≥ 1. (3.9)
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Then, by (3.9), we can check that for each T > τ and R > 0, there exists a positive constant
C(τ,T,R, L f ), depending on the constants of the problem c1, µ1, L f , g, and on τ,T,R, such that for
all m ≥ 1,

‖um
t ‖

2
CH

+ ‖um‖2L2(τ,T ;W) ≤ C(τ,T,R, L f ), ‖φ‖CH ≤ R.

In particular, thanks to inequalities (3.8) and (3.9), and the fact that g ∈ L2
loc(R; W ′), we deduce

{um} is bounded in L∞(τ − h,T ; H) ∩ L2(τ,T ; W), ∀T > τ. (3.10)

On the other hand, for almost all t, B(u(t)) and N(u(t)) are elements of W ′, and the measurability
of the mappings

t ∈ [0,T ]→ B(u(t)) ∈ W ′,

and

t ∈ [0,T ]→ N(u(t)) ∈ W ′

are straightforward. Moreover, thanks to (2.3), the Hölder inequality, embedding theorems, and
Lemma 6.1 in Appendix, we have that for all ϕ ∈ W,

|〈B(u), ϕ〉| = |b(u, u, ϕ)| = | − b(u, ϕ, u)| =

∣∣∣∣∣∣∣
2∑

i, j=1

∫
Ω

ui
∂ϕ j

∂xi
u jdx

∣∣∣∣∣∣∣
≤ c‖u‖2L4‖ϕ‖H1

0 (Ω) ≤ c‖u‖ · ‖∇u‖ · ‖ϕ‖H1
0 (Ω) ≤ c‖u‖ · ‖∆u‖ · ‖∆ϕ‖.

(3.11)

Using the fact that µ(u) = µ0(ε0 + |e|2)−
α
2 ≤ µ0ε

− α2
0 , we can also obtain

|〈N(u), ϕ〉| =

∣∣∣∣∣∣∣2
2∑

i, j=1

∫
Ω

µ(e(u))ei j(u)ei j(ϕ)dx

∣∣∣∣∣∣∣
≤ 2µ0ε

− α2
0

∫
Ω

2∑
i, j=1

|ei j(u)ei j(ϕ)|dx

≤ c‖∇u‖ · ‖∇ϕ‖

≤ c‖∆u‖ · ‖∆ϕ‖.

(3.12)

As a consequence of (3.11) and (3.12), the estimates hold true,

‖B(u)‖W′ ≤ c‖u‖ · ‖∆u‖ (3.13)

and
‖N(u)‖W′ ≤ c‖∆u‖. (3.14)

Hence, ∫ T

τ

‖B(u(s))‖2W′ds ≤ c
∫ T

τ

‖u(s)‖2‖∆u(s)‖2ds ≤ c
∫ T

τ

‖us‖
2
CH
‖∆u(s)‖2ds < ∞ (3.15)
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and ∫ T

τ

‖N(u(s))‖2W′ds ≤ c
∫ T

τ

‖∆u(s)‖2ds < ∞. (3.16)

To this end, we need to show that {(um)′} is bounded in L2(τ,T ; W ′). Let ϕ ∈ C1([0,T ],W) and ϕm

be the projection of ϕ in W, onto the space Wm = span{w1,w2, · · · ,wm}. By (3.1), we have∫
Ω

∂um

∂t
wndx

= −2µ1

2∑
i, j,k=1

∫
Ω

∂ei j(um)
∂xk

∂ei j(wn)
∂xk

dx −
2∑

i, j=1

∫
Ω

um
i

∂um
j

∂xi
wn

jdx

−

2∑
i, j=1

∫
Ω

µ(um)ei j(um)ei j(wn)dx +

∫
Ω

f (t, um
t )wndx +

∫
Ω

g(x, t)wndx, n = 1, 2, · · · ,m.

(3.17)

Using (3.17) and the definition of ϕm,∫ T

τ

∫
Ω

∂um

∂t
ϕdxdt =

∫ T

τ

∫
Ω

∂um

∂t
ϕmdxdt

= −2µ1

2∑
i, j,k=1

∫ T

τ

∫
Ω

∂ei j(um)
∂xk

∂ei j(ϕm)
∂xk

dxdt −
2∑

i, j=1

∫ T

τ

∫
Ω

um
i

∂um
j

∂xi
ϕm

j dxdt

−

2∑
i, j=1

∫ T

τ

∫
Ω

µ(um)ei j(um)ei j(ϕm)dxdt +

∫ T

τ

∫
Ω

f (t, um
t )ϕmdxdt

+

∫ T

τ

∫
Ω

g(x, t)ϕmdxdt

= I1 + I2 + I3 + I4 + I5.

(3.18)

From (3.10),
|I1 + I4 + I5| ≤ C1‖ϕ

m‖L2(τ,T ;W). (3.19)

By a similar argument to that one in (3.11) and (3.12), we can check that

|I2| ≤ C2

∫ T

τ

‖um‖ · ‖∇um‖ · ‖∇ϕm‖dt ≤ C3‖ϕ
m‖L2(τ,T ;W) (3.20)

as well as
|I3| ≤ C4‖ϕ

m‖L2(τ,T ;W). (3.21)

Hence, from (3.17)-(3.21), we can conclude that∣∣∣∣∣∣
∫ T

τ

∫
Ω

∂um

∂t
ϕdxdt

∣∣∣∣∣∣ ≤ C5‖ϕ
m‖L2(τ,T ;W) ≤ C5‖ϕ‖L2(τ,T ;W), (3.22)

and ∥∥∥∥∥∂um

∂t

∥∥∥∥∥
L2(τ,T ;W′)

≤ C6, (3.23)
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where Ci (i = 1, 2, · · · , 6) are positive constants. Thus,

{(um)′} is bounded in L2(τ,T ; W ′), ∀T ≥ τ. (3.24)

Step 3: The energy method and compactness results
Now, we combine some well-known compactness results with the energy method to pass to

the limit in a subsequence of {um} to obtain a solution of (1.1). Observe that

um|[τ−h,τ] = Pmφ→ φ in CH. (3.25)

By Step 1, Step 2 and compactness theorem, we deduce that there exist a subsequence (which
we relabel the same) {um}, a function u ∈ C([τ − h,∞); H), with u|[τ−h,τ] = φ, u ∈ L2(τ,T ; W),
χ ∈ L2(τ,T ; W ′) for all T > τ, and an element ξ ∈ L∞(τ,T,H) for all T > τ, such that

um ∗
⇀ u weakly-star in L∞(τ,T ; H),

um ⇀ u weakly in L2(τ,T ; W),

(um)′ ⇀ χ weakly in L2(τ,T ; W ′),

um → u strongly in L2(τ,T ; H),

f (·, um
· )

∗
⇀ ξ weakly-star in L∞(τ,T ; H).

(3.26)

We first prove that χ = u′ = du
dt . Indeed, since the approximate solutions {um} satisfy

um(s) = Pmφ(τ) +

∫ s

τ

dum

dt
dt, s ∈ [τ,T ], m = 1, 2, · · · .

From (3.25), we know

Pmφ(τ)→ φ(τ).

Then

u(s) = φ(τ) +

∫ s

τ

χdt,

by [27, Lemma 3.1, Chapter II], we immediately deduce that χ = u′ = du
dt .

Using (3.26)4, we can also assume that

um(t)→ u(t) in H a.e. t ∈ [τ,T ], (3.27)

which is not enough to deduce that ξ(·) = f (·, u·).
However, we can obtain convergence for all t > τ with a little more effort and in a more

general case. Notice that,

um(t) − um(s) =

∫ t

s
(um)′(r)dr in W ′, ∀ s, t ∈ [τ,T ],
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and by (3.24) we have that {um} is equi-continuous on [τ,T ] with values in W ′, for all T > τ.
Since the injection of W in H is compact, the injection of H into W ′ is compact as well. Thus,

from (3.10) and the equi-continuity of {um} in W ′, using Arzelà-Ascoli theorem, we have (again,
up to a subsequence)

um → u in C([τ,T ]; W ′), ∀ T > τ. (3.28)

This, jointly with the fact H ⊂ W ′, (3.10) and [27, Lemma 3.3, Chapter II], allows us to claim that
for any sequence {tm} ⊂ [τ,∞), with tm → t,

um(tm) ⇀ u(t) weakly in H, (3.29)

where we have used (3.28) in order to identify which is the weak limit.
Now we prove that in fact

um(tm)→ u(t) in C([τ,T ]; H) ∀ T > τ. (3.30)

If not, then, taking into account that u ∈ C([τ,∞); H), there would exist T > τ, ε1 > 0, a value
t0 ∈ [τ,T ], and subsequences (relabelled the same) {um} and {tm} ⊂ [τ,T ], with lim

m→+∞
tm = t0, such

that

‖um(tm) − u(t0)‖ ≥ ε1, ∀ m ≥ 1.

To conclude that this is false, we use an energy method. Note that the following energy equality
holds for all um:

1
2

d
dt
‖um(t)‖2 + 2µ1a(um(t), um(t)) + 〈B(um(t)), um(t)〉 + 〈N(um(t)), um(t)〉

= ( f (t, um
t ), um(t)) + 〈g, um(t)〉.

(3.31)

By Lemma 6.3, we find that

1
2

d
dt
‖um(t)‖2 + 2c1µ1‖um(t)‖2W + 〈B(um(t)), um(t)〉 + 〈N(um(t)), um(t)〉

≤ ( f (t, um
t ), um(t)) + 〈g, um(t)〉.

(3.32)

Integrating (3.32) over [s, t] with respect to t,

1
2
‖um(t)‖2 + 2c1µ1

∫ t

s
‖um(r)‖2Wdr +

∫ t

s
〈B(um(r)), um(r)〉dr +

∫ t

s
〈N(um(r)), um(r)〉dr

≤
1
2
‖um(s)‖2 +

∫ t

s
( f (r, um

r ), um(r))dr +

∫ t

s
〈g(r), um(r)〉dr.

(3.33)

Since 〈B(um(r)), um(r)〉 = 0 and 〈N(um(r)), um(r)〉 ≥ 0, and∫ t

s
( f (r, um

r ), um(r))dr ≤
c1µ1

2

∫ t

s
‖um(r)‖2Wdr +

1
2c1µ1

∫ t

s
‖ f (r, um

r )‖2dr

≤
c1µ1

2

∫ t

s
‖um(r)‖2Wdr +

L2
f

2c1µ1

∫ t

s
‖um

r ‖CH dr

≤
c1µ1

2

∫ t

s
‖um(r)‖2Wdr + C(t − s), ∀τ ≤ s ≤ t ≤ T,
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where C =
L2

f D

2c1µ1
, and D corresponds to the upper bound of ‖ut‖CH , it follows

‖um(t)‖2 ≤ ‖um(s)‖2 + 2
∫ t

s
〈g(r), um(r)〉dr + 2C(t − s), ∀τ ≤ s ≤ t ≤ T. (3.34)

On the one hand, observe that by (3.26), passing to the limit in (3.1), we have that u ∈ C([τ,T ]; H)
is a solution of a similar problem to (1.1), namely,(

∂

∂t
u(t),w

)
+ 2µ1a(u(t),w) + 〈B(u(t)),w〉 + 〈N(u(t)),w〉 = (ξ,w) + 〈g,w〉, ∀w ∈ W,

fulfilled with the initial datum u(τ) = φ(0). Therefore, it satisfies the energy equality

1
2
‖u(t)‖2 + 2µ1

∫ t

s
a(u(r), u(r))dr +

∫ t

s
〈B(u(r)), u(r)〉dr +

∫ t

s
〈N(u(r)), u(r)〉dr

=
1
2
‖u(s)‖2 +

∫ t

s
(ξ(r), u(r))dr +

∫ t

s
〈g(r), u(r)〉dr, ∀τ ≤ s ≤ t ≤ T.

On the other hand, from (3.26)5 we deduce that∫ t

s
‖ξ(r)‖2dr ≤ lim

m→+∞
inf

∫ t

s
‖ f (r, um

r )‖2dr ≤ D(t − s), ∀τ ≤ s ≤ t ≤ T,

which implies that u also satisfies inequality (3.34) (here we applied Lemma 6.3) with the same
constant c1.

Now, consider the functions Jm, J : [τ,T ] 7→ R defined by

Jm(t) =
1
2
‖um(t)‖2 −

∫ t

τ

〈g(r), um(r)〉dr −C(t − τ),

J(t) =
1
2
‖u(t)‖2 −

∫ t

τ

〈g(r), u(r)〉dr −C(t − τ),

with C defined in (3.34). By (3.34) and the analogous inequality for u, it is clear that Jm and J are
non-increasing continuous functions. Moreover, by (3.26) and (3.27),

Jm(t)→ J(t) a.e. t ∈ [τ,T ]. (3.35)

Now we are ready to prove that
um(tm)→ u(t0) in H. (3.36)

Recall that from (3.29) we have

‖u(t0)‖ ≤ lim
m→+∞

inf ‖um(tm)‖. (3.37)

Therefore, if we show that
lim

m→+∞
sup ‖um(tm)‖ ≤ ‖u(t0)‖, (3.38)

then combining with (3.37), we can obtain lim
m→+∞

‖um(tm)‖ = ‖u(t0)‖, which means (3.36) holds true.

14



Note that the case t0 = τ follows directly from (3.25) and (3.34) with s = τ. Hence, we can
assume that t0 > τ. Owing to this result, we approach t0 from the left by a sequence {t̃k}, namely,
lim

k→+∞
t̃k ↗ t0, being {t̃k} values where (3.35) holds. Since J(·) is continuous at t0, for any ε > 0

there is kε such that |J(t̃k) − J(t0)| < ε
2 for all k ≥ kε . On the other hand, taking m ≥ m(kε) such that

tm > t̃kε , as Jm is non-increasing and for all t̃k the convergence (3.35) holds, one has

Jm(tm) − J(t0) ≤ |Jm(t̃kε ) − J(t̃kε )| + |J(t̃kε ) − J(t0)|,

and taking m ≥ m′(kε) ≥ m(kε), such that |Jm(t̃kε ) − J(t̃kε )| <
ε
2 . It can also be deduced from (3.26)

that ∫ tm

τ

〈g(r), um(r)〉dr →
∫ t0

τ

〈g(r), u(r)〉dr,

We conclude that (3.38) holds. Thus, (3.36) and finally (3.30) are also true, as claimed. This
also implies, thanks to (3.25), that um

t → ut in CH for all t ≥ τ. Therefore, we identify the weak
limit ξ from (3.26). Indeed, from the above convergence and since f satisfies (H3), we have that
f (·, um

· )→ f (·, u·) in L2(τ,T ; (L2(Ω))2) for all T > τ. Thus, we can pass to the limit finally in (3.1)
concluding that u solves (1.1).

Step 4: The uniqueness of solution
This can be obtained in the following way. Consider two weak solutions of (1.1), u and v,

with the same initial data, and denote w = u − v. We notice that

|b(u, v,w)| ≤ 2−
1
2 ‖u‖

1
2 ‖∇u‖

1
2 ‖∇v‖‖w‖

1
2 ‖∇w‖

1
2 , u, v,w ∈ W.

∂w
∂t

+ 2µ1Aw + B(u) − B(v) + N(u) − N(v) = f (t, ut) − f (t, vt), (3.39)

with initial value
w(τ) = 0. (3.40)

Take the inner product of (3.39) with w to yield that

1
2

d
dt
‖w‖2 + 2µ1a(w,w) + 〈B(u) − B(v),w〉 + 〈N(u) − N(v),w〉 = ( f (t, ut) − f (t, vt),w).

From the monotonicity of µ(u), it follows that

〈N(u) − N(v),w〉 = 2
∫

Ω

[µ(u)ei j(u) − µ(v)ei j(v)]ei j(w)dx ≥ 0, (3.41)

and we also have
〈B(u) − B(v),w〉 = b(u, u,w) − b(v, v,w) = b(w, v,w). (3.42)

Then, for some αi > 0, i = 1, 2, 3,

|b(u, u,w) − b(v, v,w)| ≤

∣∣∣∣∣∣
∫

Ω

wi
∂u j

∂xi
w jdx

∣∣∣∣∣∣ ≤ α1‖w‖2L4‖∇u‖

≤ α2‖w‖L2‖∇w‖ · ‖∇u‖ ≤ α3‖w‖L2‖∆w‖ · ‖∆u‖.
(3.43)
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Using Lemma 6.3, together with (3.42)-(3.43), we find that, for some c > 0,

d
dt
‖w‖2 ≤ c‖w‖ · ‖∆w‖ · ‖∆u‖ + 2( f (t, ut) − f (t, vt),w)

≤ c‖w‖ · ‖∆w‖ · ‖∆u‖ + 2L f ‖ut − vt‖ · ‖w‖

≤ c‖w‖ · ‖∆w‖ · ‖∆u‖ + 2L f ‖wt‖ · ‖w‖

≤ c1µ1‖w‖2W + c‖w‖2‖∆u‖2 + 2L f ‖wt‖
2
CH
, for all t > τ,

and therefore,

d
dt
‖w‖2 ≤ c‖w‖2‖∆u‖2 + 2L f ‖wt‖

2
CH
, for all t > τ.

Integrating the above inequality over [τ, t] with respect to t,

‖w(t)‖2 ≤ c
∫ t

τ

‖w(r)‖2‖∆u(r)‖2dr + 2L f

∫ t

τ

‖wr‖
2
CH

dr.

Hence,

‖wt‖
2
CH
≤

∫ t

τ

(c‖∆u(r)‖2 + 2L f )‖wr‖
2
CH

dr.

By the Gronwall lemma, we have

‖wt‖
2
CH
≡ 0.

Finally, the regularity in (b) is a consequence of well-known regularity results and the fact that,
if g ∈ L2

loc(R; (L2(Ω))2), then the function ĝ(t) = g(t)+ f (t, ut), t > τ, belongs to L2
loc(τ,∞; (L2(Ω))2).

The proof is finished. �

Theorem 3.2. (Continuous dependence of solutions on initial values) Let g ∈ L2
loc(R; W ′), f :

R × CH 7→ (L2(Ω))2 satisfying (H1) − (H3), and φ, ψ ∈ CH be given. Let us denote u = u(·; τ, φ)
and v = v(·; τ, ψ) the corresponding weak solutions to problem (1.1). Then, the following estimate
holds:

‖ut − vt‖
2
CH
≤ ‖φ − ψ‖2CH

exp
{∫ t

τ

(
c‖∆u(s)‖2 + 2L f

)
ds

}
.

Proof. Denote w = u−v. Analogously to the arguments in Theorem 3.1 for the proof of uniqueness
of weak solution to problem (1.1) we obtain

∂w
∂t

+ 2µ1Aw + (B(u) − B(v)) + (N(u) − N(v)) = f (t, ut) − f (t, vt). (3.44)

Multiplying (3.44) by w,

d
dt
‖w‖2 + 3c1µ1‖w‖2W ≤ c‖w‖2‖∆u‖2 + 2L f ‖wt‖

2
CH
.
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Integrate the above inequality over [τ, t] with respect to t to get

‖w(t)‖2 ≤ ‖w(τ)‖2 + c
∫ t

τ

‖w(s)‖2‖∆u(s)‖2ds + 2L f

∫ t

τ

‖ws‖
2
CH

ds,

particularly,

‖wt‖
2
CH
≤ ‖w(τ)‖2 +

∫ t

τ

(c‖∆u(s)‖2 + 2L f )‖ws‖
2
CH

ds.

Again by the Gronwall lemma, we have

‖wt‖
2
CH
≤ ‖w(τ)‖2exp

{∫ t

τ

(
c‖∆u(s)‖2 + 2L f

)
ds

}
,

namely,

‖ut − vt‖
2
CH
≤ ‖φ − ψ‖2CH

exp
{∫ t

τ

(
c‖∆u(s)‖2 + 2L f

)
ds

}
.

The proof is completed immediately. �

4 Existence of pullbackD−attractor

In this section, we analyze the existence of pullbackD−attractor in CW .

4.1 Uniform estimates

Now, by the previous results, we are able to define correctly a process U on CH and CW

associated to (2.11), and then to obtain the existence of pullback attractors.

Theorem 4.1. Let g ∈ L2
loc(R; W ′) and f : R × CH → (L2(Ω))2 satisfying (H1) − (H3). Then, the

process U(t, τ) : CH → CH, with τ ≤ t, given by

U(t, τ)φ = ut(·; τ, φ),

where u = u(·; τ, φ) is the unique weak solution to (2.11), defines a continuous process on CH.

Proof. It is a consequence of Theorem 3.1 and 3.2. �

Remark 4.2. By a reasoning similar to the one in Theorem 3.2, we can conclude that U depends
continuously on the initial values in CW , which jointly with Theorem 3.1, allow us to show that U
is also a well-defined process on CW with g ∈ L2

loc(R; H) and initial datum φ ∈ CW .

Next, we show the existence of pullback D−absorbing sets of U in CH and CW , and then
verify the pullbackD− ω−limit compactness of U in CW . Hereafter, we suppose that

there exists 0 < β < c1µ1 such that σ := β −
L2

f e
βh

c1µ1
> 0, (4.1)
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and ∫ t

−∞

eσs
(
‖g(s)‖2W′ + ‖g(s)‖2

)
ds < ∞, ∀ t ∈ R,

and denote byD the class of all families of nonempty subsets D = {D(t)}t∈R ⊂ P(CX) such that

lim
t→−∞

(
eσt sup

u∈D(t)
‖u‖2CX

)
= 0,

where σ is defined in (4.1), CX = CH or CX = CW .

Remark 4.3. If c1µ1h > 1, there exists β which satisfies (4.1) when ehL2
f < c1µ1; if c1µ1h ≤ 1, then

we can choose β which satisfies (4.1) as long as ec1µ1hL2
f < (c1µ1)2 holds.

We now prove the existence of a pullback absorbing set in CH.

Lemma 4.4. (Pullback absorbing set in CH) Assume that (H1)-(H3) hold and g ∈ L2
loc(R; W ′). Let

B = {B(t) : t ∈ R} ∈ D. Then, there exists TB > 0, such that for any t ∈ R, all r > TB and
φ ∈ B(t − r) ⊂ CH, the weak solution u(·; t − r, φ) of Eq. (2.11) satisfies

‖ut‖
2
CH

= ‖U(t, t − r)φ‖2CH
≤ ρ2

1(t),

where ρ2
1(t) := 1 + eβh−σt

∫ t

−∞
eσs‖g(s)‖2W′ds.

Proof. The uniform estimates that we require for the solutions which define the process U are
analogous to those provided in the proof of theorems 3.1-3.2, but there with Galerkin approxima-
tions.

For the sake of brevity, we only sketch the main ideas:
Multiplying (2.11) by u, by Lemma 6.3, we have

1
2

d
dt
‖u‖2 + 2c1µ1‖u‖2W + 〈B(u), u〉 + 〈N(u), u〉 ≤ ( f (t, ut), u) + 〈g, u〉. (4.2)

Observe that

〈B(u), u〉 = 0, 〈N(u), u〉 ≥ 0.

By (H3) and the Young inequality,

( f (t, ut), u) ≤ ‖ f (t, ut)‖ · ‖u‖ ≤ L f ‖ut‖ · ‖u‖ ≤
L2

f

2c1µ1
‖ut‖

2
CH

+
c1µ1

2
‖u‖2W ,

and

〈g, u〉 ≤
c1µ1

2
‖u‖2W +

1
2c1µ1

‖g‖2W′ .

From the above inequalities we obtain

d
dt
‖u‖2 + 2c1µ1‖u‖2W ≤

L2
f

c1µ1
‖ut‖

2
CH

+
1

c1µ1
‖g‖2W′ . (4.3)
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Multiplying (4.3) by eβt with 0 < β < c1µ1, and integrating the resulting over [τ, t] yield

eβt‖u(t)‖2 ≤ eβτ‖u(τ)‖2 +
L2

f

c1µ1

∫ t

τ

eβs‖us‖
2
CH

ds +
1

c1µ1

∫ t

τ

eβs‖g(s)‖2W′ds.

In particular we have

eβt‖ut‖
2
CH
≤ eβ(τ+h)‖u(τ)‖2 +

L2
f e
βh

c1µ1

∫ t

τ

eβs‖us‖
2
CH

ds +
eβh

c1µ1

∫ t

τ

eβs‖g(s)‖2W′ds. (4.4)

By Lemma 6.4 in Appendix, we obtain that

eβt‖ut‖
2
CH
≤ eβ(h+τ)+

L2
f eβh

c1µ1
(t−τ)
‖φ‖2CH

+
eβh

c1µ1

∫ t

τ

eβs+
L2

f eβh

c1µ1
(t−s)
‖g(s)‖2W′ds, ∀ t ≥ τ,

which means that

‖ut‖
2
CH
≤ eβh−σ(t−τ)‖φ‖2CH

+
eβh

c1µ1

∫ t

τ

e−σ(t−s)‖g(s)‖2W′ds, ∀ t ≥ τ.

We now consider the initial time t − r instead of τ, and then

‖ut‖
2
CH

= ‖U(t, t − r)φ‖2CH
≤ eβh−σr‖φ‖2CH

+ eβh−σt
∫ t

t−r
eσs‖g(s)‖2W′ds

≤ eβh−σr‖φ‖2CH
+ eβh−σt

∫ t

−∞

eσs‖g(s)‖2W′ds.
(4.5)

We deduce from (4.5) that there exists TB > 0, such that for all r > TB and all t ∈ R, it holds

‖ut‖
2
CH
≤ 1 + eβh−σt

∫ t

−∞

eσs‖g(s)‖2W′ds := ρ2
1(t). (4.6)

The proof is finished. �

Denoting by BCH (0, ρ1(t)) the closed ball in CH of center zero and radius ρ1(t), it is easy to
check that lim

t→−∞
eσtρ2

1(t) = 0. Hence, BCH (0, ρ1(t)) is a pullbackD−absorbing set for the process U
in CH.

To our purpose, the following lemma is needed.

Lemma 4.5. Assume that (H1)-(H3) hold and g ∈ L2
loc(R; W ′). Then for TB the absorbing time

corresponding to the set BCH (0, ρ1(t)) in Lemma 4.4, there holds∫ t

t−1
a(u(s; t − r, φ), u(s; t − r, φ))ds ≤ ρ2

2(t),

for all r ≥ TB, t ∈ R, where ρ2
2(t) := cρ2

1(t) + ce−σ(t−1)
∫ t

−∞
eσs‖g(s)‖2W′ds.
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Proof. Denote u(·) = u(·; t0 − r, φ) for φ ∈ B(t0 − r) ⊂ CH, where t0 ∈ R is a fixed, but arbitrary,
number, and let us take r ≥ TB, where we have chosen the same σ than in that proof. We can then
integrate (4.3) over [t − 1, t] for t ≥ t0 and r ≥ TB,

2c1µ1

∫ t

t−1
‖u(s)‖2Wds ≤ ‖u(t − 1)‖2 +

L2
f

c1µ1

∫ t

t−1
‖us‖

2
CH

ds +
1

c1µ1

∫ t

t−1
‖g(s)‖2W′ds.

Therefore,

c1µ1

c2

∫ t

t−1
a(u(s), u(s))ds ≤ c1µ1

∫ t

t−1
‖u(s)‖2Wds

≤
1
2
‖u(t − 1)‖2 +

L2
f

2c1µ1

∫ t

t−1
‖us‖

2
CH

ds +
1

2c1µ1

∫ t

t−1
‖g(s)‖2W′ds.

Notice that by Lemma 4.4, for all r ≥ TB, it follows

1
2
‖u(t − 1)‖2 +

L2
f

2c1µ1

∫ t

t−1
‖us‖

2
CH

ds ≤ cρ2
1(t),

and ∫ t

t−1
‖g(s)‖2W′ds ≤

∫ t

t−1
eσ(s−t+1)‖g(s)‖2W′ds ≤ e−σ(t−1)

∫ t

−∞

eσs‖g(s)‖2W′ds.

Hence, we can deduce for all r ≥ TB,∫ t

t−1
a(u(s), u(s))ds ≤ cρ2

1(t) + ce−σ(t−1)
∫ t

−∞

eσs‖g(s)‖2W′ds := ρ2
2(t).

The proof is completed immediately. �

Lemma 4.6. (Pullback absorbing set in CW) Assume that (H1)-(H3) hold and g ∈ L2
loc(R; H). Then

the weak solution u of (2.11) satisfies

‖ut‖
2
CW

= ‖U(t, t − r)φ‖2CW
≤ ρ2

3(t),

for all t ≥ TB + 1 + h and t ∈ R, where ρ2
3(t) := 1

c1
(a2 + a3)ea1 , a1 = c

(
1 + ρ2

1(t)ρ2
2(t)

)
, a2 =

c
(
ρ2

1(t) + e−σ(t−1)
∫ t

−∞
eσs‖g(s)‖2ds

)
, and a3 = ρ2

2(t).

Proof. Denote u(·) = u(·; t0 − r, φ) for φ ∈ CW , where t0 ∈ R is a fixed number, and let us take
r ≥ TB. We multiply (2.11) by Au and obtain that for s ≥ t0,

1
2

d
ds

a(u(s), u(s)) + 2µ1‖Au‖2 + 〈B(u), Au〉 + 〈N(u), Au〉 = ( f (s, us), Au) + (g, Au). (4.7)

On the one hand,

( f (s, us), Au) ≤ ‖ f (s, us)‖ · ‖Au‖ ≤ L f ‖us‖CH · ‖Au‖ ≤
µ1

4
‖Au‖2 +

L2
f

µ1
‖us‖

2
CH
, (4.8)
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(g, Au) ≤
µ1

4
‖Au‖2 +

1
µ1
‖g‖2. (4.9)

By Hölder’s inequality and the Gagliardo-Nirenberg inequality,

|〈B(u), Au〉| ≤ ‖Bu‖ · ‖Au‖ ≤ ‖u‖L4‖∇u‖L4 · ‖Au‖ ≤ c‖u‖
1
2
W‖u‖H1‖u‖

1
2 ‖Au‖

≤ c‖Au‖
3
2 ‖u‖H1‖u‖

1
2 ≤

µ1

4
‖Au‖2 +

1
µ1
‖u‖2‖u‖4H1 .

(4.10)

Moreover, from the definition of N(u), one can check that

〈N(u), Au〉 = −

∫
Ω

{
∇ · [µ(u) · e(u)]

}
· Au dx

≤ c(‖∇u‖ + ‖∆u‖) · ‖Au‖ ≤
µ1

4
‖Au‖2 + c‖∆u‖2.

(4.11)

It follows from (4.7)-(4.11) that

d
ds

a(u, u) + 2µ1‖Au‖2 ≤
2L2

f

µ1
‖us‖

2
CH

+
2
µ1
‖g‖2 + c

(
1 + a(u, u)‖u‖2

)
a(u, u). (4.12)

On the other hand, from Lemma 4.4 we have for all r ≥ TB,∫ t

t−1

2L2
f

µ1
‖us‖

2
CH

+
2
µ1
‖g‖2

 ds ≤ c
(
ρ2

1(t) + e−σ(t−1)
∫ t

−∞

eσs‖g(s)‖2ds
)
.

In view of Lemma 4.5, for all r ≥ TB,∫ t

t−1
a(u(s), u(s))‖u(s)‖2ds ≤

∫ t

t−1
a(u(s), u(s))e−σseσs‖us‖

2
CH

ds ≤ eσρ2
1(t)ρ2

2(t).

Now, by Lemma 6.3 and 6.5 in Appendix, we can conclude that

‖u(s)‖2W ≤
1
c1

a(u, u) ≤
1
c1

(a2 + a3)ea1 , for all s ≥ t0 + 1, provided r ≥ TB,

where a1 = c
(
1 + ρ2

1(t)ρ2
2(t)

)
, a2 = c

(
ρ2

1(t) + e−σ(t−1)
∫ t

−∞
eσs‖g(s)‖2ds

)
, a3 = ρ2

2(t), and conse-
quently, if we take r ≥ TB + h + 1,

sup
θ∈[−h,0]

‖u(t0 + θ)‖2W ≤
1
c1

(a2 + a3)ea1 := ρ2
3(t), (4.13)

where the constants a1, a2, a3 and c1 in (4.13) are independent of the fixed time t0 ∈ R. Thus (4.13)
holds true for all t0 ∈ R. Denoting from now on

u(·) = u(·; t − r, φ),

we have for all t ∈ R, r ≥ TB + h + 1,

‖ut‖
2
CW

= ‖U(t, t − r)φ‖2CW
≤

1
c1

(a2 + a3)ea1 := ρ2
3(t),

as claimed. �
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Obviously, it is easy to check that lim
t→−∞

eσtρ2
3(t) = 0. Denote by BCW (0, ρ3(t)) the closed ball

in CW of center zero and radius ρ3(t). Thus, BCW (0, ρ3(t)) is a pullback D−absorbing set for the
process U in CW .

From now on, we assume that

lim
m→+∞

sup
t≥τ

∫ t

τ

e−2µ1λm+1(t−s)‖g(s)‖2ds = 0. (4.14)

Remark 4.7. An example for g satisfying (4.14) is given in [28], i.e., if g is normal in L2
loc(R; H),

then (4.14) holds, which is proved in Lemma 3.1 of [22].

Now, we are in a position to prove pullback D − ω−limit compactness of the process U in
CW .

Lemma 4.8. Suppose that (H1)-(H3) and (4.14) hold. Then the process {U(t, τ)} corresponding to
problem (2.11)-(2.12) is pullbackD− ω−limit compact on CW .

Proof. By the classical spectral theory of elliptic operators, there exists a sequence {λn}
∞
n=1 satisfy-

ing
0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · , λn → +∞ as n→ +∞, (4.15)

and a family of elements {wn}
∞
n=1 ⊂ D(A), which forms a basis of W and is orthonormal in H, such

that
Awn = λnwn, ∀n ∈ N. (4.16)

Let Wm = span{w1,w2, · · · ,wm}, where m ∈ N will be specified later. Then Wm is a finite-
dimensional subspace of W. Denote by Pm the orthogonal projector from W into Wm and we
obviously have ‖Pm‖ ≤ 1 for each m ∈ N.

Set u = u1 + u2, where u1 = Pmu and u2 = (I − Pm)u. We decompose Eq. (2.11) as follows:

∂u2(t)
∂t

+ 2µ1Au2 + B(u) − PmB(u1) + N(u) − PmN(u1) = f (t, ut) − Pm f (t, u1t) + (I − Pm)g (4.17)

with initial data
u2(τ + t) = (I − Pm)φ(t), t ∈ [−h, 0], (4.18)

and
∂u1(t)
∂t

+ 2µ1Au1 + PmB(u1) + PmN(u1) = Pm f (t, u1t) + Pmg (4.19)

with initial data
u1(τ + t) = Pmφ(t), t ∈ [−h, 0]. (4.20)

We divide the proof into two steps:
Step 1: For every fixed t ∈ R, any B = {B(t) : t ∈ R} ∈ D and any ε > 0 we observe that for

any T ≥ t − s with s ≥ 0, U(T, t − s)(φ) = {uT (·; t − s, φ) : u is a strong solution to the problem
(2.11) with φ ∈ B(t − s)}. We now show that condition (iii) of Proposition 2.6 holds.
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Taking the inner product of (4.17) with Au2 = A(I − Pm)u in H, we have

1
2

d
dt

a(u2, u2) + 2µ1(Au2, Au2) + 〈B(u) − PmB(u1), Au2〉 + 〈N(u) − PmN(u1), Au2〉

= ( f (t, ut) − Pm f (t, u1t), Au2) + ((I − Pm)g, Au2).
(4.21)

Since (u1, u2) = 0, from Hölder’s inequality and Gagliardo-Nirenberg’s inequality,

1
2

d
dt

a(u2, u2)+2µ1‖Au2‖
2 ≤ |〈B(u), Au2〉|+ |〈N(u), Au2〉|+ |( f (t, ut), Au2)|+ |((I−Pm)g, Au2)|, (4.22)

|( f (t, ut), Au2)| ≤
µ1

4
‖Au2‖

2 +
L2

f

µ1
‖ut‖

2
CH
, (4.23)

|((I − Pm)g, Au2)| ≤
µ1

4
‖Au2‖

2 +
1
µ1
‖g‖2, (4.24)

|〈B(u), Au2〉| ≤ ‖B(u)‖ · ‖Au2‖ ≤ ‖u‖L4‖∇u‖L4‖Au2‖ ≤ c‖u‖
1
2 ‖∇u‖

1
2 ‖u‖

1
4 ‖∆u‖

3
4 ‖Au2‖

≤ c‖u‖
3
4 ‖∇u‖

1
2 ‖u‖

3
4
W‖Au2‖ ≤

µ1

4
‖Au2‖

2 + c‖u‖
3
2 ‖∇u‖ · ‖u‖

3
2
W

≤
µ1

4
‖Au2‖

2 + c‖u‖
3
2 ‖u‖

5
2
W ,

(4.25)

|〈N(u), Au2〉| =

∣∣∣∣∣−∫
Ω

{∇ · [µ(u)e(u)]} · Au2dx
∣∣∣∣∣

≤ c(‖∇u‖ + ‖∆u‖) · ‖Au2‖ ≤
µ1

4
‖Au2‖

2 + c‖∆u‖2.
(4.26)

From (4.22)-(4.26) it follows

d
dt

a(u2, u2) + 2µ1‖Au2‖
2 ≤

2L2
f

µ1
‖ut‖

2
CH

+
2
µ1
‖g‖2 + c‖u‖

3
2 ‖u‖

5
2
W + c‖u‖2W . (4.27)

On the other hand, from (4.15)-(4.16), we infer

‖Au2‖
2 ≥ λm+1(Au2, u2) = λm+1a(u2, u2),

which along with (4.27) give

d
dt

a(u2, u2) + 2µ1λm+1a(u2, u2) ≤
2L2

f

µ1
‖ut‖

2
CH

+
2
µ1
‖g‖2 + c‖u‖

3
2 ‖u‖

5
2
W + c‖u‖2W . (4.28)

Applying the Gronwall lemma to (4.28) in the interval [τ, t + θ],

a(u2(t + θ), u2(t + θ)) ≤ a(u2(τ), u2(τ))e−2µ1λm+1(t+θ−τ)

+ c
∫ t+θ

τ

e−2µ1λm+1(t+θ−s)
(
‖us‖

2
CH

+ ‖g(s)‖2 + ‖u(s)‖
3
2 ‖u(s)‖

5
2
W + c‖u(s)‖2W

)
ds.

From (4.14) and Lemma 3.1 in [22], we can select m + 1 large enough such that for all ε > 0 and
t ≥ τ + h, we have 2µ1λm+1 − σ > 0, and

sup
θ∈[−h,0]

∫ t+θ

τ

e−2µ1λm+1(t+θ−s)‖g(s)‖2ds <
c1ε

2
. (4.29)
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Thanks to Lemma 4.4 and 4.6, we can deduce that for large enough m + 1,

sup
θ∈[−h,0]

a(u2(τ), u2(τ))e−2µ1λm+1(t+θ−τ)

≤ c2 sup
θ∈[−h,0]

‖u2τ‖
2
CW

e−2µ1λm+1(t+θ−τ) ≤ ρ2
3(τ)e−2µ1λm+1(t+θ−τ) ≤

c1ε

4
,

(4.30)

and

c sup
θ∈[−h,0]

∫ t+θ

τ

e−2µ1λm+1(t+θ−s)
(
‖us‖

2
CH

+ ‖u(s)‖
3
2 ‖u(s)‖

5
2
W + ‖u(s)‖2W

)
ds <

c1ε

4
. (4.31)

Therefore, from (4.29)-(4.31) we have

‖u2t‖
2
CW
≤

1
c1

a(u2(t + θ), u2(t + θ)) < ε,

as claimed.
Step 2: We consider problem (4.19) and check condition (ii) in Proposition 2.6. Notice that

‖Au1‖
2
W ≤ λm‖u1‖

2
W ≤ λ

2
m‖u1‖

2.

Without loss of generality, we assume that θ1, θ2 ∈ [−h, 0] with 0 < θ1 − θ2 < 1. Hence,

‖u1(t + θ1) − u1(t + θ2)‖W ≤
√
λm‖u1(t + θ1) − u1(t + θ2)‖ =

√
λm

∫ t+θ2

t+θ1

‖
du1

dt
‖dt

≤
√
λm

∫ t+θ2

t+θ1

(
2µ1

√
λm‖u1‖W + ‖B(u1)‖ + ‖N(u1)‖ + ‖ f (s, u1s)‖ + ‖Pmg‖

)
ds.

(4.32)

Since

‖B(u1)‖ ≤ ‖u1‖L4‖∇u1‖L4 ≤ c‖u1‖
1
2 ‖∇u1‖

1
2 ‖u1‖

1
4 ‖∆u1‖

3
4 ≤ c‖u1‖

3
4 ‖∇u1‖

1
2 ‖∆u1‖

3
4 ≤ c‖∆u1‖

2, (4.33)

‖N(u1)‖ ≤ c(‖∇u1‖ + ‖∆u1‖) ≤ c‖∆u1‖, (4.34)

and
‖ f (s, u1s)‖ ≤ L f ‖u1s‖CH . (4.35)

Thus, it follows from (4.32)-(4.35) that

‖u1(t + θ1) − u1(t + θ2)‖W ≤ c
∫ t+θ2

t+θ1

(
‖u1(s)‖W + ‖u1(s)‖2W + ‖us‖CH + ‖Pmg(s)‖

)
ds. (4.36)

Using Lemma 4.5 and Young’s inequality,

c
∫ t+θ2

t+θ1

(
‖u1(s)‖W + ‖u1(s)‖2W

)
ds ≤ c

∫ t+θ2

t+θ1

‖u1(s)‖2CW
ds + c|θ2 − θ1|

≤ cρ2
3(t)|e−σθ1 − e−σθ2 | + c|θ2 − θ1|.

(4.37)
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and

c
∫ t+θ2

t+θ1

‖us‖CH ds ≤ c
∫ t+θ2

t+θ1

‖us‖
2
CH

ds + c|θ2 − θ1| ≤ cρ2
1(t)|e−σθ1 − e−σθ2 | + c|θ2 − θ1|. (4.38)

Noting that g ∈ L2
loc(R; H),∫ t+θ2

t+θ1

‖Pmg(s)‖ds ≤ c
∫ t+θ2

t+θ1

(
|θ1 − θ2|

1
2 ‖g(s)‖2 +

1

4|θ1 − θ2|
1
2

)
ds

≤ c|θ1 − θ2|
1
2

∫ t+θ1−θ2

t
‖g(s)‖2ds +

1
4
|θ1 − θ2|

1
2

(4.39)

From (4.36)-(4.39), we obtain

‖u1(t + θ1) − u1(t + θ2)‖W = ‖Pm(u(t + θ1) − u(t + θ2))‖W < ε,

for any θ1, θ2 ∈ [−h, 0] with |θ1 − θ2| < δ, so condition (ii) in Proposition 2.6 is proved. By
Lemma 4.6, we know that condition (i) in Proposition 2.6 holds true. Hence, we can conclude by
Proposition 2.6 that the process {U(t, τ)} is pullbackD− ω−limit compact in CW .

This completes the proof. �

4.2 PullbackD−attractor

We now state and prove the second main result of the work.

Theorem 4.9. Suppose that (H1) − (H3) and (4.14) hold. Then the process {U(t, τ)} associated to
problem (1.1)-(1.4) has a unique pullbackD−attractor {AD(t)}t∈R in CW .

Proof. By Lemma 4.6, we know that {U(t, τ)} has a pullbackD−absorbing set in CW , while Lemma
4.8 shows that {U(t, τ)} is pullback D − ω−limit compact in CW . Consequently, the proof can be
completed immediately by Proposition 2.7. �

5 Conclusion

We have obtained some results concerning the asymptotic behavior of solutions to a 2D-
dimensional incompressible non-Newtonian fluid with delay forcing term.

But, in our opinion, there is still much work to be done in this field. For example, it will be
very meaningful to obtain some results on the finite (fractal or Hausdorff) dimensionality of the
pullback attractor. Also, we could consider the regularity of the attractor as well as its internal
structure for which it is important to study the existence of steady-state solutions and their stability
properties. Also the interesting and important 3D-dimensional case is worth being considered. We
plan to analyze all these topics in some forthcoming papers.
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6 Appendix

To make easier the readability of this paper, in this section we recall some lemmas that have
been used in the present work.

The following key lemmas have been cited in Section 2 of [3] with appropriate references:

Lemma 6.1. If u ∈ H1
0(Ω), then

‖u‖L4(Ω) ≤ 21/4‖u‖1/2
L2(Ω)‖∇u‖1/2

L2(Ω).

Lemma 6.2. If u ∈ W, then there exists a positive constants c0, depending only on Ω, such that

‖∇u‖L4(Ω) ≤ c0‖u‖
1/2
H1(Ω)‖u‖

1/2
H2(Ω).

Lemma 6.3. There exist two positive constants c1 and c2 which depend only on Ω such that

c1‖u‖2W ≤ a(u, u) ≤ c2‖u‖2W , ∀u ∈ W.

Lemma 6.4. (Gronwall’s Lemma, see [[17], p. 9]) Let x, y,Ψ be real continuous functions defined
in [a, b], y(t) ≥ 0 for t ∈ [a, b]. We suppose that on [a, b] we have the inequality

x(t) ≤ Ψ(t) +

∫ t

a
y(s)x(s)ds. (6.1)

Then

x(t) ≤ Ψ(t) +

∫ t

a
y(s)Ψ(s) exp

[∫ t

s
y(u)du

]
ds. (6.2)

in [a, b]. Particularly, if Ψ is differentiable, then from (6.1) if follows that

x(t) ≤ Ψ(a) exp
(∫ t

a
y(u)du

)
+

∫ t

a
exp

(∫ t

s
y(u)du

)
Ψ′(s)ds, (6.3)

for all t ∈ [a, b].

Lemma 6.5. (Uniform Gronwall’s Lemma [20]) Let t ∈ R be given arbitrarily. Let g, h and y be
three positive locally integrable functions on (−∞, t] such that y′ is locally integrable on (−∞, t] ,
which satisfy that

dy
dt
≤ gy + h for s ≤ t,

and ∫ t

t−1
g(s)ds ≤ a1,

∫ t

t−1
h(s)ds ≤ a2,

∫ t

t−1
y(s)ds ≤ a3, ∀s ≤ t,

where a1, a2 and a3 are positive constants. Then

y(t) ≤ (a2 + a3)ea1 , ∀s ≤ t.
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