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Abstract 

The natural convection heat transfer in a highly insulating liquid contained between two 

horizontal concentric cylinders is shown by two-dimensional numerical simulations to be 

noticeably enhanced by imposing a direct current electric field. This augmentation of heat 

transfer is due to the radial flow motion induced by unipolar injection of ions. It is found that 

there exists a threshold of the electric driving parameter T, above which the heat transfer 

enhancement due to the electric effect becomes significant. For relatively small T values, the 

mean Nusselt numbers are closely related to the flow pattern and Rayleigh number Ra. In 

addition, for sufficiently high T values, the flow is fully dominated by the Coulomb force, and 

thus the heat transfer rate no long depends on Ra. 
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1. Introduction  

Electro-Thermo-Hydro-Dynamics (ETHD) is an interdisciplinary field involving complex 

interactions among the fluid motion, the thermal field and electrostatics [ 1 ,2 ]. The active 

augmentation of convective heat transfer by electrical forces is an important application in this 

field. Indeed, there are some unique advantages for heat transfer enhancement due to the 

electrical effect, such as the simple design, rapid and smart control of enhancement, no need of 

mechanical parts, low power consumption, and so on [3]. The earliest work on this subject may 

date back to the mid-1930s when Senftleben and Braun performed experiments of heat transfer 

enhancement due to the electric field in gases [4]. In the early 1950s, the first results of the 

influence of electric fields on convective heat transfer in dielectric liquids were reported [5,6]. 

Some recent experimental studies include the heat transfer augmentation using corona jets [7] and 

ionic winds [8], and by means of electrohydrodynamic (EHD) conduction pumping [9] and ion 

injection from a sharp metallic electrode in dielectric liquids [10], etc. Besides [1,3], there are 

several state-of-the-art reviews that cover different aspects of electrohydrodynamical 

enhancement of heat transfer [11,12,13]. 

In general, when a dielectric liquid is subjected to an external electric field, the electrical 

body force Ef
v

 arises and it may be expressed as,   

 
2 21 1

2 2
Ef qE E E




 



  
      

  

v v
 (1) 

where q denotes the free charge density, E
v

 the electric field, ε the dielectric permittivity, ρ the 

fluid density, and θ the absolute temperature. The three terms on the right-hand side of Eqn. (1) 

represent the Coulomb force on free charges, the dielectric force and the electrostritive force, 

respectively. The electrostritive force can be incorporated into the pressure term since it can be 
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viewed as the gradient of a scalar field, and thus it will not affect the single-phase flow [14]. The 

dielectric force requires a non-zero permittivity gradient, which may be achieved by imposing a 

temperature gradient and at the same time assuming that the permittivity is temperature-

dependent [15]. However, under a direct current (DC) electric field, it is generally much weaker 

than the Coulomb force when there are non-negligible space charges within the liquid [14]. It 

should be noted that the dielectric force may become dominant (or even the only electrical body 

force) when an alternating current (AC) field is applied (see for example refs. [16,17,18,19,20]). 

The Coulomb force refers to the force exerted by the electric field on the free charges present in 

the liquid. It is commonly the strongest electrical force when a DC field is applied [14,21].  

To better understand the mechanism of the heat transfer enhancement by EHD, it is necessary 

to discuss the generation of the free space charges in the flow. Various physical mechanisms have 

been proposed to account for the originations of free space charges. Some studies considered 

charges resulting from a thermally induced conductivity gradient within the liquid (see for 

example refs. [22,23,24]). However, this model fails to explain the nonlinear current-voltage (I-V) 

characteristics of dielectric liquids for strong electric fields (E > 10
4 

V/m) [14] and also the 

electro-convection observed in an isothermal dielectric liquid [25,26]. The dissociation-injection 

conductivity model that takes into account the ion injection at the liquid/electrode interface and 

the field-enhanced dissociation of impurities (usually salts) in the bulk is able to interpret the I-V 

characteristics of both highly and weakly insulting liquids for a wide range of the strength of the 

electric field [27,28,29]. When an intense electric field is applied to a highly insulating liquid, the 

injection of ions, which occurs at the electrical double layer due to electrochemical reactions, is 

considered as the main source of free charges [30]. Both theoretical analysis and experimental 

results have shown that the reproducible ion injections can be achieved by adding some salt into 
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an insulating liquid [30,31]. It should be noted that though the added salt can facilitate the charge 

injection, it also results in a non-negligible residual conductivity. 

The material presented here represents the first results of a broader research project aimed at 

numerically studying injection-dissociation enhanced convection heat transfer in dielectric liquids 

for practical applications. Previous studies based on a similar or the same physical model mainly 

focused on the linear instability feature of the problem [2,32]. In addition, most of these studies 

dealt with the simplest plate-plate configuration. From a practical point of view, the 

configurations of complex geometries, such as concentric and eccentric cylinders, blade/point-

plate, etc., are more interesting. Two straightforward examples of application are the forced flows 

in pipes (wire/cylinder) [33] and fluid-filled underground electric transmission cables [34]. In this 

study, we consider injection as the sole source of free charges and the injection-induced 

secondary flows to enhance natural convection heat transfer in a horizontal concentric annulus. 

The present study may be viewed as an extension of our recent work on electro-thermo-

convection in a planar layer of dielectric liquid [35,36]. As will be shown later, the change in 

geometry leads to some interesting phenomena. In another recent study [37], we numerically 

studied the annular electro-convection in an isothermal liquid induced by a strong unipolar 

injection between two coaxial cylinders, which can be viewed as the up-front work.  

The remainder of this paper is organized as follows. In the next section, the physical problem 

is described and the mathematical model and boundary conditions are stated. Then we make a 

brief description of the numerical method in section 3. In section 4, numerical results are 

presented and discussed. Finally, in section 5, we summarize our findings and point out some 

subsequent working directions.  
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2. Physical problem and mathematical formulation  

The physical configuration and the two-dimensional Cartesian coordinate system (x,y) used in 

this work is sketched in Fig. 1. We consider an incompressible Newtonian dielectric liquid 

contained between two infinitely long horizontal concentric cylinders, of which the inner and 

outer radii are denoted by Ri and Ro, respectively. A radial DC electric field is applied across the 

liquid layer. The inner cylinder is kept at a constant potential V0 ( > 0) while the outer cylinder is 

grounded, i.e., V1 = 0. The inner and outer cylinders are maintained at uniform but different 

temperatures, θh and θc (θh>θc), respectively. The liquid is assumed to be highly insulating, and 

thus all free charges are from the unipolar injection-process at the inner cylinder. To further 

simplify the discussion, the injection is assumed to be autonomous and homogeneous. That is, the 

injected charge density at the emitter electrode is uniform and takes a constant value q0. This 

autonomous injection can be viewed the limiting case of a general injection law proposed in [31], 

and it works well for a wide range of strong electric field. In addition, we assume that the charge 

carriers are instantaneously discharged once they arrive at the outer cylinder.  

 

FIG.1. A dielectric liquid layer lying between two concentric cylinder electrodes and subjected to 

an applied DC voltage and a thermal gradient.  
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Let ρ be the density of the fluid, ν the kinematic viscosity, cp the specific heat at constant 

pressure, κ the thermal diffusivity, and ε the dielectric permittivity. Under the Oberbeck-

Boussinesq approximation, the flow is governed by the equation of continuity,  

 0,U 
v

 (2) 

the Navier-Stokes equations including the electrical force and the buoyancy force, 

 
2
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U U p U f g
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 (3) 

the energy equation,  

 
2 ,U k
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v
 (4) 

the charge density transport equation and Gauss’ law for the electric field,  

  E q 
v

, (5) 

 E V 
v

, (6) 

 
  0

q
qKE qU D q

t


    



v v
, 

(7) 

together with the state equation for the fluid density,  

  0 01         . (8) 

The vectors [ , ]U u v
v

, [ , ]x yE E E
v

, yg ge 
v v

 0g   and ye
v

 denote the fluid velocity field, 

electric field, gravitational acceleration, and the unit vector in the positive y-direction. The 

scalars p, q, V and θ stand for the dynamic pressure, charge density, electric potential and 

temperature. K denotes the ionic mobility and D is the charge diffusion coefficient. 
0  is the 

density defined at the reference value of temperature, 
0  (here 

0 c   ). The coefficient β 

denotes the derivative of 
0   with respect to temperature. For highly insulating fluids, the 
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electric current through the dielectric liquid is generally weak, thus the magnetic effects and the 

Joule heating are neglected. In addition, the dielectric permittivity ε and the ionic mobility K are 

assumed to be constant. As a result, the dielectric force vanishes. The above mathematical model 

has been extensively used in modelling of electro-thermo-hydrodynmic flow [2,27]. 

To work in the dimensionless form, the following transformations are made for length, liquid 

velocity, time, pressure, electric potential, electric field, charge density, temperature and fluid 

density,  

[ , ] [ ', '] ,x y x y H   ' ,U U
H




v v
 

2

' ,
H

t t


  
2

0

2
' ,p p

H

 
    

0' ,V V V  

0' ,
V

E E
H


v v

 
0' ,q q q  '( ),c h c            

0' ,    

where H=Ro-Ri  and quantities with prime are non-dimensional. The resulting non-dimensional 

equations are (for clarity, we omit the prime in the equations below),  

 0,U 
v

 (9) 
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v v
 (12) 

 2 ,V Cq    (13) 

 ,E V 
v

 (14) 

where p̂  is the modified pressure including an extra component from the electrostrictive force 

[14]. Six dimensionless numbers defined as follows appear,  
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Ra and Pr are the Rayleigh number and the Prandtl number. The electric Rayleigh number T is 

defined as the ratio between the Coulomb force and the viscous force, and it can be viewed as a 

dimensionless representative of the applied voltage. The injection strength number C is a measure 

of how the injected charge influences the electric field distribution. For C much less than one the 

electric field is given by the solution of Laplace equation, and for C much greater than one the 

electric field is greatly modified by the presence of the space charge, being almost zero at the 

injector. M is the dimensionless mobility number, defined as the ratio between the so-named 

hydrodynamic mobility and the true ionic mobility. Both Pr and M are decided by the fluid 

properties. D̂  is the dimensionless charge diffusion coefficient. Since typical values for D̂  with 

dielectric liquids are in the range between 10
-4

 and 10
-3

 [38], the charge conservation equation 

(12) is strongly convection-dominating. In addition, the problem also depends on the geometry of 

the concentric annulus, so we define the radius ratio Γ as Γ=Ri/Ro, (0<Γ<1).  

To quantitatively evaluate the enhancement in heat transfer, the local Nusselt numbers 

defined at the inner and outer cylinders are computed as, 

 ln

i
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i i
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R r
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o
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, (14) 

where r   is the temperature gradient in the radial direction. The mean Nusselt number is 

computed as,  

  
2 2

0 0

1 1 1 1
( ) ( )

2 2 2 2
i o i oNu Nu Nu Nu d Nu d

 

   
 

 
    

 
   (15) 

where α denotes the angle, see Fig. 1.  
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The computational domain is defined by the annulus of    1 1 1i oR r R        

and 0 2   . The associated boundary conditions are summarized as,  

inner cylinder (hot injector), r = Ri : u = v = 0, θ = 1, V = 1, q = 1;  

outer cylinder (cold collector), r = Ro: u = v = 0, θ = 0, V = 0, ∂q/∂r = 0;  

which means that the no-slip conditions for fluid are imposed at impermeable, thermally and 

electrically perfectly conducting electrodes.  

3. Computational technique   

The numerical algorithm we proposed in [36] for electro-thermo-convection between two 

parallel plates has been extended here to the configuration of concentric cylinders. A numerical 

solver based on a 2
nd

 order finite volume method is used to solve Eqns. (9)-(14) in the primitive 

variables (u, v, θ, V, q) [39]. The computational domain is discretized with a boundary-fitted 

structured grid with orthogonal quadrilateral meshes. All variables are stored at the center of each 

control volume (i.e., a colocated arrangement). Figure 2 shows an example of discretized grid. 

The grid is uniform in the azimuthal direction and non-uniform in the radial direction. The finer 

grid size in the region close to the emitter cylinder aims at capturing the sharp variation in the 

charge density distribution within this region. 

For the Navier-Stokes equations, the central differencing (CD) scheme is used to compute the 

convective flux. Since the grid is non-orthogonal, we employed the over-relaxed approach [40,41] 

to take into account the non-orthogonal component of the diffusive flux. The time integration was 

performed by the semi-implicit three time levels scheme [39]. The SIMPLE algorithm [42] and 

Rhie-Chow scheme [ 43 ] are employed for velocity-pressure coupling and momentum 

interpolation, respectively. A detailed description of the algorithm for the energy equation (11) 

and electrostatic equations (12-14) is provided in [44]. In particular, the Smooth Monotonic 
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Algorithm for Real Transport (SMART) scheme of Gaskell & Lau [ 45 ] is applied to the 

convection-dominating equation (12), aiming at preventing unphysical oscillations and 

simultaneously reducing the numerical diffusion. For more details with the overall solution 

procedure and the description of the nonlinear couplings among different fields, we refer the 

interested readers to [36].  

       

FIG.2. An example of discretized grid consisting of structured quadrilateral meshes. 

4. Results and discussion  

Computations are carried out for a fixed radius ratio Γ = 0.1, a strong injection C = 10 and for 

the Rayleigh number range [0, 2×10
4
]. This injection value has been extensively used in previous 

numerical studies, and it can be viwed as a good approximation of the so-named Space-Charge-

Limited (SCL) injection, for which can be experimentally achieved by covering the electrode 

with membrane [25]. The charge diffusion coefficient D̂  is also fixed at 5×10
-4

. A small radius 

ratio considered here aims to approximate the practical applications using wire as the emitter. The 

silicon oil used in the experimental studies [46,47] are chosen as the working medium. The 

relevant physical properties of this liquid can be found in [47], and the corresponding values of 

Pr and M for this liquid are 116.6 and 49.0, respectively. After the grid independence test, we 
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finally chose a non-uniform grid with 400×150 cells for all computations. In the following, we 

first present the results of natural convection (pure thermal convection) and pure electro-

convection to validate our numerical solver and to highlight the difference between the two types 

of basic flows. Then the results of the heat transfer enhancement resulting from charge injection 

are summarized and discussed.  

4.1 Natural convection and pure electro-convection in horizontal concentric annuli 

Natural convection between concentric isothermal cylinders is a classical problem in non-

isothermal fluid mechanics [48,49,50]. Unlike Rayleigh-Bénard convection of a horizontal fluid 

layer heated from below, even a very small temperature difference between the two cylinders will 

cause fluid motion. For the case considered in this study (Γ = 0.1, Pr = 116.6 and Ra ≤ 2×10
4
), 

we obtained steady unicellular convection, which is consistent with the prediction of the flow 

pattern chart proposed in [51]. In Figs. 3(a-c), the isotherms and stream functions are presented 

for the cases of three Rayleigh numbers. The flow is characterized by two symmetric (with 

respect to the virtual line x = 0), counter-rotating cells visualized in terms of the stream function. 

As Ra increases, the intensity of convection increases and the centres of convection rolls move 

upwards. For small Ra, the flow is in the ‘pesudo-conductive’ regime since heat is mainly 

transferred by conduction [49]. As shown in Fig. 3(a), the isotherms resemble quasi-circles and 

the centre of rotation is very close to the horizontal line y = 0. For higher Ra, the flow is of 

boundary layer type [50]. As shown in Figs. 3(b) and (c), a buoyant plume originates at the top of 

inner cylinder and impinges towards the outer cylinder.  

Results of the mean Nusselt numbers with natural convection are listed in Table 1. For 

validation, the results obtained with the commercial software FLUENT are also provided. The 

same number of CVs is used in FLUENT. The results obtained with two different methods are in 
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good agreement with each other. We notice that though as the increase of Ra the mean Nusselt 

numbers Nu  increases to a certain extent the overall heat transfer is still constrained. We recall 

that our main objective in this study is to examine how the heat transfer rate changes when an 

electric field is imposed across the fluid. 

 

   

(a) (b) (c) 

FIG.3. Temperature isotherms (left half) and stream functions (right half) of natural convection, 

(a) Ra = 10
2
, (b) Ra = 5×10

3
, (c) Ra = 2×10

4
. 

Table 1. Mean Nusselt numbers for natural convection, Pr = 111.6, Γ = 0.1. 

Ra 10
1
 10

2
 10

3
 5×10

3
 10

4
 1.5×10

4
 2×10

4
 

Nu , FVM
a
 1.000 1.001 1.142 1.739 2.035 2.216 2.348 

Nu , FLUENT
b
 1.000 1.001 1.148 1.752 2.059 2.245 2.383 

FVM
a
, our results with the finite volume method;  

FLUENT
b
, results from the commercial software FLUENT.  

The unipolar injection induced electro-convection in the concentric cylinder configuration is 

characterized by a hydrodynamic stability [52]. Physically, the flow motion occurs only when the 

Coulomb force is sufficiently strong to overcome the viscous damping. Otherwise, the fluid 

remains a rest state and free charges are transported by the migration due to electric field and by 

molecular diffusion (the hydrostatic state). This linear instability has been well analyzed by the 

stability analysis approach in several studies [52, 53, 54, 55]. It is found that the stability criterion, 
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expressed by the electric Rayleigh number T, depends on the injection strength C, the injection 

direction (inner or outer), the radius ratio Γ, the diffusion coefficient D̂ , and the form of 

perturbations (2D or 3D). For the case of (2D, inner injection, C = 10, Γ = 0.1, D̂  = 0), we have 

adopted the same stability analysis method of [52] and determined the critical T value (marked as 

Tc) and the corresponding mode number (marked as mc) as 64.11 and 3, respectively. 

 

   

(a) (b) (c) 

FIG.4. Charge density distribution and the flow field of pure electro-convection, (a) T = 60, lower 

than Tc, (b) T = 80, higher than Tc, (c) T = 800. Tc = 64.1, the linear stability criterion. 

In Figs. 4a-c, the charge density distributions are presented for three electric Rayleigh 

numbers. For T=60 < Tc (see Fig. 4a), there is no flow motion, and the charge density distribution 

follows an analytical expression, 
2( )sq r a C r b  [52], a and b being two constants that 

depend on C and Γ. For inner injection with C = 10 and Γ = 0.1, the values of a and b are 1.0090 

and −0.0022, respectively [37]. For T = 80, a value slightly higher than Tc (see Fig. 4b), a radial 

motion with three pairs of counter-rotating cells raises. The number of convective cells is 

determined by the most unstable mode mc. Three electro-plumes evenly distribute around the 

inner cylinder and impinge towards the outer cylinder. In addition, there are three central regions 

almost free of charges (q → 0). The charge void region is a characteristic feature of Coulomb-



14 
 

driven dielectric liquid flows [14]. It is interesting to point out that Fig. 4b share a strong analogy 

with the electro-convective leaf pattern described in [33]. As the increase of T up to 1000, the 

charged plumes become thinner and the area of the void region expands; see Fig. 4c. A further 

increase in T leads to an unsteady flow with the number and positions of electro-plumes 

continuously changing. 

4.2 Heat transfer enhancement due to annular electro-convection  

Now we consider how the imposed electric field affects natural convection heat transfer. In 

each case, the electric field as well as charge injection is applied on a stationary natural 

convection previously obtained. The charge injection strength C is fixed, while the intensity of 

electric field is controlled by the electric Rayleigh number T. Our numerical solutions correspond 

to a two-step experimental process. First, only a temperature difference with its value expressed 

by Ra is imposed between the two cylinders. After the natural convection reaches a stationary 

state, a step voltage with its value expressed by T is applied, and then the liquid is under the 

simultaneous actions of the buoyancy force and the Coulomb force. 

 

(a)                                                                                     (b) 

FIG.5. Mean Nusselt number Nu  as a function of electric Rayleigh number T for various values 

of Rayleigh number Ra.  
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(a) (b) (c) 

   
(d) (e) (f) 

FIG.6. Solutions for Ra = 10, T = 60 (top) and 65 (bottom). (a) and (d) - temperature, (b) and (e) - 

charge density, (c) and (f) - stream function. 

Compared to the plate-plate configuration, the electro-thermo-convective phenomena in the 

cylindrical configuration is much more complex. This is partially due to the differences in the 

directions of driving forces and also in the basic flow patterns. In Fig. 5 the mean Nusselt 

numbers Nu  are plotted against T for various values of Ra investigated. We first notice the 

existence of a threshold of T (marked by Tt), above which the heat transfer rate rapidly increases 

along with the increase of T. In the range of T < Tt, Nu  slowly increases with T. In addition, the 

value of Tt is closely related to Ra. As Ra increases, the value of Tt also increases. For Ra = 10 

and 10
2
, we find the threshold values are about 65.0 and 75.0, respectively. Both values are close 

to 64.1, the linear stability criterion of pure electro-convection. For Ra = 2×10
4
, the highest Ra 

value we considered, Tt lies in the range of (200, 250). By checking the flow fields, we find that 

the radial motion arises only when T > Tt. These radial motions usually exhibit more convective 
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cells, and as a consequence heat transfer rate is higher. The change in the flow pattern when T 

crosses Tt  accounts for the sudden jump of Nu  at Tt in Fig. 5. 

   
(a) (b) (c) 

   
(d) (e) (f) 

FIG.7. Solutions for Ra = 10
2
, T = 150 (top) and 250 (bottom). (a) and (d) - temperature; (b) and 

(e) - charge density; (c) and (f) - stream function.  

To study how the electric field affects the heat transfer, we first consider the limiting situation 

that the buoyancy force is weak. In Fig. 6 we have provided two representative examples to show 

the change of the flow pattern when T crosses Tt. For T < Tt, as it can be seen from Fig. 6c, the 

flow possesses two counter-rotating cells, same as natural convection. Since the strength of 

motion is too weak, the distributions of temperature and charge density are essentially determined 

by heat conduction and ion drift, respectively; see Figs. 6a and 6b. Once T > Tt, as shown in Figs. 

6e and 6f, three pairs of radial cells together with the charge void regions appear, same as pure 

electro-convection. In this case, the temperature distribution shown in Fig. 6d is determined by 

the combination of heat conduction and the radial convection. The increase in the number of 

convective cells results in a higher heat transfer rate and a sudden transition in Nu  - T curve. 
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T = 0 

   
 (a) (b) (c) 

T = 150 

   
 (d) (e) (f) 

T = 250 

   
 (g) (h) (i) 

T = 800 

   
 (j) (k) (l) 

T = 1000 

   
 (m) (n) (o) 

FIG.8. Solutions for Ra = 10
4
, T = 0, 150, 250, 800 and 1000. (a, d, g, j, m) - temperature; (b, e, h, 

k, n) - charge density; (c, f, i, l, o) - stream function. 
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A slight increase of Ra to 10
2
 puts off the corresponding Tt to be about 75.0. In addition, a 

new flow pattern appears once T > Tt. As shown in Figs. 7a-c, there are two pairs of radial cells 

and two big charge void regions. The appearance of such a new flow pattern can be understood 

from the point of view of linear stability. For pure electro-convection the critical values of T 

corresponding to the 2- and 3-cells modes are very close to each other. That means for T slightly 

higher than Tc both modes tend to be excited. In the electro-thermal case the initial natural 

convection helps exciting mode m = 2 to be dominant. For 250T  , the three-pair flow pattern 

appears again; see Figs. 7d-f. For a high value of T, a strong radial motion is induced by the 

Coulomb force; see the maximum value of stream function in Fig. 7f. Consequently, the 

temperature distribution shown in Fig. 7d is mainly determined by the radial convection. There is 

a transition phase, during which the two-pair and three-pair patterns appear alternatively. This 

transition phase explains the inflection point at T = 200 (between points B and C) in Fig. 5a. 

For 31 10Ra   , the buoyancy force is no longer negligible, at least when T is not very high. 

In Fig. 8, we have provided the example of Ra = 10
4
 to show the effects of T on the flow pattern 

and the distributions of charge density and temperature. The value of Tt for the case of Ra = 10
4
 is 

about 225.0. For T < Tt, the flow motion is still stationary and shows the same structure as the 

natural convection (see Figs. 8c and 8f). However, the newly injected charges now move along 

mainly with the buoyancy force induced motion, since the ion drift velocity 2TE M
v

 is much 

smaller than the fluid velocity U
v

. Consequently, as shown in Fig. 8e, the charge density shows a 

plume-like structure at the top region of the annulus. The Coulomb force exerting on these 

charges fails to induce the radial motion. Instead, it strengthens the velocity filed of natural 

convection, which can be inferred from the maximum values of stream function and the center 
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position of rotation in Figs. 8c and 8f. The enhanced flow field explains the slow increase of  Nu  

with T in the range of T < Tt. 

Once T > Tc, radial motion arises again. However, the flow is no longer stationary when T is 

slightly higher than Tt. This is different from the cases of small Ra values discussed above. In 

addition, the flow pattern is very complex. Three basic patterns including the two big cells 

associated with natural convection, the two-pair and three-pair patterns with electro-convection 

interact with each other and appear alternately. The frequency for each basic pattern is very 

sensitive to the values of Ra and T. In general, the two big-cell pattern dominates when T is 

closer to Tt and Ra is higher, while the three-pair pattern appears more frequently with T much 

higher than Tt. Figs. 8g-i represent a snapshot of the unsteady two big-cell pattern at T = 250. For 

Ra = 5×10
3
 and 1×10

4
, we find that the steady three-pair pattern emerges when T is far from Tt to 

a certain extent. In Fig. 5b, the transitions at (250, 300) with the curve of Ra = 5×10
3
 and at (300, 

350) with the curve of Ra = 1×10
4
 is due to the appearance of the steady three-pair pattern. Figs. 

8j-l show the steady three-pair pattern with T = 800. For Ra = 10
3
, 5×10

3
 and 1×10

4
, the flow 

becomes unsteady again with T at 900, which results in a sudden decrease of Nu ; see Fig. 5b. As 

a matter of fact, the flow becomes fully chaotic and is accompanied with appearance of a new 

type of electro-plumes; see Fig. 8n. This type of electro-plume, which is a local structure of 

charges, is randomly and intermittently generated within the charge density layer near the emitter 

electrode. Such electro-plume shares strong analogy with the thermal plume of Rayleigh-Bénard 

convection at high Ra values [56], and it has been numerically observed in the configurations of 

plate-plate [57] and concentric cylinders [58]. It is interesting to point out that there is also a new 

type of thermal plume in Fig. 8m with its shape and position the same as the electro-plume in Fig. 

8n. This is an intuitive example demonstrating that heat is entrained as a fully passive scalar by 



20 
 

the motion induced by charge injection. For Ra = 1.5×10
4
 and 2.0×10

4
, we did not observed any 

stationary pattern with T > Tt. For these two Ra values, the increase of Nu  with T is due to the 

raising portion of the three-pair pattern and the increase of the intensity of convection with T. 

Another interesting finding is the independence of Nu  on Ra when T is high enough and the 

flow pattern is the same. For example, for T = 800 and 410Ra  , the flow pattern is stationary 

with three-pair cells and Nu  always takes a value around 5.25; see Figs. 5a and 5b. For another 

example, for T = 1000 and 3 410 2 10Ra   , the flow pattern is chaotic with electro-plumes and 

the corresponding Nu  takes a value around 5.29. We attribute this phenomenon to the 

dominating role played by the Coulomb force while the buoyancy force is globally unimportant. 

This phenomena has also been observed in the previous experimental [46, 47] and numerical [35, 

36] studies with the plate-plate configuration. 

   

(a) (b) (c) 

   
(d) (e) (f) 

FIG.9. Temperature fields in the annulus without (up) and with (bottom) electric field, (a) and (d), 

case 1- inner heating; (b) and (e), case 2-outer heating; (c) and (f), case 3-inner heating with zero 

buoyancy force. Parameters: Ra = 10
4
 and T = 800. 
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FIG.10. Local Nusselt number distribution after the imposition of electric field and charge 

injection. Case 1 - inner heating; Case 2 - outer heating; Case 3 – inner heating with zero 

buoyancy force. Parameters: Ra = 10
4
 and T = 800. 

To confirm our understanding of this independence of Nu  on Ra, we have designed a 

numerical experiment test. Our idea is to check the sensitivity of the flow pattern and Nu  on the 

direction and strength of the buoyancy force. For a same Ra value, we consider three different 

situations: (i) heating from the inner cylinder, (ii) heating from the outer cylinder and (iii) heating 

from inner but with an artificial zero buoyancy force in the Naviers-Stokes equations. The third 

situation physically corresponds to a microgravity situation, and it can be easily achieved in the 

numerical practice. Figs. 9a-c show the temperature fields with Ra = 10
4
 in these three situations 

with no electric field. Fig. 9c is essentially determined by pure thermal conduction. After 

imposing the same electric field at T = 800, all three situations reach a steadily convective state 

with three-pair cells. Figs. 9d-f show the temperature fields after the imposition of electric field 

and charge injection. A quantitative comparison can be made from Fig. 10, in which we have 

presented the local Nusselt number distributions. It is clearly show that in all cases the maximum 
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Nu on the inner and outer cylinders are very close to each other. The mean Nusselts numbers for 

the three cases with electric field are 5.258 (case 1), 5.265 (case 2) and 5.275 (case 3), 

respectively. These results have successfully proved that the results of  Nu  are independent on 

the direction and strength of the buoyancy force. That is, the flow is fully dominated by the 

Coulomb force.  

5. Concluding remarks  

The enhancement of natural convection heat transfer in a dielectric liquid lying between two 

concentric horizontal cylinders due to the imposition of a direct current electric field is 

numerically investigated. The Coulomb force severs as the driving electrical force, and the 

unipolar injection of ions is considered as the source for free space charges. An in-house 

numerical solver based on a 2
nd

 finite volume method is developed to solve all governing 

equations including the mass conservation equation, the Navier-Stokes equations, the energy 

equation, the charge density transport equation and Gauss’ law for the electric field. 

Computations are carried out for a small radius ratio and a strong injection from the inner 

cylinder. The silicon oil used in some previous experimental studies is chosen as the working 

liquid. The heat transfer results expressed through the mean Nusselt numbers Nu  are presented 

for the laminar natural convection with 
42 10Ra    and a wide range of the electric driving 

parameter T. It is shown that the injection induced radial convection can yield significant 

enhancement of heat transfer. The most important finding is the existence of a threshold of T, 

which separates the  Nu T  curve into two sections. Below this threshold, the radial motion does 

not arise and  Nu  only slightly increases with T. Once T is higher than the threshold value, the 

radial motion with more convective cells takes place and Nu  rapidly increases with T. This 

threshold value increases with Ra. For small Ra values, it tends to its lower limit, the linear 
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stability criterion of pure electro-convection. In addition, the electrical enhancement is found to 

be closely related to the flow patterns and the values of Ra and T. Furthermore, for sufficiently 

high values of T, the convective heat transfer no longer depends on Ra in the range of parameters 

considered. This can be understood by the dominant role played by the Coulomb force while the 

buoyancy force is unimportant.  

In a future work, we will perform a systematic study of the effects of various parameters and 

different injection models on heat transfer. In particular, the influence of the dimensionless 

mobility number and Prandlt number on the local and mean heat transfer will be evaluated, since 

the result may be helpful in selecting the optimal working liquid.  
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