
RESTful Web Services Development with a
Model-Driven Engineering Approach

RAFAEL CORVEIRA DA CRUZ GONÇALVES
Julho de 2018

Instituto Superior de Engenharia do Porto

RESTful Web Services Development with a Model-

Driven Engineering Approach

1130837, Rafael Gonçalves

Dissertation to obtain the Master Degree in

Informatics Engineering, Area of Expertise in

Software Engineering

Porto, july 2018

Instituto Superior de Engenharia do Porto

RESTful Web Services Development with a Model-

Driven Engineering Approach

1130837, Rafael Gonçalves

Dissertation to obtain the Master Degree in

Informatics Engineering, Area of Expertise in

Software Engineering

Supervisor: Isabel Azevedo

Porto, july 2018

RESTful Web Services Development with a Model-Driven Engineering Approach

 i

Abstract

A RESTful web service implementation requires following the constrains inherent to

Representational State Transfer (REST) architectural style, which, being a non-trivial task, often

leads to solutions that do not fulfill those requirements properly.

Model-driven techniques have been proposed to improve the development of complex

applications. In model-driven software development, software is not implemented manually based

on informal descriptions, but partial or completely generated from formal models derived from

metamodels.

A model driven approach, materialized in a domain specific language that integrates the OpenAPI

specification, an emerging standard for describing REST services, allows developers to use a design

first approach in the web service development process, focusing in the definition of resources and

their relationships, leaving the repetitive code production process to the automation provided by

model-driven engineering techniques. This also allows to shift the creative coding process to the

resolution of the complex business rules, instead of the tiresome and error-prone create, read,

update, and delete operations.

The code generation process covers the web service flow, from the establishment and exposure of

the endpoints to the definition of database tables.

Key-words: Web service, Model driven engineering, OpenAPI, Resource, Domain specific

language, RESTful

RESTful Web Services Development with a Model-Driven Engineering Approach

ii

RESTful Web Services Development with a Model-Driven Engineering Approach

 iii

Resumo

A implementação de serviços web RESTful requer que as restrições inerentes ao estilo

arquitetónico “Representational State Transfer” (REST) sejam cumpridas, o que, sendo usualmente

uma tarefa não trivial, geralmente leva a soluções que não atendem a esses requisitos

adequadamente.

Técnicas orientadas a modelos têm sido propostas para melhorar o desenvolvimento de aplicações

complexas. No desenvolvimento de software orientado a modelos, o software não é implementado

manualmente com base em descrições informais, mas parcial ou completamente gerado a partir de

modelos formais derivados de meta-modelos.

Uma abordagem orientada a modelos, materializada através de uma linguagem específica do

domínio que integra a especificação OpenAPI, um padrão emergente para descrever serviços

REST, permite aos desenvolvedores usar uma primeira abordagem de design no processo de

desenvolvimento de serviços da Web, concentrando-se na definição dos recursos e das suas

relações, deixando o processo de produção de código repetitivo para a automação fornecida por

técnicas de engenharia orientadas a modelos. Isso também permite focar o processo de codificação

criativo na resolução e implementação das regras de negócios mais complexas, em vez de nas

operações mais repetitivas e propensas a erros: criação, leitura, atualização e remoção de dados.

O processo de geração de código abrange o fluxo do serviço web desde o estabelecimento e

exposição dos caminhos para os serviços disponíveis até à definição de tabelas de base de dados.

Key-words: Serviço web, Engenharia orientada a modelos, OpenAPI, Recurso Linguagem

específica do domínio, RESTful

RESTful Web Services Development with a Model-Driven Engineering Approach

iv

RESTful Web Services Development with a Model-Driven Engineering Approach

 v

Table of contents

List of figures ... vii

List of tables ... ix

List of code snippets .. xii

Notation and Glossary ... xiv

Chapter 1 .. 1

Introduction.. 1

1.1 Background and motivation ... 1

1.2 Objectives ... 2

1.3 Case study .. 2

1.4 Adopted methodology.. 3

1.5 Contribution to Knowledge .. 4

1.6 Thesis outline .. 5

Chapter 2 .. 7

Context .. 7

2.1 Problem and opportunities ... 7

2.2 Value analysis and proposition .. 9

2.3 RESTful web services ... 19

2.4 Model-Driven Engineering ... 23

2.5 OpenAPI specification ... 24

Chapter 3 .. 31

MDE in REST web services development ... 31

3.1 Related work - State of the Art ... 31

3.2 Comparative analysis .. 36

3.3 Solution perspective .. 37

3.4 Requirements analysis .. 40

3.5 Adopted technologies .. 42

3.6 Solution evaluation methodology ... 45

Chapter 4 .. 53

DSL Design and implementation ... 53

4.1 Common approach .. 53

4.2 Resource-oriented DSL ... 54

4.3 OAS-oriented DSL ... 62

4.4 Code generation .. 69

RESTful Web Services Development with a Model-Driven Engineering Approach

vi

4.5 Broad comparative analysis ... 82

Chapter 5 ... 85

Solution Evaluation ... 85

5.1 DSLs usability .. 85

5.2 Code metrics analysis ... 87

5.3 Web service QoS... 92

Chapter 6 ... 97

Conclusion and future work .. 97

6.1 Summary ... 97

6.2 Goals achieved .. 98

6.3 Limitations and Future Work .. 100

6.4 Final remarks ... 101

Bibliographic References ... 103

Appendixes ... 107

Appendix A. AHP analysis ... 109

Appendix B. Resource-oriented grammar .. 111

Appendix C. Resource-oriented model example .. 113

Appendix D. OAS-oriented grammar ... 115

Appendix E. OAS-oriented model example .. 121

RESTful Web Services Development with a Model-Driven Engineering Approach

 vii

List of figures

Figure 1 - MD* techniques diffusion by company size. ... 11

Figure 2 - Benefits achieved through MD techniques. .. 12

Figure 3 - How MDE affects developers experience... 12

Figure 4 - Global API management market revenue, 2016-2022 (USD Millions). 13

Figure 5 - Concept integration and definition, based on (Stahl et al., 2006). 14

Figure 6 - Value network analysis. ... 17

Figure 7 - Hierarchy tree. ... 18

Figure 8 - OpenAPI evolution. .. 26

Figure 9 - Apimatic code generation configuration page. ... 32

Figure 10 - REST United code generation configuration page. .. 34

Figure 11 - REST United import specification wizard. .. 35

Figure 12 - DSLs’ design alternatives. ... 38

Figure 13 - OAS-based DSL context. ... 39

Figure 14 - OAS-based DSL context. ... 41

Figure 15 - Percentage of problems encountered and number of users. 47

Figure 16 - Distribution of the standardized test statistic and the rejection region. 50

Figure 17 - Architectural overview of the approach followed. ... 53

Figure 18 - Resource-oriented grammar metamodel. ... 55

Figure 19 - Domain model example. .. 60

Figure 20 - Resource-oriented model: User related resources definition. 61

Figure 21 - Resource-oriented model: Additional components. .. 62

Figure 22 - OAS-oriented grammar metamodel. .. 64

Figure 23 - Web service layered architecture. .. 69

Figure 24 - CRUD: Create operation. ... 70

Figure 25 - CRUD: Search operation. .. 71

Figure 26 - Integration between the generated code and the base implementation. 71

Figure 27 - UML class-OpenAPI component artifact mapping .. 80

Figure 28 - Evaluation process steps. .. 86

Figure 29 - Shape distributions for metrics values. ... 92

Figure 30 - Shape distributions for metrics values. ... 95

RESTful Web Services Development with a Model-Driven Engineering Approach

viii

RESTful Web Services Development with a Model-Driven Engineering Approach

 ix

List of tables

Table 1 - Longitudinal perspective of value. ... 15

Table 2 - Canvas model. .. 16

Table 3 - Criteria pairwise comparison. .. 18

Table 4 - Normalized matrix and priority vector. ... 19

Table 5 - Alternative choice. ... 19

Table 6 - HTTP common verbs. ... 20

Table 7 - Most used HTTP methods characteristics. .. 23

Table 8 - RAML gradle configuration options. .. 33

Table 9 - Code generation tools comparison. ... 37

Table 10 - Comparative analysis between DSLs approaches. ... 39

Table 11 - DSL functional requirements. .. 40

Table 12 - List of static metrics. ... 48

Table 13 - Web services QoS evaluation metrics. .. 51

Table 14 - Relation between the Resource and OAS oriented concepts. 63

Table 15 - Mapping between classes and OpenAPI components artifact 78

Table 16 - Mapping between classes and OpenAPI components artifact 79

Table 17 - Mapping between web service classes and OpenAPI paths object 81

Table 18 - DSL user’s profiles. ... 86

Table 19 - Threshold values for the individual metrics. ... 89

Table 20 - Generated code: metrics descriptive statistics. ... 90

Table 21 - Apimatic code: metrics descriptive statistics. ... 90

Table 22 - Shapiro-Wilk test of normality. ... 91

Table 23 - Mann-Whitney-Wilcoxon test. .. 92

Table 24 - Search food service QoS descriptive statistics (N=50). 93

Table 25 - Create user service QoS descriptive statistics (N=50). .. 93

Table 26 - Shapiro-Wilk test of normality: search service. .. 94

Table 27 - Shapiro-Wilk test of normality: create service .. 94

Table 28 - Mann-Whitney-Wilcoxon test: search service. ... 95

Table 29 - Mann-Whitney-Wilcoxon test: create service. .. 95

RESTful Web Services Development with a Model-Driven Engineering Approach

x

Table 30 - Functional requirements implementation status. ... 99

RESTful Web Services with a Model-Driven Engineering Approach

 xi

RESTful Web Services Development with a Model-Driven Engineering Approach

 xii

List of code snippets

Code snippet 1 - Simple example grammar. .. 23

Code snippet 2 - OpenAPI 3.0 YAML standard example. ... 25

Code snippet 3 - OpenAPI 3.0.1: Info object example. ... 26

Code snippet 4 - OpenAPI 3.0.1: Server object example. .. 27

Code snippet 5 - OpenAPI 3.0.1: Security scheme object example. 27

Code snippet 6 - OpenAPI 3.0.1: Paths object example. .. 27

Code snippet 7 - OpenAPI 3.0.1 Tag object example. .. 27

Code snippet 8 - OpenAPI 3.0.1: Components object example. ... 27

Code snippet 9 - OpenAPI 3.0.1: External documentation object example. 28

Code snippet 10 - RAML 1.0 standard example. .. 29

Code snippet 11 - API Blueprint standard example. ... 29

Code snippet 12 - RAML command line sintax. .. 32

Code snippet 13 - Maven configuration example.. 33

Code snippet 14 - Swagger Codegen command line syntax. ... 34

Code snippet 15 - AutoRest configuration file example and command line syntax. 36

Code snippet 16 - JAX-RS web service example. .. 43

Code snippet 17 - JPA entity example. .. 43

Code snippet 18 - EclipseLink find example. .. 44

Code snippet 19 - EclipseLink persist example. ... 44

Code snippet 20 - Xtext default generated grammar. ... 44

Code snippet 21 - Hello word print statement in Xtend. .. 45

Code snippet 22 - Grammar structure. ... 57

Code snippet 23 - Grammar meta information rules. .. 57

Code snippet 24 - Grammar resource rules. .. 58

Code snippet 25 - Grammar excerpt defining the OAS structure. ... 65

Code snippet 26 - Grammar excerpt to parse the PathsObject. ... 66

Code snippet 27 - Custom grammar validators. ... 66

Code snippet 28 - Model excerpt defining the OAS structure. .. 67

Code snippet 29 - Model excerpt defining a service over Client sub resource. 67

RESTful Web Services with a Model-Driven Engineering Approach

 xiii

Code snippet 30 - Model excerpt defining the components schema. 68

Code snippet 31 - Default links methods available in the base implementation. 73

Code snippet 32 - Response example from a request to create a Client. 73

Code snippet 33 - Xpect test example. .. 74

Code snippet 34 - Structure followed in the generation process. .. 75

Code snippet 35 - Business entities generation process. ... 76

Code snippet 36 - Business entities generation process. ... 77

Code snippet 37 - Example of an overridden service. .. 78

Code snippet 38 - Example of a generated validation. ... 80

Code snippet 39 - Web service class - OpenAPI path artifact mapping. 81

RESTful Web Services Development with a Model-Driven Engineering Approach

 xiv

Notation and Glossary

Term Description

AHP Analytic Hierarchy Process

API Application Programming Interface

CBO Coupling Between Objects

CR Consistency Ratio

CRUD Create, Read, Update, and Delete

DBMS Database Management System

DIT Depth of Inheritance Tree

DSL Domain-Specific Language

DSM Domain-Specific Modeling

EMF Eclipse Modeling Framework

HATEOAS Hypermedia As The Engine Of Application State

HTTP Hypertext Transfer Protocol

IoT Internet of Things

JAX-RS Java API for RESTful Web Services

JDT Java Development Tools

JSON JavaScript Object Notation

LCOM Lack of Cohesion in Methods

MDD Model-Driven Development

MDE Model-Driven Engineering

MDS Mode-Driven Security

MDSD Model-Driven Software Development

MOF Meta-Object Facility

NCD New Concept Development

NOC Number of Children

NOM Number of methods

OAI OpenAPI Initiative

RESTful Web Services with a Model-Driven Engineering Approach

 xv

Term Description

OAS OpenAPI Specification

OWASP Open Web Application Security Project

PaaS Platform as a Service

POJO Plain Old Java Object

QoS Quality of Service

RAML RESTful API Modeling Language

REST REpresentational State Transfer

RFC Response for Class

SDK Software Development Kit

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SQL Structured Query Language

UI User-Interface

URI Uniform Resource Identifier

VNA Value Network Analysis

WMC Weighted Methods per Class

YAML YAML Ain't Markup Language

RESTful Web Services Development with a Model-Driven Engineering Approach

 1

Chapter 1

Introduction

This chapter is intended for the presentation of the research scope of the work developed during

Master Thesis of the Informatics Engineering Course program at Polytechnic of Porto - School of

Engineering. First, the background and motivation associated with it are presented, followed by

the main goals that this work proposes to achieve. A brief reference is made to the main

technologies involved, with a more extensive description in Chapter 2. The main contributions and

the development methodology of the work on display are mentioned. A case study is introduced,

presenting a high-level summary of the respective main functionalities. Finally, the structure of the

report itself is described, trying to establish a contextual order of the accomplished objectives.

1.1 Background and motivation

During the last few years, offering software in the form of web services has gained popularity due

to the evolution of cloud architectures and the impact of the Internet of Things (IoT) on the

number of connections that can take place.

Ever since its introduction by Fielding (Fielding, 2000), the REpresentational State Transfer

(REST) architectural style has been increasingly preferred by developers for its simplicity and

scalability (Haupt, Leymann, Scherer, & Vukojevic-Haupt, 2017). REST comprises a set of rules

and practices offering simple comprehensible application programming interfaces (APIs), clear

representations, and scalable services (Dimitrieski et al., 2017).

In an attempt at defining a set of standards to describe APIs, and to aid developers in the creation

of the interfaces, the OpenAPI Initiative (OAI) was formed by a consortium of forward-looking

industry experts who recognize the immense value of standardizing on how REST APIs are

described. As an open governance structure under the Linux Foundation, the OAI is focused on

creating, evolving and promoting a vendor neutral description format (The Linux Foundation,

2017a).

The OpenAPI Specification requires the description of the capabilities of the service without

mandating a specific development process, such as design-first or code-first. It does facilitate either

technique by establishing clear interactions with a REST API (The Linux Foundation, 2017b).

Meanwhile, from an automated software engineering perspective, Model Driven Engineering

(MDE) is gaining popularity (Zolotas, Diamantopoulos, Chatzidimitriou, & Symeonidis, 2017), and

RESTful Web Services Development with a Model-Driven Engineering Approach

2

it can be useful for the development of REST APIs. A great amount of time is required because

developers must address several issues (software architecture, error handling, security, access rules,

among others) to ensure a suitable design and the desired usability (Schreibmann & Braun, 2014).

To implement this solution according to all the best practices is time consuming and it is an

expensive part of every software project.

The specification of the structural and behavioral aspects of an application using model-driven

principles can be used for code generation (Schreibmann & Braun, 2014).

With the standardization of REST APIs description, provided by the OAI, an MDE approach for

the development of a Domain Specific Language (DSL) to generate full API applications can be a

helpful and powerful resource for the developers (Scheidgen, Efftinge, & Marticke, 2016).

Although there have been several initiatives devoted to the modeling and formal description of

REST applications, most of them do not support or even force RESTful compliance (Ed-Douibi,

Izquierdo, Gómez, Tisi, & Cabot, 2015; El-khoury, Gurdur, & Nyberg, 2016).

1.2 Objectives

The domain of REST APIs development conducts to solutions with repetitive or very similar code

between the different interfaces. This is the realm where Model-Driven Development can be

useful, abstracting this characteristic, using models as the primary artifact of the development

process.

The objective of this research and overall work is to come up with a solid, feasible and efficient

engineering solution, based on MDE techniques, specifically DSL(s), to take as inputs the structural

and the behavioral aspects of the business domain, and then generate the associated RESTful web

services, while being compliant with the most recent version of the Open API specification.

Therefore, some questions can be derived from the earlier paragraphs, summarizing the main

objectives that this work intends to achieve:

1. What MDE approach can be adopted to ensure a more efficient and reliable process of

web services development?

2. What are the compromises to specify a language agnostic metamodel to represent and

define the OpenAPI Specification?

3. Can a code generation process be developed over the DSL referred previously, and

consequently aiding developers in web services development?

4. How does an OAS-based DSL and code generation process compare with a Resource-

based one, with a simpler language?

1.3 Case study

My Pocket Nutritionist (finalist of 2017 “Concurso Montepio Acredita Portugal”1) is a health and

wellness Android and Web based platform, that enables users to approach a new life style by

engaging in a system that enables full control of their eating and exercising activities.

1 Source: http://www.acreditaportugal.pt/outras-edicoes/

RESTful Web Services Development with a Model-Driven Engineering Approach

 3

Inserting itself in an increasingly relevant area in a society where physical well-being is a priority

for most of active-age individuals, we can divide the field of application into three complementary

themes: nutrition, food and fitness. Operating as a system for monitoring user behavior, it enables

the recording of calories and nutrients ingested, the energy expended in performing certain physical

exercises, and provides information on various subjects associated with each of the points

mentioned, in the form of a small encyclopedia.

The application has features that distinguish it from other similar ones, bringing together a system

of monitoring, counseling and consultation, highlighting: the possibility of interacting directly with

experienced and qualified professionals, obtaining detailed feedback according to the user's profile

and history; a suggestions system that, according to the user's objective, provides personalized

nutrition and fitness plans; a real-time recommendations system that assists in daily meals planning.

The monitoring provided by the application allows its use as a system to support the decision

making by evaluating the performance transmitted by the user, identifying priorities for action or

improvement. This system allows a professional to supervise the performance of a user according

to their spheres of action, in nutritional aspects, in the definition of food plans and physical

activities, selecting the indicators most appropriate to the goal defined by the user.

Supported by a classic client-server architecture, where the backend provides multiple web services

implemented in Ruby on Rails, that are consumed by multiple clients, namely: two web sites

developed in AngularJS and two Android applications, the platform is envisioned to undergo a

major refactor of the backend implementation, with the intent of establishing a consistent and well

documented interface, as well an improvement of general quality of service (QoS) since some

degradation of services request is being observed.

Currently the most relevant services that the backend provides allows the management (CRUD

operations) of users and professionals; foods and exercises information; and food and exercises

plan generations based on the user profile

The envisioned refactor of the backend structure is also open to a stack technology change,

establishing an ideal scenario for the application of MDE techniques, allowing the comparison in

terms of implementation consistency, quality and overall performance between the different

scenarios.

This case study intents to help answering the question where the generated code is ready for being

integrated and deployed in a production, or at least staging environment, providing a high quality,

maintainable and evolutive solution.

1.4 Adopted methodology

The approach used to reach the proposed objectives is described in the following paragraphs, from

the problem contextualization to the solution evaluation.

The framing and contextualization. Some main concepts related to the research focus of this

work will be presented and correlated in the first chapters, providing an overview of their

relationships, and how they work together in an API development context.

The reasoning behind the Open API Specification necessity will be also referenced, while also

providing an overview of the main rules and standards defined.

RESTful Web Services Development with a Model-Driven Engineering Approach

4

An analysis of the current state of the art in the thematic of model driven engineering applied to

the RESTful API applications generation will be presented, considering the limitations as well as

the potential of existing solutions, making a comparative study between them.

Exploring the existing solutions. The experiment described in this thesis is in the domain of

health and wellness applications. Domain analysis is chosen as the method for understanding the

domain and to identify the concepts within it. The programming language used for the

implementation is the Java Programming Language 1.9 (Java). Java is currently an actively used

production language which is object-oriented and with proper tools and IDE support.

Based on the information retrieved in the state of the art analysis, the existing solutions were tested

using the referred domain, providing some additional context on the structure of the generated

code, and how it complies with the existing industry quality standards.

Example domain. The domain example chosen to aid the development of the DSL, by setting up

a comparison code-base structure, is the My Pocket Nutritionist backend. The complete domain

analysis of the system is described in detail in the domain analysis, Chapter 4.

The DSL development. Taking into consideration the OAS, and the data from the comparison

between the existing solutions, a DSL capable of representing the domain and the respective

resources, and their interactions was developed.

The domain model, the OAS, and the industry standards on the architecture definition for a well-

designed API, form the basis for the DSL development.

DSLs promise flexibility in problem-solving. It is a goal to produce a model unrestricted by existing

language concepts, enjoying the full range of possibilities enabled by custom syntax and semantics.

Results analysis and comparison. The solution developed was compared to the experimental

java manual implementation, establishing the first level of validation of the DSL.

A comparison between the achieved solution through the developed DSL and the previously

studied approaches was made, reflecting the code quality achieved, performance of the

implemented services and speed of the code generation.

The use of a case study provides the opportunity to intensively analyze many specific details and

difficulties. With a backend platform supported in an API that provides multiple services to be

consumed by different clients, the implemented infrastructure is representative of modern small to

medium startups, allowing generalizations to be made in the conclusions achieved through the

development of this work.

1.5 Contribution to Knowledge

This research and its developments place a contribution in the Computer Science domain,

particularly, in the autonomous code generation techniques under a Domain-Specific Modeling

(DSM) environment.

The proposed solution for this project, which is presented in Chapter 4, contributes with a tool

that uses a given input and translates it into a different format to enable a complete web service to

run right after the code generation, without any manual coding or any further adjustments.

RESTful Web Services Development with a Model-Driven Engineering Approach

 5

Furthermore, the solution proves that it is possible to generate a complete web service from its

conception (domain model) to its production-ready deployment using MDE techniques.

In the same chapter it is also demonstrated that this project also allows the generation of quality

and consistent code from an input model, providing database mappings, RESTful services, among

other infrastructure pieces of generated software, granting a better time-to-market to get new

models ready to ship to their customers.

1.6 Thesis outline

This subsection outlines the structure and organization of this document, presenting a summary of

the content found in each chapter, providing a general notion of all the developed work.

In each chapter will be presented a previous summary that exposes the main thematic ones treated

there, making possible the exploration by the reader only of the subsections of his interest.

In Chapter 2 the context of the development of this project is presented, framing the problem that

it proposes to solve, as well as the business area in which it can be applied. A description of the

main concepts that integrate this work is presented.

The current state of the art is analyzed in Chapter 3, presenting other applications with similar

objectives and making an assessment analysis between them. A requirements analysis is made,

defining the main implementation components. The adopted technologies are described and a DSL

solution outlining, focusing in the features it pretends to deliver, is defined. An outline of the

solution evaluation parameters is also presented.

In Chapter 4 the design and implementation of the DSL solution are detailed, as well the domain

model of a web services project that will support the solution development. An OAS specification

is elaborated based on the mentioned domain model.

From the evaluation plan outlined in Chapter 3, Chapter 5 leverages on the defined evaluation

parameters to assert the solution quality.

Chapter 6 closes the document, by synthesizing the work done and listing the successful objectives.

Some considerations are presented in relation to the developed solution, and areas with a margin

of progression in future interventions are identified, always aiming to improve the user's perceived

experience, without neglecting the process of development and implementation of new

functionalities. The chapter ends with an overall appreciation of the work developed.

Additional information, not crucial to the understanding of the document and project, is included

in the Annexes, providing a more detailed understanding of the document and project.

RESTful Web Services Development with a Model-Driven Engineering Approach

6

RESTful Web Services Development with a Model-Driven Engineering Approach

 7

Chapter 2

Context

This chapter intends to frame the project in question by describing the problem to solve, presenting

the mains concepts involved and formulating a state-of-the-art review with a compilation of

existing tools and approaches to design RESTful APIs, DSL frameworks used in code generation

and related topics. Findings and current developments of related projects will also be analyzed.

2.1 Problem and opportunities

Service-Oriented Architecture (SOA) has established itself as the main architectural pattern for

web applications development. Services constitute the basic constructs that support rapid, low-cost

and easy composition of distributed applications, allowing the integration and interaction

in/between heterogeneous environments (Huhns & Singh, 2005). In SOA, a service is “a logical

representation of a repeatable business activity that has a specified outcome” (SOA Work Group,

2016). This definition follows the same direction as (W3C, 2004), that defines a service as “a web

interface that supports interoperable operations between different software applications using a

standard messaging protocol”. In these definitions, one can perceive the focus on the abstraction

of the service concept. Such abstraction is needed when thinking of a model representing a business

process, since it usually encapsulates some complex logic, whose implementation shouldn’t be

addressed by the client.

Web services, as the most popular implementation of SOA, have some fundamental

characteristic’s: they offer robustness and agility to business enterprises, allowing them to perform

their business processes efficiently by supporting software reuse, application-to-application

interoperability, design flexibility, and a loosely coupled architecture.

When the web services implementation is based on the REST software architectural style they are

denominated as “RESTful web services”. Conforming with the concepts of REST allows the web

services to avoid the performance degradation resulting from the use of SOAP and XML

(Tihomirovs & Grabis, 2016), (Haupt, Karastoyanova, Leymann, & Schroth, 2014), (Pavan, Sanjay,

& Zornitza, 2012).

Services designed through the RESTful approach expose their functionality as Web resources,

where each resource is addressed with a unique URI: a user can directly access a specific resource

by the associated URI or traverse the offered functionality through a hierarchical structure.

RESTful Web Services Development with a Model-Driven Engineering Approach

8

The modeling process of RESTful applications is divided in structural and behavioral modeling

(Schreier, 2011). Structural modeling describes the resource types, their attributes, and relations as

well as their interface and representations, while the latter offers the possibility to describe the

behavior with state machines. Thereafter, these models are interpreted by a developer with the

purpose of gathering the necessary information to build the application. The development of the

solution, in this context, usually leads to de implementation of the classic CRUD operations over

the defined resources and their relationships, always taking into consideration the underlying

purpose of developing a REST compliant application.

Following the constrains inherent to REST architectural style is a non-trivial task, often not fulfilled

properly (Haupt et al., 2014). This leads to the fact that these applications are often not exploiting

the full potential of the REST architectural style. Also, the similarity between the written code for

the CRUD operations in the different resources, makes the development process tedious and error

prone.

Model-driven techniques have been proposed to improve the development of complex

applications (Stahl, Völter, Bettin, Haase, & Helsen, 2006). In model-driven software development

(MDSD), software is not implemented manually based on informal descriptions but automatically

generated based on formal models that derive from a metamodel. This approach in general leads

to better code quality, fewer errors, increased reuse of best practices, better maintainability through

“standardized” code, and increased portability through the separation of platform independent

models (PIM) and platform specific models (PSM). Given the several issues the developers have

to address to ensure a suitable design and the desired usability, an MDE based approach would

vastly improve the developers productivity, while also increasing the code quality (Schreibmann &

Braun, 2014).

As said before the introduction of an MDE approach to develop RESTful web services needs the

definition of a formal description/model of the application to be developed. While there is not an

accepted standard for describing REST Services, an emerging specification standard, the OpenAPI

Specification (OAS) within the Open API Initiative (OAI), backed up by some industry giants, like

Google, Microsoft, IBM, PayPal, etc., is gaining relevance as the main “programming language-

agnostic interface description for REST APIs, which allows both humans and computers to

discover and understand the capabilities of a service without requiring access to source code.”(The

Linux Foundation, 2017b).

The conjunction between the OAS as a standard to describe the web services, with a model-driven

approach based on a metamodel whose implementation takes into consideration the REST

constrains, would lead to a development solution that would improve the quality and productivity

of software development process, allowing the developers to focus on the business core rules. The

metamodel gives a generic mechanism to create formal specifications based on the OAS.

Afterward, the conceptual models created can be used for generating machine readable

specifications or the integration code by the corresponding transformation rules. Additionally, the

OAS standard allows the mitigation of another frequent problem in RESTful web services

development sphere: the proper documentation of the web service. The origin of OAS, previously

known as Swagger, allows an easy integration within a web platform where all the involved

stakeholders can access the authorized information related to the web services, and even test them

against either a real back-end infrastructure or a mocked one.

RESTful Web Services Development with a Model-Driven Engineering Approach

 9

Writing RESTful web services is a time-consuming matter and there is no guarantee that the

outcome will be REST-conform. Also, when a large number of web services is to be implemented

the challenges raised usually lead to redundant program code that covers the same functionality

over multiple and different layers of the software architecture. This often leads to mistakes as a

developer introduces unintentional errors to the repetitive code constructs. Furthermore, the

configuration of web services architecture is not a trivial task and it requires a complex and

redundant work to be performed (Dimitrieski et al., 2017).

Thus, summarily the main problems that are addressed by the work described in this document are

as followed:

1. What MDE approach can be adopted to ensure a more efficient and reliable process of web

services development?

2. Can the OAS be used as a Domain Specific Language in an MDE approach for web services

development?

3. Can a code generation process be developed over the DSL referred previously, and

consequently aiding developers in web services development?

4. How does an OAS-based DSL and code generation process compare with a Resource-based

one, with a simpler language?

The main purpose of this work is to present a model-driven approach that integrates the OAS in

the development of RESTful web services. It intends to provide a tool that allows developers to

use a design first approach in the web service development process, focusing in the definition of

resources and their relationships, leaving the code production process to the automation provided

by MDE techniques. The code generation process should cover the entire web service flow, from

the definition and exposure of the endpoints to the definition of database tables.

2.2 Value analysis and proposition

The section 2.1 provided a global context of the thematic involving the current work. This section

pretends to focus on the value that is envisioned to be provided, using some models as support to

demonstrate it: New Concept Development (NCD) model, Canvas model, value network analysis

(Verna Allee model (Allee, 2002)) and finalizing with an Analytic Hierarchy Process (AHP) analysis.

2.2.1 Value analysis

The “Front End of Innovation” is known as a first stage of the innovation process. Duration and

dynamism of such innovation "journey" very frequently depend on many factors that have an

impact particularly on this stage. Peter Koen (Koen et al., 2001) proposes a model, the NCD model,

that provides a common language to optimize the “Front End of Innovation”, distinguishing five

different front-end elements:

• Opportunity identification: this element relates to the identification of business and/or

technological opportunities;

• Opportunity analysis: the previous identified opportunities are translated to implications for

the business or technological company context. The perception of the new ideas impacts

must be evaluated, trying to align them with the target objective;

RESTful Web Services Development with a Model-Driven Engineering Approach

10

• Idea genesis: this element transforms the identified opportunity into a tangible product;

• Idea selection: the purpose of this element is to analyze the respective potential business

value, and decide if it is worth to pursue it;

• Concept and technology development: finally, this part the front-end, a concrete business

case is developed.

The following sections frame the NCD model in the context of this work, focusing the referred

front end elements.

2.2.1.1 Opportunity identification

The development of web services is a time-consuming, repetitive and error-prone task, since each

new common web service has the same structure of the already implemented ones and needs to be

integrated in the global platform using the exact same methods (Barukh & Benatallah, 2013).

Furthermore, the enforcement of the RESTful constraints in the development process adds

complexity to the code to be implemented, and architecture that will support the whole system.

MDE techniques allows the common service-related low-level logic to be abstracted, organized,

incrementally developed and thereby re-used, through the development of a meta-model that

allows the construction of instances, the models, representing the service to be implemented. Being

an established approach for developing software systems, MDE been adopted successfully in many

industries (Mussbacher et al., 2014).

Both concepts, web services and MDE, in this work context bond in the definition of the API

specification, where each resource and associated endpoints are defined, as well the relationships

between them.

Arising from the previous statements, the development of a domain-specific language, integrating

the OAS and RESTful concepts, consists in a valuable solution, granting:

• Fast paced and cost-effective development;

• Increased quality and less error-prone solutions;

• Software being less sensitive to changes in personnel;

• Advanced programmers additional time to focus on the creative aspects of their work;

• The capture of domain knowledge;

• Up-to-date documentation bridging the gap between business and IT;

• Focus on business problems instead of technology.

2.2.1.2 Opportunity analysis

Although MDE is often considered to be synonymous with code generation (or at least model-

driven development), other development techniques derive from the concept:

• Model Interpretation: model directly executes on an engine (or virtual machine). No code is

generated, or transformations are defined, the model is placed in a runtime environment and

it executes as defined by the semantics of the model;

RESTful Web Services Development with a Model-Driven Engineering Approach

 11

• Model Transformation: transforming a model into another model means that a source model

is transformed into a target model based on some transformation rules.

Figure 1 shows the diffusion of MD* (related model driven techniques) techniques among

companies, by respective size.

Figure 1 - MD* techniques diffusion by company size.1

Analyzing Figure 1, code generation reveals itself as the most used MDE approach in software

development, regarding any company size. Code generation is perceived to bring benefits such as

productivity, where reports show a high variability gains, from a 27% loss to an 800% gain

(Mohagheghi & Dehlen, 2008). Most companies seem to experience productivity increases of

between 20 to 30 percent.

Other advantages are in the support that MDE provides benefits in standardization of the

implementation procedures - Figure 2 (circles indicated statistically significant difference).

1 Source: (Torchiano et al., 2013)

RESTful Web Services Development with a Model-Driven Engineering Approach

12

Figure 2 - Benefits achieved through MD techniques.2

Dealing with a developer perspective, additional reports state interesting conclusions related to

productivity, problem solving capabilities, creativity and enjoyment from the use of MDE practices

in applications development - Figure 3.

Figure 3 - How MDE affects developers experience.1

One of the main drawbacks in this dominion, is related to the increased training costs and

substantial organizational changes when a MDE adoption is followed (Whittle, Hutchinson, &

Rouncefield, 2014). The same study suggests MDE isn’t appropriate for every type of organization.

Companies that target a particular domain are more likely to use MDE than companies that develop

generic software.

1 Source: (Hutchinson et al., 2014)

RESTful Web Services Development with a Model-Driven Engineering Approach

 13

Given the SOA proliferated use as a form of companies deliver their solutions in delivering

solutions, the global API1 management market is set of a massive growth - Figure 4.

Figure 4 - Global API management market revenue, 2016-2022 (USD Millions).2

Advancements of the Internet of Things & Big Data, cost and feature benefits and increasing needs

to manage API traffic are some of the key factors predicted to shape the API managements market.

System integrators and SOA and PaaS (Platform as a Service) integrations are likely to open up

new alluring opportunities for API management market in near future (Zion Market Research,

2017).

2.2.1.3 Idea generation, selection and concept definition

Considering Figure 1, where relative frequency of adoption of the MD* specific practices among

modelers is depicted, from a universe of 105 modelers, 48% adopt at least one of the three key

MD* techniques: code generation is in use by 44%, model interpretation by 16% and model

transformation by 10%.

If the scope is narrowed down to MD* adopters only, 46 out of 50 MD* adopters (92%) use code

generation, 34% use model interpretation, and 20% use model transformation.

This indicates a tendency from companies to prefer the adoption of code generation relatively to

other MDE techniques.

The emerging of the OpenAPI specification, backed up by industry giants, as a standard for

describing API overall behavior, that can be easily interpreted by different users, of different

backgrounds, not necessarily related to the IT industry, constitutes an ideal scenario to develop a

DSL based solution that interprets the specification and generates the related web services code.

1 In this context a web service is a type of API, with a specification that almost always operates over HTTP
2 Source: https://www.zionmarketresearch.com/news/api-management-market

RESTful Web Services Development with a Model-Driven Engineering Approach

14

Figure 5 presents the concept definition and the integration of the envisioned DSL in the

development process.

Figure 5 - Concept integration and definition, based on (Stahl et al., 2006).

Analyzing an existing application or a reference implementation (the upper left corner of the

diagram), the code can be restructured in three parts (the lower left corner): a generic part that is

identical for all future applications, a schematic part that is not identical for all applications, but

possesses the same systematics (for example, based on the same design patterns), and finally an

application-specific part that cannot be generalized.

MDSD aims to derive the schematic part from an application model. Intermediate stages can occur

during transformation, but in any case, DSL, transformation (in this work context the code

generation process), and platform will constitute the key elements.

2.2.2 Value proposition

Multiple definitions of value exist, but ultimately it resides in the benefit that someone or some

company retrieves from using a specific product or service, making a transaction between the two

parts. Following this setting, and in the context of the present work, the main value proposition

that emerges is:

“MDE approach in web services implementation improves developer’s productivity, companies

gain, and ultimately the costumer experience, by focusing the implementation effort on the core

business rules. This achieves a consistent approach and definition of the web services across the

defined domain model, leading to an improvement of service quality, responsiveness, reliability and

maintainability.”

2.2.3 Perceived value

Perceived value, as the name suggests, relates to the benefits from a concrete individual perspective.

In this case three different perspectives can be identified:

• Developers - productivity improvement from access to a fast paced, less error-prone

development environment;

Code of application or reference
implementation

analyze

 Generic

code

 Individual

code

Schematic

repetitive code

OAS DSL

Schematic

repetitive code

Transformation

Application model

 Individual
code

 Platform

OpenAPI spec

RESTful Web Services Development with a Model-Driven Engineering Approach

 15

• Companies - costs reduction, less time to market and focus on business instead of technology

concerns;

• End-users - access to a reliable and performant service.

The value to the client can be interpreted from a longitudinal perspective of value with the benefits

and sacrifices encompassing four temporal values - Table 1.

Table 1 - Longitudinal perspective of value.

 Ex Ante Transaction Ex Post Disposition

D
e
ve

lo
p

e
rs

Benefits -
innovation; focus on

creative process

increased productivity;
less errors; quality

improvement

ease of maintainability
and new features

integration

Sacrifices
mistrust; unfamiliarity;

training costs
effort; steep learning

curve
- -

C
o

m
p

a
n

ie
s

Benefits -
innovation, focus on

business rules

less time to market;
reliable solutions; easy

evolution

service quality;
increased profits

Sacrifices
mistrust; unfamiliarity;

training costs
invested time - benefits evaluation

E
n

d
-u

se
rs

Benefits - -
better user experience;

QoS and reliability
satisfaction

Sacrifices - - - -

2.2.4 Canvas model

The business model defines how to combine the means to deliver value to the interested parts and

capture value to the organization. Table 2 portrays a Canvas model adapted to the context of the

work developed in this thesis.

RESTful Web Services Development with a Model-Driven Engineering Approach

16

Table 2 - Canvas model.

C
o

st
u

m
e
r

se
g

m
e
n

ts

 D
ev

el
o

p
er

s

D
ev

el
o

p
er

s
w

ill
 h

av
e

a
to

o
l
to

o
p

ti
m

iz
e

p
ro

d
u
ct

iv
it

y
an

d

im
p

ro
v
e

o
v
er

al
l
q
u
al

it
y

o
f

d
ev

el
o

p
ed

 s
o

ft
w

ar
e

 C
o

m
p

an
ie

s

B
us

in
es

s
ar

ea

C
o

st
s

re
d

u
ct

io
n

 (
d

ev
el

o
p

m
en

t

an
d

 m
ai

n
te

n
an

ce
);

 L
es

s
ti

m
e

to

m
ar

k
et

;
R

el
ia

b
le

 s
o

lu
ti

o
n

s

D
om

ai
n

k
no

w
le

dg
e

ar
ea

E
as

e
in

 c
o

n
v
ey

in
g

th
e

b
u
si

n
es

s

re
q
u
ir

em
en

ts

 F
in

al
 u

se
rs

B
et

te
r

se
rv

ic
e

q
u
al

it
y

an
d

re
lia

b
ili

ty

R
e
ve

n
u

e
 s

tr
e
a
m

s

L
ic

en
si

n
g

th
e

D
S
L

W
eb

 s
er

v
ic

es
 d

ev
el

o
p

m
en

t

M
ai

n
te

n
an

ce
 c

o
n

tr
ac

ts

C
o

st
 s

tr
u

c
tu

re

H
u
m

an
 R

es
o

u
rc

es

H
ar

d
w

ar
e

S
o

ft
w

ar
e

L
ic

en
se

s

C
o

st
u

m
e
r

re
la

ti
o

n
sh

ip
s

W
eb

 s
er

v
ic

es
 r

el
ia

b
ili

ty
 a

n
d

q
u
al

it
y

 C
h

a
n

n
e
ls

D
ig

it
al

 m
ar

k
et

in
g

T
ec

h
n

ic
al

 c
o

n
fe

re
n

ce
s

T
ec

h
n

ic
al

 w
o

rk
sh

o
p

s

V
a
lu

e
 p

ro
p

o
si

ti
o

n
s

O
A

S
 D

S
L

 i
m

p
ro

v
es

 d
ev

el
o

p
er

’s

p
ro

d
u
ct

iv
it

y,
 c

o
m

p
an

ie
s

ga
in

,

an
d

 u
lt

im
at

el
y

th
e

co
st

u
m

er

ex
p

er
ie

n
ce

,
b

y
fo

cu
si

n
g

th
e

im
p

le
m

en
ta

ti
o

n
 e

ff
o

rt
 o

n
 t

h
e

co
re

 b
u
si

n
es

s
ru

le
s.

 T
h

is

ac
h

ie
v
es

 a
 c

o
n

si
st

en
t

ap
p

ro
ac

h

an
d

 d
ef

in
it

io
n

 o
f

th
e

w
eb

se
rv

ic
es

 a
cr

o
ss

 t
h

e
d

ef
in

ed

d
o

m
ai

n
 m

o
d

el
,
le

ad
in

g
to

 a
n

im
p

ro
v
em

en
t

o
f

se
rv

ic
e

q
u
al

it
y,

re
sp

o
n

si
v
en

es
s,

 r
el

ia
b

il
it

y
an

d

m
ai

n
ta

in
ab

ili
ty

.

K
e
y
 a

c
ti

v
it

ie
s

P
ro

gr
am

m
in

g

W
eb

 s
er

v
ic

es
 d

ev
el

o
p

m
en

t

E
v
o

lu
ti

o
n

/
M

ai
n

te
n

an
ce

 o
f

w
eb

se
rv

ic
es

 s
o

lu
ti

o
n

s

M
ig

ra
ti

o
n

 o
f

te
ch

n
o

lo
gi

ca
l
st

ac
k
s

K
e
y
 r

e
so

u
rc

e
s

H
u
m

an
 R

es
o

u
rc

es

H
ar

d
w

ar
e

S
o

ft
w

ar
e

O
p

en
A

P
I

sp
ec

if
ic

at
io

n

K
e
y
 p

a
rt

n
e
rs

O
p

en
 A

P
I

In
it

ia
ti

v
e

RESTful Web Services Development with a Model-Driven Engineering Approach

 17

2.2.5 Value network analysis (Verna Allee model)

The Value Network Analysis exists on the premise that work itself can be model as a network

(Allee, 2002). Value networks are sets of roles and values exchanges that generate a specific kind

of value, allowing the discovery of:

• How the work gets done;

• The kind of value being created;

• How efficiently an organization converts resources (inputs) to value outputs (value

conversion);

• Failures points in the networks.

Figure 6 portrays the value network associated with the current work, where the roles involved are

identified, as well the tangible and intangible relationships/transactions.

Figure 6 - Value network analysis.

In the network shown the relationships/transactions (solid line: tangible relation; dashed line:

intangible relation) between the five roles identified:

• Technology innovation: the DSL developed in the context of this work;

• Developers: the individuals that will use and model the business concepts and relationships

using the developed DSL;

• Companies: will provide the requirements and business model, from which developers

implement the required web service, that later will be made available by the company, with

the purpose of making profit;

• End-users: the final users of the web service;

• OpenAPI Consortia: provide the OpenAPI specification, supported by multiple companies.

Technology

innovation

Developers

End-Users

Companies

OpenAPI

Consortia

OpenAPI spec

Product

Service

Payment

Productivity
increase

Requirements

Product

Less errors

Industry giants

 support

Quality increase

Costs reduction

Less time

to market

Bridges gap

between IT and

business

Bridges gap

between IT and

business

Updated

Documentation

Captures
domain

knowledge

RESTful Web Services Development with a Model-Driven Engineering Approach

18

2.2.6 AHP analysis

One of the main methods developed in the field of Multicriteria Discrete Decisions is the AHP,

created by Professor Thoma L. Saaty in 1980.

This method allows the use of qualitative as well as quantitative criteria in the evaluation process.

The main idea is to divide the decision problem into hierarchical levels, thus facilitating its

comprehension and evaluation.

Figure 7 shows the hierarchy tree associated with the current work, where three hierarchical levels

are portrayed:

1. Problem statement;

2. Criteria;

3. Alternatives.

Figure 7 - Hierarchy tree.

After building the hierarchical three, the second phase consists in establishing priorities among the

elements for each level of the hierarchy, by means of a comparison matrix, following a comparison

scale from values in the interval 1 through 9 (Saaty, 2008) - Table 3.

Table 3 - Criteria pairwise comparison.

 2.1. 2.2. 2.3. 2.4. 2.5.

2.1. 1 8 4 7 1

2.2. 1/8 1 1/5 1/5 1/9

2.3. 1/4 5 1 3 1/5

2.4. 1/7 5 1/3 1 1/8

2.5. 1 9 5 8 1

The next step consists in the normalization of comparison matrix, and determination of the priority

vector - Table 4.

1. Wich approach shoud be followed
when implementing web services

2.1. Increases
productivity

3.1. Resources based
DSL

3.2. OpenAPI spec
based DSL

3.3. Traditional
development

2.2. Bridges gap between
business and IT

3.1. Resources based
DSL

3.2. OpenAPI spec
based DSL

3.3. Traditional
development

2.3. Captures domain
knowledge

3.1. Resources based
DSL

3.2. OpenAPI spec
based DSL

3.3. Traditional
development

2.4. Provides up-to-
date documentation

3.1. Resources based
DSL

3.2. OpenAPI spec
based DSL

3.3. Traditional
development

2.5. Less error-prone

3.1. Resources based
DSL

3.2. OpenAPI spec
based DSL

3.3. Traditional
development

RESTful Web Services Development with a Model-Driven Engineering Approach

 19

Table 4 - Normalized matrix and priority vector.

 2.1. 2.2. 2.3. 2.4. 2.5. Priority vector

2.1. 0.3972 0.2857 0.3797 0.3646 0.4105 37%

2.2. 0.0496 0.0357 0.0190 0.0104 0.0456 3%

2.3. 0.0993 0.1786 0.0949 0.1563 0.0821 12%

2.4. 0.0567 0.1786 0.0316 0.0521 0.0513 7%

2.5. 0.3972 0.3214 0.4747 0.4167 0.4105 40%

The next step is to calculate the Consistency Ratio (CR) to measure how consistent the judgments

were in relation to large random samples of judgments. Evaluations of the AHP method assume

that the decision maker is rational, that is, if A is preferred to B and B is preferable to C, then A is

preferred to C.

If the CR is greater than 0.1 the judgments are not reliable because they are too close to the comfort

of randomness, in this case the obtained results do not present consistent values.

In this case a CR of 0.082 was reached, so it can be concluded that the relative priority values of

the example used are consistent.

All the previous procedures for constructing the comparison matrix and determining the relative

priority of each criterion must be made again, and now observe the relative importance of each of

the alternatives that make up the hierarchical structure of the problem in question - Appendix

Appendix A.

Table 5 - Alternative choice.

 2.1. 2.2. 2.3. 2.4. 2.5. Alternative

3.1. 0.4814 0.3661 0.6594 0.4667 0.4737 0.4953

3.2. 0.4629 0.5753 0.2825 0.4667 0.4737 0.4491

3.3. 0.0557 0.0586 0.0580 0.0667 0.0526 0.0556

Based on the AHP analysis, the resources-based DSL presents itself as the best solution for the

web service implementation.

The following sections describe the key concepts involved in the development of this work and its

relationships.

2.3 RESTful web services

2.3.1 REST

REST is an acronym for REpresentational State Transfer and it is an “architectural style for

distributed hypermedia systems” (Fielding, 2000). REST is not considered to be an architecture

but it is described as a “set of constraints applied to elements within the architecture”(Giessler,

Gebhart, Sarancin, Steinegger, & Abeck, 2015). Fielding describes the constraints in his dissertation

as:

RESTful Web Services Development with a Model-Driven Engineering Approach

20

• Client-Server: this feature is most commonly found in Web applications. A server, with a

set of services available, listens for requests to these services. A client, who wants to run a

specific service in an available server, sends a request to the server. The server can then either

reject or execute the requested service and return a response to the client;

• Stateless: another constraint imposed by the REST style concerns the interaction between

client and server. Communication must be done without storing any type of state on the

server, i.e. every client request to the server must hold all the information necessary for it to

be understood. Therefore, session states, when needed, must be fully supported on the client;

• Cache: one way to lessen the impact of the downside brought about by performance

reduction is by using cache. It also requires that data from a response, coming from a request

to the server, to be marked as cacheable or noncacheable. If an answer is set as cacheable,

then it will be reused in response to future equivalent requests;

• Interface/Uniform contract: the central feature that distinguishes REST architectural style

from other network-based styles is its emphasis on a uniform interface between components

(client, server). To obtain a uniform interface, REST defines four interface requirements: (i)

identification of resources; (ii) manipulation of resources through representations; (iii) self-

descriptive messages and; (iv) hypermedia as the application state mechanism;

• Layered system: to improve the scalability requirement of the Internet, to the REST style

was added the layering feature. Multilayer systems use layers to separate different units by its

responsibilities. The main disadvantage of this model is the addition of overhead and latency

in the processed data, reducing performance. For a network-based system that supports

caching, this drawback can be mitigated;

• Code-on-demand: the last item in the set proposed by the REST style is an optional feature.

REST allows clients to have the ability to directly download and execute code on the client

side. This way, it simplifies the client side and focuses on extensibility, in contrast, reduces

visibility. A known practical example of Code-On-Demand is Adobe Flash: A user (client)

requests a Web page which contains a link to a SWF using a web browser. After the request,

the Web page is transported to the client machine together with a SWF and executed.

2.3.2 HTTP verbs

The HTTP protocol has 9 different methods. Only 6 of them are widely used: GET, POST, PUT,

DELETE, HEAD and OPTIONS. HEAD and OPTIONS are special methods. HEAD is used

to return only the headers of the response and OPTION is for getting allowed methods on a

resource (Nguyen, Qafmolla, & Richta, 2014). The others are used for operating with resources.

Table 6 - HTTP common verbs.1

Verb Action

GET Used to retrieve a representation of a resource. It is a read-only, idempotent, and safe operation.

PUT Used to update a reference to a resource on the server and it is idempotent as well.

POST Used to create a resource on the server based on the data included in the body request. It is the
only nonidempotent and unsafe operation of HTTP.

1 From (Selic, 2003)

RESTful Web Services Development with a Model-Driven Engineering Approach

 21

Table 6 - HTTP common verbs.1

Verb Action

DELETE Used to remove a resource on the server. It is idempotent as well.

HEAD Like GET but returning only a response code and the header associated
with the request.

OPTIONS Used to request information about the communication options of the addressed resource (e.g.,
security capabilities such as CORS).

2.3.3 RESTful web services

Web services are currently the most common way to exchange data among information systems.

Web services comprehend some fundamental characteristics: they are self-contained, modular and

dynamic (Vasudevan, 2017). SOAP (Simple Object Access Protocol) and REST are the most usual

implementation of web services, where each of these approaches has its own advantages and

disadvantages. Its fundamental to choose the right type of web services, otherwise it can lead to

certain problems in data exchange or impose some restrictions.

The constrains identified by Fielding (API Evangelist, 2015) and explained in section 2.3.1, if

fulfilled by a web service implementation and behavior, compose the essential requirements to

define the service as RESTful. The only exception is “Code on Demand”, since it is an optional

constraint and has not to be implemented by a web service.

Giessler et al (API Evangelist, 2015) identified, collected, and categorized best practices for a

quality-oriented design of RESTful web services:

• No versioning: RESTful web services completely avoid the necessity of a versioning

strategy due to the hypermedia constrain of REST architectures. Building on this, RESTful

web services can be compared with traditional websites, where the content remains available

across multiple web browsers even when changes are made;

• Resources description: the resources defined in the RESTful web services abstract the

underlying domain model and associated entities. This makes the description extremely

relevant, since there is a direct connection between its quality and the usability of the web

service. In this perspective some best practices are recommended:

1. Nouns should be used for resources names;

2. The resource name must be domain specific and concise, allowing the semantics inference

without additional information;

3. The number of resources should be limited, to avoid an overly complex system. This

recommendation is highly dependent of the abstraction level of the base domain model;

4. Consistency between the use of plural or singular in the resources naming must be

enforced;

5. The JavaScript naming conventions should be used since JSON (JavaScript Object

Notation) is the preferred media format for message communication.

• Identification of resources: an URI should be used for the resources identification, unique

for each one of them:

RESTful Web Services Development with a Model-Driven Engineering Approach

22

1. The URI must be self-explanatory;

2. A resource URI should be composed of two parts: the first one represents a set of states

specific to the resource and the other one a specific state of the previously mentioned

state;

3. According to the Open Web Application Security Project (OWASP), the identifier of a

resource specific state must be difficult to guess and a direct reference to the associated

object should be avoided;

4. Verbs should not exist within the URI, since this kind of policy implies a method-oriented

style, such as SOAP.

• Error handling: the level of abstraction introduced through the defined web service

resources, leads to the requirement of an error messaging system that must provide clear and

understandable data associated with the origin of the error:

1. HTTP status code should be reduced to the minimum viably possible that allows the fast

identification of the problem;

2. HTTP specification must be used in the employment of application explicit error status

codes;

3. The error message should comprise four components:

a) A message to developers describing the cause of the error, and ideally providing some

hints on how to solve it;

b) A message to be shown to the user;

c) An application specific code;

d) A hyperlink to additional information about the error.

• Parameters usage: each resource URI functionality can be improved with parameters, to send

optional information to the service:

1. Filtering: allowing the resources to be filtered by its attributes or through a special query

language;

2. Sorting: to sort the information a comma divided list with the attributes followed by the

“-” or “+” is recommended, defining the order and respective parameter from which the

results should be fetched;

3. Selection: choose which information should be returned by the web service response

through a comma separated list of attributes;

4. Pagination: it enables the information division through several virtual pages, referencing,

as well, the existence of next and previous pages.

• Interaction with resources: the underlying REST architectural style of the web service

dictates that the interaction between the client and server is made through a representation

of a resource. The communication is established through the HTTP protocol, and should

follow the following recommendations:

1. The used HTTP methods should conform to the method’s semantics defined in the

official HTTP specification. Table 7 summarizes the most used HTTP methods and their

characteristics.

RESTful Web Services Development with a Model-Driven Engineering Approach

 23

2. If a large amount of data has to be transmitted support of HTTP-OPTIONS is

recommended since it allows a client to request the supported methods of the current

representation before transmitting information over the shared medium.

Table 7 - Most used HTTP methods characteristics.

HTTP method Safe Idempotent

POST No No

GET Yes Yes

PUT No Yes

DELETE No Yes

• Support of MIME Types: Multipurpose Internet Mail Extensions (MIME) types are used for

the identification of data formats:

1. At least two representation formats should be supported by the web service, such as

JSON or Extensible Markup Language;

2. JSON should be the default representation format since its increasing distribution;

3. Hypermedia MIME types should be used;

4. The client should be able to choose the representational format through the HTTP header

field “ACCEPT”.

2.4 Model-Driven Engineering

Using models to raise the level of abstraction and automate the development process of building

software is the core process of Model-Driven Engineering paradigm. To cope with complexity,

abstraction is a fundamental technique, whereas automation is an effective method to increase

productivity and quality (Ed-douibi, Izquierdo, Gómez, Tisi, & Cabot, 2016).

In model-driven software development, the first-class elements are models, which are all structured

by a metamodel. Concisely, models are defined according to the semantics of a metamodel, which

is a model for specifying models.

Model-driven engineering methodologies have been applied as a solution for better reaction to

business trends and aims to increase efficiency as well as bring more agility to the development

life-cycle of cloud and distributed systems (“EMF-REST Documentation,” 2015).

2.4.1 Domain Specific Languages (DSLs)

Many computer languages are domain specific rather than general purpose languages(GPLs). DSLs

trade generality for expressiveness in a limited domain. By providing notations and constructs

tailored toward a particular application domain, they offer substantial gains in expressiveness and

ease of use compared with GPLs for the domain in question, with corresponding gains in

productivity and reduced maintenance costs.

The following is a grammar for arithmetic expressions using only addition - Code snippet 1.

Code snippet 1 - Simple example grammar.

Expression ::= number | number "+" expression

number ::= [1−9][0−9]∗

RESTful Web Services Development with a Model-Driven Engineering Approach

24

For simple arithmetic, 1+2+3 is according to grammar, while 1+2+ is not. The vocabulary of this

language is: expression, number and addition. The semantics of this simple language is: the first

and second operands of an expression are added.

The vocabulary of a DSL is taken from its domain. The syntax should be created to fit the domain,

and preferably also the conventions within the domain.

2.5 OpenAPI specification

Before detailing the OpenAPI specification it is important to clarify what differs between an API

specification and an API documentation.

API documentation as its name implies is simply that - documentation of an API, with examples

of how developers can use each function (or, in a web API context, each endpoint), and the

constrains that the API allows (Kristopher Sandoval, 2016).

API specification is much more concerned with the overall behavior of the API, and how it links

to other APIs. Taking as example the OAS, a variety of functions is showed, how they are called

and what they do. Additionally, a general overview of how they relate to one another, and how they

can be used to more fully leverage the API is presented (Kristopher Sandoval, 2016).

Documentation is essentially how to do something, whereas specification is essentially how

something should function, and what the user should expect.

2.5.1 API standardized design

API design is the creation of an effective interface that allows better maintaining and implementing

an API, while enabling consumers to easily use this API (Hutchinson, Whittle, & Rouncefield,

2014). The use of a specification in the design process leads to predictable, industry-consistent

experiences for users of company/enterprise APIs. But most of all, the specification defines a

template to fill out the API, making clear what information is needed and how it is organized and

structured.

Most organizations standardize design using Style Guidelines1 2 3, assuring a consistency in the way

APIs are designed and implemented to:

• provide a better developer experience;

• save time and money in the development process;

• improve the API sustainability.

Specifications provide a shareable definition that can establish an understanding across team

members and project stakeholders, while also providing a machine-readable definition that can be

used in documentation, and other systems, and client tooling. API specifications are central to the

1 Source: https://github.com/Microsoft/api-guidelines
2 Source: https://cloud.google.com/apis/design/
3 Source: https://github.com/paypal/api-standards/blob/master/api-style-guide.md

RESTful Web Services Development with a Model-Driven Engineering Approach

 25

API design process. The resulting definition acts as a contract throughout the technical, business,

and legal side of API operations.

2.5.2 The OpenAPI specification

RESTful APIs being described in multiple and heterogeneous ways, complicated their

understanding by potential consumers and incremented the amount of implementation logic

needed to interact with different services. In order to solve these problems and standardize the

process of defining RESTful APIs, some proposals emerged.

The OpenAPI Specification, originally known as the Swagger Specification, was born when

SmartBear, the company that maintained the Swagger specification and associated tools,

announced that it was helping create a new organization, under the sponsorship of the Linux

Foundation, called the Open API Initiative. A variety of companies, including Google, IBM and

Microsoft are founding members. SmartBear donated the Swagger specification to the new group.

RAML and API Blueprint were also under consideration by the group. On 1 January 2016, the

Swagger specification was renamed the OpenAPI Specification.

Basically, an OpenAPI Specification file describes an API, including (among others):

1. General information about the API;

2. Available paths (/resources);

3. Available operations on each path (get/resources);

4. Input/output for each operation.

The OpenAPI Specification is a formal specification for RESTful APIs, providing a way of

describing them using JSON or YAML documents. Building on these formats makes OpenAPI

equally accessible to humans and machines - Code snippet 2.

Code snippet 2 - OpenAPI 3.0 YAML standard example1.

openapi: "3.0.0"

info:

 version: 1.0.0

 title: Swagger Petstore

 license:

 name: MIT

servers:

 - url: http://petstore.swagger.io/v1

paths:

 /pets:

 get:

 summary: List all pets

 operationId: listPets

 tags:

 - pets

 parameters:

 - name: limit

 in: query

 description: How many items to return at one time (max 100)

 required: false

 schema:

 type: integer

 format: int32

 responses:

 '200':

 description: An paged array of pets

1 Source: https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore.yaml

RESTful Web Services Development with a Model-Driven Engineering Approach

26

Code snippet 2 - OpenAPI 3.0 YAML standard example1.

 headers:

 x-next:

 description: A link to the next page of responses

 schema:

 type: string

 content:

 application/json:

 schema:

 $ref: "#/components/schemas/Pets"

 default:

 description: unexpected error

 content:

 application/json:

 schema:

 $ref: "#/components/schemas/Error"

2.5.3 OpenAPI 3.0.1 specification

At the time of writing the version 3.0.1 is the most recent one. Figure 8 shows the evolution from

OpenAPI 2.0 to 3.0.

Figure 8 - OpenAPI evolution.1

The new version of the OpenAPI Specification differs from its predecessor by a clearer

structure. At the top level, the structure has been cleaned up, with the result that the new version

is incompatible with the existing one (but migration is possible automatically).

Based on Figure 8, the following code snippets, show the most relevant objects that integrate an

OAS file:

• Info Object: contains basic information about the API, including the title, a description,

version, link to the license, link to the terms of service, and contact information.

Code snippet 3 - OpenAPI 3.0.1: Info object example.

title: Sample Pet Store App

description: This is a sample server for a pet store.

termsOfService: http://example.com/terms/

1 From: https://apievangelist.com/2017/03/16/what-will-it-take-to-evolve-openapi-tooling-to-version-30/

RESTful Web Services Development with a Model-Driven Engineering Approach

 27

contact:

 name: API Support

 url: http://www.example.com/support

 email: support@example.com

license:

 name: Apache 2.0

 url: https://www.apache.org/licenses/LICENSE-2.0.html

version: 1.0.1

• Server object: specification of the basepath used in the API requests. The basepath is the

part of the URL that appears before the endpoint.

Code snippet 4 - OpenAPI 3.0.1: Server object example.

servers:

- url: https://development.gigantic-server.com/v1

 description: Development server

- url: https://staging.gigantic-server.com/v1

 description: Staging server

- url: https://api.gigantic-server.com/v1

 description: Production server

• Security scheme object: defines a security scheme that can be used by the operations.

Code snippet 5 - OpenAPI 3.0.1: Security scheme object example.

type: http

scheme: bearer

bearerFormat: JWT

• Paths object: holds the relative paths to the individual endpoints and their operations.

Code snippet 6 - OpenAPI 3.0.1: Paths object example.

/pets:

 get:

 description: Returns all pets from the system that the user has access to

 responses:

 '200':

 description: A list of pets.

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/pet'

• Tag object: adds metadata to a single tag that is used by the Operation Object.

Code snippet 7 - OpenAPI 3.0.1 Tag object example.

name: pet

description: Pets operations

• Components object: holds a set of reusable objects for different aspects of the OAS.

Code snippet 8 - OpenAPI 3.0.1: Components object example.

components:

 schemas:

 Category:

 type: object

RESTful Web Services Development with a Model-Driven Engineering Approach

28

 properties:

 id:

 type: integer

 format: int64

 name:

 type: string

 Tag:

 type: object

 properties:

 id:

 type: integer

 format: int64

 name:

 type: string

 parameters:

 skipParam:

 name: skip

 in: query

 description: number of items to skip

 required: true

 schema:

 type: integer

 format: int32

 limitParam:

 name: limit

 in: query

 description: max records to return

 required: true

 schema:

 type: integer

 format: int32

 responses:

 NotFound:

 description: Entity not found.

 IllegalInput:

 description: Illegal input for operation.

 GeneralError:

 description: General Error

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/GeneralError'

 securitySchemes:

 api_key:

 type: apiKey

 name: api_key

 in: header

 petstore_auth:

 type: oauth2

 flows:

 implicit:

 authorizationUrl: http://example.org/api/oauth/dialog

 scopes:

 write:pets: modify pets in your account

 read:pets: read your pets

• External documentation object: allows referencing an external resource for extended

documentation.

Code snippet 9 - OpenAPI 3.0.1: External documentation object example.

description: Find more info here

url: https://example.com

OpenAPI is backed up by a large ecosystem of tools that helps design, build, document, and

consume RESTful APIs.

RESTful Web Services Development with a Model-Driven Engineering Approach

 29

2.5.4 Other REST API Specifications

2.5.4.1 RESTful API Modeling Language Specification

RAML stands for REST API Modelling Language, and it is an YAML-based language used to

describe REST API parameters and endpoints. This format makes it easier to represent the

hierarchy of the operations and to reuse some parts of the code. It also has some interesting tooling:

automatic documentation generator, online editor and code generator.

The Code snippet 10 shows a partial example of a RAML API specification file.

Code snippet 10 - RAML 1.0 standard example.1

#%RAML 1.0

title: Hello world # required title

/greeting: # optional resource

get: # HTTP method declaration

 responses: # declare a response

 200: # HTTP status code

 body: # declare content of response

 application/json: # media type

 # structural definition of a response (schema or type)

 type: object

 properties:

 message: string

 example: # example how a response looks like

 message: "Hello world"

2.5.4.2 API Blueprint

API Blueprint is a high-level language for describe web APIs. The syntax is a combination of

Markdown and MSON syntax - Code snippet 11.

The syntax constitutes a great advantage of the API Blueprint: using Markdown to describe the

API, greatly facilitates the editing of documents, even by those who are not familiar with coding

languages.

Code snippet 11 - API Blueprint standard example.2

FORMAT: 1A

Polls

Polls is a simple API allowing consumers to view polls and vote in them.

Questions Collection [/questions]

List All Questions [GET]

+ Response 200 (application/json)

 {

 "question": "Favourite programming language?",

 "choices": [

 {

 "choice": "Swift",

 "votes": 2048

 }, {

 "choice": "Python",

1 source: https://github.com/raml-org/raml-spec
2 source: https://help.apiary.io/api_101/api_blueprint_tutorial/

RESTful Web Services Development with a Model-Driven Engineering Approach

30

 "votes": 1024

 }

]

 }

2.5.4.3 Web Application Description Language (WADL)

The Web Application Description Language (WADL) is a machine-readable XML description of

HTTP-based web services. WADL models the resources provided by a service and the

relationships between them. WADL is intended to simplify the reuse of web services that are based

on the existing HTTP architecture of the Web. It is platform and language independent and aims

to promote reuse of applications beyond the basic use in a web browser.

2.5.4.4 RESTful API Description Language (RADL)

RESTful API Description Language (RADL) is an XML vocabulary for describing Hypermedia-

driven RESTful APIs. Unlike most HTTP API description languages, RADL focuses on defining

a truly hypermedia-driven REST API from the client’s point of view, moving the conversation

forward.

2.5.4.5 RESTful Service Description Language (RSDL)

The RESTful Service Description Language (RSDL) is a machine-and human-readable XML

description of HTTP-based web applications (typically REST web services), adding another way

to describe APIs in a machine-readable format.

RESTful Web Services Development with a Model-Driven Engineering Approach

 31

Chapter 3

MDE in REST web services development

Aiding REST web services development through MDE techniques is not a new idea and some

existing solutions have already addressed this kind of approach, which are described in this chapter.

Their main features are also compared to support a solution perspective, focusing on the

appropriate technologies and the DSL design. Finally, an evaluation procedure to assess the

solution suitability is described.

3.1 Related work - State of the Art

This section briefly summarizes currently available tools which are relevant to REST web services

implementation and code generation.

3.1.1 Apimatic

Apimatic1 describes itself has a “code-generation-as-a-service” platform. It is an automatic SDK

generator for REST APIs that tries to cover all aspects concerning REST, from the API definition

on the backend, to generation of SDKs to the frontend. With Apimatic the developer must

interactively define resources and their attributes using a web-interface. Apimatic then generates

an API providing CRUD operations on these resources and SDKs to be used in different clients.

Apimatic allows developers to import Swagger or WADL descriptions of an API to their platform,

streamlining the creation of web services and easing the migration from existing projects. The code

generation can also be configured through a simple interface (Figure 9), where the developer can

decide some generic behaviors and implementation details.

1 https://apimatic.io/

RESTful Web Services Development with a Model-Driven Engineering Approach

32

Figure 9 - Apimatic code generation configuration page.

Currently Apimatic does not support the concept of hypermedia, which is essential to increase the

flexibility of an API.

3.1.2 RAML

This tool was already referenced in the previous chapter, as a REST specification, but it comprises

a pack of tools to define, create, test, and publish RESTful APIs. RAML uses YAML as markup

language and is based on the idea of defining resources and their representations as JSON schemas.

The created schema is used as an input in the code generator tool, RAML1 for JAX-RS2, scaffolding

a JAVA + JAX-RS application based on the RAML API definition.

At the time of this work, the code generator only supports JAX-RS (Java API for RESTful Web

Services), a Java programming language API spec. RAML offers three possibilities to use this tool:

• Using the command line, raml-to-jaxrs-cli:

Code snippet 12 - RAML command line sintax.

usage: ramltojaxrs -d <arg> [-g <arg>] [-m <arg>] [-r <arg>] [-s <arg>]

-d,--directory <arg>

-j,--json-mapper <arg>

-g,--generate-types-with <arg>

-m,--model-package <arg>

-r,--resource-package <arg>

-s,--support-package <arg>

generation directory

sonschema2pojo annotation types

generate types with plugins

model package

resource package

support package

1 https://raml.org/
2 https://github.com/mulesoft-labs/raml-for-jax-rs

RESTful Web Services Development with a Model-Driven Engineering Approach

 33

• Using the Gradle plugin, where multiple configuration options must be defined:

Table 8 - RAML gradle configuration options.

Property Description Required

sourceDirectory The path to the directory containing source *.raml files Yes

outputDirectory The output directory for the generated JAX-RS resource source files. Yes

supportPackageName The package used for support classes. Yes

resourcePackageName The package used for resource classes. Yes

modelPackageName The package used for type classes. Yes

jsonMapper The annotation style used for jsonschema objects No

jsonMapperConfiguration Options for jsonschema objects (jsonschema2pojo) No

generateTypesWith options for annotating RAML types No

• Using Maven plugin:

Code snippet 13 - Maven configuration example.

<build>

 <plugins>

 <plugin>

 <groupId>org.raml.jaxrs</groupId>

 <artifactId>raml-to-jaxrs-maven-plugin</artifactId>

 <version>$VERSION</version>

 <dependencies>

 <dependency>

 <groupId>org.raml.jaxrs</groupId>

 <artifactId>jaxrs-code-generator</artifactId>

 <version>$VERSION</version>

 </dependency>

 </dependencies>

 <configuration>

 <ramlFile>${path}/types_user_defined.raml</ramlFile>

 <resourcePackage>example.resources</resourcePackage>

 <modelPackage>example.model</modelPackage>

 <supportPackage>example.support</supportPackage>

 <generateTypesWith>

 <value>jackson</value>

 </generateTypesWith>

 </configuration>

 </plugin>

 </plugins>

</build>

RAML code generator only accepts as input RAML specification files and, like Apimatic, doesn’t

support hypermedia implementation.

3.1.3 Swagger Codegen

Inserted in the Swagger ecosystem, the Swagger Codegen1 generates API client libraries (SDK

generation), server stubs and documentation automatically given an OpenAPI Specification.

Swagger Codegen comes with 25+ server stub generators for different server-side frameworks such

as PHP Symfony, C# Nancy, Java Spring, Python Flask, etc. The auto-generated server-side code

allows back-end developers to easily implement a RESTful backend given an OpenAPI/Swagger

2.0 specification file.

1 https://swagger.io/swagger-codegen/

RESTful Web Services Development with a Model-Driven Engineering Approach

34

The Codegen project provides a command-line interface (CLI), which is a framework for plugins

supporting output to various technologies - Code snippet 14.

Code snippet 14 - Swagger Codegen command line syntax.

java -jar swagger-codegen-cli.jar generate \

 -i https://apis.voicebase.com/v3/defs/v3-api.yaml \

 -l java \

 -c java-config.json \

 -o v3client

Swagger Code gen only accepts Swagger/OpenAPI spec files as input to code generation, and. like

the previous frameworks, it doesn’t support hypermedia.

3.1.4 REST United

REST United1 features an easy-to-use interface that allows users to build automatically generated

API client libraries (SDK generation) with customizable documentation and code samples. It uses

a customized version of Swagger Codegen project (Torchiano, Tomassetti, Ricca, Tiso, & Reggio,

2013). REST United offers an easy-to-use wizard to generate SDKs for a REST API in 5 steps -

Figure 10.

Figure 10 - REST United code generation configuration page.

1 https://restunited.com/

RESTful Web Services Development with a Model-Driven Engineering Approach

 35

It is also possible to import an existing REST API definition from a range of formats - Figure 11.

Figure 11 - REST United import specification wizard.

3.1.5 Restlet Framework

Restlet Framework1 is a Java based framework to develop REST APIs in the same programming

language. It complies with REST API specifications, supports standard security and authentication

methods, and, with the built-web server, provides an environment suitable for both server and

client Web applications.

Restlet Studio uses Swagger CodeGen for Objective-C, but has its own CodeGen engine for

Android and Java (Sharma & Chug, 2015).

3.1.6 AutoRest

The AutoRest2 tool generates client libraries for accessing RESTful web services. Input to

AutoRest is a spec that describes the REST API using the OpenAPI Specification format.

It uses a configuration file to control the code generation process - Code snippet 15.

1 https://restlet.com/open-source/
2 https://github.com/Azure/autorest

RESTful Web Services Development with a Model-Driven Engineering Approach

36

Code snippet 15 - AutoRest configuration file example and command line syntax.

input-file: petstore.json # full Unicode support

csharp:

 namespace: Petstore

 output-folder: Client

 enable-xml: true # enable experimental XML serialization support

 # azure-arm: true # uncomment this line to enable code generation in the Azure flavor

autorest [config-file.md] [additional options]

AutoRest can generate client-side code from the Swagger specification files. The generator

supports C#, Java, Node, Python and Ruby programming languages.

3.1.7 EMF REST

EMF REST1 is a framework build on the top of the Eclipse/Java/EMF development stack and it

transforms an ecore model into a functional REST API. This is a solution for developers familiar

with EMF and ecore models. It also provides a JavaScript library for the generated API, so the

developer can include this library and use it as a middle-man in the communication between the

server and the client. It is meant to be a solution useful for prototyping and validation purposes

(Hutchinson et al., 2014).

EMF-REST automatically creates a RESTful API conforming to the JAX-RS specification that can

be automatically deployed in an application server.

This solution has some drawbacks:

• No support for custom endpoints, only CRUD operations are supported;

• It is not obvious if the solution is using any database or the returned data is just static;

• The supported HTTP methods are POST, PUT, DELETE and GET (Sharma & Chug,

2015).This means that it does not support requests that first ask the server for available

methods with an OPTIONS call.

3.2 Comparative analysis

From a high-level analysis of the previous identified frameworks, a comparative assessment of

some features presents itself in Table 9.

1 https://som-research.uoc.edu/tools/emf-rest/

RESTful Web Services Development with a Model-Driven Engineering Approach

 37

Table 9 - Code generation tools comparison.

 Apimatic RAML
Swagger-
codegen

REST
United

Restlet
Framework

AutoRest EMF REST

Authentication
code

Yes No Yes Yes Yes Yes Yes

Hypermedia
support

No No No No Yes No No

Most common
supported
specifications

API Blueprint,
WADL, WSDL,

RAML, OAS
RAML Swagger 2.0

RAML, Swagger
2.0, 3Scale, I/O
Docs Blueprint

Swagger 2.0
RAML

Swagger 2.0 -

Code quality

Code
comments,

Coding
standards for

some languages

- - - Code comments Code comments -

Language
support

Java, C#, iOS,
Android, PHP,
Ruby, Python,

Golang,
Angularjs,

Nodejs

Java

30 languages,
including: Ada,

C#, C++,
Clojure, Erlang,

Java, Kotlin,
PHP, etc.

Android, C#,
ActionScript,

Java, Objective-
C, PHP,

Python, Ruby,
Scala

Android, Java,
Objective-C,
AngularJS,

Node.js

C#, Go, Java,
Node.js,

TypeScript,
Python, Ruby,

PHP

Java

It can be concluded that, overall, the available solutions present the same drawbacks:

• Poor hypermedia support;

• Poor code quality measures;

• Poor support of OAS 3.0;

• No database related scripts generation;

• No integration and unit tests support.

This expose the major areas where the solution developed should focus, trying to overcome these

limitations, and revealing itself as a strong alternative to the existing code generation tools based

on OAS.

3.3 Solution perspective

The main goal of this work in to bridge the gap between high-level concepts of REST and the low-

level of implementation of a web interface in a specific programming language, through an MDE

approach, using the OAS as a design guide. To validate the viability of the proposed approach a

simpler language should be implemented first, focused on the REST concepts, namely the resource

definition, from which a code generation process must then be developed. The knowledge acquired

and the implementation itself from this simpler methodology will aid the construction of the OAS-

oriented DSL processes, allowing to narrow the scope inside the multiple objects that the

specification includes, choosing the most relevant ones for the code generation process.

This approach pretends to leverage on MDE techniques, DSL and code generation specifically, to

produce RESTful web services out of plain data models alleviating and speeding up the

development process from a developer perspective by enabling a language with concise set of

concepts which are specific to the domain of REST web services development.

Such language should allow developers to have a single specification of a web service without

writing any boilerplate or redundant code.

RESTful Web Services Development with a Model-Driven Engineering Approach

38

API development usually follows one of two schools of thoughts: the design-first and the code-

first approaches. The code-first approach follows a traditional process to build APIs, with the code

development being made after the business requirement are laid out, and eventually generating the

documentation from the code. A design-first approach advocates for designing the API’s contract

before writing any code.

Figure 12 - DSLs’ design alternatives.

Following this line of thought two high level solution alternatives were identified for the DSL -

Figure 12:

1. Develop a DSL whose base concepts have a one-to-one direct relation to the OpenAPI

specification objects, using the same syntax and semantic inherent to the specification, while

following the REST architecture constrains (contract-first driven API based approach):

Foreseen advantages:

• This approach narrows the gap between business and technical components, by using a

formal language easily understandable by the non-technical side;

• Allows developers to focus on the API design, decreasing the learning curve in the

integration procedures, increasing reuse, value and engagement;

• Loose coupling between contract and implementation is possible in this approach.

A DSL implementation that follows this approach would need developers to invest time

learning the OpenAPI specification and used it like a modeling language. Figure 13 illustrates

the main concepts that intervene in the DSL specification.

RESTful Web Services Development with a Model-Driven Engineering Approach

 39

Figure 13 - OAS-based DSL context.

2. Develop a DSL that takes on the concepts of RESTful architectures and resources-based

syntax, whose web interface is granted to be OpenAPI compliant (code-first driven API

based approach):

Foreseen advantages:

• No need of depth knowledge of OpenAPI specification;

• More intuitive DSL: the language follows a syntax more readable from the developer

perspective, being based on concepts derived from coding procedures, leading to a faster

implementation.

While this approach might lead to a faster development, it might be difficult to establish it

has a central draft that keeps all the involved parts updated with the API’s objectives.

Table 10 summarizes the high-level advantages and advantages from each approach.

Table 10 - Comparative analysis between DSLs approaches.

 OAS based approach Resources based approach

Communication and understandability
between involved parts

X

OAS knowledge required X

Loose coupling between contract and
implementation

X

Short learning curve X

Convention over configuration
approach

 X

OAS

Spec

RESTful

concepts

Syntax

Reference

Impl.

OAS-based
DSL

RESTful Web Services Development with a Model-Driven Engineering Approach

40

Both solutions should ensure that the REST constrains are respected, generating true RESTful web

services.

As an assurance of code quality, industry standards should integrate the code generation process,

observing common principles like SOLID and GRASP, and applying design patterns when

suitable. Tests should be inferred, allowing testable code to be generated, improving the overall

delivered code quality.

Chapter 4 details the presented alternatives design and implementations.

The following section meets the requirements acknowledged from the previous analysis, retrieved

either from the comparative study of the commercial solutions, and the two approaches identified.

3.4 Requirements analysis

In this section, the requirements of the DSLs are to be identified and gathered, as well the intended

user profiles for the DSLs usage and its context of use. The requirements at this step mean

identifying what main functionalities the DSLs should provide, and how they should do it.

3.4.1 Functional requirements

The main requirement related to the DSLs functionality is the OAS support, either as the input

language or by ensuring the compliance of the generated web service. Moreover, the code

generation process should cover all the architectural layers and constrains defined for the web

service, highlighting the ones associated with the RESTful architectural style.

This initial analysis divides the main requirements in three subsets: the web service reference

implementation; the OpenAPI specification support; and the code generation process. Table 11

summarizes the functional requirements identified in the context of the current work.

Table 11 - DSL functional requirements.

Nº Description

Req_01 Create web service reference implementation that will guide the DSLs development

Req_02 OpenAPI specification support Req_02.1 Define DSL grammar

 - OAS-based DSL grammar

 - Resource-based DSL grammar

 Req_02.2 Implement Xpect tests

Req_03 Code generation Req_03.1 Generate database tables creation script

 Req_03.2 Generate project structure

 Req_03.3 Implement RESTful compliant architectural style

 Req_03.4 Generate gateways layer

 Req_03.5 Generate presentation layer

 Req_03.6 Generate business layer

 Req_03.7 Generate database access layer

 Req_03.8 Generate unit and integration tests

 Req_03.9 Generate code comments

 Req_03.10 Generate the OAS spec from the Resource-based DSL

RESTful Web Services Development with a Model-Driven Engineering Approach

 41

From the exposed requirements the main derivate Use Cases are presented in Figure 14.

Figure 14 - OAS-based DSL context.

3.4.2 Non-functional requirements

The non-functional requirements can be divided in three areas, the first focused on the web service

reference implementation; the second on the DSLs and the last one in the generated web services.

The reference implementation should be constructed following adequate software principles,

namely:

• SOLID (Single responsibility principle; Open/closed principle; Liskov substitution principle;

Interface segregation principle; Dependency inversion principle);

• DRY (Don’t Repeat Yourself).

Regarding the DSLs the following non-functional requirements were identified:

• Usability: the extent to which the DSL can be used by specified users to achieve specified

goals with effectiveness, efficiency and satisfaction in a stated context of use;

• DSL overall performance when generating the related code, namely the time taken to have

the code artifacts available to deploy;

• Readability: how easy is to read and understand the language;

• Writeability: how easy is to model the web service through the language.

Concerning the web service generated, the main non-functional requirements to observe are:

• Generated code quality;

RESTful Web Services Development with a Model-Driven Engineering Approach

42

• Web service overall performance;

• QoS;

• Testability.

It is also relevant characterize the user’s profiles expected to take the more benefits from the two

different concepts-based DSLs and their context of use:

• Given that the OAS-oriented DSL it is based on the specification itself, it is crucial that the

developer has a thorough knowledge of the specification. Only this way the productivity

gains from the DSL usage will be visible in the development process;

• Regarding the Resource-oriented DSL, it only requires knowledge over concepts concerning

web services development, being adequate for new entry developers, even those with less

experience in MDE approaches. It can also provide a first contact with the OAS specification

and how it relates itself with the Resource concept and related code artifacts.

3.5 Adopted technologies

This section emphasis on describing the technologies involved in the development of this work,

focusing on the web service reference implementation and DSL development process. It is

important to state that the focus of this work is not to present or address the available technologies

related to this development context, but to give the reader a brief presentation of the used

technologies, chosen based on the authors professional experience.

3.5.1 Reference web service implementation

Java was chosen as the coding language used to build the reference implementation of the web

service that supports the DSL development. The following sub-sections detail the technological

components that aided the web service construction:

• JAX-RS: an API that eases the development of applications that integrate REST

architectures;

• EclipseLink: Java Persistence API (JPA) 2.1 specification reference implementation. JPA

describes the management of relational data in applications using Java.

In addition, an open source database server, MySQL server. MySQL is a database management

system (DBMS), which uses Structured Query Language (SQL) as the interface. It is currently one

of the most popular databases, ranking number two in popularity1.

3.5.1.1 JAX-RS

In Java, support for the implementation of RESTful Web Services was added in 2008 by the JSR-

311 specification, which was named JAX-RS (Oracle, 2018b). This specification was created to

simplify the development of REST applications and quickly became of utmost importance as it

1 Source: https://db-engines.com/en/ranking

RESTful Web Services Development with a Model-Driven Engineering Approach

 43

was one of the first frameworks based on POJO classes and annotations capable of publishing

RESTful services.

The Jersey (Oracle, 2018a) RESTful Web Services framework is the reference implementation of

the JAX-RS specification, available as an open-source framework. Code snippet 16 illustrates an

example of a web service annotated with Jersey components.

Code snippet 16 - JAX-RS web service example.1

/**

 * Retrieves representation of an instance of helloWorld.HelloWorld

 * @return an instance of java.lang.String

 */

@GET

@Produces("text/html")

public String getHtml() {

 return "<html lang=\"en\"><body><h1>Hello, World!!</body></h1></html>";

}

3.5.1.2 EclipseLink

EclipseLink2 is an Open Source Eclipse Fundation Project that allows Java developers to interact

with various types of information services such as Database, Web Services, XML Objects, EIS, etc.

Therefore, EclipseLink implements not only the Java Persistence API (JPA) standard, but also

other standards such as JAXB, JCA, and SDO.

JPA is a specification that regulates very powerful tools to automate and save time in development

processes. This specification helps in all processes related to database interactions, in a way that it

can be used to execute queries, inserts, updates and deletes. It permits the developer to work

directly with objects rather than with SQL statements.

“Entity” is the base concept of JPA. JPA uses a database table for every entity. All entity classes

must define a primary key, must have a non-arg constructor and or not allowed to be final. Keys

can be a single field or a combination of fields.

Code snippet 17 - JPA entity example.3

@Entity

public class Todo {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String summary;

 private String description;

 public String getSummary() {…}

 public String getDescription() {…}

}

Code snippet 18 shows the find example, that allows retrieve a specific entity from the associated

id.

1 Source: https://docs.oracle.com/javaee/6/tutorial/doc/gipzz.html
2 http://www.eclipse.org/eclipselink/
3 Source: http://www.vogella.com/tutorials/JavaPersistenceAPI/article.html

RESTful Web Services Development with a Model-Driven Engineering Approach

44

Code snippet 18 - EclipseLink find example.1

@Stateless

public class EmployeeDemoSessionEJB implements EmployeeDemoSession {

 ...

 public Employee findEmployee(Integer employeeId) {

 return (Employee) em.find(Employee.class, employeeId);

 }

 ...

The persist example is presented in Code snippet 19.

Code snippet 19 - EclipseLink persist example.2

@Stateless

public class EmployeeDemoSessionEJB implements EmployeeDemoSession {

 ...

 public void createEmployee(String fName, String lName) {

 Employee employee = new Employee();

 employee.setFirstName(fName);

 employee.setLastName(lName);

 em.persist(employee);

 }

 ...

3.5.2 DSL implementation

Xtext and Xtend, which are the main technologies and frameworks used for the DSL

implementation are briefly described in the next sections.

Additionally, Xpect was used. It consists in a unit and integration testing framework, based on

Junit, that stores test date in any kind of texts files. The core focus of Xpect is on testing Xtext

languages and supporting the process of designing Xtext languages.

3.5.2.1 Xtext

Xtext was the elected framework to implement the DSL. It covers all aspects of a complete

language infrastructure, starting from the parser, code generator, or interpreter, up to a complete

Eclipse IDE integration with all the typical IDE features. A standalone specific version, called

Eclipse DSL, that natively supports this framework is available, currently at version “Oxygen 2”.

Xtext generates a default grammar example, that can be seen in the following code snippet.

Code snippet 20 - Xtext default generated grammar.

grammar org.example.entities.Entities with org.eclipse.xtext.common.Terminals

generate entities "http://www.example.org/entities/Entities"

Model:

 greetings+=Greeting*;

Greeting:

 'Hello' name = ID '!';

3.5.2.2 Xtend

1 Source: http://wiki.eclipse.org/EclipseLink/Examples/JPA/Configure
2 Source: http://wiki.eclipse.org/EclipseLink/Examples/JPA/Configure

RESTful Web Services Development with a Model-Driven Engineering Approach

 45

The code generation process was achieved through Xtend which is a fully featured general purpose

Java-like language that is completely interoperable with Java. Xtend has a more concise syntax than

Java and provides powerful features such as type inference, extension methods, dispatch methods,

and lambda expressions, not to mention multiline template expressions, which are useful when

writing code generators.

Since Xtend is completely interoperable with Java, all the Java libraries can be reused. Moreover,

all the Eclipse JDT (Java Development Tools) will work with Xtend seamlessly.

Code snippet 21 - Hello word print statement in Xtend.

package org.example.xtend.examples

class XtendHelloWorld {

 def static void main(String[] args) {

 println("Hello World")

 }

}

The similarities with Java are evident, though the removal of syntactic noise is already obvious by

the fact that terminating semicolons (;) are optional in Xtend. All method declarations start with

either def or override. Methods are public by default.

3.6 Solution evaluation methodology

The assessment of the developed solution overall suitability, giving the proposed objectives,

requires the definition of evaluation plan, where the relevant metrics to be measured and compared

are identified, as well the hypothesis and related test methods.

First, an appraisal of the two proposed DSLs design is needed, trying to understand which grants

a better user experience when defining/developing a web service.

A second evaluation component relates to two strands of quality measurement:

1. The quality of the generated code;

2. The quality of service (QoS) of the related web services.

This section intents to identify the project evaluation metrics, hypothesis and tests methods, whose

detailed implementation is the subject of Erro! A origem da referência não foi encontrada..

3.6.1 DSLs usability

With two DSLs design alternatives, an evaluation of the languages usability has a major relevance

in the context of this work. The end user of the DSL can be a domain expert, a programmer that

works on specific domain or a regular domain user. Each of these users can have different

background profiles and its own role in problem solution. A comparable validation procedure, that

will assess user experience with the DSLs is envisioned in this section, based on user-interface (UI)

evaluation:

“DSLs define a way for human to communicate with machines. Therefore, DSL evaluation should

not be much different from evaluating a regular UI” (Barišić, Amaral, & Goulão, 2012).

RESTful Web Services Development with a Model-Driven Engineering Approach

46

3.6.1.1 General approach to usability evaluation

Usability evaluation can be assessed through four different ways (Barišić, Amaral, Goulão, &

Barroca, 2012):

• Formally: using models and simulations to predict measures such as time to complete a task

or the difficulty of learning to use a product. Some models have the potential advantage that

they can be used without the need for any prototype to be developed;

• Automatically: this can be done by automated checking of conformance to guidelines and

standards or by evaluation of data collected during system usage. This kind of evaluation is

possible when initial prototypes or initial versions of full implementation are available.

• Empirically: evaluation with users is recommended at all stages of development if possible,

or at least in final stage of development. Formative methods that focus on understanding the

user’s behavior, intentions and expectations to understand any problems encountered can be

used to establish and test user requirements. Iterative testing with small numbers of

participants is preferable, starting early in design and development process.

• Heuristically: by simply looking at the product and passing judgment according to an own

opinion. It is usually considered as evaluation conducted by expert and it can be used when

initial prototypes are available.

Moreover, the same authors propose in (Barišić, Amaral, & Goulão, 2018) multiple patterns for

DSL evaluation, to be used during DSLs’ life-cycle. These patterns can by grouped in three high-

level guidelines:

• Agile development process: by including patterns devoted to management and engineering

scopes of a domain specific language, an iterative approach allows the continuous tracking

of the usability requirements and evaluation;

• Iterative User-Centered Design: provides patterns to include an Evaluator in the

development process, that will collect information concerning the DSL developer, mainly

focused on the Domain Users interpretations;

• Experimental evaluation design: supports the experiment execution (e.g. hypothesis, tests,

samples, etc.);

The methodology proposed by the referred authors involves a continuous assessment and

evaluation of the DSL, both during and after their development. Further evaluation analysis

considerations are exposed in Section 5.1.

3.6.1.2 Evaluation method

Empirical method - Evaluation with users

Expert assessment techniques are more geared to filter problems and refine issues related to the

visual communication of systems, and as such, cannot be considered as substitutes for a user-

conducted assessment (Mendes, 2014).

RESTful Web Services Development with a Model-Driven Engineering Approach

 47

The unpredictability of users is one of the main factors that this type of evaluation can consider,

involving the measurement of the performance of users accomplishing typical tasks of those who

use the system under evaluation. Usually combines observational techniques, questionnaires and

interviews, ideally in controlled environments (rooms equipped with video and audio recording

equipment, for example), and can be performed in the usual place of use of the systems being

tested. Figure 15 shows that under normal conditions, 5 people undergoing the same usability

assessment test can detect 85% of the problems and 3 are able to detect more than half of these

same problems.

Figure 15 - Percentage of problems encountered and number of users.1

For logistical reasons, the main means of obtaining data for the analysis was to carry out a survey,

with monitoring the response time, testing the participants and their ability to perform some tasks.

The SUS questionnaire (Brooke, 1996) was selected as a data collection instrument because it is

simple and fast, showing the overall view of the user in relation to the system.

3.6.1.3 Statistical analysis

For she statistical analysis of the data collected in the questionnaires, the study process was divided

into three main points:

• Sample characterization, identifying some features of the responders;

• Performance of the participants in the execution of the proposed tasks, by measuring the

time taken in each one;

• The usability analysis through the answers to the SUS questionnaire.

3.6.2 Code metrics

Given the nature of the current work where the web services code is being generated through a

DSL, the analysis of the generated code quality is of major significance. This section synthetizes

the relevant metrics in code analysis, procedures to measure them and the hypothesis to be

validated.

1 From: (Manuel, 2011)

RESTful Web Services Development with a Model-Driven Engineering Approach

48

3.6.2.1 Metrics

A software metric is a quantitative measure of the degree to which a software system possesses

properties like coupling, cohesion, inheritance, abstraction, among others. The objective is to have

reproducible and quantifiable measurements with numerous valuable applications such as schedule

and budget planning, cost estimation, quality assurance testing, software debugging, software

performance optimization, and optimal personnel task assignments (Hutchinson et al., 2014).

Table 12 - List of static metrics.1

Direct Indirect

WMC (Methods per Class) The sum of McCabes’s cyclomatic complexities of all local methods in a
class.

DIT (Depth of Inheritance Tree) The metric measures class level in the inheritance tree, root class is
considered as zero.

NOC (Number of Children) It counts number of immediate sub classes of a class in a hierarchy.

CBO (Coupling between Objects) It represents the number of classes to which the given class is coupled.

RFC (Response for a Class) The number of local methods plus the number of non-local methods called
by local methods

LCOM (Lack of Cohesion of Methods) The number of disjoint sets of local methods. Each method in a disjoint set
shares at least one instance variable with at least one member of the same
set.

LOC (Lines of code) The number of lines of code excluding comments.

AMC (Average Method Complexity) This metric measures the average method size for each class.

Ca (Afferent couplings) A class's afferent couplings is a measure of how many other classes use the
specific class

Ce (Efferent couplings) A class's efferent coupling is a measure of how many other classes is used
by the specific class.

NPM (Number of Public Methods) All methods which have public access specifiers are counted by NPM.

DAM (Data Access Metric) The metric computes the ratio of attributes declared as private or protected
to the total number of attributes declared in the class.

MOA (Measure of Aggregation) It measures the HAS-A relationship between attributes at run time.

MFA (Measure of Functional
Abstraction)

The metrics computes the count of the number of inherited methods of a
class divide by the total number of methods which are accessible by
member methods of the class.

CAM (Cohesion Among Methods of
Class)

The relevance between the class methods based on the list of specifications
of the methods is computed by this metric.

IC (Inheritance Coupling) This metric produces the total number of super classes to which a given
class is coupled.

CBM (Coupling Between Methods) The metric measures the total count of new or redefined methods to which
all the inherited methods are coupled.

AMC (Average Method complexity) The average method size for each class is measured by AMC, where the size
of a method is equivalent to the number of java binary codes in the method.

3.6.2.2 Evaluation methods

Giving the extended number of static metrics to evaluate, multiple automatic solutions to collect

this kind of data are available. In the context of this work, and since the target language that will

1 From: (Sharma & Chug, 2015)

RESTful Web Services Development with a Model-Driven Engineering Approach

 49

be generated is Java, the elected evaluation tool to gather code metrics was CKJM1, focused on the

analysis of OO code.

After obtaining static metrics values for the generated code, a comparison analysis against the code

obtained from the available commercial solutions that accept OpenAPI specification files as input,

and the case study was made.

3.6.2.3 Testing hypotheses

As testing hypotheses, to analyze the significance of the static metrics performance differences

between the developed solution, the case study, and the available commercial solutions, it can be

defined:

• H01: No significant difference exists between the performance of static metrics of the

generated code and the case study project.

• H11: The generated code metrics performance is relatively better that the ones calculated

from the case study project.

• H02: No significant difference exists between the performance of static metrics of the

generated code and the commercial available solutions.

• H12: The generated code metrics performance is relatively better that the ones calculated

from the commercial available solutions.

Also, a descriptive statistical analysis will be conducted, gathering common attributes like, mean,

median, standards deviation, etc., drawing some conclusions over the obtained values.

3.6.2.4 Statistical analysis

The scenarios can be validated using hypothesis tests. The hypothesis test allows to decide (accept

or reject the null hypothesis) between two or more hypotheses using the data obtained from a

simulation scenario. From the established acceptance criteria, the scenario can be accepted or

rejected against the actual values of a series.

The current analysis will provide a small sample for each metric, stricter assumptions must be

imposed to give statistical validity to the test procedure:

Small Sample Tests for a Population Mean

To begin with, one common assumption is that the population from which the sample is taken has

a normal probability distribution. Under such circumstances, if the population standard deviation

is known, then the test statistic (x ̅- μ
0
) (σ √n⁄)⁄ still has the standard normal distribution, as in the

previous two sections. If σ is unknown and is approximated by the sample standard deviation s,

then the resulting test statistic (x̅ - μ
0
) (s √n⁄)⁄ follows Student’s t-distribution with n-1 degrees of

freedom.

1 Source: https://github.com/dspinellis/ckjm

RESTful Web Services Development with a Model-Driven Engineering Approach

50

The distribution of the second standardized test statistic (the one containing s) and the

corresponding rejection region for each form of the alternative hypothesis (left-tailed, right-tailed,

or two-tailed), is shown in Figure 16.

Figure 16 - Distribution of the standardized test statistic and the rejection region.1

The p-value of a test of hypotheses for which the test statistic has Student’s t-distribution

(Weisstein, n.d.) can be computed using statistical software. R2 will be used for the statistical

computing and graphics.

As the different web services technological stacks implementations are never executed together,

data for each sample was gathered independently. Thus, the assumption of independence was not

violated. The assumption of normal distribution will be tested using observation of normal

probability plots, histograms with normal curve, and the combination of skewness and kurtosis

coefficients.

Levene’s test (Gastwirth, Gel, & Miao, 2009) for assumption that the variances of the groups are

equal should be conducted to verify that assumption is not violated (i.e., p > 0.05) for all

experimental groups.

Given the previous assertions, independent samples t-tests will be conducted for each web services

implementations groups.

3.6.3 Web services QoS

In addition to analyzing the code quality, the assessment of some QoS parameters of the web

services, given the context of this work, constitutes another crucial component in the evaluation

of the general quality of the implemented solution. The following points summarize the metrics

considered, the respective evaluation metrics and the hypothesis to judge.

1 Source: https://saylordotorg.github.io/text_introductory-statistics/s12-04-small-sample-tests-for-a-popul.html
2 Source: https://www.r-project.org/

RESTful Web Services Development with a Model-Driven Engineering Approach

 51

3.6.3.1 Evaluation metrics

This section describe the QoS model used in this work, based on the work of (Aljazzaf, 2015) and

(Kumari & Rath, 2015), selecting some attributes to evaluate in the context of this thesis. Table 13

summarize the relevant QoS, describing what each one represents.

Table 13 - Web services QoS evaluation metrics.1

Quality factors Description

Latency
(QoSLatency)

Latency is the round-trip delay (RTD) between sending a request and receiving a response.

Execution time
(QoSExecution)

The execution time of a service is the time taken by the service to execute and process its
sequence of activities.

Response time
(QoSResponse)

The following is the formula to evaluate the response time: QoS
Response

= QoS
Latency

+ QoS
Execution

Throughput

(QoSThroughput)
Throughput is defined either in terms of number of the requests or in terms of average data

bytes per second: QoS
Throughput

= nº of requests time period⁄

Accessibility

(QoSAccessibility)
Accessibility refers to the service capability to serve the client’s request: QoS

Accessibility
=

nº of successful user’s requests total user’s requests⁄ .

Additional metrics exists, related to the service availability: the probability that a service is up,

present, and accessible to use: QoS
Availability

= Uptime Total time⁄ ; and reliability, related to the previous

one, being the the ability of a service to perform its function under the stated conditions correctly

with either “no fail” or “response failure to the user” for a specific interval of time (Aljazzaf, 2015):

QoS
reliability

=1- n N+t⁄ where t denotes the total time a service is monitored for recording the number

of failures, n, and N is the total number of events(number of successful events plus number of

failures).

The previous metrics are out of scope of this work, since they required a monitorization process

during a certain period, during which the services requests are executed, and the responses

registered. This is highly influenced by the server machines where the web services are deployed,

which in the context of the developed study is a variable out of the scope analysis.

3.6.3.2 Evaluation methods

There are a few open-source web service testing tools available in the software market. Although

the core functions of these tools are similar, they differ in functionality, features, usability and

interoperability. Keeping in sight the above-mentioned aspects, three representative web service

testing tools were identified (Hussain, Wang, Toure, & Diop, 2013):

• JMeter2 - is a 100% open source desktop application in Java designed to run functional tests

and measure application performance. It was originally designed to test Web applications,

but its use expanded to other test functions. The goal of the JMeter strategy is to provide

more realistic testing scenarios. Therefore, load tests should simulate as close to reality as

1 Source: (Aljazzaf, 2015; Kumari & Rath, 2015)
2 http://jmeter.apache.org/index.html

RESTful Web Services Development with a Model-Driven Engineering Approach

52

possible, since realistic scenarios help minimize the effects of underestimation or

overestimation of application response times;

• SoapUI1 - is an open source Java tool whose main function is to consume and test Web

Services. With this tool it is possible to perform functional, performance, load and safety

tests. SoapUi uses web services for interaction and communication between different

applications through an XML schema type called Web Service Description Language

(WSDL);

• Storm2 - is a free and open-source tool for testing web services. Storm is developed in F#

and allows to test web services written in any technology.

Comparison of different testing tools is a complex task since testing tools may not comply with

the same test criteria i.e. one tool may have the ability to test throughput (JMeter and soapUI),

while another tool i.e. Storm, does not have this criterion. Furthermore, one tool may have better

performance in one test case, while poorer in other test criteria: soapUI has better response time

but throughput is not as good as JMeter’s throughput. (Hussain et al., 2013)

3.6.3.3 Testing hypotheses

This comparative study was supported by the execution of a hypothesis test, which allows, with a

certain degree of confidence, to see if there is a significant difference between the web services

performance under analysis:

• H03: No significant difference exists between the web services performance of the generated

code and the case study project.

• H13: The generated web services performance is relatively better that the one provided by

the case study project.

3.6.3.4 Statistical analysis

In the comparison process, the first step consisted in determining which type of hypothesis test to

perform, whether a parametric or non-parametric test. This decision is based primarily on the

analysis of samples, namely: whether the variable is quantitative or qualitative; the number of

samples under study; whether they are independent or matched; if its distribution can be assumed

as normal and finally if there is homogeneity between the respective variances.

As both web services implementations are never executed together, data for each sample was

gathered independently, moreover, both solutions would never be implemented together

(populations are also independent). Thus, the assumption of independence was not violated. The

assumption of normal distribution will be tested using observation of normal probability plots,

histograms with normal curve, and the combination of skewness and kurtosis coefficients.

Levene’s test for assumption that the variances of the two groups are equal should be conducted

to verify that assumption is not violated (i.e., p > 0.05) for all experimental groups. Given the

previous assertions, independent samples t-tests will be conducted for each web services groups.

1 https://www.soapui.org/
2 https://archive.codeplex.com/?p=storm

RESTful Web Services Development with a Model-Driven Engineering Approach

 53

Chapter 4

DSL Design and implementation

The previous chapters touch the definition of two DSLs that will allow the development of web

services models, presented either through the OAS or based in the resources definition. This

chapter focus on the design and implementation of this domain languages, providing models

examples, and describing the code generation process. An empirical comparison between the two

DSLs definition is made, providing some insights related to their respective usability.

4.1 Common approach

The idea behind this approach is to specify an abstract model, which envelops the problem space

and allows the developer to solve it. The model is defined in a domain specific language, which

defines a syntax and a semantic for the domain. In case of the presented framework, the DSL is

tailored to the OpenAPI specification and is constructed from a metamodel.

In the classic development process of a REST API, the developer must implement multiple classes

- usually one per resource - each with similar source code. Every minor API design change could

lead to multiple hours of work. The model-driven approach allows to automate this task by

changing only the lightweight model. The new model supplies the developer with a new version of

his API. In addition to the higher code quality the rate of reuse is extremely high as, for a new

customer, the developers only specify a new model and adapt the generated outcome to the specific

requirements.

Figure 17, based on (Cosentino, Tisi, & Izquierdo, 2015), gives an overview of the architectural

approach followed in the web service MDE development process.

Figure 17 - Architectural overview of the approach followed.

RESTful Web Services Development with a Model-Driven Engineering Approach

54

Figure 17 spans through three technical spaces: the first one in which web service objects conforms

to the set of defined web service classes and establishes itself as the foundation to develop the

code-generation output; the second one where the metamodels associated with the web service and

the developed DSL (OpenAPI based) are defined; and the last one where the grammar for the

previous defined DSL, and the related code generation process is established, in conjunction with

the base Java grammar foundations.

A modeling language raising the level of abstraction allows the reuse of models and keeps platform-

specific artifacts at a separated tier in the development workflow. A modeling language with the

ability to set aside technical concerns and still be able to tackle a problem in a specific platform is

the main purpose of this work.

(Nguyen, Qafmolla, & Richta, 2014) defines a set of features that are essential to the DSL design

in model-driven development of web services:

• Effectiveness the language must be able to provide a usable output without having the need

of redefinition to adapt to a specific use case, while being easy to read and understand. This

means that the language can bring good solutions to the domain for which it was designed

and focus on solving the range of associated problems;

• Automation and Agility: as the modeling language can move the level of abstraction away

from programming code through domain concepts, an important aspect is the ability to

produce artifacts from these high-level specifications. This automatic transformation must

match the requirements of the specific domain. Agility ensures that models can adapt to

changes efficiently;

• Support Integration: the DSL needs to be able to integrate with other parts of the

development process. This means that the language is used to edit, debug, compile and

transform. The integration with other languages and platforms should also be effortless.

 Given the formerly described approach, two DSLs were developed allowing the definition of a

web service, following the OpenAPI specification on one side, and on the other following a custom

resource definition, while building the foundations to a code-generation process.

4.2 Resource-oriented DSL

“A REST resource can be any accessible information, which includes values from algorithmic

computations, virtual objects, binary files, texts and many more” (Schreibmann & Braun, 2014).

A resource is nothing more than an abstraction about a certain type of information that an

application manages (it cannot be used per se), that can be accessed through a uniform interface,

and may have different representations, based on known specifications. Every resource must have

a unique identification, for the application to be able to differentiate which of the resources must

be handled in a given request.

In the scope of this work, to reach the resource, the server specifies an URI following a template1,

which should contain only information necessary to access the resource while omitting any meta

information. Additionally, the resource representation can be based on different restrictions: XML

1 A minimal URI template would contain the base and the resource identification: http://baseuri.com/resourcename

RESTful Web Services Development with a Model-Driven Engineering Approach

 55

and JSON are the most common ways to represent resources to different users; whichever

representation is chosen, to follow a RESTful paradigm it must support links usage.

An efficient RESTful API, cohesively designed, has well-defined resources and structured

relationships, that ease its usage, shortening the necessary time for getting accustomed with the

API.

Succeeding the previous paragraphs, it can be stated that the resource is the most relevant concept

in a web service development, and their correct identification is the most pertinent exercise in the

design process. A model-driven process based on the resource identification can be then

considered a natural approach when implementing such paradigm in web services development,

providing to the web service designer full flexibility to model resources according to the application

domain and use cases.

The following sections detail the methodology used in this work, from the metamodel definition,

to the grammar implementation, to an example of a model build over the metamodel using the

developed grammar.

4.2.1 Resource-oriented metamodel

While the resource representation establishes itself as the main component in the approach

depicted in this section, the model must also be demonstrative of the additional and relevant

information regarding the web service structure and behavior.

Figure 18 depicts a resource-based web service metamodel, referencing the main components and

how they correlate to each other’s. It was built based on the main concepts/constraints of the

RESTful architectural style stated in section 2.3.3, revolving around the resource representation. It

serves as abstract syntax of the DSL developed in Xtext and underpins the code generator written

in Xtend. The metamodel conceptualization takes advantage of UML features such as inheritance,

composition and aggregation, to add further meaning to the relationships between the portrayed

components.

Figure 18 - Resource-oriented grammar metamodel.

RESTful Web Services Development with a Model-Driven Engineering Approach

56

To achieve a feasible representation of a RESTful web service, multiple concepts and their

relationships were defined, and can be divided in three complementary areas:

1. Base information:

• Meta - this component establishes some base information common to all resources, like

the base path of the web service, the version of the API and the default media type.

2. Resources:

• REST resource - the core concept, where all the others converge. As the name states it

represents the REST resource;

• Resource - while the previous concept integrates all the constrains inherent to the

RESTful architecture, this resource comprehends the attributes that define the business

object and is deeply coupled to the REST resource;

• Sub-resource - the resource can have an attribute of the type sub-resource;

• Attribute - it represents a specific property of the resource;

• Data type - the attribute data type;

• Persistence - contains generic information regarding the persistence of the resource, like

the database table name associated, mapping between attributes and columns names, etc.

3. RESTful constrains:

• URI - URI associated with the resource;

• HTTP method - the supported HTTP methods over the resource;

• Representation - for a specific URI the representation of the resource, associated with

supported media-types;

• Media type - supported media type by the resource, being the most commons JSON

and/or XML;

• Path - the resource path, complementing the URI information;

• Query - associated with the URI and Path, a query over the resource or collection of

resources can complement the request to filter over the available resources;

• Pagination - allows the definition of a paging mechanism to allow clients to fetch only a

limited number of resources in a single request;

• Caching - the caching mechanism that the web service must support;

• Security - the security mechanism that the web service must support;

Additionally, the application states can be inferred from a combination of the resource and

the HTTP verb, and represents one valid REST request, which uses a URI to access one

resource

The author understanding of the REST architectural style and constrains was included into the

presented meta-model, which covers all relevant aspects necessary to model a RESTful API. The

following section renders the grammar development steps, supported on the previous defined

model.

RESTful Web Services Development with a Model-Driven Engineering Approach

 57

4.2.2 Resource-oriented grammar

The metamodel presented in Figure 18 intents to define with a high level of abstraction the main

components of a web service. In the scope of this work, to focus on the functional side of web

services, some concepts were left out of the grammar development, namely the security mechanism

implementation, since it is one of the most complex undertakings in the REST field, and it is

possible, with relative ease, to delegate this responsibility to external systems (Keycloak1, i.e.)

focused in authentication and authorization matters; and the queries custom definition.

Subsequent sections follow the same structure division of the metamodel, identifying the grammar

part associated with the base information, resource definition and RESTful constraints.

4.2.2.1 Grammar structure and Meta information

Code snippet 22 shows the grammar main components, given a perspective on how the main

concepts of the metamodel where implemented. Most of the components identified in the

metamodel have a direct correspondence with parser rules from the grammar: Meta information;

Resource; Attribute and Data Type.

Code snippet 22 - Grammar structure.

Model: (…)
Meta: (…)
ServerInfo: (…)
Resource: (…)
Attribute: (…)
Composite: (…)
Relation: (…)
Reference: (…)
Action: (…)
Trigger: (…)
DataType: (…)
MediaType: (…)
// auxiliary rules

The Meta parser rules identify the meta information of the web service, allowing the identification

of common information: the project name, version, URI base path, server information; media type

supported by default and the base package, used in multiple programming languages to build the

project structure - Code snippet 23. Given its simplicity, when require, it can be easily upgraded

with additional rules.

Code snippet 23 - Grammar meta information rules.

Meta:
 'project:' project=STRING
 'version:' version=STRING
 'basePath:' basePath=Url
 'server:' server=ServerInfo
 ('mediaType:' mediaType+=MediaType+)?
 ('basePackage:' package=QualifiedNameWithWildcard)?;

ServerInfo:
 '{'
 'description:' description=STRING
 'url:' url=Url
 '}';

MediaType:

1 https://www.keycloak.org/

RESTful Web Services Development with a Model-Driven Engineering Approach

58

 JSON | XML;

Type:
 RsrcString | Integer | Long | BigDecimal | Calendar | Boolean | EnumType;

JSON:
 {JSON} 'Json';

XML:
 {XML} 'XML';

QualifiedName:
 ID ('.' ID)*;

QualifiedNameWithWildcard:
 QualifiedName '.*'?;

To aid in the grammar usage, validation rules over the Url rule where implemented through regular

expressions in the DSL validator Xtend class, only allowing valid URLs to be introduced in this

fields.

4.2.2.2 Resources and RESTful constraints

The Resource and RESTful constraints parser rules are presented in Code snippet 24. Resource

parser rule, in its definition, unites multiple sub-rules that:

• Establish the respective inner properties - Attribute rule;

• Defines inner objects as a property of the main Resource - Composite rule;

• Outlines the relationships with other defined resources - Relation rule;

• References the parent Resource in a relationship - Reference rule;

• Allow the definition of custom actions over a Resource - Action rule;

• References the actions that actuate over the Resource - Trigger rule;

• State the supported HTTP methods over the Resource - HTTPMethod rule.

Code snippet 24 - Grammar resource rules.

Resource:
 'resource' (abstract?='abstract')? name=ID ('table' table=ID)? (cache?='cache')? (extends?=Parent)?
 '{'
 (attributes+=Attribute)*
 (contains+=Composite)*
 (relations+=Relation)*
 (references+=Reference)*
 (customActions+=Action)*
 (actuatedBy+=Trigger)*
 (httpMethods+=HTTPMethod)*
 '}';

Parent:
 'extends' parent=[Resource];

Composite:
 'contains' name=ValidID type=[Resource] (multiple?='*')?;

Reference:
 'reference' name=[Relation|QualifiedName] ('column' column=ID)?;

Relation:
 'relation' name=ValidID type=[Resource|QualifiedName] (multiple?='*')?
 ('method' '[' actions+=HTTPMethod+ ']')?;

Attribute:

RESTful Web Services Development with a Model-Driven Engineering Approach

 59

Code snippet 24 - Grammar resource rules.

 'attribute' name=ValidID type=DataType (multiple?='*')? ('column' column=ID)?
 (mandatory?='mandatory')?;

Action:
 'action' name=ID 'on' resource=[Resource] 'over' attribute=[Attribute|QualifiedName]
 ('method' '[' actions+=HTTPMethod+ ']');

Trigger:
 'actuated' 'by' name=[Action|QualifiedName];

Analyzing each of the rules individually:

• Resource - rule that defines a Resource, its name; database name if necessary, and if it is

supposed to be a cached resource;

• Attribute - rule to identify the Resource’s properties. It allows the definition of the attribute

name, data type, database column and if it is mandatory;

• Composite - defines if the main Resource contains a reference to other one, but this last

resource isn’t accessible as a relationship of the first (through a specific URI);

• Relation - if a Resource has a relationship with other one, that can be expressed through an

URI, this rule defines the relation name, type, cardinality and the supported HTTP methods

through the relationship;

• Reference - this rule is directly related to the Relation one, setting if a Resource has a parent

resource, defining a specific name for it and a database column name;

• Action - defines custom actions that will impact an attribute of a specific Resource, being

the current Resource the starting point;

• Trigger - references the Resource and the Action that can change some attribute of the

current Resource;

• HTTP Method - simple parser rule that enumerates the supported HTTP verbs.

The main purposes of the Reference and Trigger rules is to enable access, in the child resource, to

the parent information, that may be necessary in the code generation process.

4.2.2.3 Grammar outline

The presented grammar was built with focus on the web service resources definition and their

relationships, establishing a supporting base to a code generation process. Given the high-level of

abstraction provided by the grammar, code artifacts can be easily inferred, and adapted, through

the exposed concepts and implemented using any preferred programming language (assuming its

suitability to web development environments).

Cohesive and comprehensive rules were implemented in the grammar, to enable its easy

comprehension and usage, decreasing the learning curve required to use it efficiently in the web

service definition processes. Also, some validations were integrated in the grammar, improving its

usability while a domain specific language ensuring a solid development environment, compliant

with REST architectural style concepts.

As a DSL, one the main purposes of this grammar is to establish a comparison base with the OAS-

based one, highlighting its advantages or disadvantages in relation to the other, providing some

RESTful Web Services Development with a Model-Driven Engineering Approach

60

insights on how it can benefits the web service development process. The full grammar can be seen

in the Appendix Appendix B.

4.2.3 Model example

This section provides an example of a model build over the developed grammar, providing an

understating on how it can be used as a web service design base, and subsequently achieve the

concrete implementation through an automated code generation process.

Figure 19 illustrates a simplified domain model of a nutrition clinic, showing the main business

concepts and their relationships.

Figure 19 - Domain model example.

The focus of this model are the relations between the Clients, Professionals and the nutritional info

of Foods, establishing an acting base over the preferences of the Client to achieve the intended

Goal.

An inheritance relation is evident, where the Professional and Client concepts, inherit some

attributes from the User artifact.

Additional business components are identified, namely in the form of enumerates: Category

enumerates the available professional categories and Goal the existing possible objectives.

Leveraging on the presented domain model, the following figures reveal a possible model built

over the grammar previously exposed, focused on the identified business concepts, and their

relationships. The model builds on the assumption that, in the design process, the resources and

sub-resources were identified based on the expected behavior of the platform that will use the web

services.

Figure 20 illustrates how the business concepts can be represented through the developed

grammar, including their attributes, relationships, allowed methods and persistence meta

information (table and column names).

RESTful Web Services Development with a Model-Driven Engineering Approach

 61

resource abstract User table USER {
 attribute firstName String column First_Name
 attribute lastName String column Last_Name
 attribute email String column Email
 attribute birthDate Calendar column Birth_Date

 contains address Address

 NONE
}

a) User resource definition.

resource Professional table PROFESSIONAL extends User {
 attribute category Enum(Category) column Category
 attribute rating Integer column Rating

 relation patients Client* actions [GET POST DELETE]

 actuated by Client.rate

 POST PUT
}

b) Professional resource definition.

resource Client table CLIENT extends User {
 attribute phoneNumber String column Phone_Number
 attribute goal Enum(Goal) column Goal

 relation favoriteFoods Food* actions [GET POST DELETE]
 relation dislikedFoods Food* actions [GET POST DELETE]

 reference Professional.patients

 action rate on Professional over Professional.rating method [POST PUT]
}

c) Client resource definition.

Figure 20 - Resource-oriented model: User related resources definition.

Some of the resources relations can be derived directly from the domain model, while others may

need additional specifications. In this concrete model, the action “rate”, available to the resource

Client, that acts over the Professional attribute “rating”, isn’t explicitly defined in the domain

model, but in a real-world situation may have been defined in the requirements analysis process -

create or update the rating given from one Client to a specific Professional.

Presented in Figure 21, as an example, are the definitions of the additional relevant components

that cover the remaining available rules provided by the developed grammar: the meta information

and enumerates rule.

RESTful Web Services Development with a Model-Driven Engineering Approach

62

project: "Nutrition Clinic"
version: "1.0"
basePath: "nutrition.clinic"
server: {
 description: "Nutrition clinic development server"
 url: "http://nutrition.clinic"
}
mediaType: Json XML
basePackage: com.nutrition.clinic

a) Meta information definition.

enum Category {
 name Medic
 value 1

 name Nutritionist
 value 2
}

b) Enums definition.

Figure 21 - Resource-oriented model: Additional components.

The grammar usage has some intrinsic predefined behavior that need to be considered when using

it as starting point to a code generation process:

• the URI paths definition isn’t explicit, it must be derived from the resources definition and

their relationships;

• the default functional behavior of the HTTP verbs cannot be influenced, which means that

a POST will always try to create a new entity, i.e.;

• the relation rule establishes a relationship through an URI template similar to:

{resource}/{id}/{relatedResource}

• the custom action establishes an action through an URI template like:

{resource}/{resourceId}/{targetResource}/{targetResourceId}/{action}/{value}

• if no HTTP method is provided the most common ones are made available by default:

POST, GET, PUT and DELETE.

The full model example is available in Appendix Appendix C.

4.3 OAS-oriented DSL

The main challenge in this approach is how to capture the behavior, and implementation details of

a typical web service, and how these can be derived from the respective specification in the

OpenAPI format. This last one requiring by itself a specific parser to interpret the multiple

components that structure the specification.

This section outlines the OAS gammar development, taking in consideration that that process is

heavily conditioned by the requirement of maintaining the OAS structure and content as the

language in which the associated models are built.

RESTful Web Services Development with a Model-Driven Engineering Approach

 63

4.3.1 OAS-oriented metamodel

Figure 22 depicted meta-model uses UML as meta meta-model, providing a better understanding

of the multiple OpenAPI components and allows the inclusion of specific features into the

modeling phase, giving additional meaning to the relationships between components.

The meta-model aids in finding an appropriate representation by exploring the boundaries and the

core of the domain. It is derived from the concepts and properties described in the OpenAPI

specification document and the use of UML and its artifacts allows a better understanding of the

relationships between the multiple OpenAPI objects, providing an unambiguous and broad range

of the assumed specification interpretation.

(Nguyen et al., 2014) suggests a division of the showed concepts in three main parts:

• Behavioral elements: in this category, the “Paths”, “OperationObject” and

“ResponsesObject” objects assume the most relevant role in defining and interpreting the

overall API behavior, mainly the exposed services and how it is supposed to answer to

external calls;

• Structural elements: the main component that define how each OpenAPI object is built,

describing the data types and available data structures, is the “Schema” object, which is used

in multiple objects, namely in the “Components” one, allowing to define structures based on

the JSON Schema Specification, with some OpenAPI specific features;

• Serialization/deserialization elements: in this group are included the elements that

support the serialization and deserialization of OpenAPI models in JSON or YAML formats,

namely the “Paths”, “OperationObject” and “SchemaObject” concepts.

The highlighted OpenAPI objects will be the core of the code generation process and were the

focus of the grammar development. This decision, of bordering the supported objects by the

grammar, resulted from the vast number of objects that the specification contains, bringing the

need of focusing in the most relevant concepts in the web service definition, and adjust the

implementation process to the time frame available for this work resolution. This decision is also

supported by the previous defined Resource-based grammar, where the concepts that integrate it

find an equivalent on the elected OpenAPI objects - Table 14.

Table 14 - Relation between the Resource and OAS oriented concepts.

Resource-oriented DSL concepts OAS-oriented DSL objects

Resource Component; Schema

Attributes Schema properties

Relation Paths; Operation

Contains Schema; Schema properties

Action Paths; Operation

HTTP method Operation

RESTful Web Services Development with a Model-Driven Engineering Approach

64

Figure 22 - OAS-oriented grammar metamodel.

RESTful Web Services Development with a Model-Driven Engineering Approach

 65

Given the formerly described metamodel and associated categories, a DSL was developed allowing

the definition of a web service, following the OpenAPI specification, while building the foundation

to a code-generation process.

4.3.2 OAS-oriented grammar

Another challenge risen while developing the OAS based DSL was maintaining the structure of

the original specification document, while avoiding the introduction of ambiguities in the grammar.

A document conforming to the OpenAPI specification is itself a JSON object, that can be

represented either in JSON or YAML format: while the YAML format has a friendlier structure

for a human reader by resorting to indentation to delimit the different components of the

specification, the JSON version eases the interpretation of this limits programmatically, with use

of specific characters - curly brackets. This factor, and the existence of multiple tools that allow the

conversion between the two formats, defined that the developed DSL would interpret the JSON

format only.

The Code snippet 25 provides a glimpse of how the grammar is implemented, and how it interprets

an OpenAPI specification document: the main structure of the specification is parsed by the

“OpenAPIObject”, where the seven major components (see Figure 8) that constitute the OpenAPI

specification document are clearly demarcated; each one of the components delegate the parsing

of their content in inner objects with the required logic.

Code snippet 25 - Grammar excerpt defining the OAS structure.

grammar com.tmdei.xtext.dsl.OasDsl with org.eclipse.xtext.common.Terminals

generate oasDsl "http://www.tmdei.com/xtext/dsl/OasDsl"

OpenAPIObject:
 '{'
 documentOpenAPIVersion=OpenAPIVersionField
 infoField=InfoField
 (serversField=ServersField)?
 pathsField=PathsField
 (componentsField=ComponentsField)?
 (securityField=SecurityField)?
 (tagsField=TagsField)?
 '}';

OpenAPIVersionField:
 '"openapi":' openApi=STRING ',';

InfoField:
 '"info":' info=InfoObject;

InfoObject:
 '{'
 title=TitleField
 (description=DescriptionField)?
 (termsOfService=TermsOfServiceField)?
 (contact=ContactField)?
 (license=LicenseField)?
 (version=VersionField)?
 ('}' | '},');

The following code-snippet is responsible for parsing the “PathsObject” and “PathItemObject”

and provides one additional example of how the objects are defined in the Xtext grammar.

RESTful Web Services Development with a Model-Driven Engineering Approach

66

Code snippet 26 - Grammar excerpt to parse the PathsObject.

PathsObject:
 url=Url ':' '{'
 paths+=PathItemObject+
 ('}' | '},');.

PathItemObject:
 (=> httpMethod+=HttpMethod ':' '{' operation+=OperationObject ('}' | '},'))+
 ('"$ref":' '{' ref=PathItemObject ('}' | '},'))?
 (summary=SummaryField)?
 (description=DescriptionField)?
 (serversField=ServersField)?
 (parameters=ParametersField)?;

Url:
 url=STRING;

HttpMethod:
 httpMethod=STRING;

In the context of this objects, two parser rules, “HttpMethod” and “Url”, can be identified and at

first sight it seems that any string value can be assigned to them. However, semantically, the

“HttpMethod” can only be assigned with a limited number of values (get, put, post, delete, options,

head, patch and trace), and the “Url” value must agree with a specific format (e.g.,

/user/{id}/address).

The grammar should then validate the values that can be assigned to this parser rules. This was

achieved through the implementation of validators, like is is displayed in the Code snippet 27.

Code snippet 27 - Custom grammar validators.

class OasDslValidator extends AbstractOasDslValidator {
 static val INVALID_HTTP_METHOD = "invalidHttpMethod";
 static val INVALID_PARAMETER_LOCATION = "invalidParameterLocation";

 val validHttpMethods = "get|put|post|delete|options|head|patch|trace";
 val validParameterLocations = "query|header|path|cookie|body";
 @C
 @Check
 def checkValidHttpMethod(HttpMethod httpMethod) {
 if (!httpMethod.getHttpMethod().matches(validHttpMethods)) {
 error('Invalid HTTP method!', OasDslPackage.Literals.HTTP_METHOD__HTTP_METHOD,
 OasDslValidator.INVALID_HTTP_METHOD);
 };
 }

 @Check
 def checkValidParameterLocation(ParameterObject parameterObject) {
 if (!parameterObject.in.in.matches(validParameterLocations)) {
 error('Invalid parameter location! \n' + 'Valid locations: ' +
 validParameterLocations.toString.formatValuesList,
 OasDslPackage.Literals.PARAMETER_OBJECT__IN, OasDslValidator.INVALID_PARAMETER_LOCATION);
 };
 }
}

This approach allows to establish a first layer of validations when using the DSL to define an

OpenAPI specification document, aiding the code generation process, by releasing it from this

additional processing requirement. Writing wrong resource specification without following the

rules mentioned above, and others implemented to conform with the OpenAPI, will result in a

project run-time error which will not generate the code in the target project.

RESTful Web Services Development with a Model-Driven Engineering Approach

 67

4.3.3 Model example

Based on the domain model presented previously - Figure 19 - an OAS model was built with the

developed grammar.

Code snippet 28 presents the model overall structure, and it can be seen that it perfectly mimics

the OpenAPI specification document.

Code snippet 28 - Model excerpt defining the OAS structure.

{
 "openapi": "3.0.1",
 "info": {},
 "servers": [],
 "paths": {
 "/clients": {},
 "/clients/{clientId}": {},
 "/clients/{clientId}/favoriteFoods": {},
 "/clients/{clientId}/dislikedFoods": {},
 "/clients/{clientId}/professionals/{professionalId}/rate/{rating}": {},
 "/professionals": {},
 "/professionals/{professionalId}/clients/{clientId}": {},
 "/foods": {},
 "/foods/{foodId}": {}
 },
 "components": {
 "schemas": {
 "User": {},
 "Client": {},
 "Professional": {},
 "Food": {},
 "Address": {},
 "Clients": {},
 "Foods": {}
 }
 }
}

It shows the services that should be exposed in the web service for each of the resources that

integrate the business domain and the HTTP verbs that they should support.

Code snippet 29 - Model excerpt defining a service over Client sub resource.

{
 "/clients/{clientId}": {
 "get": {
 "tags": [
 "users"
],
 "summary": "Info for a specific Client",
 "operationId": "showClientById",
 "parameters": [{…}],
 "responses": {
 "default": {
 "description": "Unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {…}
 }
 }
 }
}

"parameters": [{
 "name": "clientId",
 "in": "path",
 "description": "Client id to retrieve",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
]

"responses": {
 "default": {},
 "200": {
 "description": "Response to a valid request",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Client"
 }
 }
 }
 }
}

RESTful Web Services Development with a Model-Driven Engineering Approach

68

The previous code snippet illustrates the detail of a Path object, where additional components are

used do define: the service description, required parameters and the expected and possible

responses. It can be stated, that a successful resource leads to a response with a reference to the

component Client.

Code snippet 30 shows a model excerpt where three components are defined: User, Address and

Client.

Code snippet 30 - Model excerpt defining the components schema.

"User": {
 "required": ["id", "email”],
 "properties": {
 "id": {
 "type": "integer",
 "format": "int64"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 },
 "email": {
 "type": "string"
 },
 "birthDate": {
 "type": "date"
 }
 "address": {
 "type": "object",
 "items": {
 "$ref": "#/components/schemas/Address"
 }
 },
 }
},
"Address": {
 "required": ["zipCode","firstLine"],
 "properties": {
 "firstLine": {
 "type": "string"
 },
 "secondLine": {
 "type": "string"
 },
 "zipCode": {
 "type": "string"
 }
 }
}

"Client": {
 "properties": {
 "allOf": [
 {
 "$ref": "#/components/schemas/User"
 }, {
 "type": "object",
 "properties": {
 "phoneNumber": {
 "type": "string"
 },
 "description": {
 "type": "string"
 },
 "favoriteFoods": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/Food"
 }
 },
 "dislikedFoods": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/Food"
 }
 },
 "goal": {
 "type": "string",
 "enum": [
 "gain weight",
 "lose weight",
 "maintain weight"
]
 }
 }
 }
]
 }
}

As it is stated in the domain model, an inheritance relationship exists between the User and Client

entities, where the last one inherits some parameters from the first. In terms of OAS this relation

translates to a component field named “allOf”, that states a reference to the parent component,

and then integrates the specific properties of the child object.

While in this section the most relevant OAS components to the web service definition were

presented, the full model specification can be seen in Appendix Appendix E.

RESTful Web Services Development with a Model-Driven Engineering Approach

 69

4.4 Code generation

The code generation process is supported by a working reference implementation (detailed in the

next sub section), developed around the domain model presented in Figure 19, that contemplates

the application of adequate design patterns and principles. In the end of this process the application

should be, structural and content wide, like the reference implementation.

Given the substantial differences between the two developed grammar the code generation process

related to each is structured accordingly, but with the same underlying philosophy, focused on

generating the code artifacts associated with the resources in a first phase, and then generate the

gateways, exposing the identified web services.

The software generator gets a model as input and creates all necessary artifacts for a complete

backend that contains the API, the business logic, and the source code of the persistence layer.

This last component, in the concrete case of this work, is tightly coupled to a JPA implementation

making use of the associated API in the persistence layer definition and behavior

4.4.1 Supporting implementation

Figure 23 gives an overview of most of the components that are generated in this process, while

providing additional information regarding the web service architecture adopted for the reference

implementation.

Figure 23 - Web service layered architecture.

A four-layer architecture was considered:

• Database layer: It is responsible for managing the database:

RESTful Web Services Development with a Model-Driven Engineering Approach

70

o ResourceDao: data access object that encapsulates the database operations (save, update

delete and retrieve) over the database objects;

o ResourceRepository: encapsulates and manages the access to the database;

o ResourceDbo: entity representative of the database table.

• Business layer: In this layer the business models are defined, with all associated operations:

o The ResourceManager manages the operations in the business context;

o The ResourceEntityMaper maps ResourceEntity to ResourceDbo (database layer) and

vice-versa;

o The ResourceEntity is a business entity, defining the main attributes relevant to the

business rules implementation.

• Presentation layer: This intermediate layer between the presentation layer and the layer with

the business logic that delegates the requests from the first to the second:

o ResourceWorkflow: It is a class responsible for controlling the flow of the service, calling

the managers of the lower layer, after mapping the ResourseApi entities to ResourceEntity

entities;

o ResourceApiMapper: It maps ResourceApi to ResourceEntity entities and vice-versa

(business layer);

o ResourceApi: This entity represents the JSON or XML entities accepted in the services.

• Gateway layer: It exposes the web services endpoints and delegates the received requests to

the subsequent layer:

o ResourceWs: It is an interface with the exposed web service endpoint;

o ResourceWsImpl: It is an implementation of the resource web service interface.

Furthermore, and to provide a better understanding of the application flow, the sequence diagrams

associated to each of the CRUD operations are presented in the next figures.

Figure 24 shows the create operation flow, where the communication between each layer is clear,

and the intervention of each artifact exposed previously is evident.

Figure 24 - CRUD: Create operation.

RESTful Web Services Development with a Model-Driven Engineering Approach

 71

The flow to the search operation is patent in Figure 25.

Figure 25 - CRUD: Search operation.

Each one of the previous described components is generated associated it the respective resource
in the code generated process, detailed in the next sections.

4.4.2 Common implementation considerations

As it was already stated the implementation of web services leads to code repetition across the

multiple resources involved, since the basic CRUD operations always follow the same flow. Taking

this in consideration and to avoid the generation of repetitive code for each identified resource,

some base implementations were introduced in the generation process, from which the new code

artifacts can extend and access the common methods. Following this train of thought, Figure 26

illustrates how the base implementation integrates with the generated code.

Figure 26 - Integration between the generated code and the base implementation.

RESTful Web Services Development with a Model-Driven Engineering Approach

72

Two layers were considered, one with the base artifacts, and other with the generated code. From

the domain model, the developer chose which DSL to use to model the domain, and the generator

will create the code artifacts associated: plain old Java objects (POJOs) and the implementations

that will extend the base classes with the required methods overridden.

Another component common to both code generation processes are the Xpect tests, that work

like the commonly used unit tests, that will ensure the correctness of each generated code artifact.

These common implementation details are subject of the subsequent points.

4.4.2.1 Base project

Following the architecture displayed in Figure 23, for each layer the most relevant base

implementations are:

• Database layer

o BaseDao, provides the base implementation for the persistence methods

- public D save(D dbo) {…}

- public D retrieve(Class<D> c, Long id) {…}

- public List<D> retrieve(QueryParameters queryString) {…}

- public void delete(D dbo) {…}

• Business layer

o BaseManager

- public E create(E entity) {…}

- public E retrieve(long id) {…}

- public List<E> retrieve(QueryParameters query) {…}

- public E update(E entity, long id) {…}

- public E delete(long id) {…}

• Presentation layer

o BaseWorkflow

- public A create(A api) {…}

- public A retrieve(long id) {…}

- public List<A> retrieve(QueryParameters query) {…}

- public A update(A api, long id) {…}

- public A delete(long id) {…}

The presence of this base implementations promotes code reusability, while improving the overall

maintenance ease of the application. Each one of these methods have its own implementation, but,

when needed, can be manually overridden to accommodate additional logic depending on the

defined business requirements.

To ensure RESTful compliance with the constraints related to filtering, sorting and pagination of

the resources, an external library1 was used, removing additional complexity from the code

1 https://github.com/kumuluz/kumuluzee-rest

RESTful Web Services Development with a Model-Driven Engineering Approach

 73

generation process by delegating these complex operations in this dependency. This library enables

each one of the referred features through query parameters usage:

• Pagination

o GET /api/foods?offset=10

o GET /api/foods?limit=5

o GET /api/clients?offset=10&limit=5

• Sorting

o GET /api/foods?order=id DESC

o GET /api/foods?order=calories ASC

o GET /api/foods?order=calories ASC,proteins DESC

• Filtering

o GET /api/foods?filter=id:EQ:1

o GET /api/foods?filter=name:NEQIC:'doe'

o GET /api/foods?filter=name:LIKE:H%

o GET /api/clients?filter=address.zipCode:LIKE:4425%

HATEOAS, specifically the links component, was also implemented in the base application

through some protected methods (Code snippet 31), that must be overridden by the concrete

classes if the default implementation does not suffice or if the associated relation (rel) does not

exist.

Code snippet 31 - Default links methods available in the base implementation.

protected ResourceLink getLinkSelf(…);

protected ResourceLink getLinkUpdate(…);

protected ResourceLink getLinkDelete(…);

protected ResourceLink getLinkRelationships(…);

Code snippet 32, illustrates the response associated with the default implementation, for a POST

request.

Code snippet 32 - Response example from a request to create a Client.

{
 "id": 1,
 "links": [{
 "href": "http://localhost:8080/nutrition.clinic/api/clients/1",
 "rel": "self"
 }, {
 "href": "http://localhost:8080/nutrition.clinic/api/clients /1",
 "rel": "update"
 }, {
 "href": "http://localhost:8080/nutrition.clinic/api/clients/1/favoritefoods",
 "rel": "foods"
 }, {
 "href": "http://localhost:8080/nutrition.clinic/api/clients/1/dislikedfoods",
 "rel": "foods"
 }
],
 "address": {…},
 "email": "test_01@mail.com",
 …
}

RESTful Web Services Development with a Model-Driven Engineering Approach

74

4.4.2.2 Unit testing

To improve the code generation process reliability, it is fundamental to create tests that will

confront the generated code with the expected one. Following this train of thought a framework

focused on this matter, Xpect1, was integrated in each one of the Xtext’s projects.

The test creation process is simple, and involves creating a file with *.xt extension where two areas

are demarcated: one where the expected response is defined, and other where the model that

supports the code generation is written - Code snippet 33.

Code snippet 33 - Xpect test example.

/* XPECT_SETUP com.tmdei.xtext.dsl.tests.generator.GeneratorRsrcTest END_SETUP */

/*
test generating FoodEntity.java
XPECT generated file nutrition.clinic/src/main/java/nutrition.clinic/business/entity/FoodEntity.java

package nutrition.clinic.business.entity;

import nutrition.clinic.business.entity.BaseEntity;

public class FoodEntity extends BaseEntity {
 private String name;
 private Double fats;
 private Double proteins;

 // setters and getters
}
--
*/

project: "Nutrition Clinic"
version: "1.0"
basePath: "nutrition.clinic"
server: {
 description: "Nutrition clinic development server"
 url: "http://nutrition.clinic.dev.com"
}

resource Food table food {
 attribute name String;
 attribute fats Double;
 attribute proteins Double;
}

The test will assert the equivalence between the code generated from the model defined, and the

expected result. To accomplish a reliable test suite, ideally all of the scenarios that can be built from

the grammars should be tested.

4.4.3 Generation process

The code generation process can be divided in three different major components: one focused on

the entities, defining the code artifacts that represent the business entities (ResourceEntity.java)

and the associated data transfer objects (ResourceApi.java) and database objects

(ResourceDbo.java), as well, the mappers that ensure their transformations across the multilayered

architecture; other in the definition of behavioral artifacts that control the flow of the application,

1 http://www.xpect-tests.org/

RESTful Web Services Development with a Model-Driven Engineering Approach

 75

namely the “ResourceManager” and “ResourceWorkflow” classes; and finally, the services entry

points, the “ResourceWs” implementations.

A formal structure was established and integrated in all the individual generation processes - Code

snippet 34. This approach was followed in both of the code generations processes developed.

Code snippet 34 - Structure followed in the generation process.

class Generator {
 // inject necessary helpers
 @Inject extension GeneratorHelper

 // local variables declarations
 Meta meta = null
 Resource resource = null
 Attribute attributes = null

 def generate(Meta meta, Resource resource, IFileSystemAccess2 fsa) {
 // local variables attributions
 this.meta = meta
 this.resource = resource
 this.attributes = resource.attributes

 // path and file name definitions
 fsa.generateFile(
 FileName + ".java",
 generateClass()
)
 }

 // function responsible of generating the software class structure and content
 def generateClass() '''
 «generatePackage()»
 «generateImports()»
 «generateEntity()»
 '''

 // function responsible to generate the package declaration
 def generatePackage() '''
 '''

 // function responsible to generate the imports declaration
 def generateImports() '''
 '''

 // function responsible to generate the entity content, usually through a defined template
 def generateEntity() '''
 '''
}

Each one of the previous mentioned components generation is detailed in the following sections,

and, given the relevant structural differences between the processes associated with the developed

grammars, the explanation is extended to each one independently.

4.4.3.1 Syntactic considerations

Regarding the naming conventions adopted for the code generation process, it is important to

make some considerations:

• The code itself follows the usual Java conventions1;

• As for the specificities of the web services, node names were considered plural by default:

1 https://www.oracle.com/technetwork/java/codeconvtoc-136057.html

RESTful Web Services Development with a Model-Driven Engineering Approach

76

GET nutrition.clinit/clients/33245 and http://nutrition.clinit/clients

• For the database table and column names it was assumed:

o Tables: use the resource name in Upper Camel Case, ex: FavoriteFoods;

o Columns: use the attribute name in Lower Camel Case, ex: clientId.

4.4.3.2 Resource-oriented code generation process

The resource-oriented grammar was built around the resource concept itself, which vastly decreases

the processing required to identify the resources that will give origin to a code artifact. A simple

iteration through the model resources will lead to a software class associated with the identified

entity. Given some specific attributes characteristics presented in the model the resulting class may

result in a slightly different variant with specifications depending on those characteristics

significance.

Taking the resource presented in Figure 20 a), the code generation process will apply a template

through an Xtend class, like the one shown in Code snippet 35, and generate the respective business

artifact UserEntity.java.

Code snippet 35 - Business entities generation process.

class BusinessEntityGenerator {
 @Inject extension RsrcDslGeneratorHelper
 @Inject extension BusinessLayerGeneratorHelper

 def generateBusinessEntity(Meta meta, Resource resource, IFileSystemAccess2 fsa) {
 this.meta = meta
 this.resource = resource
 this.composites = resource.contains
 this.attributes = resource.attributes
 this.entity = resource.generateBusinessEntityClassName

 if (resource.extends !== null) {
 this.parentResource = resource.extends.name
 }

 fsa.generateFile(
 meta.package.retrieveBusinessLayerBaseFolder.retrieveSourceJavaFolder +
 meta.package.retrieveEntityFolder + entity + ".java", generateClass())
 }

 def generateClass() '''
 «generatePackage()»
 «generateImports()»
 «generateEntity()»
 '''

 def generateEntity() '''
 public class «entity» extends BaseEntity {

 «generateAttributes(attributes)»
 «generateComposites(composites, "Entity")»

 «generateConstructorDefault(entity)»
 «generateConstructorWithParameters(resource, entity)»

 «generateAttributesGettersAndSetters(attributes)»
 «generateCompositesGettersAndSetters(composites, "Entity")»
 }
 '''
}

RESTful Web Services Development with a Model-Driven Engineering Approach

 77

The previous code snippet illustrates how a business entity class is generated. It can be seen that is

was intended to promote code reuse as much as possible, by delegating small tasks in smaller

functions, accessible through helpers, and made available to all of the code generation components

by injection.

Another code generation process example is shown in Code snippet 36, in this case the Manager

class generation. Since the most relevant difference is at the entity template definition, that is the

focus of the example, demonstrating that the code generation structure achieves high levels of code

reuse, increasing the productivity when new artifacts are required to be generated.

Code snippet 36 - Business entities generation process.

class BusinessEntityGenerator {

 // …

 def generateEntity() '''
 /**
 * «businessEntity» manager
 */
 public class «businessEntityManager» extends BaseManager<«businessEntity», «databaseEntity»> {

 // DAOs
 BaseDao<«databaseEntity»> «databaseDaoVariable»;

 // Mapper
 «businessEntityMapper» «businessEntityMapperVariable»;

 @Override
 protected BaseDao<«databaseEntity»> getDao() {
 if («databaseDaoVariable» == null) {
 this.«databaseDaoVariable» = new «databaseDao»();
 }
 return this.«databaseDaoVariable»;
 }

 @Override
 protected BaseEntityMapper<«businessEntity», «databaseEntity»> getEntityMapper() {
 if («businessEntityMapperVariable» == null) {
 «businessEntityMapperVariable» = new «businessEntityMapper»();
 }
 return this.«businessEntityMapperVariable»;
 }

 @Override
 protected Class<«databaseEntity»> getDboClass() {
 return «databaseEntity».class;
 }

 }
 '''

 // …

}

The gateways generation process follows the same lines of the previous components. The major

difference is in the overall behavior of the final application. Given that the each one of the

ResourceWs extends a BaseWs, where all the CRUD are made available by default, when a specific

action is not supposed to be available it must be generated with an overridden annotation, raising

an exception - Code snippet 37.

RESTful Web Services Development with a Model-Driven Engineering Approach

78

Code snippet 37 - Example of an overridden service.

@Path("clients")
public class ClientWsImpl extends BaseWs<ClientApi, ClientEntity, ClientDbo> {
 // …

 @Override
 @DELETE
 @Path("{id}")
 @Produces({ MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML })
 public Response delete(@PathParam("id") long id) {
 return Response.status(Status.NOT_IMPLEMENTED)
 .entity("The requested operation is not supported for this resource.").build();
 }

Lastly, the generation of the OAS from the model is achieved through a mapping process between

the most relevant objects from the specification and the grammar rules, as specified in Table 15.

Table 15 - Mapping between classes and OpenAPI components artifact

Grammar rule OpenAPI artifact

Meta Info and server object

Resource Component object

Resource Attribute Component properties field

Resource Relation and Action Paths object

Additional OAS objects, like the Request Body object and Response object, are inferred from the

Resource-oriented grammar rules:

• The Response object is expected to be a representation of the resource, i.e., for a Client

POST request the response is a Client representation;

• The Request Body object, associated with the POST and PUT requests, is assumed to be a

representation of the associated resource.

This section summarized the main processes of code generation for the resource-oriented

grammar. Although the OAS-oriented grammar is substantially different, the code generation

process follows the same philosophy, with the same structure of code generation classes. Given

this assumption the following section focus on how the mapping between the OAS objects and

the code artifacts is made, rather than the code generation.

4.4.3.3 OAS-oriented code generation process

To provide a better understanding on how the web service code is generated from the developed

DSL and consequent model, an UML-OpenAPI base mapping approach is defined, where the

involved rules are exposed in table format and are structured built on the UML artifacts defined in

Figure 23.

The main components that must be identified and extracted from the specification are the

resources that compose the substance of the web service, and the endpoints that needed to be

exposed in each one.

Following the OpenAPI structure, and analyzing the existing objects, it can be observed that two

of them provide the required info to identify the mentioned resources and services:

RESTful Web Services Development with a Model-Driven Engineering Approach

 79

• Paths object:

paths:
 /foods:
 get:
 description:
 operationId:
 parameters:
 responses:
 (…)
 post:
 (…)

The Path element contains a relative path to an individual endpoint and the operations for

the HTTP methods. The description of an operation (operation element) includes an

identifier operationId, the MIME types the operation can consume/produce, and the

supported transfer protocols for the operation (schema attribute). An operation includes also

the possible responses returned from executing the operation (responses reference).

• Components object:

components:
 schemas:
 responses:
 parameters:
 requestBody:
 (…)

The components object behaves like an appendix where the re-usable details are provided.

If multiple parts of the specification have the same schema, each of these references can be

pointed to the same object in the components object, and in so doing you single source the

content.

The following tables expose the most relevant mappings between the OpenAPI objects and the

UML artifacts.

Table 16 reflects how the entities are mapped from the OpenAPI components object to UML

classes, materializing the web service resources, and allowing the code implementation.

Table 16 - Mapping between classes and OpenAPI components artifact

UML/Code Artifact OpenAPI components artifact

Entity

name schemas field → key in Map[string, schema object | reference object]

attributes schemas field → schema object → properties field

generalization class schemas field → schema object → allOf (and the combining schemas)

Entity attributes

name schemas field → schema object → properties field → name

type schemas field → schema object → properties field → type

multiplicity schemas field → schema object → properties field → type array

Supported by this mapping process the specification document is parsed and using Xtend templates

the entities are generated.

Figure 27 illustrates the mapping result between the component artifact show in Code snippet 30,

and UML concepts, originating a class diagram from which the resources are identified.

RESTful Web Services Development with a Model-Driven Engineering Approach

80

Figure 27 - UML class-OpenAPI component artifact mapping

This mapping allows the definition of the web service main resources (User and Client), its

attributes and its relationships with other sub resources (Address). Even though the “required”

attribute, inside the Client schema, has no relevance in the GET service, when creating a new Client

- in the POST service - this constitutes an initial validation in the web service, where these attributes

must be present in the body of the request associated. In the following code-snippet the generated

validation is presented.

Code snippet 38 - Example of a generated validation.

public abstract class UserBaseValidation implements EntityValidator<UserEntity> {

 public final boolean validate(UserEntity entity) throws UserException {
 if (entity == null) {
 throw new UsertException(UserErrorMessage.NULL_RESOURCE);
 }

 if (entity.getEmail() != null) {
 throw new UserException(UserErrorMessage.MISSING_REQ_PARAM, "email");
 }

 if (entity.getId() != null) {
 throw new UserException(UserErrorMessage.MISSING_REQ_PARAM, "id");
 }

 return customValidations(entity);
 }

 protected abstract boolean customValidations(UserEntity entity) throws UserException;

}

The OpenAPI specification has a specific object - Paths object - where the available services are

exposed, identifying the most relevant attributes:

• Endpoint;

• HTTP method;

• Parameters respective location;

• Possible responses.

RESTful Web Services Development with a Model-Driven Engineering Approach

 81

In Table 17 the web service mapping from the paths object is presented, identifying the

correspondence between the specification and the code artifact.

Table 17 - Mapping between web service classes and OpenAPI paths object

UML/Code Artifact OpenAPI paths object

Web service

path paths object → field pattern

HTTP verb paths object → path item object → http method

parameters paths object → path item object → operation object → parameters

request body paths object → path item object → operation object → request body

responses paths object → path item object → operation object → responses

content type paths object → path item object → operation object → responses → content type

security paths object → path item object → operation object → security

As referred the Resources Ws extends a BaseWs with all the common CRUD operations, but when

necessary these methods can be overridden, and the mapping process can be achieved like in the

following example. Based on the Code snippet 29, the associated implementation is presented in

Code snippet 39.

Code snippet 39 - Web service class - OpenAPI path artifact mapping.

(…)

@GET
@Path("{clientId}")
public class ClientWs extends BaseWs<ClientApi, ClientEntity, ClientDbo> {

 private ClientWorkflow clientWorkflow;

 @Override
 @GET
 @Produces({MediaType.APPLICATION_JSON})
 public Response retrieveClient(@PathParam("id") long id){

 ClientApi clientApi = null;
 Response finalResponse = null;

 try {
 clientApi = getClientWorkflow().retrieveClient(id);

 response = new Response<>(clientApi, Status.OK);
 } catch (Exception exception) {
 response = new Error<>(“unexpected error”, Status.BAD_REQUEST);
 }

 return Response.status(response.getStatus()).entity(response).build();
 }

}

(…)

The exposed endpoint is easily identified and is followed by the related HTTP verb. Then, the

required parameters are exposed, the location in the request ("query", "header", "path" or "cookie")

and the mandatory character of the parameter. Succeeding, the possible responses are detailed, with

the reference pointing to the component object detailing the response schema, or even the schema

itself.

These two mapping procedures are the most relevant ones in the web service building process,

allowing the definition of the resources, and the endpoints to be exposed. From this two mapping

processes, mainly the resources identification process, other code artifacts are inferred:

RESTful Web Services Development with a Model-Driven Engineering Approach

82

• Database entities and SQL scripts;

• API entities;

• Associated mappers.

Information about the server or servers that support the API function, with the URL that

incorporates the available endpoints is detailed in the server object, allowing the definition of these

structural parameters in the implementation.

Furthermore, the OpenAPI specification provides information regarding other components that

can compose a web service, but whose scope is not the focus of this work:

• Security requirement - allows the specification of which security mechanisms can be used

across the API;

• External documentation - reference to external documentation regarding the web service.

The next section provides a broad comparative analysis between the two grammars developed and

associated code generation processes, electing some foreseeing advantages and disadvantages in

their usage.

4.5 Broad comparative analysis

4.5.1 Grammar

The two developed grammars have a distinct syntax: one focused on the resource definition, while

the other mimics the OpenAPI specification. This will lead to different usability levels given the

developer knowledge in the OAS thematic.

To developers already familiar with the OpenAPI specification the OAS-oriented grammar usage

may be preferred, while developers who do not know about the specification, given the simpler

syntax of the Resource-oriented grammar, will prefer to use the last one. However, even for

experienced developers, the resource-oriented grammar may prove itself as a valuable tool, given

its capacity to generate the specification from a far simple model.

This may lead to a different flow in the web service development process, by using in a first

approach a model of the intended API based on the Resource-oriented grammar, which will

generate the OpenAPI specification, that can be used as an input in the OAS-oriented grammar.

4.5.2 Code generation

Focusing in the code generation, while it presents itself as a very similar process in both fashioned

grammars, it can be alleged that the Resource-based one possesses a more “convention over

configuration” character than the other, namely on:

• The services path definition, where they are inferred from the resource definition, while in

the OAS grammar they are explicit defined;

• The states transitions intrinsically associated with the HTTP verbs of the respective service

path;

RESTful Web Services Development with a Model-Driven Engineering Approach

 83

• The web services responses, explicitly defined in the OAS grammar, are pre-defined:

o Default response: error message “Bad Request” with some detail regarding the error;

o POST response: the representation of the resource created;

o PUT response: the representation of the resource updated;

o GET response: a list of the resources representations;

o GET with id: the resource representation with the associated id;

o DELETE response: the deleted resource representation;

Chapter 5 draws some conclusions regarding the solutions evaluations, based on the points defined

in Section 3.6.

RESTful Web Services Development with a Model-Driven Engineering Approach

84

RESTful Web Services Development with a Model-Driven Engineering Approach

 85

Chapter 5

Solution Evaluation

This chapter is dedicated to the solution evaluation, focusing on the parameters defined in 3.6.

Firstly, the usability concerns are addressed, then the generated code quality is compared with the

results achieved through commercial solutions, and finally the web services QoS are evaluated

against the case study, focusing on the performance of two concrete webservices, detailed in the

respective section. All the evaluations that have code execution involved were executed under the

same circumstances (local server) to avoid entropy caused by additional variables.

5.1 DSLs usability

Leveraging in the main concepts regarding DSLs’ usability evaluation exposed in Section 3.6.1, it

is necessary to first undergo some research activities (Barišić, Amaral, Goulão, et al., 2012):

1. Domain analysis;

2. Language design;

3. Testing - controlled experiment;

4. Deployment and maintenance;

5. Validation - iterative life-cycle.

The first two points were already covered in previous sections. Also, the mean to evaluate the

quality in use of the DSLs was already identified in the section referred in the first paragraph. The

last two points are considered to be out of scope regarding the context of this work. They are

intimately associated with the continuous use of the DSLs in a production environment, where an

iterative process of identifying improvement points and act accordingly will allow the DSL usability

and overall performance of the DSL and code generation process to be bettered.

Due to time constraints it was not possible to conclude the evaluation assessment, but the

methodology was delineated. This section focusses on presenting the process to undertake a DSL

usability measurement, through a user-centered assessment of the DSLs usability.

RESTful Web Services Development with a Model-Driven Engineering Approach

86

5.1.1 Evaluation process

The first step of the evaluation consists in the identification of the users’ profiles and context of

the DSL usage. Following a similar approach as the one presented in (Barišić, Monteiro, Amaral,

Goulão, & Monteiro, 2012), Erro! A origem da referência não foi encontrada. illustrates the

user profile characterization using a Likert scale (1-unimportant, 5-very important) to prioritize

their importance in the usability evaluation process.

Table 18 - DSL user’s profiles.

Technical characteristics Profile characteristics

Knowledge about the
business processes

4 Manager 3

Knowledge about the
business domain

4 Domain expert 4

Knowledge of
programming

3 Java programming 3 Developer 5 Engineer 4

DSL usage 5 Programmer 3

Identified the users’ profiles relevant to the DSL, the process starts with the participant

recruitment, categorizing each one accordingly with the profiles identified. The next step is to

organize the evaluation by determining which tasks must be done in order to provide meaningful

results to latter analysis. The pilot session follows, meant to simulate the exam and provide some

insights regarding the adequacy of the prepared material to be used in the evaluation procedures.

An evaluation sitting then takes place, with a training session, where the languages are introduced.

The exam involves some writing activities where the participants actions are observed and

recorded, so that completion times can be tracked. After each group has been evaluated in the

different languages they must fill a questionnaire, to obtain the user’s qualitative perspective of the

comparison between the languages. The evaluation process terminates with the results analysis.

The previous described process is illustrated in Figure 28.

Figure 28 - Evaluation process steps.

Evaluation session
per DSL

Subject recruitment

Task preparation

Per group

Pilot session

Training session

Exam

Final questionnaire

Analysis of results

RESTful Web Services Development with a Model-Driven Engineering Approach

 87

Fixed on the task preparation sub process, it is important to establish what features to evaluate:

• OAS-oriented DSL vs Resource-oriented DSL;

• Common procedures to both languages:

o Expressing the main entities;

o Defining the entities attributes and their data types;

o Stating the relation between entities;

o Describe the available HTTP methods to each of the resources;

o Define meta data related to the web service.

• OAS-oriented DSL specific evaluation

o Defining the paths to be exposed in the web service;

o Expressing the possible responses for each service;

o Defining the parameters required to make the request to each service.

• Resource-oriented DSL specific evaluation

o Define different type of relations between different entities;

o Expressing custom web services involving two entities.

One important factor to refer in order to achieve the best results possible, is the necessity of split

the participants in two different groups, one that will use the OAS-oriented analysis and the other

that will use the Resource-oriented. Only through this way the influence of the first language while

presenting the second is mitigated, ensuring an unbiased evaluation methodology for each

language. After obtaining these impartial results, another two sessions would then be needed for

the users of each language to switch the target one, allowing a comparison layer between the

performance of the DSLs.

After the session the participants are asked to answer the questionnaire to judge the intuitiveness,

suitability and effectiveness of the two languages. The purpose is to evaluate:

• Overall reaction to each of the languages;

• Rating how easy specific aspects of the language are to use;

And finally, to compare both languages:

• The participants are asked to compare specific aspects of both languages and rate the

preferences they have;

• The participants are invited to comment freely on language that they have just used.

5.2 Code metrics analysis

The metrics of Chidamber & Kemerer (CK) (Chidamber & Kemerer, 1994) are based on solid

measurement theory and are oriented to OO programming languages, like Java, focusing on some

fundamental characteristics of this paradigm. The CK Metrics set consists of six metrics: Weighted

Methods Per Class (WMC), Depth of Inheritance Tree (DIT), Number of Children (NOC),

Coupling between Object Classes (CBO), Response For a Class (RFC), and lack of Cohesion in

Methods (LCOM).

RESTful Web Services Development with a Model-Driven Engineering Approach

88

Each one of these metrics are detailed in the following section and later were calculated for the

generated code and for the available commercial solution that supports the OpenAPI specification

3.0 - the Apimatic suite.

5.2.1 Chidamber & Kemerer metrics (C&K)

Chidmanber & Kemerer developed this set metrics with the objective of establishing the OO

application design. The intent was to predict, when faced with two different designs for a same

project, which would be the best. This reveals another facet of theses metrics, they can be design-

based rather than code-based.

A simple description for each of this metrics follows:

• Weighted methods per class (WMC)

The WMC magnitude represents the total complexity of the methods of a class. The value is

given by the sum of the complexities of each method. A simplified way to calculate WMC is

to consider methods with the same value for complexity, this value being equal to 1. In this

case, the WMC value is equal to the number of methods (NOM) in the class.

The number of methods in a class and the complexity of these classes helps to estimate the

time and effort to develop and maintain the class. Classes with a large number of methods

are more specific to certain applications and limit the possibility of reuse.

• Depth of Inheritance Tree (DIT)

The inheritance tree depth for a class is defined as the maximum length of the node

representing the class up to the root of the tree (more abstract classes).

Inheritance, or generalization, can increase the complexity of a class because the developer

must know, in addition to the methods of the class itself, all related methods and attributes

that this class inherits. In this case, the deeper the inheritance tree, the greater the number of

methods to be considered.

• Number of Children (NOC)

The number of subclasses is the number of direct subclasses of a class. According to

(Chidamber & Kemerer, 1994), the higher the number of direct subclasses of a class, the

greater the possibility that the inheritance was misused for this class, in other words,

inheritance tree levels are likely to be missing. A class with many direct subclasses has a very

large potential for propagating the effects of change in one of its methods, requiring

additional testing.

• Coupling between object classes (CBO)

The coupling scale between objects of a class is defined as being the number of other classes

with which this class is coupled (related through an association). Two objects are bound

when one object's methods use methods or instance variables of another. In other words,

the number of classes of which this class uses methods or instance variables.

Excessive coupling between objects in a system impairs modular development and makes

reuse difficult. Even if this coupling is through method calls, it causes the developer to focus

on several classes other than the one he is designing. Encapsulation is a way to prevent

coupling.

RESTful Web Services Development with a Model-Driven Engineering Approach

 89

• Response for a Class (RFC)

The response-to-class (RFC) is defined as the cardinality of the set of responses of a class.

The response set of a class is the group of methods of a class that can potentially be executed

in response to an incoming request. The greater the set of methods that can be called from

a class, the greater the complexity. If a large number of methods of a class can be called by

other classes, the testing and correction operations become more complex, requiring more

experience on the part of the developer.

• Lack of cohesion in methods (LCOM)

The LCOM is the difference between the number of pairs of methods in a class that do not

share the same set of instance variables (attributes) and the number of pairs they share.

LCOM measures the cohesion between the methods of a class. If LCOM is high, this may

mean that the class can be divided into two or more sub-classes.

A study was conducted by the NASA Goddard Space Flight Center's Software Assurance

Technology Center (SATC) on the CK metrics used to evaluate this center's projects (Rosenberg,

Stapko, & Gallo, 2000). C++ and Java programs, in a total of 20000 classes and 15 programs, were

collected and analyzed in a 3 years period, with the purpose to find acceptable limits for C&K

metrics in order to help identify pieces of code difficult to maintain, test, or understand - Table 19.

Table 19 - Threshold values for the individual metrics.

Metric Threshold values

NOM: Number of methods ≤ 20 (preferred); ≤ 40 (acceptable)

WMC: Weighted methods per class ≤ 25 (preferred); ≤ 40 (acceptable)

DIT: Depth of Inheritance Tree < 2 → may represent poor exploitation of the advantages of OO design
and inheritance

> 5 → widely used inheritance but high complexity (for classes with DIT >
5 attention to the other metrics as they underestimate their complexity)

NOC: Number of Children no good or bad value was found as it depends on other metrics

CBO: Coupling Between Objects < 5

RFC: Response for Class ≤ 50

LCOM: Lack of cohesion in methods not evaluated in the referred study

5.2.2 Collected data

(Lincke, Lundberg, & Löwe, 2008) presents a study regarding the main tools available to calculate

the referred metrics. They gathered the most relevant software that allowed the determination of

the C&K metrics at the time, and given the most recent available versions, the VizzMaintenance1

,formerly known as the VizzAnalyser, was chosen to proceed with his analysis.

5.2.2.1 Statistic summary

Presented in Table 20 are the calculate metrics from the generated code through the methodology

presented in this work, and in Table 21 the metrics associated with the commercial solution from

Apimatic. In both situations the input model is the OAS showed in Appendix E.

1 http://www.arisa.se/vizz_analyzer.php

RESTful Web Services Development with a Model-Driven Engineering Approach

90

Table 20 - Generated code: metrics descriptive statistics.

Metrics N Min. 1st Qu. Median Mean 3rd Qu. Max.

WMC 72 0 4 7 7.889 12 26

NOM 72 0 2.75 5 5.792 8 19

DIT 72 0 0 0 0.4028 1 2

NOC 72 0 0 0 0.3194 0 5

CBO 72 0 1 4 3.819 6 11

RFC 72 0 3 7 9.389 13.25 39

LCOM 72 0 1 23 36.19 48.75 257

Table 21 - Apimatic code: metrics descriptive statistics.

Metrics N Min. 1st Qu. Median Mean 3rd Qu. Max.

WMC 38 0 3 5 11.03 11.75 70

NOM 38 0 3 4.5 7.711 9.750 29

DIT 38 0 0 0 0.3158 1 1

NOC 38 0 0 0 0.3421 0 3

CBO 38 0 1 2.5 3.158 5 9

RFC 38 0 4 8 9.921 12.750 36

LCOM 38 0 0 2 90.47 69.25 789

From the results presented in the previous tables some conclusions can be drawn regarding the

code metrics from both solutions:

• The generated code from the methodology presented in this work (N=72) has almost twice

as many classes as the number of classes of the Apimatic solution (N=38);

• Overall, both the solutions present satisfactory metrics when compared with the thresholds

from Table 19;

• The values obtained for the median and mean are in the same magnitude, which could

indicate that both the solutions have a similar quality regarding the C&K metrics;

• NIT reveals itself as the least performant metric in this study, since the values achieved are

inferior to the threshold of 2, which could reveal a poor exploitation of the advantages of

OO design and inheritance.

5.2.2.2 Hypothesis analyses

Based on what was described in section 3.6.2.4 the comparison analysis follows with a hypothesis

test, where it is assessed if exists statistical evidences to corroborate H02 and H12. H01 and H11

hypotheses are not presented in this section, on the account of the different paradigms followed

in the case study project and in the code generation process. The case study application follows a

more functional paradigm, in detriment of an OO approach, since the language in which it was

built (Ruby) skewed the development in that direction. This overturns the meaning that could be

collected from C&K metrics in the evaluation of the code metrics significance.

RESTful Web Services Development with a Model-Driven Engineering Approach

 91

Focusing attention on the hypotheses:

• H02: No significant difference exists between the performance of static metrics of the

generated code and the commercial available solutions.

• H12: The generated code metrics performance is relatively better that the ones calculated

from the commercial available solutions.

First the normality of the sample must be evaluated. For samples of high dimension, by application

of the Central Limit Theorem, TLC, it is possible to infer its normality. For samples of reduced

size, it is advisable to test the normality of its distribution by performing certain tests.

For the case in analysis the Shapiro-Wilk was conducted for each one of the metrics in study -

Table 22.

The null-hypothesis of this test states that the population is normally distributed, so, if the p-value

is less than the predefined significance level (5%), the null hypothesis is rejected, and it can be

concluded that there are statistic evidences that the data does not follow a normal distribution.

Table 22 - Shapiro-Wilk test of normality.

 Generated code Apimatic generate code

Metric p-value H0 p-value H0

WMC 0.005634 rejected 4.1e-08 rejected

NOM 0.0008207 rejected 1.567e-05 rejected

DIT 5.501e-12 rejected 3.722e-09 rejected

NOC 1.064e-15 rejected 3.437e-10 rejected

CBO 0.001809 rejected 0.004387 rejected

RFC 1.493e-06 rejected 0.001208 rejected

LCOM 1.044e-10 rejected 1.503e-09 rejected

Ensuing the normality tests results, it is obvious that the populations for each metric do not follow

a normal distribution.

This invalidates the initial proposition of proceed with a parametric hypothesis test, leaving only

the non-parametric tests available to conclude this analysis. The Mann-Whitney-Wilcoxon Test can

then be used to assess the previous defined hypothesis since the conditions to validate its usage are

fulfilled:

• Independent data samples;

• Variable is ordinal or continuous;

• The shape of the distributions be similar.

The two first conditions have already been stated in previous sections, while the shape similarity

of the distributions can be confirmed in Figure 29 by analyzing the box plots for each metric,

regarding the two solutions in evaluation.

RESTful Web Services Development with a Model-Driven Engineering Approach

92

WMC DIT NOC

CBO RFC LCOM

Figure 29 - Shape distributions for metrics values.

Table 23 illustrates the obtained results for each metric, considering a significance level of 5%. The

null hypothesis states if the solutions code metrics can be said to be knowingly different, while the

alternative hypothesis (alternative = less) will evaluate whether the mean (or location) of the first

group (generated code) is lower.

Table 23 - Mann-Whitney-Wilcoxon test.

Metric p-value H02 p-value H12

WMC 0.5747 accepted 0.7148 accepted

NOM 0.5787 accepted 0.2893 accepted

DIT 0.7548 accepted 0.6255 accepted

NOC 0.2925 accepted 0.8556 accepted

CBO 0.2558 accepted 0.8734 accepted

RFC 0.5392 accepted 0.2696 accepted

LCOM 0.1459 accepted 0.9279 accepted

For the null hypothesis, H02, p-value is greater than the significance level of 0.05, so it can be

concluded that it does not exists sufficient evidence to conclude that the code metrics differ in each

solution. As for the alternative hypothesis, H12, it can be stated that the results obtained seem to

be showing a location inferior from the generated code to the Apimatic solution.

This indicates that the code metrics might be assuming lower values for the solution presented in

this work, which, for the majority of the metrics indicates a better code base.

5.3 Web service QoS

Jmeter was the tool considered to proceed with the assessment of the QoS relevant metrics, for

both, the generated code and the case study application. Two services were chosen to be analyzed,

RESTful Web Services Development with a Model-Driven Engineering Approach

 93

given the similarity between the implementations in both cases, and being two of the most used

services in the case study application:

1. Search food:

o GET nutrition.clinic.gateway/api/foods ?filter=name:EQ:inhame

o GET mypocketnutritionist/api/v1/tcas/search string=inhame

2. Create client:

o POST nutrition.clinic.gateway/api/users

o POST mypocketnutritionist/api/v1/registration

5.3.1 Collected data

The tool selected allows to simulate multiple tests scenarios, by choosing the number of users

(threads), time conditions (interval between requests, ramp-up time, etc.), variables that will be used

in the requests, etc. For the current analysis a total of 50 requests were made, and the following

QoS metrics registered, latency (ms), response time (ms) and throughput (number of requests per

second).

5.3.1.1 Statistic summary

Table 24 and Table 25 show some descriptive statistics associated with each service analyzed and

for each implementation considered.

Table 24 - Search food service QoS descriptive statistics (N=50).

QOS

Generated code Case study

Min. 1st
Qu.

Median Mean 3rd
Qu.

Max. Min. 1st
Qu.

Median Mean 3rd
Qu.

Max.

Latency, ms 5 5 5 5.7 6 15 7 7.25 8 7.78 8 9

Response
time, ms

5 5 5 5.7 6 15 7 7.25 8 7.78 8 9

Throughput,
nº requests/s

10.2 9.6

Table 25 - Create user service QoS descriptive statistics (N=50).

QOS

Generated code Case study

Min. 1st
Qu.

Median Mean 3rd
Qu.

Max. Min. 1st
Qu.

Median Mean 3rd
Qu.

Max.

Latency, ms 5 7 7 7.16 7 20 7 10 11 10.32 11 13

Response
time, ms

5 7 7 7.16 7 20 7 10 11 10.32 11 13

Throughput,
nº requests/s

10.2 9.6

RESTful Web Services Development with a Model-Driven Engineering Approach

94

Reading the obtained statistics for each service, and comparing the overall performance of the

targeted implementations, at first sight it could be concluded that the generated solution provides

a faster response time for both services. However, it is important to state that the execution time

(Response time - Latency) is zero for both cases, which indicates that the time spent executing the

code can be neglected and the difference registered is probably associated with other variables.

Since both the implementations use a MySQL server as SGBD, the deployment servers where the

solutions are deployed could be the origin of the registered differences: Glassfish in the generated

code and Redis for the case study application.

This could indicate that, despite the original suspicions that the poor performance of some services

in the case study application was related to the code implementation, the problem actually resides

in the technological stack used in the implementation.

The aforementioned conclusions impact what can be inferred from the planned hypotheses, since

they might not be related to the implementation itself.

5.3.1.2 Hypothesis analyses

As previous mentioned the hypotheses in analysis regarding the quality of service metrics for the

services in analysis are:

• H03: No significant difference exists between the web services performance of the generated

code and the case study project.

• H13: The generated web services performance is relatively better that the one provided by

the case study project.

The approach follows the steps referenced in the previous section hypotheses analysis, by start

testing the distribution normality through the Shapiro-Wilk test - Table 26 and Table 27.

Table 26 - Shapiro-Wilk test of normality: search service.

 Generated code Case study

Metric p-value H0 p-value H0

Latency 8.215e-13 rejected 2.869e-09 rejected

Response time 8.215e-13 rejected 2.869e-09 rejected

Table 27 - Shapiro-Wilk test of normality: create service

 Generated code Case study

Metric p-value H0 p-value H0

Latency 5.551e-13 rejected 3.739e-06 rejected

Response time 5.551e-13 rejected 3.739e-06 rejected

Once again, the statistical evidences suggest that the data collected from both services do not follow

a normal distribution. This leads the hypotheses evaluation through non-parametric tests.

The analysis conducted follows the same steps that the one in Section 5.2.2.2. First the distribution

shape - Figure 30 - is examined for its similarity. Then the Mann-Whitney-Wilcoxon tests are

executed, for each service, and each implementation - Table 28 and Table 29.

RESTful Web Services Development with a Model-Driven Engineering Approach

 95

Search service latency Search service response time

Create service latency Create service response time

Figure 30 - Shape distributions for metrics values.

Table 28 - Mann-Whitney-Wilcoxon test: search service.

Metric p-value H02 p-value H12

Latency 2.2e-16 accepted 2.2e-16 accepted

Response time 2.2e-16 accepted 2.2e-16 accepted

Table 29 - Mann-Whitney-Wilcoxon test: create service.

Metric p-value H02 p-value H12

Latency 2.783e-16 accepted 2.2e-16 accepted

Response time 2.783e-16 accepted 2.2e-16 accepted

The conclusions that can drawn from the results attained are identical to the ones obtained before,

in the comparison with the Apimatic solution. It can be said that statistical evidences advocate that

both solutions do not show relevant differences in the overall performance of the web services

QoS (H0). When executing the unilateral version of the test, the results suggest that the QoS for

the generated solution performs relatively better than the case study.

RESTful Web Services Development with a Model-Driven Engineering Approach

96

RESTful Web Services Development with a Model-Driven Engineering Approach

 97

Chapter 6

Conclusion and future work

This chapter aims to summarize the results of the work done, highlighting the completed

objectives, difficulties encountered, limitations and future work. Finally, it concludes with some

statements about the work carried out in the framework of the TMDEI course.

6.1 Summary

This document summarizes the different phases of execution of the developed solution, from the

value analysis of the projected work in a contemporary context, to the requirements analysis and

definition, grammars modelling and implementation, code generation processes and the solutions

evaluation.

Before presenting the technical and development components at the level of the implementation

itself, a contemporary framework is provided in the field of model driven engineering techniques

applied to web services development This information is exposed in Chapter 2, where a detailed

value analysis is presented, highlighting the benefits that the proposed methodology brings to the

different stakeholders. The main purposed of this chapter was to give some deep context of the

overall concepts connected in the final presented solution.

Chapter 3 emphasis the analysis of current available market solutions whose purpose is similar to

what the author proposed to achieve with the development of this work. Following this preliminary

analysis, the main requirements were raised, and a solution perspective was presented. With the

resolution of giving a technological context, Chapter 3 also introduced the main technologies

adopted in the execution of the project.

Chapter 4 engrossed the designed process, aiming to understand how the grammars could be built,

by creating base meta-models, representative of the two major themes, the REST resources and

the OpenAPI specification. From this initial design the grammars implementation follows, and

then the code generation process is described.

Lastly, Chapter 5 takes on the evaluation procedures defined in previous sections and presents the

obtained results, giving some perceptions over the code quality, usability evaluation procedures and

web services QoS.

RESTful Web Services Development with a Model-Driven Engineering Approach

98

6.2 Goals achieved

Two different approaches based on MDE techniques were developed, one focused on the resource

definition and other on the OpenAPI Specification. Both provide a solid, feasible and efficient

MDE solution to aid in the development of RESTful web services, improving the overall

performance of the development process, by ensuring a less error-prone environment, a faster

implementation methodology, and by providing a common platform where both, the domain

experts and the developers, can define the business concepts interactively, reaching a consensus

for what will be implemented.

Remembering the four initial comprehensive goals that this work was envisioned to achieve during

its development:

1. What MDE approach can be adopted to ensure a more efficient and reliable process of web

services development?

2. What are the compromises to specify a language agnostic metamodel to represent and define

the OpenAPI Specification?

3. Can a code generation process be developed over the DSL referred previously, and

consequently aiding developers in web services development?

4. How does an OAS-based DSL and code generation process compare with a Resource-based

one, with a simpler language?

The first question is answered in the beginning of this section, where it is denoted that two different

approaches were considered and developed in the context of model driven techniques applied to

the development of web services. Both are focused on domain specific languages implementation,

followed by a code generation process.

Focusing on the second question, it was presented a custom metamodel illustrative of the OpenAPI

specification, from which a domain specific modeling language was developed. This model is a

simplification of the main concepts that integrate the OAS, giving a high-level interpretation of the

relationships between them, while supporting the grammar development. This metamodel answers

the mentioned question, on what were the main compromises in the specification of a language

agnostic model to represent the OAS, since it deliberately leaves out some OAS concepts. While

this concludes as a compromise in its current state, the metamodel can be evolved, integrating the

missing components, and then incorporating them in the code generation process.

The ensuing question/objective is intrinsically related to the previous one and was successfully

achieved: a DSL was built over the metamodel previously defined, providing a platform that aids

developers in the design process of web services, qualified with some intelisense (intelligent code

completion) capabilities, giving suggestions on the possible elements for each OpenAPI object,

while ensuring fully specification compliance. From this DSL a code-generation process was

defined, whose main objective was to generate a full web service implementation, compliant with

the RESTful constrains.

Comparing the OAS approach with the Resource-based one, it can be stated, that, while the OAS

isn’t broadly accepted as the common specification to describe web services behavior and structure,

the second offers a simpler solution, with a less complex syntax, and more comprehensible resource

definition. It can also function as a first step towards the OpenAPI specification adoption, since it

RESTful Web Services Development with a Model-Driven Engineering Approach

 99

generates the document specification as a result of the code generation process, allowing the

developer to make the connection between the resource definition, the concrete implementation

and the associated specification.

Loose coupling between contract and implementation is possible in these approaches, providing

also additional focus in the creative process of the technical solution construction.

Another advantage that was foreseen in OAS-oriented approach is related with the provision of a

communication platform easily understandable by both parts (technical and business). This requires

further analyses, namely through the usability evaluation, since it is not clear that this OAS

approach really provides a language that the businesses stakeholders understand, given the steeping

learning curve associated.

Regarding the more technical aspects of the solution evaluation, namely the hypothesis tests

executed, it can be stated that the solution implemented achieved satisfactory results when

compared with the commercial solution from Apimatic. In the webservices QoS assessment, a

difference between the web services was identified, but its source maybe not associated with the

implementation itself, but with the technological stack used in both applications.

Analyzing the more tangible goals delineated in section 3.4.1, Table 30 shows the status of each

one at the end of the time frame reserved or the development of this work.

Table 30 - Functional requirements implementation status.

Nº Description Status

Req_01 Create web service reference implementation that will guide the DSLs development realized

Req_02 OpenAPI
specification
support

Req_02.1 Define DSL grammar -

 - OAS based DSL grammar realized

 - Resource based DSL grammar realized

 Req_02.2 Implement Xpect tests realized

Req_03 Code generation Req_03.1 Generate database tables creation script realized

 Req_03.2 Generate project structure realized

 Req_03.3 Implement RESTful compliant architectural style partially

 Req_03.4 Generate gateways layer realized

 Req_03.5 Generate presentation layer realized

 Req_03.6 Generate business layer realized

 Req_03.7 Generate database access layer realized

 Req_03.8 Generate unit-tests and integration tests partially

 Req_03.9 Generate the OAS spec from the Resource-based
DSL

realized

Examining the objectives status, some due considerations are presented:

• Enforcing HATEOAS in the application services response was done with a custom

implementation, made from scratch, an option that revealed itself as an obstacle to the overall

productivity of the base project development. As many external frameworks already provide

solutions to integrate this behavior, it should be pondered the replacement of the developed

solution with one already available;

• It was initially envisioned the generation of unit tests that would partially cover the generated

code. Since the application flow revolves essentially around HTTP calls, they were

RESTful Web Services Development with a Model-Driven Engineering Approach

100

considered an unnecessary overhead, and replaced entirely with integration tests based on

the Jersey framework;

• The mentioned integration tests cover the base CRUD operations, leaving the custom

actions untested;

• Overall the main public methods have some introductory comments. The generation of

natural language texts as meaningful comments could be integrated in the code generation

process, but, despite some solutions mainly devoted to summary comments (Sridhara, Hill,

Muppaneni, Pollock, & Vijay-Shanker, 2010; Sridhara, Pollock, & Vijay-Shanker, 2011), it

represents a different research and not totally covered yet. Thus, this point was considered

out of the scope of the work presented in this document.

Summarizing all the components developed in the context of this work: two DSLs were developed,

one focused on the resource definition and the other in the OpenAPI specification; a reference

implementation was built to support the code generation process, providing a code base from

which the templates used in the Xtend were extracted; the final solution it is really a combination

between the generated code and a base application, where the main methods are materialized and

from which the generated code extends and/or overrides their implementations, assuring a better

maintenance and promoting code reuse along the different layers.

6.3 Limitations and Future Work

The OAS metamodel that was presented establishes itself as the base for the OAS-based DSL

development. However, it can be improved by detailing additional relationships to ensure a better

coverage of the OAS multiple objects.

For the grammar specification definition, and in order to improve the overall usability of the

domain specific language when developing OpenAPI models, changes should be made to allow

the unordered definition of the OpenAPI specification objects. While the use of unordered groups

arises ambiguity questions in the grammar definition and consequently results in larger decisions

trees for the parser, the possibility of defining the OpenAPI specification without needing to

comply to a specific order in the objects definition, will vastly increase the grammar usability.

Another improvement that can be easily achieved is related to the inclusion of security layers using

the OpenAPI Security Requirement Object (SmartBear, 2018) for the definition of the prescribed

security schemas. Given that several security solutions are well standardized, defining a template

for the most common ones would result in a robust addition to the overall DSL and code-

generation process, allowing the definition of a security layer in the web service access, from the

Open API specification. However, these and other aspects are planned to be more widely

addressed by applying Model Driven Security (MDS) (Basin, Clavel, & Egea, 2011; Basin, Doser,

& Lodderstedt, 2005, 2006) guidelines and technologies. MDS is a specialization of model-driven

development that uses security design models to drive the built of secure applications.

Related to the Resource-oriented DSL it can be further improved with new functionalitiesto cover

areas that were not the focus of this work: add a security layer, provide a documentation

management component, or the support of additional HTTP verbs, for instance.

RESTful Web Services Development with a Model-Driven Engineering Approach

 101

Due to difficulties in finding an adequate population to answer the envisioned enquiries to

empirically test through experiments with test users, a common problem in this area (Barišić,

Amaral, Goulão, & Barroca, 2011), the DSLs’ usability evaluation was not completed but the

process was delineated. This should probably be the first step in a near future, to try to comprehend

the real potential of both developed DSLs, and which one should have more time and resources

invested.

Focusing on the code generation process and to improve the integration of this MDE process in

development environments, a strategy (Generation gap pattern, Xtext protected regions, etc.), for

the generation of specific code sections while preserving the others already implemented, would

vastly improve the usability of the DSL.

As the generated code is tightly coupled to the base implementation in an attempt to improve the

code quality and reusability by employing good development practices, without it the generated

code loses completely loses its functionality. It should be target of further analysis the real benefit

of having the code generation process to create independent and fully functional core

implementations, in comparison of the current adopted strategy.

Related to a recent subject, the European General Data Protection Regulation, 2016/679/EU

(European Union (EU), 2016) that enforces the protection of user’s private data, the code-

generation process could also ensure that sensitive data would be properly used. At the time the

OpenAPI specification does not possess any attribute that allows the easy identification of data

that needs to be encrypted, which means that while no official solution is provided, the inclusion

of a custom attribute can be used for this and only purpose.

6.4 Final remarks

Overall, the performed work allowed the author to apply numerous concepts acquired during the

first three years of the bachelor, complemented with two years of master’s degree in software

engineering. The knowledge and concepts assimilated from several relevant classes in the context

of the application/software development, allowed to present two different solutions, that can also

be complementary used. In addition, the learned subjects in Domain Engineering course of the

Software Engineering track, proved to be very valuable in the development of the main subjects of

this work.

The need to build a reference application following good development practices, was evident in

the preliminary analysis since it would have impact in the code generation process, in the code

metrics analysis, relevant in the context of this work, and later in the evolution and maintenance

operations of the application itself. These questions, widely explored in the context of several

courses, are indeed essential in the construction of a future proof application.

At a more technical level and within the field of the technologies employed in the solution

development, the use and exploration of model-driven technologies and techniques, an area in

continuous growth, allowed the acquisition of a set of skills that have already proved to be an asset

within the scope of the current professional activities of the author of this work.

RESTful Web Services Development with a Model-Driven Engineering Approach

102

RESTful Web Services Development with a Model-Driven Engineering Approach

 103

Bibliographic References

Aljazzaf, Z. (2015). Bootstrapping quality of web services. Journal of King Saud University - Computer and
Information Sciences, 27(3), 323–333. https://doi.org/10.1016/j.jksuci.2014.12.003

Allee, V. (2002). A Value Network Approach for Modeling and Measuring Intangibles, (November).

API Evangelist. (2015). Comparison of Automatic API Code Generation Tools For Swagger. Retrieved
January 28, 2018, from https://apievangelist.com/2015/06/06/comparison-of-automatic-api-code-
generation-tools-for-swagger/

Barišić, A., Amaral, V., & Goulão, M. (2012). Usability evaluation of domain-specific languages. Quality of
Information and Communications Technology (QUATIC), 2012 Eighth International Conference on The, 342–347.
https://doi.org/10.1109/QUATIC.2012.63

Barišić, A., Amaral, V., & Goulão, M. (2018). Usability driven DSL development with USE-ME. Computer
Languages, Systems and Structures, 51, 1339–1351. https://doi.org/10.1016/j.cl.2017.06.005

Barišić, A., Amaral, V., Goulão, M., & Barroca, B. (2011). How to reach a usable dsl? moving toward a
systematic evaluation. Electronic Communications of the EASST: 5th Int. Workshop on Multi-Paradigm
Modeling (MPM 2011), 50(January), 13. https://doi.org/10.14279/tuj.eceasst.50.741

Barišić, A., Amaral, V., Goulão, M., & Barroca, B. (2012). Evaluating the Usability of Domain-Specific
Languages. Formal and Practical Aspects of Domain-Specific Languages: Recent Developments, 386–407.
https://doi.org/10.4018/978-1-4666-2092-6

Barišić, A., Monteiro, P., Amaral, V., Goulão, M., & Monteiro, M. (2012). Patterns for Evaluating Usability
of Domain-Specific Languages. Proceedings of the 19th Conference on Pattern Languages of Programs (PLoP),
SPLASH 2012. https://doi.org/http://doi.org/10.5281/zenodo.889927

Barukh, M. C., & Benatallah, B. (2013). A toolkit for simplified web-services programming. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
(Vol. 8181 LNCS, pp. 515–518). https://doi.org/10.1007/978-3-642-41154-0_42

Brooke, J. (1996). SUS - A quick and dirty usability scale. Usability Evaluation in Industry, 189(194), 4–7.
https://doi.org/10.1002/hbm.20701

Chidamber, S. R., & Kemerer, C. F. (1994). A Metrics Suite for Object Oriented Design. IEEE Transactions
on Software Engineering, 20(6), 476–493. https://doi.org/10.1109/32.295895

Cosentino, V., Tisi, M., & Izquierdo, J. L. C. (2015). A Model-Driven Approach to Generate External DSLs
from Object-Oriented APIs, 423–435. https://doi.org/10.1007/978-3-662-46078-8_35

Dimitrieski, V., Terz, B., Dimitrieski, V., Kordić, S., Milosavljević, G., & Luković, I. (2017). MicroBuilder :
A Model-Driven Tool for the Specification of REST Microservice Architectures, (May).

Ed-douibi, H., Izquierdo, J. L. C., Gómez, A., Tisi, M., & Cabot, J. (2016). Emf-Rest. Proceedings of the 31st
Annual ACM Symposium on Applied Computing - SAC ’16, 2(3), 1446–1453.

RESTful Web Services Development with a Model-Driven Engineering Approach

104

https://doi.org/10.1145/2851613.2851782

Ed-Douibi, H., Izquierdo, J. L. C., Gómez, A., Tisi, M., & Cabot, J. (2015). EMF-REST Generation of
RESTful APIs from Models. CoRR, abs/1504.0, 39–43. https://doi.org/10.1145/2851613.2851782

El-khoury, J., Gurdur, D., & Nyberg, M. (2016). A Model-Driven Engineering Approach to Software Tool
Interoperability based on Linked Data, 9(3), 248–259.

EMF-REST Documentation. (2015). Retrieved January 28, 2018, from https://som-
research.uoc.edu/tools/emf-rest/documentation.html

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architectures.
Building, 54, 162. https://doi.org/10.1.1.91.2433

Gastwirth, J. L., Gel, Y. R., & Miao, W. (2009). The Impact of Levene’s Test of Equality of Variances on
Statistical Theory and Practice. Statistical Science, 24(3), 343–360. https://doi.org/10.1214/09-STS301

Giessler, P., Gebhart, M., Sarancin, D., Steinegger, R., & Abeck, S. (2015). Best Practices for the Design of

RESTful Web Services. In ICSEA 2015 : The Tenth International Conference on Software Engineering Advances
(pp. 392–397). Barcelona, Spain.

Haupt, F., Karastoyanova, D., Leymann, F., & Schroth, B. (2014). A model-driven approach for REST
compliant services. Proceedings - 2014 IEEE International Conference on Web Services, ICWS 2014, 129–136.
https://doi.org/10.1109/ICWS.2014.30

Haupt, F., Leymann, F., Scherer, A., & Vukojevic-Haupt, K. (2017). A Framework for the Structural
Analysis of REST APIs. In Proceedings of the 1st IEEE International Conference on Software Architecture, ICSA
2017, 3-7 April 2017, Gothenburg, Sweden (pp. 55–58). Gothenburg: IEEE Computer Society.
https://doi.org/10.1109/ICSA.2017.40

Huhns, M., & Singh, M. P. (2005). Service-Oriented Computing: Key Concepts and Principles. Proceedings -
Fifth International Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems, 13(1), 1–7.
https://doi.org/10.1016/j.compind.2009.07.006

Hussain, S., Wang, Z., Toure, I. K., & Diop, A. (2013). Web Service Testing Tools : A Comparative Study,
10(1), 641–647.

Hutchinson, J., Whittle, J., & Rouncefield, M. (2014). Model-driven engineering practices in industry: Social,
organizational and managerial factors that lead to success or failure. Science of Computer Programming,
89(Part B), 144–161. https://doi.org/10.1016/j.scico.2013.03.017

Koen, P., Ajamian, G., Burkart, R., Clamen, A., Davidson, J., D’Amore, R., … Wagner, K. (2001). Providing
Clarity and a Common Language To the “Fuzzy Front End.” Research Technology Management, 44(2), 46–
55. https://doi.org/Article

Kristopher Sandoval. (2016). What is the Difference Between API Documentation, Specification, and
Definition? | Nordic APIs |. Retrieved February 25, 2018, from https://nordicapis.com/difference-
api-documentation-specification-definition/

Kumari, S., & Rath, S. K. (2015). Performance comparison of SOAP and REST based Web Services for
Enterprise Application Integration. 2015 International Conference on Advances in Computing, Communications
and Informatics (ICACCI), 1656–1660. https://doi.org/10.1109/ICACCI.2015.7275851

Lincke, R., Lundberg, J., & Löwe, W. (2008). Comparing software metrics tools. Proceedings of the 2008
International Symposium on Software Testing and Analysis - ISSTA ’08, 131.
https://doi.org/10.1145/1390630.1390648

Manuel, M. (2011). Avaliação de usabilidade em lojas virtuais de nichos de mercado, 0, 193. Retrieved from
https://repositorio-aberto.up.pt/bitstream/10216/74600/2/31920.pdf

Mendes, L. (2014). Avaliação De Usabilidade Em Sistemas Web - Desktop, 209. Retrieved from
https://repositorio-aberto.up.pt/bitstream/10216/74600/2/31920.pdf

RESTful Web Services Development with a Model-Driven Engineering Approach

 105

Mohagheghi, P., & Dehlen, V. (2008). Where Is the Proof - A Review of Experiences from Applying MDE
in Industry.pdf. ECMDA-FA ’08 Proceedings of the 4th European Conference on Model Driven Architecture:
Foundations and Applications, 432–443.

Mussbacher, G., Amyot, D., Breu, R., Bruel, J., Collet, P., Combemale, B., … Cheng, B. (2014). The
relevance of model-driven engineering thirty years from now, 8767. https://doi.org/10.1007/978-3-
319-11653-2

Nguyen, V.-C., Qafmolla, X., & Richta, K. (2014). Domain Specific Language Approach on Model-driven
Development of Web Services. Acta Polytechnica Hungarica, 11(8), 121–138. Retrieved from
http://www.uni-obuda.hu/journal/Nguyen_Qafmolla_Richta_54.pdf

Oracle. (2018a). Jersey - RESTful Web Services in Java. Retrieved July 1, 2018, from
https://jersey.github.io/

Oracle. (2018b). JSR-000370 JavaTM API for RESTful Web Services (JAX-RS) 2.1. Retrieved July 1, 2018,
from https://jcp.org/aboutJava/communityprocess/final/jsr370/index.html

Pavan, K. P., Sanjay, A., & Zornitza, P. (2012). Comparing Performance of Web Service Interaction Styles :
SOAP vs. REST. Proceedings of the Conference on Information Systems Applied Research, 1–24.

Rosenberg, L. H., Stapko, R., & Gallo, A. (2000). Risk-Based Object Oriented Testing. Measurement, 1–6.
https://doi.org/10.1.1.10.7509

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences,
1(1), 83. https://doi.org/10.1504/IJSSCI.2008.017590

Scheidgen, M., Efftinge, S., & Marticke, F. (2016). Metamodeling vs metaprogramming: A case study on
developing client libraries for REST APIs. Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9764, 205–216.
https://doi.org/10.1007/978-3-319-42061-5_13

Schreibmann, V., & Braun, P. (2014). Design and Implementation of a Model-Driven Approach for Restful
APIs. In 5th {IEEE} Germany Student Conference, {IEEE} {GSC} 2014, June 26-27, 2014, Passau,
Germany. Passau. Retrieved from http://www.ieee-student-
conference.de/fileadmin/papers/2014/ieeegsc2014_submission_8.pdf

Schreier, S. (2011). Modeling RESTful applications. Proceedings of the Second International Workshop on RESTful
Design - WS-REST ’11, 15. https://doi.org/10.1145/1967428.1967434

Selic, B. (2003). The pragmatics of model-driven development. IEEE Software, 20(5), 19–25.
https://doi.org/10.1109/MS.2003.1231146

Sharma, H., & Chug, A. (2015). Dynamic metrics are superior than static metrics in maintainability
prediction: An empirical case study. 2015 4th International Conference on Reliability, Infocom Technologies and
Optimization: Trends and Future Directions, ICRITO 2015, 2–7.
https://doi.org/10.1109/ICRITO.2015.7359354

SOA Work Group. (2016). Service-Oriented Architecture. Retrieved January 18, 2018, from
http://www.opengroup.org/soa/source-book/soa/index.htm

Sridhara, G., Hill, E., Muppaneni, D., Pollock, L., & Vijay-Shanker, K. (2010). Towards automatically
generating summary comments for Java methods. Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering - ASE ’10, 43. https://doi.org/10.1145/1858996.1859006

Sridhara, G., Pollock, L., & Vijay-Shanker, K. (2011). Generating parameter comments and integrating with
method summaries. IEEE International Conference on Program Comprehension, 71–80.
https://doi.org/10.1109/ICPC.2011.28

Stahl, T., Völter, M., Bettin, J., Haase, A., & Helsen, S. (2006). Model-Driven Software Development: Technology,
Engineering, Management. Wiley.

RESTful Web Services Development with a Model-Driven Engineering Approach

106

The Linux Foundation. (2017a). Open API Initiative. Retrieved October 21, 2017, from
https://www.openapis.org/

The Linux Foundation. (2017b). The OpenAPI Specification. Retrieved October 22, 2017, from
https://github.com/OAI/OpenAPI-Specification

Tihomirovs, J., & Grabis, J. (2016). Comparison of SOAP and REST Based Web Services Using Software
Evaluation Metrics. Information Technology and Management Science, 19(1), 92–97.
https://doi.org/10.1515/itms-2016-0017

Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., & Reggio, G. (2013). Relevance, benefits, and problems
of software modelling and model driven techniques - A survey in the Italian industry. Journal of Systems
and Software, 86(8), 2110–2126. https://doi.org/10.1016/j.jss.2013.03.084

Vasudevan, K. (2017). The Importance of Standardized API Design. Retrieved January 29, 2018, from
https://swaggerhub.com/blog/api-design/the-importance-of-standardized-api-design/

W3C. (2004). Web Services Architecture. Retrieved January 9, 2018, from https://www.w3.org/TR/ws-
arch/

Weisstein, E. W. (n.d.). Student’s t-Distribution. Retrieved from
http://mathworld.wolfram.com/Studentst-Distribution.html

Whittle, J., Hutchinson, J., & Rouncefield, M. (2014). The state of practice in model-driven engineering.
IEEE Software, 31(3), 79–85. https://doi.org/10.1109/MS.2013.65

Zion Market Research. (2017). Global API Management Market Worth USD 3,436.16 Million by 2022.
Retrieved February 17, 2018, from https://www.zionmarketresearch.com/news/api-management-
market

Zolotas, C., Diamantopoulos, T., Chatzidimitriou, K. C., & Symeonidis, A. L. (2017). From requirements
to source code: A Model-Driven Engineering approach for RESTful web services. Automated Software
Engineering, 24(4), 791–838. https://doi.org/10.1007/s10515-016-0206-x

RESTful Web Services Development with a Model-Driven Engineering Approach

 107

Appendixes

RESTful Web Services Development with a Model-Driven Engineering Approach

108

RESTful Web Services Development with a Model-Driven Engineering Approach

 109

Appendix A. AHP analysis

A Increases developers productivity 1 Resources based DSL

B Bridges the gap between business and IT 2 OpenAPI spec based DSL

C Captures de domain knowledge 3 Traditional development n

D Provides up-to-date documentation 3

E Less error-prone

n

A B C D E 5

A 1 8 4 7 1

B 1/8 1 1/5 1/5 1/9

C 1/4 5 1 3 1/5

D 1/7 5 1/3 1 1/8

E 1 9 5 8 1

Sum 2 1/2 28 10 1/2 19 1/5 2 3/7

A B C D E Sum Mean

A 0.3972 0.2857 0.3797 0.3646 0.4105 1.83770 37%

B 0.0496 0.0357 0.0190 0.0104 0.0456 0.16037 3%

C 0.0993 0.1786 0.0949 0.1563 0.0821 0.61115 12%

D 0.0567 0.1786 0.0316 0.0521 0.0513 0.37035 7%

E 0.3972 0.3214 0.4747 0.4167 0.4105 2.02043 40%

Sum 1.0000 1.0000 1.0000 1.0000 1.0000 - 100%

Consistency

A B C D E measure

A 1.00000 8.00000 4.00000 7.00000 1.00000 5.53853 Mean 5.36930

B 0.12500 1.00000 0.20000 0.20000 0.11111 5.05618

C 0.25000 5.00000 1.00000 3.00000 0.20000 5.54298

D 0.14286 5.00000 0.33333 1.00000 0.12500 5.10603 IC 0.09232

E 1.00000 9.00000 5.00000 8.00000 1.00000 5.60277 CR=IC/RI 0.08243 CR must be ≤ 0.10

Consistency analysis

Weights

Pairwise comparison

Normalized matrix

RESTful Web Services Development with a Model-Driven Engineering Approach

110

A 1 2 3 A 1 2 3 Weigths n

1 1.0000 1.0000 9.0000 1 0.4737 0.4706 0.5000 0.4814 3

2 1.0000 1.0000 8.0000 2 0.4737 0.4706 0.4444 0.4629

3 0.1111 0.1250 1.0000 3 0.0526 0.0588 0.0556 0.0557

Sum 2.1111 2.1250 18.0000 Total 1.0000 1.0000 1.0000 1.0000

B 1 2 3 B 1 2 3 Weigths

1 1.0000 0.5000 8.0000 1 0.3200 0.3077 0.4706 0.3661

2 2.0000 1.0000 8.0000 2 0.6400 0.6154 0.4706 0.5753

3 0.1250 0.1250 1.0000 3 0.0400 0.0769 0.0588 0.0586

Sum 3.1250 1.6250 17.0000 Total 1.0000 1.0000 1.0000 1.0000

C 1 2 3 C 1 2 3 Weigths

1 1.0000 4.0000 8.0000 1 0.7273 0.7805 0.4706 0.6594

2 0.2500 1.0000 8.0000 2 0.1818 0.1951 0.4706 0.2825

3 0.1250 0.1250 1.0000 3 0.0909 0.0244 0.0588 0.0580

Sum 1.3750 5.1250 17.0000 Total 1.0000 1.0000 1.0000 1.0000

D 1 2 3 D 1 2 3 Weigths

1 1.0000 1.0000 7.0000 1 0.4667 0.4667 0.4667 0.4667

2 1.0000 1.0000 7.0000 2 0.4667 0.4667 0.4667 0.4667

3 0.1429 0.1429 1.0000 3 0.0667 0.0667 0.0667 0.0667

Sum 2.1429 2.1429 15.0000 Total 1.0000 1.0000 1.0000 1.0000

E 1 2 3 E 1 2 3 Weigths

1 1.0000 1.0000 9.0000 1 0.4737 0.4737 0.4737 0.4737

2 1.0000 1.0000 9.0000 2 0.4737 0.4737 0.4737 0.4737

3 0.1111 0.1111 1.0000 3 0.0526 0.0526 0.0526 0.0526

Sum 2.1111 2.1111 19.0000 Total 1.0000 1.0000 1.0000 1.0000

A B C D E Best

1 0.4814 0.3661 0.6594 0.4667 0.4737 0.4953

2 0.4629 0.5753 0.2825 0.4667 0.4737 0.4491

3 0.0557 0.0586 0.0580 0.0667 0.0526 0.0556

Alternative normalized matricesAlternative matrices

RESTful Web Services Development with a Model-Driven Engineering Approach

 111

Appendix B. Resource-oriented grammar

grammar com.tmdei.xtext.dsl.RsrcDsl with org.eclipse.xtext.common.Terminals

generate rsrcDsl "http://www.tmdei.com/xtext/dsl/RsrcDsl"

Model:
 meta=Meta
 (resources+=Resource+)
 (enums+=Enum*);

Meta:
 'project:' project=STRING
 'version:' version=STRING
 'basePath:' basePath=Url
 'server:' server=ServerInfo
 ('mediaType:' mediaType+=MediaType+)?
 ('basePackage:' package=QualifiedNameWithWildcard)?;

ServerInfo:
 '{'
 'description:' description=STRING
 'url:' url=Url
 '}';

Resource:
 'resource' (abstract?='abstract')? name=ID ('table' table=ID)? (cache?='cache')? (extends?=Parent)?
 '{'
 (attributes+=Attribute)*
 (contains+=Composite)*
 (relations+=Relation)*
 (references+=Reference)*
 (customActions+=Action)*
 (actuatedBy+=Trigger)*
 (httpMethods+=HTTPMethod)*
 '}';

Parent:
 'extends' parent=[Resource];

Composite:
 'contains' name=ValidID type=[Resource] (multiple?='*')?;

Reference:
 'reference' name=[Relation|QualifiedName] ('column' column=ID)?;

Relation:
 'relation' name=ValidID type=[Resource|QualifiedName] (multiple?='*')? ('method' '[' actions+=HTTPMethod+ ']')?;

Attribute:
 'attribute' name=ValidID type=DataType (multiple?='*')? ('column' column=ID)? (mandatory?='mandatory')?;

Action:
 'action' name=ID 'on' resource=[Resource] 'over' attribute=[Attribute|QualifiedName]
 ('method' '[' actions+=HTTPMethod+ ']');

Trigger:
 'actuated' 'by' name=[Action|QualifiedName];

Url:
 url=STRING;

DataType:
 Type;

MediaType:
 JSON | XML;

Type:
 RsrcString | Integer | Long | BigDecimal | Calendar | Boolean | EnumType;

JSON:
 {JSON} 'Json';

XML:
 {XML} 'XML';

RsrcString:
 {RsrcString} 'String';

Integer:
 {Integer} 'Integer';

RESTful Web Services Development with a Model-Driven Engineering Approach

112

Long:
 {Long} 'Long';

BigDecimal:
 {BigDecimal} 'BigDecimal';

Calendar:
 {Calendar} 'Calendar';

Boolean:
 {Boolean} 'Boolean';

EnumType:
 'Enum' '(' enumSubType=[Enum] ')';

Enum:
 'enum' name=ValidID '{'
 (attributes+=EnumAttribute)+
 '}';

EnumAttribute:
 'name' name=ValidID
 ('value' value=INT)?;

enum HTTPMethod:
 get='GET' | post='POST' | put='PUT' | delete='DELETE' | patch='PATCH';

QualifiedName:
 ID ('.' ID)*;

QualifiedNameWithWildcard:
 QualifiedName '.*'?;

ValidID:
 ID | Keyword;

Keyword:
 'name';

RESTful Web Services Development with a Model-Driven Engineering Approach

 113

Appendix C. Resource-oriented model example

project: "Nutrition Clinic"
version: "1.0"
basePath: "nutrition.clinic"
server: {
 description: "Nutrition clinic development server"
 url: "http://nutrition.clinic.dev.com"
}
mediaType: Json XML
basePackage: com.nutrition.clinic

resource abstract User table user {
 attribute firstName String column First_Name
 attribute lastName String column Last_Name
 attribute email String column Email
 attribute birthDate Calendar column Birth_Date

 contains address Address
}

resource Client table client extends User {
 attribute phoneNumber String column phoneNumber

 relation favoriteFoods Food* method [GET POST DELETE]
 relation dislikedFoods Food* method [GET POST DELETE]

 reference Professional.patients

 action rate on Professional over Professional.rating method [POST]

 GET POST PUT
}

resource Professional table professional extends User {
 attribute category Enum(Category) column Category
 attribute rating Integer column Rating

 relation patients Client* method [GET]

 actuated by Client.rate

 GET
}

resource Food table food {
 attribute name String column Name
 attribute calories Double column Calories
 attribute fats Double column Fats
 attribute proteins Double column Proteins
 attribute hydrates Double column Hydrates

 reference Client.favoriteFoods
 reference Client.dislikedFoods
}

resource Address table address {
 attribute firstLine String column first_line
 attribute lastLine String column last_line
 attribute zipCode String column zip_code

 NONE
}

enum Category {
 name Medic
 value 1

 name Nutritionist
 value 2
}

enum Goal {

RESTful Web Services Development with a Model-Driven Engineering Approach

114

 name WeighGain
 value 1

 name WeightLoss
 value 2

 name WeightMaintenance
 value 3
}

RESTful Web Services Development with a Model-Driven Engineering Approach

 115

Appendix D. OAS-oriented grammar

grammar com.tmdei.xtext.dsl.OasDsl with org.eclipse.xtext.common.Terminals

generate oasDsl "http://www.tmdei.com/xtext/dsl/OasDsl"

OpenAPIObject:
 '{'
 documentOpenAPIVersion=OpenAPIVersionField
 infoField=InfoField
 (serversField=ServersField)?
 pathsField=PathsField
 (componentsField=ComponentsField)?
 (securityField=SecurityField)?
 (tagsField=TagsField)?
 '}';

OpenAPIVersionField:
 '"openapi":' openApi=STRING ',';

InfoField:
 '"info":' info=InfoObject;

ServersField:
 '"servers":' ('[' servers+=ServerObject+ (']' | '],') | servers+=ServerObject) ','?;

PathsField:
 '"paths":' '{' paths+=PathsObject+ ('}' | '},');

ComponentsField:
 '"components":' components=ComponentsObject ','?;

SecurityField:
 '"security":' '[' security+=SecurityRequirementObject (']' | '],');

TagsField:
 '"tags":' '[' tags+=TagObject ']';

InfoObject:
 '{'
 title=TitleField
 (description=DescriptionField)?
 (termsOfService=TermsOfServiceField)?
 (contact=ContactField)?
 (license=LicenseField)?
 (version=VersionField)?
 ('}' | '},');

TermsOfServiceField:
 '"termsOfService":' termsOfService=STRING ','?;

ContactField:
 '"contact":' contact=ContactObject;

LicenseField:
 '"license":' license=LicenseObject;

VersionField:
 '"version":' version=STRING;

ContactObject:
 {ContactObject}
 '{'
 (name=NameField)?
 (url=UrlField)?
 (email=EmailField)?
 ('}' | '},');

LicenseObject:
 {LicenseObject}
 '{'
 (name=NameField)?
 (url=UrlField)?
 ('}' | '},');

TitleField:
 '"title":' title=STRING ','?;

DescriptionField:
 '"description":' description=STRING ','?;

NameField:
 '"name":' name=STRING ','?;

RESTful Web Services Development with a Model-Driven Engineering Approach

116

UrlField:
 '"url":' url=AbsoluteUrl ','?;

EmailField:
 '"email":' email=STRING ','?;

SummaryField:
 '"summary":' summary=STRING ','?;

ServerObject:
 '{'
 url=UrlField
 (description=DescriptionField)?
 (variables=ServerVariablesField)?
 ('}' | '},');

ServerVariablesField:
 '"variables":' '{' variables+=ServerVariableMap+ ('}' | '},');

ServerVariableMap:
 STRING ':' serverVariable=ServerVariableObject;

ServerVariableObject:
 serverVariableEnum=EnumString
 (default=DefaultString)?
 (description=DescriptionField)?;

DefaultString:
 '"default":' default+=STRING+ ','?;

EnumString:
 '"enum":' '[' ^enum+=STRING+ (']' | '],');

PathsObject:
 url=Url ':' '{'
 paths+=PathItemObject+
 ('}' | '},');

ComponentsObject hidden(WS):
 {ComponentsObject}
 '{'
 (schemas=ComponentsSchemasField)?
 (responses=ComponentsResponsesField)?
 (parameters=ComponentsParametersField)?
 (examples=ComponentsExamplesField)?
 (requestBodies=ComponentsRequestBodiesField)?
 (headers=ComponentsHeadersField)?
 (securitySchemes=ComponentsSecuritySchemesField)?
 (links=ComponentsLinksField)?
 (callbacks=ComponentsCallbacksField)?
 ('}' | '},');

ComponentsSchemasField:
 '"schemas":' '{' schemas+=ComponentsSchemaMap+ ('}' | '},');

ComponentsResponsesField:
 '"responses":' '{' responses+=ComponentsResponseMap+ ('}' | '},');

ComponentsParametersField:
 '"parameters":' '{' parameters+=ComponentsParameterMap+ ('}' | '},');

ComponentsExamplesField:
 '"examples":' '{' examples+=ComponentsExampleMap+ ('}' | '},');

ComponentsRequestBodiesField:
 '"requestBodies":' '{' requestBodies+=ComponentsRequestBodiesMap+ ('}' | '},');

ComponentsHeadersField:
 '"headers":' '{' headers+=ComponentsHeadersMap+ ('}' | '},');

ComponentsSecuritySchemesField:
 '"securitySchemes":' '{' securitySchemes+=ComponentsSecuritySchemesMap+ ('}' | '},');

ComponentsLinksField:
 '"links":' '{' links+=ComponentsLinksMap+ ('}' | '},');

ComponentsCallbacksField:
 '"callbacks":' '{' callbacks+=ComponentsCallbacksMap+ ('}' | '},');

ComponentsSchemaMap:
 name=STRING ':' (schemaObject=SchemaObject | referenceObject=ReferenceObject);

ComponentsResponseMap:
 name=STRING ':' (responseObject=STRING | referenceObject=ReferenceObject);

RESTful Web Services Development with a Model-Driven Engineering Approach

 117

ComponentsParameterMap:
 name=STRING ':' (parameterObject=ParameterObject | referenceObject=ReferenceObject);

ComponentsExampleMap:
 name=STRING ':' (exampleObject=STRING | referenceObject=ReferenceObject);

ComponentsRequestBodiesMap:
 name=STRING ':' (requestBodyObject=STRING | referenceObject=ReferenceObject);

ComponentsHeadersMap:
 name=STRING ':' (headerObject=STRING | referenceObject=ReferenceObject);

ComponentsSecuritySchemesMap:
 name=STRING ':' (securitySchemesObject=STRING | referenceObject=ReferenceObject);

ComponentsLinksMap:
 name=STRING ':' (linkObject=STRING | referenceObject=ReferenceObject);

ComponentsCallbacksMap:
 name=STRING ':' (callbackObject=STRING | referenceObject=ReferenceObject);

SecurityRequirementObject:
 STRING;

TagObject:
 STRING;

PathItemObject:
 (=> httpMethod+=HttpMethod ':' '{' operation+=OperationObject ('}' | '},'))+
 ('"$ref":' '{' ref=PathItemObject ('}' | '},'))?
 (summary=SummaryField)?
 (description=DescriptionField)?
 (serversField=ServersField)?
 (parameters=ParametersField)?;

OperationObject:
 (tags=TagsStringField)?
 (summary=SummaryField)?
 (description=DescriptionField)?
 (externalDocumentation=ExternalDocumentationField)?
 (operationId=OperationIdField)?
 (parameters=ParametersField)?
 (requestBody=RequestBodyField)?
 (responses=ResponsesField)
 (deprecated=DeprecatedField)?
 (serversField=ServersField)?
 ('"callbacks":' callbacks=STRING ','?)?
 ('"security":' security=STRING ','?)?;

TagsStringField:
 '"tags":' '[' tags+=STRING (',' tags+=STRING)* (']' | '],');

ExternalDocumentationField:
 '"externalDocs":' externalDocumentation=ExternalDocumentationObject ','?;

ExternalDocumentationObject:
 '{'
 (description=DescriptionField)?
 url=UrlField
 ('}' | '},');

OperationIdField:
 '"operationId":' operationId=STRING ','?;

ParametersField:
 '"parameters":' '[' (parameters+=ParameterObject+ | referenceObject+=ReferenceObject+) (']' | '],');

RequestBodyField:
 '"requestBody":' requestBody=RequestBodyObject;

ResponsesField:
 '"responses":'
 '{'
 defaultResponse=ResponseMapDefault
 responses+=ResponseMap+
 ('}' | '},');

ParameterObject:
 '{'
 name=NameField
 in=InField
 (description=DescriptionField)?
 (required=RequiredBooleanField)
 (deprecated=DeprecatedField)?

RESTful Web Services Development with a Model-Driven Engineering Approach

118

 (allowEmptyValue=AllowEmptyValueField)?
 (style=StyleField)?
 (explode=ExplodeField)?
 (allowReserved=AllowReservedField)?
 (schema=ParameterSchemaField)?
 (('"example":' STRING) | ('"examples":' STRING))?
 (content=ContentField)?
 ('}' | '},');

InField:
 '"in":' in=STRING ','?;

RequiredBooleanField:
 '"required":' required=Boolean ','?;

DeprecatedField:
 '"deprecated":' deprecated=Boolean ','?;

AllowEmptyValueField:
 '"allowEmptyValue":' allowEmptyValue=Boolean ','?;

StyleField:
 '"style":' style=STRING ','?;

ExplodeField:
 '"explode":' explode=Boolean ','?;

AllowReservedField:
 '"allowReserved":' allowReserved=Boolean ','?;

ParameterSchemaField:
 ('"schema":' schema=SchemaParameterObject | reference=ReferenceObject) ','?;

ContentField:
 '"content":' '{' content+=ContentMap+ ('}' | '},');

ContentMap:
 name=STRING ':' content=MediaTypeObject ','?;

RequestBodyObject:
 '{'
 (description=DescriptionField)?
 (content=ContentField)
 (required=RequiredBooleanField)?
 ('}' | '},');

ResponseObject:
 {ResponseObject}
 '{'
 (description=DescriptionField)?
 (headers=ResponseHeaderField)?
 (content=ResponseContentField)?
 (links=ResponseLinkField)?
 ('}' | '},');

ResponseHeaderField:
 '"headers":' '{' responseHeaderObject=ResponseHeaderObject ('}' | '},');

ResponseContentField:
 '"content":' '{' responseMediaTypeObject=ResponseMediaTypeObject ('}' | '},');

ResponseLinkField:
 '"links":' '{' responseLinkObject=ResponseLinkObject ('}' | '},');

ResponseMapDefault:
 '"default":' response=ResponseObject;

ResponseMap:
 name=STRING ':' response=ResponseObject;

ResponseHeaderObject:
 name=STRING ':' (headerObject=HeaderObject | referenceObject=ReferenceObject);

ResponseMediaTypeObject:
 name=STRING ':' (mediaTypeObject=MediaTypeObject | referenceObject=ReferenceObject);

ResponseLinkObject:
 name=STRING ':' (linkObject=LinkObject | referenceObject=ReferenceObject);

HeaderObject:
 {HeaderObject}
 '{'
 (description=DescriptionField)?
 (required=RequiredBooleanField)?
 (deprecated=DeprecatedField)?

RESTful Web Services Development with a Model-Driven Engineering Approach

 119

 (allowEmptyValue=AllowEmptyValueField)?
 (style=StyleField)?
 (explode=ExplodeField)?
 (allowReserved=AllowReservedField)?
 (schema=ParameterSchemaField)?
 ('"examples":' examples=STRING ','?)? ('}' | '},');

MediaTypeObject:
 {MediaTypeObject}
 '{'
 ('"schema":' (schemaObject=SchemaObject | referenceObject=ReferenceObject))?
 (('"example":' STRING) | ('"examples":' STRING))?
 ('"encoding":' encodingObject=EncodingObject)?
 ('}' | '},');

LinkObject:
 {LinkObject}
 '{'
 ('"operationRef":' STRING)?
 ('"operationId":' STRING)?
 ('"parameters":' STRING)?
 ('"requestBody":' STRING)?
 ('"description":' STRING)?
 ('"server":' STRING)?
 ('}' | '},');

EncodingObject:
 '{'
 ('"contentType":' STRING)?
 ('"headers":' STRING)?
 ('"style":' STRING)?
 ('"explode":' Boolean)?
 ('"allowReserved":' Boolean)?
 ('}' | '},');

SchemaParameterObject:
 (referenceObject=ReferenceObject | schemaObject=SchemaObject);

SchemaObject:
 {SchemaObject}
 '{'
 (title=TitleField)?
 (description=DescriptionField)?
 ('"multipleOf":' multipleOf=INT ','?)?
 ('"maximum":' maximum=INT ','?)?
 ('"exclusiveMaximum":' exclusiveMaximum=INT ','?)?
 ('"minimum":' minimum=INT ','?)?
 ('"exclusiveMinimum":' exclusiveMinimum=INT ','?)?
 ('"maxLength":' maxLength=INT ','?)?
 ('"minLength":' minLength=INT ','?)?
 ('"pattern":' pattern=STRING ','?)?
 ('"maxItems":' maxItems=INT ','?)?
 ('"minItems":' minItems=INT ','?)?
 ('"uniqueItems":' uniqueItems=Boolean ','?)?
 ('"maxProperties":' maxProperties=INT ','?)?
 ('"minProperties":' minProperties=INT ','?)?
 ('"required":' '[' required+=STRING (',' required+=STRING)* (']' | '],'))?
 ('"enum":' '[' ^enum+=STRING (',' ^enum+=STRING)* (']' | '],'))?
 ('"type":' type=STRING ','?)?
 ('"allOf":' allOff=SchemaObject ','?)?
 ('"oneOf":' oneOf=SchemaObject ','?)?
 ('"anyOf":' anyOf=SchemaObject ','?)?
 ('"not":' not=SchemaObject ','?)?
 ('"items":' ('[' items+=SchemaObjectOrReference+ ']' | items+=SchemaObjectOrReference) ','?)?
 ('"properties":' ('{' properties+=ComponentsSchemaMap+ ('}' | '},')))?
 ('"additionalProperties":' additionalProperties=STRING ','?)?
 ('"format":' format=STRING ','?)?
 ('"default":' default=STRING ','?)?
 ('"nullable":' nullable=Boolean ','?)?
 ('"discriminator":' discriminator=DiscriminatorObject ','?)?
 ('"readOnly":' readOnly=Boolean ','?)?
 ('"writeOnly":' writeOnly=Boolean ','?)?
 ('"xml":' xml=STRING ','?)?
 ('"externalDocs":' externalDocs=STRING ','?)?
 ('"example":' example=STRING ','?)?
 ('"deprecated":' deprecated=Boolean ','?)?
 ('}' | '},');

SchemaObjectOrReference:
 schemaObject=SchemaObject | referenceObject=ReferenceObject;

ReferenceObject:
 ('{' '"$ref":' ref=STRING ('}' | '},'));

DiscriminatorObject:

RESTful Web Services Development with a Model-Driven Engineering Approach

120

 '{' '"propertyName":' STRING ','? '"mapping":' '{' mapping+=MapStringString+ ','? '}' ('}' | '},');

MapStringString:
 key=STRING ':' value=STRING;

Boolean:
 'true' | 'false';

enum HttpMethodEnum:
 get | put | post | delete | options | head | patch | trace;

enum HttpResponse:
 ok | created | accepted;

enum StyleValues:
 matrix | label | form | simple | spaceDelimited | pipeDelimited | deepObject;

enum OASdataTypes:
 array | integer | long | float | double | string | byte | binary | boolean | date | dateTime | password | number |
object;

enum OASdataFormats:
 int32 | int64 | float | double | byte | bynary | date | date_time | password | uuid;

terminal HTTP_STATUS_CODE:
 '0'..'9' '0'..'9' '0'..'9';

HttpMethod:
 {HttpMethod} httpMethod=STRING;

Url:
 url=STRING;

RelativeUrl:
 relativeUrl=STRING;

AbsoluteUrl:
 absoluteUtl=STRING;

RESTful Web Services Development with a Model-Driven Engineering Approach

 121

Appendix E. OAS-oriented model example

{
 "openapi": "3.0.1",
 "info": {
 "title": "Nutrition Clinic",
 "license": {
 "name": "MIT"
 },
 "version": "1.0.0"
 },
 "servers": [{
 "url": "http://nutrition.clinic.dev.com",
 "description": "Nutrition clinic development server"
 }
],
 "paths": {
 "/clients": {
 "get": {
 "tags": [
 "clients"
],
 "summary": "List all clients",
 "operationId": "listClients",
 "responses": {
 "default": {
 "description": "Unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {
 "description": "An paged array of clients",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Clients"
 }
 }
 }
 }
 }
 },
 "post": {
 "tags": [
 "clients"
],
 "summary": "Create a client",
 "operationId": "createClients",
 "requestBody": {
 "description": "Client to add to the system",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Client"
 }
 }
 }
 },
 "responses": {
 "default": {
 "description": "unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },

RESTful Web Services Development with a Model-Driven Engineering Approach

122

 "201": {
 "description": "The created client",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Client"
 }
 }
 }
 }
 }
 }
 },
 "/clients/{clientId}": {
 "get": {
 "tags": [
 "clients"
],
 "summary": "Info for a specific client",
 "operationId": "showClientById",
 "parameters": [{
 "name": "clientId",
 "in": "path",
 "description": "The id of the client to retrieve",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "default": {
 "description": "Unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {
 "description": "Expected response to a valid request",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Client"
 }
 }
 }
 }
 }
 },
 "put": {
 "tags": [
 "clients"
],
 "summary": "Update a client",
 "operationId": "updateClients",
 "parameters": [{
 "name": "clientId",
 "in": "path",
 "description": "The id of the client to retrieve",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "requestBody": {
 "description": "Client to update",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Client"

RESTful Web Services Development with a Model-Driven Engineering Approach

 123

 }
 }
 }
 },
 "responses": {
 "default": {
 "description": "unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "201": {
 "description": "The updated client",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Client"
 }
 }
 }
 }
 }
 },
 "delete": {
 "tags": [
 "clients"
],
 "summary": "Deletes a client",
 "operationId": "deleteClient",
 "parameters": [{
 "name": "clientId",
 "in": "path",
 "description": "The id of the client to retrieve",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "default": {
 "description": "unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "201": {
 "description": "The deleted client",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Client"
 }
 }
 }
 }
 }
 }
 },
 "/clients/{clientId}/favoriteFoods": {
 "get": {
 "tags": [
 "clients",
 "foods"
],
 "summary": "Info for a specific client favorite foods",
 "operationId": "showFavoriteFoodsByUserId",

RESTful Web Services Development with a Model-Driven Engineering Approach

124

 "parameters": [{
 "name": "clientId",
 "in": "path",
 "description": "The id of the client to retrieve the favorites foods from",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "default": {
 "description": "unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {
 "description": "Expected response to a valid request",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Foods"
 }
 }
 }
 }
 }
 },
 "post": {
 "tags": [
 "clients",
 "foods"
],
 "summary": "Add food to a specific client favorite foods",
 "operationId": "showDislikedFoodsByUserId",
 "parameters": [{
 "name": "clientId",
 "in": "path",
 "description": "The id of the client to add the favorite foods to",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "requestBody": {
 "description": "Food to add to the favorives list",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Food"
 }
 }
 }
 },
 "responses": {
 "default": {
 "description": "unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {
 "description": "Expected response to a valid request",
 "content": {
 "application/json": {

RESTful Web Services Development with a Model-Driven Engineering Approach

 125

 "schema": {
 "$ref": "#/components/schemas/Food"
 }
 }
 }
 }
 }
 }
 },
 "/clients/{clientId}/dislikedFoods": {
 "get": {
 "tags": [
 "clients",
 "foods"
],
 "summary": "Info for a specific client disliked foods",
 "operationId": "showDislikedFoodsByUserId",
 "parameters": [{
 "name": "clientId",
 "in": "path",
 "description": "The id of the client to retrieve",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "default": {
 "description": "unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {
 "description": "Expected response to a valid request",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Foods"
 }
 }
 }
 }
 }
 },
 "post": {
 "tags": [
 "clients",
 "foods"
],
 "summary": "Info for a specific client disliked foods",
 "operationId": "showDislikedFoodsByUserId",
 "parameters": [{
 "name": "clientId",
 "in": "path",
 "description": "The id of the client to retrieve",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "requestBody": {
 "description": "Food to add to the disliked list",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Food"
 }
 }

RESTful Web Services Development with a Model-Driven Engineering Approach

126

 }
 },
 "responses": {
 "default": {
 "description": "unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {
 "description": "Expected response to a valid request",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Food"
 }
 }
 }
 }
 }
 }
 },
 "/clients/{clientId}/professionals/{professionalId}/rate/{rating}": {
 "post": {
 "tags": [
 "clients",
 "professionals"
],
 "summary": "Rate a professional",
 "operationId": "professionalRatingCreate",
 "parameters": [{
 "name": "clientId",
 "in": "path",
 "description": "The id of the client making the rating",
 "required": true,
 "schema": {
 "type": "string"
 }
 }, {
 "name": "professionalId",
 "in": "path",
 "description": "The id of the professional to rate",
 "required": true,
 "schema": {
 "type": "string"
 }
 }, {
 "name": "rating",
 "in": "path",
 "description": "The rating",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "default": {
 "description": "unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {
 "description": "Expected response to a valid request",
 "content": {
 "application/json": {

RESTful Web Services Development with a Model-Driven Engineering Approach

 127

 "schema": {
 "$ref": "#/components/schemas/Professional"
 }
 }
 }
 }
 }
 },
 "put": {
 "tags": [
 "clients",
 "professionals"
],
 "summary": "Update a professional rating",
 "operationId": "professionalRatingUpdate",
 "parameters": [{
 "name": "clientId",
 "in": "path",
 "description": "The id of the client making the rating",
 "required": true,
 "schema": {
 "type": "string"
 }
 }, {
 "name": "professionalId",
 "in": "path",
 "description": "The id of the professional to update rating",
 "required": true,
 "schema": {
 "type": "string"
 }
 }, {
 "name": "rating",
 "in": "path",
 "description": "The rating",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "default": {
 "description": "unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {
 "description": "Expected response to a valid request",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Professional"
 }
 }
 }
 }
 }
 }
 },
 "/professionals": {
 "get": {
 "tags": [
 "professionals"
],
 "summary": "List all professionals",
 "operationId": "listProfessionals",
 "responses": {
 "default": {
 "description": "Unexpected error",

RESTful Web Services Development with a Model-Driven Engineering Approach

128

 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {
 "description": "An paged array of professionals",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Professionals"
 }
 }
 }
 }
 }
 },
 "post": {
 "tags": [
 "professionals"
],
 "summary": "Create a professional",
 "operationId": "createProfessionals",
 "requestBody": {
 "description": "Professional to create",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Professional"
 }
 }
 }
 },
 "responses": {
 "default": {
 "description": "unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "201": {
 "description": "The created professional",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Professional"
 }
 }
 }
 }
 }
 }
 },
 "/professionals/{professionalId}/clients/{clientId}": {
 "get": {
 "tags": [
 "professionals",
 "clients"
],
 "summary": "Professional clients",
 "operationId": "getProfessionalClient",
 "parameters": [{
 "name": "professionalId",
 "in": "path",
 "description": "The id of the professional",
 "required": true,
 "schema": {
 "type": "string"

RESTful Web Services Development with a Model-Driven Engineering Approach

 129

 }
 }, {
 "name": "clientId",
 "in": "path",
 "description": "The id of the client to retrieve",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "default": {
 "description": "Unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {
 "description": "Expected response to a valid request",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Client"
 }
 }
 }
 }
 }
 },
 "post": {
 "tags": [
 "professionals",
 "clients"
],
 "summary": "Professional clients",
 "operationId": "getProfessionalClient",
 "parameters": [{
 "name": "professionalId",
 "in": "path",
 "description": "The id of the professional",
 "required": true,
 "schema": {
 "type": "string"
 }
 }, {
 "name": "clientId",
 "in": "path",
 "description": "The id of the client to retrieve",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "default": {
 "description": "Unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {
 "description": "Expected response to a valid request",
 "content": {
 "application/json": {
 "schema": {

RESTful Web Services Development with a Model-Driven Engineering Approach

130

 "$ref": "#/components/schemas/Client"
 }
 }
 }
 }
 }
 }
 },
 "/foods": {
 "get": {
 "tags": [
 "foods"
],
 "summary": "List all foods",
 "operationId": "listFoods",
 "responses": {
 "default": {
 "description": "Unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {
 "description": "An paged array of Foods",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Foods"
 }
 }
 }
 }
 }
 },
 "post": {
 "tags": [
 "foods"
],
 "summary": "Create a food",
 "operationId": "createFoods",
 "requestBody": {
 "description": "Food to create",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Food"
 }
 }
 }
 },
 "responses": {
 "default": {
 "description": "unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "201": {
 "description": "The created food",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Food"
 }
 }
 }
 }

RESTful Web Services Development with a Model-Driven Engineering Approach

 131

 }
 }
 },
 "/foods/{foodId}": {
 "get": {
 "tags": [
 "foods"
],
 "summary": "Info for a specific food",
 "operationId": "showFoodById",
 "parameters": [{
 "name": "foodId",
 "in": "path",
 "description": "The id of the food to retrieve",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "responses": {
 "default": {
 "description": "Unexpected error",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "200": {
 "description": "Expected response to a valid request",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Food"
 }
 }
 }
 }
 }
 },
 "put": {
 "tags": [
 "foods"
],
 "summary": "Update a food",
 "operationId": "updateFoods",
 "parameters": [{
 "name": "foodId",
 "in": "path",
 "description": "The id of the food to update",
 "required": true,
 "schema": {
 "type": "string"
 }
 }
],
 "requestBody": {
 "description": "Food to update",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Food"
 }
 }
 }
 },
 "responses": {
 "default": {
 "description": "unexpected error",
 "content": {
 "application/json": {
 "schema": {

RESTful Web Services Development with a Model-Driven Engineering Approach

132

 "$ref": "#/components/schemas/Error"
 }
 }
 }
 },
 "201": {
 "description": "The updated food",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Food"
 }
 }
 }
 }
 }
 }
 }
 },
 "components": {
 "schemas": {
 "User": {
 "type": "object",
 "required": [
 "id",
 "email"
],
 "properties": {
 "id": {
 "type": "integer",
 "format": "int64"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 },
 "email": {
 "type": "string"
 },
 "birthDate": {
 "type": "date"
 },
 "address": {
 "type": "object",
 "items": {
 "$ref": "#/components/schemas/Address"
 }
 }
 }
 },
 "Client": {
 "allOf": [{
 "$ref": "#/components/schemas/User"
 }, {
 "type": "object",
 "properties": {
 "phoneNumber": {
 "type": "string"
 },
 "favoriteFoods": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/Food"
 }
 },
 "dislikedFoods": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/Food"
 }
 },
 "goal": {
 "type": "string",

RESTful Web Services Development with a Model-Driven Engineering Approach

 133

 "enum": [
 "gain weight",
 "lose weight",
 "maintain weight"
]
 }
 }
 }
]

 },
 "Professional": {
 "allOf": [{
 "$ref": "#/components/schemas/User"
 }, {
 "type": "object",
 "properties": {
 "rating": {
 "type": "double"
 },
 "patients": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/Clients"
 }
 },
 "category": {
 "type": "string",
 "enum": [
 "nutritionist",
 "medic"
]
 }
 }
 }
]
 },
 "Food": {
 "type": "object",
 "required": [
 "name"
],
 "properties": {
 "properties": {
 "name": {
 "type": "string"
 },
 "fats": {
 "type": "double"
 },
 "proteins": {
 "type": "double"
 },
 "hydrates": {
 "type": "double"
 },
 "calories": {
 "type": "double"
 }
 }
 }
 },
 "Address": {
 "required": [
 "zipCode"
],
 "properties": {
 "firstLine": {
 "type": "string"
 },
 "secondLine": {
 "type": "string"
 },
 "zipCode": {
 "type": "string"

RESTful Web Services Development with a Model-Driven Engineering Approach

134

 }
 }
 },
 "Clients": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/Client"
 }
 },
 "Professionals": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/Professional"
 }
 },
 "Foods": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/Food"
 }
 },
 "Error": {
 "type": "object",
 "required": [
 "code",
 "message"
],
 "properties": {
 "code": {
 "type": "integer",
 "format": "int32"
 },
 "message": {
 "type": "string"
 }
 }
 }
 }
 }
}

