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ABSTRACT 

Sponges are early-branched, filter-feeding metazoans that usually harbor complex microbial 

communities comprised of diverse “uncultivable” symbiotic bacteria. In this thesis, the 

functional and taxonomic features of the marine sponge microbiome are determined, using 

Spongia officinalis as model host organism. Emphasis is given to adaptive and functional traits 

of the profuse and biotechnologically-relevant alphaproteobacterial symbionts of sponges. A 

metagenomics-centred approach was employed to reveal microbial taxa and genomic 

signatures enriched in the Spongia officinalis endosymbiotic consortium, and thus likely to 

play pivotal roles in holobiont functioning. Further, a comparative genomics study is presented 

unveiling the common and specific traits of ten Alphaproteobacteria genera isolated from S. 

officinalis with alternative symbiont cultivation methodology. Finally, a sequence 

composition-dependent binning approach is employed to assemble, from metagenomic 

sequences, the genome of an uncultured alphaproteobacterial symbiont of S. officinalis 

belonging to the family Rhodospirillaceae. 

High abundance of polyketide and terpene synthase-, eukaryotic-like protein- (ELPs), 

type IV secretion system-, plasmid- and ABC transporter-encoding genes, among others, 

characterized the sponge microbial metagenomes. In contrast, motility and chemotaxis genes 

were abundant in seawater and sediment microbiomes, but nearly absent in the S. officinalis 

symbiotic consortium. Much higher frequencies of anti-viral CRISPR-Cas and restriction-

modification systems, along with much lower viral abundances, were observed in the sponge-

associated metagenomes than in the environment and interpreted as true hallmarks of this 

symbiotic consortium. 

In line with outcomes retrieved for the whole symbiotic community, 

alphaproteobacterial symbionts of marine sponges likely contribute the most to host fitness 

through nutritional exchange, cell detoxification processes and chemical defense, the latter 

being theoretically promoted by both polyketide and terpenoid biosynthesis. The several 

alphaproteobacterial cultures retrieved in this thesis, displaying high natural product 

biosynthesis capacities, can now be explored in studies aiming at revealing novel biological 

activities and chemical structures from these symbionts. 

 

Keywords 

Porifera, metagenomics, functional genomics, Alphaproteobacteria, host-microbe 

interactions, microbiome.  
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RESUMO 

As esponjas marinhas (filo Porifera) são consideradas um dos mais simples grupos entre os 

metazoários em função de sua falta de organização em tecidos e órgãos verdadeiros. Porém, 

estes animais relativamente simples em termos de plano corporal normalmente abrigam 

comunidades muito complexas de microorganismos. Em função de seu surgimento basal na 

história evolutiva do planeta, o conhecimento a respeito deste “holobionte”, isto é, o consórcio 

de organismos formado pela esponja marinha hospedeira e todos os seus simbiontes 

microbianos, possui grande relavância ao avanço da nossa compreensão sobre as interações 

hospedeiro-microorganismos. Nesta tese de doutoramento, tive como objetivo a determinação 

das características funcionais e taxonómicas do microbioma das esponjas marinhas no contexto 

de seu ambiente circundante (água e sedimentos marinhos, e suas respecticvas microbiotas), 

dando ênfase aos traços adaptativos e funcionais de alfaproteobactérias associadas ao 

organismo modelo Spongia officinalis (“bath sponge”). Para tal, uma abordagem independente 

de cultivo, centrada em técnicas de metagenómica, foi empregada para revelar grupos 

taxonómicos e genes microbianos abundantes no consórcio de endosimbiontes da esponja S. 

officinalis e que, desta forma, provavelmente possuem papel importante no funcionamento e 

homeostase do “holobionte” (Capítulo 2). Considerando (1) a abundância, diversidade e 

plasticidade metabólica de alfaproteobactérias marinhas, (2) a prevalência e ampla distribuição 

geográfica de alfaproteobactérias especificamente associadas a esponjas marinhas, até então 

não cultivadas em laboratório, e (3) o facto de que foi possível cultivar muitas estirpes 

filogeneticamente distintas de alfaproteobactérias associadas a S. officinalis através do uso de 

modificações simples a protocolos convencionais de cultivo bacteriano, o Capítulo 3 apresenta 

um estudo de genómica comparativa que revela os atributos funcionais comuns e específicos 

de dez géneros pertencentes à classe Alphaproteobacteria isolados de S. officinalis com o 

emprego de metodologia alternativa. Finalmente, o Capítulo 4 descreve a utilização de uma 

abordagem bioinformática de “genomic binning”, centrada na composição de nucleótidos, para 

possibilitar a assemblagem, a partir de sequências metagenómicas do microbioma de S. 

officinalis obtidas no Capítulo 2, de um genoma de uma alfaproteobactéria não cultivada em 

laboratório, pertencente à família Rhodospirillaceae. Desta forma, esta tese combina 

abordagens dependentes e independentes de cultivo visando a obtenção de um conhecimento 

mais amplo acerca das características genómicas verdadeiramente promovidas no consórcio 

simbiótico das esponjas marinhas, e revela os traços adaptativos, potencial codificador e as 
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prováveis funções da complexa comunidade de alfaproteobactérias que habita estes 

hospedeiros. 

A anotação de metagenomas microbianos (Capítulo 2) revelou que a comunidade 

simbiótica de S. officinalis distinguiu-se fortemente das comunidades microbianas em água e 

sedimentos marinhos através de uma maior abundância de linhagens bacterianas até então não 

cultivadas pertencentes aos filos Proteobacteria, Poribacteria, Actinobacteria, 

Gemmatimonadetes, Chloroflexi e Acidobacteria. No filo Proteobacteria, várias unidades 

taxonómicas operacionais (OTUs, estabelecidas a 97% de semelhança do gene 16S rRNA) 

pertencentes às famílias Rhodobacteraceae e Rhodospirillaceae foram prevalentes nos 

metagenomas microbianos associados à esponja. Uma alta frequência de genes codificadores 

de policetídeo-sintases, terpeno-sintases, “eukaryotic-like proteins” (ELPs, p.ex. repetições de 

sequências de anquirina, tetratricopéptidos e elementos WD40), sistemas tipo IV, plasmídeos, 

transportadores do tipo ABC e luciferases, entre outros, foi registada no metagenoma 

microbiano das esponjas. Interessantemente, as comunidades microbianas do sedimento 

abrigaram maior abundância residual destes (e muitos outros) elementos genéticos claramente 

“enriquecidos” (ou seja, de maior abundância) nas esponjas marinhas em comparação com as 

comunidades microbianas da água. Porém, abundâncias muito mais altas de genes envolvidos 

com quimiotaxia e motilidade microbiana foram obtidas para as comunidades de água e 

sedimento em comparação com o consórico simbiótico em S. officinalis, onde tais elementos 

genéticos estiveram praticamente ausentes. Fez-se notar também a frequência muito mais alta 

dos elementos anti-virais “CRISPR-Cas” e de restrição-modificação (R-M), acompanhada por 

uma redução na abundância de vírus, nos metagenomas microbianos da esponja marinha em 

comparação com o seu ambiente circundante, e tais elementos foram interpretados como 

“assinaturas genómicas” fulcrais deste consórcio simbiótico. Em sua totalidade, estes 

resultados sugerem que, embora os microbiomas inspeccionados sejam altamente contrastantes 

em termos de taxonomia e função, maiores densidades de partículas e células - factores comuns 

aos microbiomas de sedimentos e esponjas marinhas - podem possuir algum papel na evolução 

de traços funcionais convergentes entre ambos. Considerou-se ainda que o consórcio 

simbiótico das esponjas é formado essencialmente por microorganismos sésseis com papel 

primordial na troca de nutrientes com o hospedeiro (especialmente no que diz respeito aos 

metabolismos de azoto e enxofre), além de possuírem mecanismos de defesa anti-viral 

altamente sofisticados em conjunto com uma alta capacidade de troca génica com outros 

microorganismos e com o organismo hospedeiro. Este últimos factores são dos que mais 

contribuem ao carácter verdadeiramente único desta comunidade simbiótica.  
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Em paralelo à análise metagenómica, uma plataforma alternativa ao cultivo de 

simbiontes bacterianos, calcada no uso de um meio oligotrófico (MG50) e temperaturas de 

incubação mais baixas, foi aplicada ao microbioma associado a S. officinalis e bem-sucedida 

no isolamento de uma alta diversidade de géneros de Alphaproteobacteria como, por exemplo, 

Anderseniella, Erythrobacter, Labrenzia, Loktanella, Ruegeria, Sphingorhabdus, 

Tateyamaria, Pseudovibrio e dois prováveis novos géneros pertencentes à família 

Rhodobacteraceae (Capítulo 3).  A comparação global dos genomas de todas as bactérias 

mencionadas acima, e a detecção de genes comuns a todos os genomas, veio a demonstrar que 

a comunidade cultivável de alfaproteobactérias associadas a S. officinalis pode contribuir ao 

aumento do “fitness” do hospedeiro através de mecanismos de detoxificação (p. e.x. remoção 

de metais pesados e rejeitos metabólicos, degradação de compostos aromáticos e halogenados), 

fornecimento de vitaminas essenciais, troca de nutrientes (especialmente em relação ao 

processamento de enxofre e azoto orgánicos) e defesa química (em particular através da 

biossíntese de policetídeos e terpenóides, muito comum entre estes simbiontes). Em função do 

potencial codificador muitíssimo diversificado dos dez genomas analisados, foi empregada 

uma comparação genómica feita com base em anotações ao nível de COGs (“Clusters of 

Orthologous Groups of Proteins”) de forma a revelar padrões de convergência e divergência 

entre os vários genomas. Este procedimento revelou três grupos genómicos, posteriormente 

divididos em dois maiores grupos funcionais: genomas peretencentes ao clado Roseobacter 

(Grupo I, GI) versus genomas não pertencentes a este clado (Grupo II, G2). Concluiu-se que 

espécies representativas do Grupo II possuem maior probabilidade em estabelecer relações 

simbióticas mais próximas com as esponjas marinhas, em função de vários elementos 

genómicos, como genes codificadores de ELPs, proteínas de adesão e pili - usualmente 

considerados “factores de simbiose” -, que estiveram presentes em maior abundância nos 

genomas deste Grupo em comparação com o Grupo I. Particularmente, o género Anderseniella 

apresentou o repertório de traços genotípicos mais claramente associado a uma estratégia de 

vida simbiótica. Ainda assim, todos os organismos estudados não apresentaram sinais de 

redução genómica, usualmente considerados indicadores de um modo de vida simbiótico, e de 

facto possuem um metabolismo de utilização de fontes de carbono altamente versátil, o que 

sugere que a estratégia adaptativa destas bactérias é bifásica e portanto inclui ambos os estágios 

livre e de associação ao hospedeiro. 

O Capítulo 4 apresenta um estudo em que sequências metagenómicas do microbioma 

de S. officinalis (Capítulo 2) foram utilizadas para reconstruir, através de plataformas 

sofisticadas de bioinformática, o genoma de um simbionte dominante neste hospedeiro, porém 
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não cultivado, pertencente à família Rhodospirillaceae. Em conjunção com a descrição do 

genoma obtido, uma abordagem de genómica comparativa foi implementada para determinar 

os elementos genéticos envolvidos com a adaptação de linhagens pertencentes a esta família a 

um modo de vida preponderantemente simbiótico. Isto foi alcançado através da determinação 

de genes significativamente mais/menos abundantes em grupos de genomas de 

Rhodospirillaceae representativos de um modo de vida simbiótico versus um modo de vida 

livre de associação a um hospedeiro (“free-living”). Embora ambos os grupos “simbiótico” e 

“livre” tenham partilhado muitos genes em comum e demonstrado metabolismo de aquisição 

e utilização de nutrientes (carbono, azoto, fósforo e enxofre)  altamente versátil, os genomas 

“simbióticos” foram claramente caracterizados pela ausência de genes envolvidos em 

motilidade e quimiotaxia - de acordo com o observado no microbioma simbiótico “total” 

(Capítulo 2) -, por alta frequência de genes envolvidos com a utilização de enxofre orgánico, 

e por uma composição distinta de genes codificadores de trasnportadores ABC, metabolitos 

secundários, sistemas de detoxificação celular e regulação de estresse oxidativo. Em 

congruência com resultados obtidos para a comunidade simbiótica total (Capítulo 2) e muitos 

dos simbiontes cultivados (Capítulo 3), os simbiontes de esponja pertencentes à família 

Rhodospirillaceae provavelmente contribuem mais significativamente ao metabolismo 

hospedeiro através da troca de nutrientes, processos de detoxificação celular e defesa química, 

esta última teoricamente promovida pela biossíntese de policetídeos e terpenos. A obtenção, 

nesta tese, de diversas culturas de alfaproteobactérias potencialmente produtoras destes 

metaboitos, para além de outros produtos naturais vários, poderá ser explorada em estudos 

futuros com o objectivo de revelar novas actividades biológicas e estruturas químicas a partir 

destes simbiontes.  

Para contextualizar o trabalho de investigação aqui realizado, e resumir os principais 

resultados obtidos e suas implicações aos campos da microbiologia de esponjas, interacção 

hospedeiro-microorganismos e biologia marinha, dois capítulos adicionais foram elaborados 

(Introducção e Discussão Geral, Capítulo 1 e Capítulo 5, respectivamente) e incorporados à 

estrutura da tese. 

 

Termos chave 

Porifera, metagenómica, genómica funcional, Alphaproteobacteria, interacções hospedeiro-

microorganismo, microbioma.  
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Preface 

Life began in the oceans approximately 3.1 to 3.4 billion years ago, based on estimations from 

microfossils of sulfur-metabolizing bacteria (Wacey et al., 2011). Living organisms are 

classified into three domains: (i) Eukaryotes and the Prokaryotes which include the domains 

(ii) Archaea and (iii) Bacteria. However, compelling evidence now exists for the classification 

of life into only two major domains, the Bacteria and the Archaea, with eukaryotic cells 

emerging from the latter (Cox et al., 2008; Williams et al., 2013). Sponges (Porifera) are early-

derived metazoans whose origin dates back to the Precambrian era (Li et al., 1998). They are 

simple, benthic invertebrates inhabiting a variety of freshwater and marine habitats, from 

springs to lakes and from the intertidal zones to the deep seas (Manconi and Pronzato, 2008; 

Murillo et al., 2016). Also, their biomass regularly surpasses that of reef-building coral species 

(Diaz and Rützler, 2001). Nowadays, sponges remain prominent organisms in marine benthic 

communities and their success may result from a highly plastic physiology that entails both 

body shape acclimatization and symbiotic community resilience/adaptation to changing 

circumstances (Hentschel et al., 2012). In addition, sponges present a vast and dynamic 

repository of genetic variability fundamental to their persistence in the oceans throughout 

evolutionary history. Above all, sponge-associated microbial communities are incredibly 

diverse and complex. This complexity is similar to that of other diverse symbiotic systems like 

the human gut microbiome (Arumugam et al., 2011), the rhizosphere microbiome (Berendsen 

et al., 2012), and the coral microbiome (Ainsworth et al., 2010), compared to other less 

complex host-microbe associations such as the famous squid- Vibrio fischeri symbiosis 

(Nyholm and McFall-Ngai, 2004) or that of free-living amoebae with Chlamydia (Horn and 

Wagner, 2004). 

This chapter is an introduction to the biology and ecology of marine sponges and their 

remarkable association with a vast diversity of microorganisms. It delineates the most 

important microbiology and molecular biology techniques applied in this thesis, with emphasis 

on alternative cultivation strategies to capture novel, as-yet uncultivated symbiont bacteria, and 

on the use of metagenomics and genomic approaches for a more comprehensive understanding 

of sponge microbial community functioning. By the end of this chapter, the specific aims and 

research questions addressed in this thesis are explained, and a brief description of the studied 

host organism and sampling site is provided.  
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Marine sponge biology and ecology 

 

Sponges (Phylum Porifera) are sessile, filter feeding organisms that mostly inhabit marine 

environments. Although they mainly feed by filtering minuscule particles from the water, they 

may uptake dissolved organic matter as well (de Goeij et al., 2008). Their body contains three 

matrices: the pinacoderm, the choanoderm and, between them, the mesohyl. The flagellate 

choanocyte cells create a water flow from the ostia pores (where water is drawn in) through 

the aquiferous system that spans the sponge body up to a larger exhaling osculum opening 

(Figure 1-1A). However, some carnivorous sponges adapted to the deep seas, classified in the 

family Cladorhizidae, lack an aquiferous system and instead use their sticky surface to capture 

small animals (Vacelet, 1995; Hestetun, 2016). The mesohyl contains different cell types, 

organic collagenous fibers (spongin) and/or an inorganic skeleton of silicon dioxide or calcium 

carbonate (spicules) (Van Soest et al., 2012). Sponges may assume many different shapes and 

forms, including erect, encrusting, eroding, cup, and fan- and tree-like, and these are believed 

to reflect adaptive strategies to different substrate types, depths, light exposure, nutrient 

availability and hydrodynamics (Huang et al., 2011), among other factors. Sponges are 

classified into four classes, namely Calcarea (calcareous sponges), Hexactinellida (glass 

sponges), Demospongiae and Homoscleromorpha (Gazave et al., 2012). Although they have 

simple body shapes, sponges comprise a highly diversified phylum with approximately 8,500 

validly described species to date, with many more yet to be described (Hooper and Van Soest, 

2002; Van Soest et al., 2012). Demospongiae is the largest and most diverse class of poriferans. 

It encompasses about 85% of all extant sponge species (Maldonado, 2009) including three 

subclasses named Verongimorpha, Keratosa and Hetreroscleromorpha (Morrow and Cárdenas, 

2015). The name Demospongiae stems from the Greek demos “people” and spongiá “sponge” 

which means “the common sponge”. The family Spongiidae belongs to the subclass Keratosa 

which includes the commercial sponges of the genera Spongia, Hippospongia, Coscinoderma 

and Rhopaloeides. Singularly within the Porifera, sponges in the subclass Keratosa possess a 

matrix of protein fibers, instead of spicules, as their primary structural constituents (Becerro, 

2012). The Spongiidae family (order Dictyoceratida) consists of six valid genera, namely 

Spongia, Hippospongia, Coscinoderma, Hyattella, Leiosella, and Rhopaloeides. The genus 

Spongia, the model sponge host studied this thesis, includes three subgenera called Spongia, 

Australospongia, and Heterofibria. All six genera of the Spongiidae family vary in form and 

shape, from encrusting to upright. Most characteristic of Spongiidae is the dense, secondary 

fiber reticulum that dominates the skeleton. The surface may be heavily armored with an 
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organized dermal crust of sand, foreign spicules and detritus. The choanocyte chambers of 

Spongiidae are diplodal (narrow canals for taking into and out), and spherical to oval. In some 

species, mesohyl and ectosome are supported by heavy deposits of collagen, though this can 

vary, even between species within the same genus (de Cook and Bergquist, 2002). 

Overall, sponge reproduction is quite versatile and known for its sexual and asexual 

propagation. Asexual reproduction, including fragmentation, budding and gemmulation, can 

be found in most sponge classes (Ereskovsky and Tokina, 2007). Although sponges lack true 

reproductive organs, they can reproduce sexually either via hermaphroditism (both sexes in 

one individual) or gonochorism (each individual organism representing only one sexual state, 

either male or female). They can either be external fertilizers (oviparous, for example 

Demospongiae) or internal fertilizers with larvae developing inside the sponge body 

(viviparous, for example Hexactinellida). Choanocytes can produce sperm which fertilizes the 

eggs produced by archeocytes. This great variability in reproductive strategies may assist 

sponges to optimize their population persistence in many different, even hostile environments.  

Sponges fulfill different ecological functions in marine ecosystems. Their crucial role 

in cleaning the water column due to the filtration of dissolved and particulate organic matter is 

noticeable (Yahel et al., 2007). Moreover, sponges are believed to sustain coral reefs and boost 

their functioning by taking up dissolved organic matter (DOM) from oligotrophic waters and 

transforming it in particulate organic matter (POM) promptly consumed by reef organisms (de 

Goeij et al., 2013). Besides, sponges have been used for different purposes since ancient times, 

for instance for cleaning and bathing purposes, to this date as possible sources of metabolites 

applicable in pharmacology and biotechnology (Voultsiadou, 2007; Voultsiadou et al., 2008; 

Kayal, 2012). Indeed, some bioactive compounds from marine sponges have already passed 

clinical trials (e.g. Eribulin Mesylate in phase III and Hemiasterlin in phase I (Mayer et al., 

2010)) and their antibacterial, antiviral, and antitumoral activities have been extensively 

documented in recent years (Sipkema et al., 2005; Laport et al., 2009; Anjum et al., 2016).  

 

Marine sponges and their microbial communities 

 

Most symbiont communities are composed of phylogenetically diverse microorganisms and 

one host individual. The structure and composition of such a community is regulated by 

different factors, for instance, nutrients provided by the host, chemo-physical characteristics 

(e.g. pH) of the environment and host individual specific attributes (e.g. power of its immune 
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system) (Thomas et al., 2016). Nevertheless, the reasons why microbial community 

compositions differ between different host animals remain largely unidentified (Hacquard et 

al., 2015). Apart from the evolutionary and ecological importance of sponges, they have 

received considerable attention due to the distinct microbial communities living with/within 

them (Hentschel et al., 2012). Sponges harbor bacterial, archaeal and micro-eukaryote phyla. 

Frequently, bacterial phyla are the paramount groups and can comprise up to 35% of a sponge’s 

wet weight (Figure 1-1) (Hentschel et al., 2003; Hill, 2004; Hentschel et al., 2006). To date, 

up to 52 bacterial phyla (including candidate phyla) were detected in Porifera (Thomas et al., 

2016; Slaby et al., 2017), with Proteobacteria (mostly Alpha- and Gamma-), Actinobacteria, 

Chloroflexi, Cyanobacteria, Nitrospirae, Crenarchaeota and Poribacteria being the most 

dominant ones (Webster and Thomas, 2016). The candidate phylum Poribacteria is singularly 

enriched in sponges (Fieseler et al., 2004) and a versatile carbon utilization metabolism has 

been suggested for this group based on genomic features uncovered by single cell genomics 

(Kamke et al., 2013). Among Proteobacteria, the class Alphaproteobacteria - the major 

symbiotic taxon addressed in this thesis - represents one of the most diverse and dominant 

sponge-associated bacterial groups (Enticknap et al., 2006; Schmitt et al., 2007; Simister et al., 

2012; Hardoim et al., 2014), with Rhodobacteraceae and Rhodospirillaceae clades being 

abundant members of the microbial communities inhabiting Dictyoceratida sponges (Hardoim 

et al., 2012; Hardoim et al., 2014). Alphaproteobacteria species have been detected in both 

adult and larval samples of marine sponges (Schmitt et al., 2007), suggesting a pattern of 

vertical symbiont transmission through successive host generations, and thus perhaps a true 

symbiotic life style for this class in sponges. Besides, a study that compared necrotic sponges 

with healthy ones pointed out a role of the genus Pseudovibrio of the Alphaproteobacteria 

class in host health. Pseudovibrio species could not be detected in necrotic sponges while being 

integral component of healthy specimens (Sweet et al., 2015). Moreover, sponge-associated 

Pseudovibrio spp. have been often reported to display antimicrobial activities in vitro 

(Penesyan et al., 2011; Bondarev et al., 2013; Crowley et al., 2014), suggestive of a possible 

participation of this genus in host defense. In addition, a previous genome-wide study revealed 

the potential of a sponge-derived Pseudovibrio strain to import and oxidize a wide range of 

organic and inorganic compounds which can provide carbon, nitrogen, phosphorous, energy, 

secondary metabolic products and cofactors for the host (Bondarev et al., 2013). In spite of the 

potential capacities of cultivable sponge-associated bacteria, care should be taken with the 

interpretation of their actual contribution to host fitness. This is because cultivable sponge 

symbionts usually correspond to low abundant members of the sponge symbiotic consortium, 
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whereas the very dominant symbionts have been so far strikingly recalcitrant to cultivation (see 

e.g. Hardoim et al. (2014)). This aspect is addressed with scrutiny in this thesis by comparing 

the relative abundances of cultivated and uncultivated alphaproteobacterial symbionts of 

Spongia officinalis using genome-metagenome gene mapping as a proxy for the prevalence of 

single strains in a complex microbial community. 

A meta-analysis of sponge-derived 16S rRNA gene amplicons revealed inter-specific 

dissimilarities in prokaryote community compositions, with the complexity of sponge 

symbiont communities ranging from 50 to 3320 operational taxonomic units (OTUs) per host 

individual. Low intraspecific variabilities in microbial community composition have been 

interpreted as strong interactions between the host species and its symbionts; while greater 

variabilities suggested moderate interactions (Thomas et al., 2016). Sponges provide shelter 

for bacteria against predators and a variety of simple to complex carbon sources, and in turn 

bacteria are believed to help their hosts through nutrient supply, biosynthesis of essential 

vitamins, denitrification, chemical defense, prevention of sulfate toxicity and removal of 

metabolic by-products (Webster and Taylor, 2012; Thomas et al., 2016). Although bacteria 

comprise a major item of a sponge’s diet, it seems that symbionts can be distinguished from 

edible (food) bacteria. We now know that bacteria use molecular mechanisms to maintain 

symbiosis with their corresponding sponge hosts. A noticeable mechanism is expression of 

eukaryotic-like proteins (ELPs) by bacterial symbionts. These are believed to aid the sponge 

symbionts in the establishment of an intercellular life-style. For instance, genes encoding 

ankyrin-repeat proteins (ARPs) in sponge symbionts may help them avoiding phagocytosis by 

the host phagosome by reducing vacuole acidification (Nguyen et al., 2014). Because of their 

presumed eukaryotic origin, it is believed that bacterial genomes horizontally acquired ELP-

encoding genes from their eukaryotic hosts (Fan et al., 2012; Díez-Vives et al., 2016; Reynolds 

and Thomas, 2016). Therefore, the host has a distinguishing factor to accept them as part of 

community. To date, several genes encoding ELPs like ankyrin-repeat proteins (ARPs) 

(Nguyen et al., 2014), tetratricopeptide repeat proteins (TPRs) (Bröms et al., 2006), leucine-

rich repeat proteins (LRRs) (Ng and Xavier, 2011), and WD40 domain proteins (Xu and Min, 

2011) have been shown to be expressed within the marine sponge microbiome, and they may 

facilitate bacterial establishment in their hosts (Webster and Thomas, 2016). Furthermore, 

Type II secretion systems (T2SS), which have the tight adherence locus for biofilm formation, 

and Type IV secretion systems (T4SS), which have been shown to play a role against 

zooplankton predation, can equip symbiotic bacteria for staying with the host (Liu et al., 2016).  
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Besides all above-mentioned features, symbiotic bacterial communities are believed to 

produce most of the secondary metabolite repertoire of sponges (Fan et al., 2012; Gao et al., 

2014; Tian et al., 2014). Sponges have been shown to produce a large variety of biologically 

active secondary metabolites, which are believed to help them to defend themselves against 

invading and biofouling microbes as well as predators (Taylor et al., 2007a). Among a range 

of secondary compounds including terpenoids, peptides, alkaloids (Lejon et al., 2011), 

polyketides , for example, have received increasing attention in the past few years due to their 

potential for the development of new drugs, especially due to their often documented antitumor 

activities. Importantly, many of the polyketides described from sponges thus far have been 

shown or suggested to be produced by bacterial symbionts rather than the sponge itself. As 

mentioned above, it is believed that the ecological role of biologically active natural products 

from sponge symbionts may support the host in defense against natural enemies (Piel et al., 

2004), as successfully demonstrated for the bryozoan host Bugula neritina (Lopanik et al., 

2004). Moreover, it is conceivable that inhibitory compounds may participate in microbe-

microbe warfare within the highly dense sponge symbiotic consortium. Additionally, bacterial 

symbionts of marine sponges may help their hosts not only by producing secondary metabolites 

like polyketides but also by synthesizing essential vitamin and cofactors including vitamin B 

(Thomas et al., 2010; Fan et al., 2012; Webster and Thomas, 2016). Animals are unable to 

synthesize vitamin B which is crucial one and therefore host-associated bacteria are believed 

to contribute substantially in this regard. 

Because of these valuable contributions, the consortium comprising the sponge host 

and its associated microbes is often regarded as one single functioning unit, called the holobiont 

(Webster and Taylor, 2012; Webster and Thomas, 2016). To ensure the consistency of key 

symbiotic partners, poriferans transmit their symbionts to the next sponge generation either 

vertically or horizontally or through a mixture of both mechanisms. During vertical 

transmission, specific microbes are passed from the parents to their offsprings while during 

horizontal transmission certain low abundant microorganisms present in the surrounding water 

are selectively absorbed by the sponge (Bright and Bulgheresi, 2010). Even though bacteria 

are also a natural food source for the filter-feeding sponge, a very large number of bacteria 

colonizes the mesohyl matrix of many demosponges. Because of their high bacterial density, 

these sponges are also known as “bacteriosponges” or “high microbial-abundance” (HMA) 

sponges (Reiswig, 1981; Hentschel et al., 2003) in which the bacterial density may reach 108 

to 1010 cells per gram of sponge wet weight (for example, Ircinia felix)(Gloeckner et al., 2014). 

On the other hand, the term “low microbial-abundance” (LMA) applies to all those sponges 
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with bacterial densities around 105-106 cells per gram of sponge wet weight (for example, 

Dysidea etheria) which is in the range of bacterial cell densities commonly found in seawater 

(Hentschel et al., 2006). Although several functional attributes are indeed shared between these 

two community types (Fan et al., 2012), some questions remain to be answered: why and how 

do sponges host different abundances of symbionts? Are the symbiotic interactions in HMA 

sponge species different from those in LMA sponges? So far, investigations comparing the 

microbial community compositions and functions of HMA versus LMA sponges showed 

detectable variations (Bayer et al., 2014). Moitinho-Silva et al. (2014) detected higher 

abundance of Proteobacteria and Cyanobacteria in LMA sponges while the microbiome of 

HMA sponges was often populated by Chloroflexi and Poribacteria, among other phyla. In 

addition to the most diverse symbiotic prokaryotes (archaea and bacteria) (Hentschel et al., 

2003; Taylor et al., 2007a), sponges harbor eukaryotes (Crustacea, Polychaeta, Cnidaria, 

Nemertean, and Platyhelminthes) which can grow inside or on them. Although most of these 

eukaryotic associated organisms are opportunistic, sponges act as a substrate for attachment 

and provide shelter which is crucial for in the early developmental stages of the 

abovementioned groups (Westinga and Hoetjes, 1981; Wulff, 2006; Padua et al., 2016).  
 

The microbiome of Dictyoceratida sponges from the Algarve coast 

 

The sponge fauna in Algarvian provinces, Portugal, contains diverse representatives of the 

Dictyoceratida family, a major group of sponges that has been studied previously in regards 

with their associated microbiomes. Microbial communities associated with sponge species in 

the Dictyoceratida order, particularly Sarcotragus spinosulus and Ircinia variabilis collected 

from coastal waters (Northeast Atlantic) have been characterized by high diversity of bacteria 

(Hardoim et al., 2012). The phyla Acidobacteria, Actinobacteria, Chloroflexi, Proteobacteria 

(Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria), Bacteroidetes, and the 

candidate phyla PAUC34f, Anck6, and Poribacteria were detected as prevailing members of 

the S. spinosulus and I. variabilis microbiomes by a series of studies employing different 

techniques such as PCR-DGGE fingerprinting, 454 pyrosequencing and cultivation–dependent 

methods (Hardoim et al., 2012; Hardoim et al., 2014; Hardoim and Costa, 2014b). Using a so-

called “plate-washing” strategy to characterize the cultivable community of these sponges by 

next-generation sequencing, Hardoim et al. (2014) revealed that half of the OTUs obtained via 

cultivation could not be detected via regular cultivation-independent next-generation 

sequencing (NGS) of 16S rRNA genes PCR-amplified from these samples, whereby a 
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pronounced dominance of diverse Alphaproteobacteria and Gammaproteobacteria phylotypes 

were observed in the cultivation plates (Hardoim et al., 2014). These results were interpreted 

as indicative of (1) low depth in regular amplicon-based surveys of the sponge-associated 

microbiome preventing detection of all microbes present in a sample and (2) selective 

enrichment, on cultivation plates, of low-abundant sponge-associated bacteria which escape 

usual NGS efforts employed in the characterization of microbial diversity in host-associated 

samples. The microbial community associated with S. spinosulus showed stability over three 

consecutive years , suggesting that strong selective forces act on the maintenance of this host-

microbe relationship across time (Hardoim and Costa, 2014b). In another cultivation-

dependent study, Esteves et al. (2013) characterized > 350 bacterial cultures retrieved from I. 

variabilis and S. spinosulus by 16S rRNA gene identification and BOX-PCR genotyping. 

Intriguingly, intraspecific genotypic diversity of dominant, cultivable strains belonging to 

diverse genera such as Pseudovibrio, Ruegeria and Vibrio was found to vary according to the 

sponge specimen from where the strains were isolated, suggesting that independent 

evolutionary trajectories in different host individuals may contribute to genome-wide 

diversification among closely related bacterial symbionts (Esteves et al., 2013). Moreover, 

while Vibrio spp. were observed to possess the most pronounced in vitro antimicrobial activity 

against model opportunistic bacteria (i.e. Escherichia coli and Staphylococcus aureus), 

polyketide synthase (PKS)-encoding genes were highly frequent among Pseudovibrio 

representatives, in agreement with current observations of antimicrobial activities among 

members of this genus and with genome-based analyses (O’Halloran et al., 2011; Alex and 

Antunes, 2015; Naughton et al., 2017). Unexpectedly, PKS-encoding genes were found by 

Esteves et al. (2013) in ten sponge-associated strains belonging to the Aquimarina genus, 

resulting in the first documentation of polyketide biosynthesis potential among cultivable 

representatives of Bacteroidetes phylum. 

In summary, a considerable amount of information on the microbiome of 

Dictyoceratida sponges from the Algarvian shore has accumulated in the past few years. 

Besides the trends mentioned above on the diversity, cultivability and antimicrobial potential 

of symbionts, strong evidence has been gathered for host species-specific structuring of 

bacterial communities among Dictyoceratida sponges from both the Algarvian shore (Hardoim 

et al., 2012; Hardoim et al., 2014) and the Mediterranena Sea (Erwin et al., 2012a; Pita et al., 

2013). In spite of these major outcomes, understanding of the functional attributes of the 

symbiotic consortium associated with keratose sponges in the Atlanto-Mediterranean zone is 

limited, and knowledge of symbiotic communities in these host has been mainly restricted to 
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few species such as I. variabilis, I. oros, I. fasciculata and S. spinosulus (Erwin et al., 2012a; 

Hardoim et al., 2012; Hardoim et al., 2014; Hardoim and Costa, 2014b). In this thesis, advanced 

metagenomics technologies are employed to unveil the diversity, functionality and adaptive 

features of uncultivated symbionts of the economically and biotechnologically relevant host 

Spongia officinalis, tackling the functional genomics of a so-far understudied sponge species 

in the Dictyocertida order. Moreover, genome-wide analyses are employed to uncover the 

coding potential of a diversified panel of alphaproteobacterial cultures (several of which 

phylogenetically distinct) retrieved from S. officinalis using alternative culture conditions. In 

the following sections, an overview is given on metagenomics and cultivation approaches used 

in the analysis of microbial communities in the environment, with particular emphasis on 

sponge microbiology studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 
Figure 1-1. (A) Schematic overview of an asconoid sponge body plan. (B) Scan electron 
microscope (SEM) picture of microbes near the choanocyte chamber. (C) fluorescent in situ 
hybridization of different microbial groups in the sponge mesohyl (Poribacteria, yellow cells; 
Nitrospira, pink cells; Chloroflexi, cyan cells; Deltaproteobacteria, light (Deltaproteobacteria, 
light green cells; Gammaproteobacteria, red cells; Archaea, blue cells). Source: Webster and 
Thomas (2016). 
 
green cells; Gammaproteobacteria, red cells; Archaea, blue cells). Source: Webster and 
Thomas (2016)" 
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Metagenomics as a tool to understand microbial community structure and function  

 

Metagenomics is a culture-independent method used to access and explore the diversity and 

function of microbial communities by directly extracting information from (in an optimal 

circumstance) all genomes of all microbes present in each environmental sample. Some 

decades ago, metagenomics approaches have revolutionized microbiology. The term 

‘metagenome’ was first introduced by Handelsman et al. (1998) as “the collective genome of 

microflora”. The technique was developed in the 1990’s by two different and independent 

research teams, one working on genome fragments from planktonic marine archaea and the 

other one on the chemistry of unknown soil microbes (Stein et al., 1996; Handelsman et al., 

1998).  

There are two different approaches to metagenomics studies using next-generation 

sequencing (NGS) technology: 1) the amplicon-based approach focusing on a specific target 

gene (e.g. rRNA genes) to sequences thousands of copies of, for example, 16S rRNA gene 

fragments amplified from the numerous different prokaryotes present in diverse microbial 

communities; 2) the shotgun-based approach that randomly sequences thousands to millions of 

small gene fragments from entire genomes present in environmental samples (Mineta and 

Gojobori, 2016). The main advantage of shotgun-based metagenomics is the assessment of 

whole genomes which allows inferring not only who is present but also what functional 

processes are prevailing in a given community. Yet, both approaches can be complementary 

and may be used to answer different scientific questions such as which organisms make part 

of  the communities and which roles they potentially play (Izard and Rivera, 2014). To date, 

many different - and in part remote - open and host-associated environmental niches have been 

studied using metagenomics. The use of such cultivation-independent analytical pipelines 

permits the taxonomic and functional profiling of dominant and rare members of complex 

microbial consortia, circumventing biases inherent to cultivation-dependent approaches. 

Importantly, a third strategy worth mentioning is the exploration of metagenomes for novel 

genes and bioactivities with the use of DNA recombination technology (i.e. cloning) (Van 

Elsas et al., 2008). Although this approach does not depend strictly on the sheer force of NGS 

technologies (but can largely benefit from it), it is as well considered a metagenomics-based 

endeavor since it relies on the insertion of environmental or host-associated DNA (thus, 

metagenomic DNA fragments) into a cultivable heterologous host (for instance, E. coli) and 

subsequent genotypic and/or phenotypic screenings for desired bioactivities. In fact, some of 

the most important, recent discoveries within the sponge microbiology field have directly 
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benefited from this approach. These studies fostered our understanding of the pivotal roles that 

bacterial symbionts may play in the complex chemistry and defense mechanisms of sponges as 

the actual producers of manifold biologically active natural products, including a vast range of 

antitumoral polyketides (Hentschel et al., 2012; Wilson et al., 2014).  

Modern metagenomics surveys produce a tremendous amount of raw sequencing data 

which need to be treated with special processing and analysis pipelines to obtain meaningful, 

interpretable data outputs. Databases like the Metagenomics Rapid Annotation using 

Subsystem Technology (MG-RAST) (Dudhagara et al., 2015) and EBI metagenomics (Hunter 

et al., 2014; Mitchell et al., 2016) archive and contain metagenome data and offer automated 

pipelines for the analysis of taxonomic and functional contents. So far, several metagenomic 

profiling studies in sponges have been performed (Thomas et al., 2010; Fan et al., 2012; Rua 

et al., 2015; Horn, 2017). Some have approached the uniqueness of the marine sponge 

microbiome by addressing the phylogenetic composition of this symbiotic consortium in 

comparison with ambient seawater (Fan et al., 2012) and also the potential contribution of 

sediments as sinks and sources of sponge-associated bacteria (Polónia et al., 2014; Thomas et 

al., 2016).  

Although multiple studies (O’Halloran et al., 2011; Hardoim et al., 2012; Esteves et al., 

2013; Hardoim and Costa, 2014b; Steinert et al., 2014) have tried to access sponge-associated 

microorganisms using cultivation, many of the abundant taxonomic groups and functionally 

important symbionts remain uncultivable. Functional metagenomics surveys can help to design 

novel culture media and conditions that meet the specific nutritional and physiological 

requirements of symbiont bacteria (Gutleben et al., 2017).  

 

Reconstruction of genomes from metagenomes 

 

The recent advance of next generation sequencing technologies and progress in bioinformatics 

provide feasibility and attainability for accurate genome reconstruction of uncultivated 

microorganisms. Because a clear majority of sponge symbionts is recalcitrant to cultivation, 

genome reconstruction can pave the road towards understanding the traits and roles of 

uncultivated symbionts in their hosts. Up to now, a small number of studies have properly 

described reconstructed genome sequences for microorganisms out of diverse metagenome 

data (Iverson et al., 2012; Luo et al., 2012a; Albertsen et al., 2013; Sharon and Banfield, 2013; 

Nielsen et al., 2014; Burgsdorf et al., 2015; Slaby et al., 2017). Various molecular biology 
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techniques and bioinformatics tools successfully obtained symbiont genomes from sponges. 

For example, fosmid library sequencing facilitated the recovery of the draft genome of 

Cenarchaeum symbiosum (an archaeon detected in  the marine sponge Axinella mexicana) 

(Hallam et al., 2006). Through single-cell sorting, the first genome of the typically sponge-

enriched candidate phylum Poribacteria was sequenced (Kamke et al., 2013). Metagenomics 

shotgun sequencing and subsequent contig binning led to the reconstruction of the draft 

genomes of a sponge-associated sulfur oxidizing bacterium (Tian et al., 2014) and of Ca. 

Synechococcus spongiarium (Gao et al., 2014; Burgsdorf et al., 2015). In a very recent study, 

Slaby and her colleagues utilized metagenomic hybrid assembly reads, namely from PacBio 

and Illumina sequencing technologies, to combine long and short metagenomic reads from the 

sponge microbiome and thereafter reconstruct the genomes of a great diversity of symbionts. 

Their method delivered 37 binned genomes belonging to 11 sponge bacterial phyla and two 

candidate phyla, including Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, 

Bacteroidetes, Gemmatimonadetes, Deinococcus-Thermus, Nitrospirae, Nitrospinae, 

Cyanobacteria, Spirochaetes and the candidate phyla Poribacteria and SBR1093 (Slaby et al., 

2017). The comparison of binned genomes has greatly improved our understanding about 

sponge symbionts. The aforementioned studies have shown that genes encoding for 

“restriction-modification”, “toxin-antitoxin” and “replication, recombination and repair” 

functions are enriched in symbiont genomes (Burgsdorf et al., 2015; Slaby et al., 2017). On the 

other hand, a lower proportion of genes encoding for “signal transduction mechanisms” were 

detected in the genomic bins of sponge associated bacteria as compared to similar free-living 

fellows. This demonstrates that genome reconstructions can contribute significantly to our 

understanding of sponge-microbe symbiosis. It is worth mentioning here that short-read 

metagenomic sequencing, which is providing enough sequencing depth by repetition, has its 

own disadvantage. Short reads create gaps through assembly and therefore, it is hardly possible 

to obtain a complete genome by pure sheer sequencing and assembly from metagenomes. This 

disadvantage can be slightly resolved by using long-read sequencing, but still improvements 

are needed to achieve 100% genome coverage of genomes assembled from short reads binned 

from complex metagenomes (Slaby, 2017).  
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Cultivation bias in natural environments and strategies to cultivate the uncultivable 

 

There is still a large gap in cultivating microbes from sponges – and from environmental 

samples in general - in the light of the existent microbial diversity in open ecosystems as 

inferred by cultivation-independent surveys using NGS technologies. Cultivating 

microorganisms is still fundamental to understand the biology and ecology of microbial 

species. Microbial cultures provide an opportunity to obtain complete, high-quality genome 

sequences of one single organism and to identify the properties of those organisms that cannot 

be discerned from genome sequencing alone (Connon and Giovannoni, 2002). Further, 

ignoring microbial cultivation in favor of the sole use of ribosomal RNA gene approaches can 

lead to important gaps in microbial community diversity data, because some species in a 

community sometimes remain undetected in cultivation-independent surveys (Donachie et al., 

2007). This can be due to several reasons such as difficulties in cell lysis prior to DNA 

extraction or the lack of sequencing depth in most microbial diversity NGS surveys. Yet, these 

bacteria may be obtained on culture plates as cultivation follows different principles. However, 

cultivation methods are thought to depict only 1% of the total microbial diversity in open 

ecosystems while molecular methods are often believed to enable full access to so far 

uncultivable bacteria. In the case of sponge-associated bacteria, it has been shown that between 

1% and 14% of the whole community of associated microbes can be cultivated (Webster and 

Hill, 2001; Olson and McCarthy, 2005; Taylor et al., 2007a; Sipkema et al., 2011; Hardoim et 

al., 2014). Most bacterial strains in sponges reside inside the mesohyl, where the environment 

has little similarity to outside surroundings (seawater), and this should be considered when 

designing any cultivation experiment. Anoxic conditions may occur inside the sponge mesohyl 

when the sponge temporarily stops to pump water (Hoffmann et al., 2005; Hoffmann et al., 

2008). In addition, the iron concentration in the mesohyl may be higher than in the surroundings 

because of the presence of siderophores (Onuki and Kamino, 2000). Moreover, if the target 

bacteria need light for growth like Cyanobacteria, this should obviously be considered in 

cultivation and incubation designs. Another aspect to be taken into account is the addition of 

sponge-derived compounds to the culture medium as a means to support the growth of specific 

symbiotic bacteria, as attempted in an early cultivation study using lectin, which is in principle 

a mesohyl component, amendments to the culture medium (Müller et al., 1981). Furthermore, 

prolonged incubation periods may help slow-growing bacteria to develop (Connon and 

Giovannoni, 2002), especially if carbon offer is not exceedingly high. Taken together, different 

circumstances such as the quality and quantity of the substrate, the depletion of some nutrients 
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or the absence of unknown requirements, viral infections or, enrichment of poisonous products 

might influence the cultivation of marine bacteria (Eilers et al., 2000), as well as unsuspected 

mutual dependencies of species living in consortia (Hentschel et al., 2006; Taylor et al., 2007a). 

Recently, it has been suggested that sample processing of sponge bacterial symbionts may 

affect bacterial viability after cell detachment from the hosts (Esteves et al., 2016). Therefore, 

this is also an important obstacle which should be taken into consideration in future, alternative 

cultivation approaches. 

To overcome the difficulty in cultivating sponge bacteria, innovative and promising 

approaches are required. For example, in a recent study the usage of multiple agar media (with 

and without antibiotics) combined with the picking of individual colonies and also scraping 

total bacterial growth from cultivation plates led to the captivation, in the laboratory, of a range 

of uncultivated sponge bacteria including two new genera and a new species of 

Flavobacteriaceae (Versluis et al., 2017). Likewise, the use of agar plate, liquid, and floating 

filter culture methods with media containing organic sponge extracts and bacterial signal 

molecules permitted the isolation of rare bacteria belonging to phyla such as Planctomycetes, 

Verrucomicroba, and Deltaproteobacteria (Sipkema et al., 2011). Moreover, membrane-based 

diffusion growth chambers (DGCs, constructed from two combined centrifuge microfilters) 

have been used to capture sponge symbionts (Steinert et al., 2014). This resulted in the 

cultivation of fifteen so far ‘uncultivable’ bacteria of the phyla Bacteroidetes and 

Proteobacteria. As demonstrated through the abovementioned studies, sponges can be a very 

rich reservoir for the isolation of novel bacteria as well as novel bioactive compounds. 

Therefore, finding favorable conditions to grow sponge-associated microbes in the laboratory 

is a clear interest of the scientific community and the pharmaceutical industry. Although the 

cultivation process often is time-consuming, laborious and sometimes monotonous, the beauty 

in color or shape developed by some bacterial species growing on a culture plate can be truly 

amazing (Figure 1-2). Because cultivation allows the discovery of novel gene functions and 

metabolic processes that ultimately can unveil the role of microbes in their environment, it still 

is a recommended method by many renowned scientists even in an era of next generation 

sequencing approaches (Keeling and Campo, 2017). In this thesis, the combination of a low-

nutrient medium with lower incubation temperatures and longer incubation periods was 

employed as a simple and reliable alternative strategy to recover phylogenetically unique 

bacterial symbionts from Spongia officinalis.   
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Figure 1-2. An Alphaproteobacterium isolated from Spongia (growing on R2A medium) –Cultivation 
and Photo by E. Karimi. 

Genome sequencing and comparative genomics to identify the functional features of 

symbiont genomes 

Due to recent technological advances, entire bacterial genomes can nowadays be sequenced 

quickly and at low costs. In the last decade, the number of complete bacterial genome 

sequences in public sequence databases has greatly and rapidly increased. For example, the 

number of bacterial and archaeal genomes sequenced until 2015 was higher than 14,000 

genomes (Land et al., 2015).  

The majority of bacterial genomes consist of circular chromosomes. They have a single 

origin of replication and lack structural proteins called histones (proteins that fold eukaryotic 

DNA). Nevertheless, some bacteria like Streptomyces coelicolor (Kieser et al., 1992) and 

Agrobacterium tumefaciens (Allardet-Servent et al., 1993) have linear chromosomes. Genome 

size, synteny, replicon numbers, and G+C content are common parameters used to describe 

bacterial genomes (Bentley and Parkhill, 2004). Prokaryotic genome sizes vary across phyla 

(Bentley and Parkhill, 2004), and different phyla or species of bacteria may demonstrate 

different patterns of correlation between DNA size and G+C content (Li and Du, 2014). It has 

further been documented that obligate host-associated bacteria often contain short genomes 

with low G+C content (McCutcheon and Moran, 2012). The relationship between genome size 

and content appears to be mainly determined by environmental pressure (Ranea et al., 2004). 

Basically, the causes for varying genome sizes are related to the genetic information needed to 

persist in new environments and to population dynamics (Moya et al., 2008). When a bacterium 
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becomes a symbiont, some genes may become unnecessary or redundant because their 

functions can be provided by the host organism (Moya et al., 2008). Therefore, reduced genome 

size may be used as an indicator in the identification of obligate symbiont bacteria (Pérez-

Brocal et al., 2006). However, there are far more facultative symbionts interacting with their 

host which do not necessarily have a small genome. They are rather equipped to be versatile 

and able to persist and survive in many different environments, for example, E. coli, Vibrio, 

Pseudomonas, Burkholderia and many of the typical model facultative 

symbionts/opportunistic pathogens whose genomes are not small. In addition to genome 

reduction, quorum sensing (QS), expression of eukaryotic-like protein (ELPs) and type II and 

VI secretion systems as adherence factors (Liu et al., 2016) have been suggested to facilitate 

the establishment of bacteria in their respective hosts as well as bacteria-bacteria interactions 

(Webster and Thomas, 2016).  

Bacterial genome content may be investigated on three different levels, genomic, 

transcriptomic, and proteomic (Binnewies et al., 2006), and each one can help to understand 

different aspects of a bacterium’s life-style and metabolic capabilities. Each level can 

significantly improve our knowledge on how bacteria evolve and adapt to best fit to their niches 

(Ochman and Moran, 2001; Tian et al., 2017). For instance, how new genetic material may be 

gained via horizontal gene transfer (Moya et al., 2008). Such approaches also provide insights 

into the molecular mechanisms employed by bacteria to survive and persist in nature, for 

example, how pathogenic and symbiotic bacteria escape host immune responses when making 

part of a dense microbial consortium such as the sponge microbiome (Horn et al., 2016). Thus, 

genomics is a first method (in a series of many) to pursuit a deeper understanding on how 

bacteria choose and act in their niches, how the host controls its endosymbiotic bacterial 

communities, how different bacteria interact with each other without losing too much energy 

in competition, and how bacteria may “convince” their host to keep them as permanent 

residents. It is worth mentioning here that a genome (genomics) alone can only give limited 

information on the questions mentioned above. Genomics will only indicate that a bacterium 

may be able to carry out a certain function, but never if it really does. For any given bacterium 

or microorganism to carry out a function, the genes need to be also transcribed 

(transcriptomics) and translated (proteomics). Even after the gene is translated into an actual 

protein, laboratory tests (mesocosm experiments) are needed to study the function in vitro or 

in vivo. Ultimately, to proof functions and/or assign new gene functions, researchers need to 

create mutants where target genes are knocked-out or expressed in a different bacterium by 

genetic recombination.  
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Aims and specific research questions 

 

The general aim of this PhD thesis was to reveal the functional capacities and adaptive 

strategies of Spongia officinalis bacterial symbionts using cultivation-independent 

(metagenomics and genome reconstruction) and cultivation-dependent (cultivation and whole-

genome-sequencing) approaches. In this framework, emphasis was given to the genomic 

signatures and potential roles played by sponge-associated Alphaproteobacteria given (1) the 

relevance of this bacterial group in marine ecosystems, (2) the paucity of information 

pertaining to the functional attributes of alphaproteobacterial symbionts of marine sponges and 

(3) the profuse recovery, by our team, of diverse sponge-derived Alphaproteobacteria using 

alternative cultivation strategies. 

 Spongia officinalis (Linnaeus, 1759) (Figure 1-3) is the first-ever described sponge 

species, being well known for its commercial use as a bath sponge (Voultsiadou et al., 2008). 

Its range of occurrence encompasses the Mediterranean Sea (Dailianis et al., 2011) and the 

northeastern Atlantic Ocean (World Porifera Database, Van Soest et al. (2011)). This species 

produces many types of structurally diverse metabolites, some of them with pharmaceutical 

potential (Li et al., 2017). Since S. officinalis has the capacity to concentrate all the trace metals 

present in its surroundings, it is also being used to study the metal availability and load in 

marine ecosystems (Bauvais et al., 2015). Some specimens have a superficial fiber net 

supporting the pinacoderm. The whole body is compressible and resilient except where the 

surface is heavily sand-encrusted (de Cook and Bergquist, 2002). Signs of S. officinalis 

population decline and mortality events have been documented recently due to human impacts 

on the environment, global warming and invasion of pathogenic microorganisms (Webster, 

2007; Garrabou et al., 2009). Despite the biotechnological potential of S. officinalis and its 

associated microbiome, functional information regarding its symbiotic community is rare. 

Therefore, this thesis makes use of S. officinalis as a model organism to approach sponge 

microbiome functionality, cultivability and adaptive features. The collection of the S. 

officinalis specimens, seawater and sediment samples analyzed in this thesis took place in May 

2014 by SCUBA diving at 20 m depth off the coast of Pedra da Greta (36°58'47.2"N, 

7°59'20.8"W), Algarve, South Portugal (Figures 1-4). This sampling event provided all the 

biological data used to achieve the specific objectives of this thesis, described below.   
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Cultivation-independent approaches to extract functional information from yet 

uncultivated bacterial symbionts 

Metagenomics can be broadly defined as the cultivation-independent analysis of all the DNA 

content present in a given sample, be it “environmental” or “host-associated”. Thus, a 

comprehensive and well implemented metagenomics-based strategy will optimally enable 

access to the genomes of all (micro) organisms present in a sample. In this thesis, this strategy 

was applied to achieve and fulfill the following specific aims and tasks: 

 

1- To uncover the functional and taxonomic structure of S. officinalis associated microbial 

communities, adressing the complementary roles of marine sediments and seawater in 

contributing to symbiont assembly in this host.  

2- To determine the unique genomic features of the S. officinalis endosymbiotic 

consortium and provide an evolutionarily-based interpretation of its pivotal life strategies. 

3- To reveal the differential abundance patterns of genomic adaptive features of marine 

sponge symbionts, such as secondary metabolite biosynthesis, CRISPR-Cas systems, and 

carbon metabolism traits across S. oficinalis, seawater and sediments to better understand the 

distribution of metabolic resources of biotechnological value across marine biomes. 

 

Because recently-developed bioinformatics techniques provide an opportunity to bin 

genomes out of metagenome data, in this thesis a sequence composition-dependent binning 

approach was used to assemble genomes of uncultivable bacteria from S. officinalis, seawater 

Figure 1-3. Photographs of Spongia officinalis in vivo (A) and in vitro (B). (A) Photograph courtesy 
of Dr. Jorge Goncalves’s team (B) Photograph by E. Karim. 
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and sediments, placing focus on the functional features and adaptive traits of Rhodospirillaceae 

symbionts (Alphaproteobacteria) from marine sponges. This strategy was applied to achieve 

the following specific objectives:  

 

1. To reconstruct a consensus genome from a dominant, uncultured Alphaproteobacteria 

symbiont (family Rhodospirillaceae) of S. officinalis using microbial metagenome data derived 

from this host. 

2. To reveal the unique genomic signatures that differentiate symbiotic from free-living 

Rhodospirillaceae lineages by determining their prevailing functions (e.g. Clusters of 

orthologous protein groups - COGs), highlighting the most discriminatory protein families 

retrieved from symbiotic vs. free-living phylotypes. 

3.  To delineate the possible roles played by cultured and uncultured sponge-associated 

Alphaproteobacteria spp. and their likely host fitness-enhancing value within the marine 

sponge holobiont. 

 

Alternative isolation and cultivation of sponge-associated bacteria 

Making parallel use of cultivation and cultivation-independent molecular techniques is the 

most adequate strategy to fully comprehend the extent of microbial diversity within a 

community (Donachie et al., 2007), since cultured phylotypes will help to provide a 

comprehensive genomic sequences database. In this thesis, a dedicated strategy for the isolation 

of extended bacterial diversity was implemented according to the following specific aims and 

tasks: 

1. Generation of a collection and taxonomic identification of pure bacterial cultures retrieved 

from the marine sponge S. officinalis using alternative cultivation methodologies which 

favor the growth of difficult-to-cultivate bacteria. 

2. Selection of pure bacterial cultures that represent novel species and/or so far rarely 

cultivated phylotypes for whole genome sequencing, assembly and annotation. 

3. Genome-based characterization of the symbiotic living capabilities and metabolic 

capacities of Alphaproteobacteria sponge symbionts, the most prolific and diverse bacterial 

group cultivated in this thesis with the use of novel methodologies.  
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Combining information gained from both, genomics and metagenomics, contributes to 

better understanding of microbial community functioning. Yet scientists still need to 

sufficiently link these two techniques as “two sides of the same coin” (Gutleben et al., 2017). 

In this thesis, such as integration is attempted in a comprehensive fashion through a dedicated 

study of the Spongia officinalis microbial metagenome (Chapter 2) coupled to in-depth 

comparative genomics of ten alphaproteobacterial symbiotic genera isolated from S. officinalis 

using a novel cultivation platform (Chapter 3) and genome reconstruction of a so-far 

uncultivable alphaproteobacterial symbiont of the family Rhodospirillaceae from 

metagenomic data (Chapter 4), as more accurately described in the outline below.  

 

 

 

Figure 1-4. Spongia officinalis sampling site at the Algarve coast, with the exact sampling location 
marked in red (Copyright © 2017Worksheetworks.com and © Google map).  
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Thesis outline 

 

The first aim of this study (Chapter 2) was to approach 10 microbial metagenomes including 

four from sponges (Spongia officinalis), three from surrounding seawater and three from 

sediment replicates. Metagenomes were analyzed using EBI and MG-RAST pipelines to 

compare the sponge, sediment and seawater microbiomes taxonomically and functionally. The 

adaptive strategies of the marine sponge microbiome were delineated based on functions that 

were highly enriched or de-selected in this consortium in comparison with seawater and 

sediment.  

The second aim of this thesis (Chapter 3) was to cultivate novel sponge-associated 

bacteria by utilizing an oligotrophic marine medium, decreased incubation temperature and an 

extended incubation period to allow slow growing bacterial symbionts to develop into colony 

forming units (CFUs). Purified colonies were taxonomically identified by 16S rRNA gene 

sequencing. Ten phylogenetically distinct Alphaporoteobacteria strains were selected for 

genome sequencing to explore their functional characteristics, symbiont features and the 

presence of genes encoding for the biosynthesis of secondary metabolites.  

The third aim (Chapter 4) was to reconstruct the genome of an abundant, uncultivatable 

alphaproteobacterial symbiont of the family Rhodospirillaceae from our model sponge by 

applying a sequence composition–dependent binning approach. A comparative genomics 

survey was then undertaken to decipher the adaptive strategies of sponge symbiotic 

Rhodospirillaceae taking the genome composition of close, free-living relatives into account.   

A general discussion of the results obtained in thesis and the novel bacteria isolated as 

well as future perspectives is provided in the last Chapter (Chapter 5). 
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Abstract 
Current knowledge of sponge microbiome functioning derives mostly from comparative 

analyses with bacterioplankton communities. We employed a metagenomics-centered 

approach to unveil the distinct features of the Spongia officinalis endosymbiotic consortium in 

the context of its two primary environmental vicinities. Microbial metagenomic DNA samples 

(n = 10) from sponges, seawater and sediments were subjected to Hiseq Illumina sequencing 

(c.15 million 100 bp reads per sample). Totals of 10,272 InterPro (IPR) predicted protein 

entries and 784 rRNA gene operational taxonomic units (OTUs, 97% cut-off) were uncovered 

from all metagenomes. Despite the large divergence in microbial community assembly 

between the surveyed biotopes, the S. officinalis symbiotic community shared slightly greater 

similarity (p < 0.05), in terms of both taxonomy and function, to sediment than to seawater 

communities. The vast majority of the dominant S. officinalis symbionts (i.e., OTUs), 

representing several, so-far uncultivable lineages in diverse bacterial phyla, displayed higher 

residual abundances in sediments than in seawater. CRISPR-Cas proteins and restriction 

endonucleases presented much higher frequencies (accompanied by lower viral abundances) 

in sponges than in the environment. However, several genomic features sharply enriched in the 

sponge specimens, including eukaryotic-like repeat motifs (akyrins, tetratricopeptides, WD-40 

and leucine-rich repeats), and genes encoding for plasmids, sulfatases, polyketide synthases, 

type IV secretion proteins and terpene/terpenoid synthases presented, to varying degrees, 

higher frequencies in sediments than in seawater. In contrast, much higher abundances of 

motility and chemotaxis genes were found in sediments and seawater than in sponges. Higher 

cell and surface densities, sponge cell shedding and particle uptake, and putative chemical 

signaling processes favoring symbiont persistence in particulate matrices all may act as 

mechanisms underlying the observed degrees of taxonomic connectivity and functional 

convergence between sponges and sediments. The reduced frequency of motility and 

chemotaxis genes in the sponge microbiome reinforces the notion of a prevalent mutualistic 

mode of living inside the host. This study highlights the S. officinalis “endosymbiome” as a 

distinct consortium of uncultured prokaryotes displaying a likely “sit-and-wait” strategy to 

nutrient foraging coupled to sophisticated anti-viral defenses, unique natural product 

biosynthesis, nutrient utilization and detoxification capacities, and both microbe-microbe and 

host-microbe gene transfer amenability.   
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Introduction 
Sponges (phylum Porifera) rank among the oldest extant metazoans and are distributed 

worldwide across all oceans and major freshwater bodies, displaying various shapes, sizes and 

colors, which are possibly influenced by environmental and biotic conditions (Hentschel et al., 

2006; Pineda et al., 2015). There are about 8,500 sponge species described to date and likely 

as many to be described (Van Soest et al., 2012). These sessile, filter-feeding organisms usually 

shelter dense and complex microbial communities often dominated by diverse, active and 

phylogenetically distinct bacteria (Taylor et al., 2007a; Kamke et al., 2010; Thomas et al., 

2010). Indeed, although sponges intake numerous planktonic microorganisms due to their 

remarkable filtering activity, their symbiotic communities are taxonomically and functionally 

different from those found in the water body (Thomas et al., 2010; Costa et al., 2013; Thomas 

et al., 2016). Until now, little experimental evidence exists for the actual participation of sponge 

symbionts in contributing to host fitness (Webster and Thomas, 2016). However, sponge-

associated microorganisms are believed to benefit their hosts through several, eventually 

interdependent, mechanisms. These include nutrient provision (e.g. through the synthesis of 

photosynthates and vitamins (Taylor et al., 2007a; Siegl et al., 2011); in-host geochemical 

cycling (e.g. via nitrification (Bayer et al., 2008; Radax et al., 2012), denitrification (Siegl et 

al., 2011; Fan et al., 2012), or polyphosphate production (Zhang et al., 2015)); chemical 

defense (e.g. via the biosynthesis of polyketides (Piel et al., 2004; Wilson et al., 2014); and 

removal of metabolic by-products such as ammonia (Webster and Taylor, 2012; Webster and 

Thomas, 2016) and sulfide (Hoffmann et al., 2005). Particularly, the phylogenetic 

distinctiveness of the marine sponge microbiome and its vast natural product biosynthesis 

repertoire have both propelled much research interest in this symbiotic relationship (Taylor et 

al., 2007a; Wilson et al., 2014). 

In the last ten years or so, metagenomics (Handelsman, 2001) and single cell genomics (SCG) 

(Woyke et al., 2009) approaches coupled to next generation sequencing (NGS) technologies 

have become the tools of trend in the inspection of microbial communities thriving in open and 

host-associated microniches (Handelsman, 2001; Kennedy et al., 2008; Gilbert and Dupont, 

2011; Kumar et al., 2015). Functional gene profiling via shotgun NGS revealed that sponge 

symbiont communities share a suite of common genetic signatures underlying “specific” 

adaptive strategies such as high frequencies of eukaryotic-like proteins (ELPs), possibly 

involved in patterns of host-symbiont recognition, and Clustered Regularly Interspaced Short 

Palindromic Repeats and associated systems (CRISPR-Cas), that may function as a collective 
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anti-viral defense system within the sponge symbiotic consortium (Thomas et al., 2010; Fan et 

al., 2012; Rua et al., 2015; Horn et al., 2016). However, the frequency and abundance of such 

genetic elements in other marine microhabitats have not yet been fully examined, making it 

difficult to diagnose them as exclusive adaptive features of marine sponge symbionts. The 

linkage between identity and function has been now identified for a number of symbiotic 

lineages, either via SCG or genome binning from metagenomes (Siegl et al., 2011; Moitinho-

Silva et al., 2017; Slaby et al., 2017), greatly increasing our knowledge of the potential 

physiology of particular sponge-enriched lineages belonging e.g. to the Cyanobacteria, 

Proteobacteria and Poribacteria phyla (Kamke et al., 2013; Gao et al., 2014; Burgsdorf et al., 

2015). 

In spite of the continued progress enabled by modern cultivation-independent tools, our 

current understanding of marine sponge microbiome diversity and function mostly derives 

from comparative studies with the neighboring bacterioplankton (Fan et al., 2012; Rua et al., 

2015; Thomas et al., 2016), whereas knowledge of the potential contribution of sediments as 

sinks and sources of sponge-associated bacteria remains limited. Only recently have studies 

emerged which investigated sediments in comparative analyses with sponge symbiotic 

assemblages, using amplicon-based approaches to address the taxonomy and, eventually, in 

silico functional estimates of the examined communities (Polónia et al., 2014; Thomas et al., 

2016). Recent evidence suggests that the density and biochemical composition of particles are 

major drivers of microbial community structure in aquatic microniches (Zhang et al., 2016). 

Here, we hypothesize that higher particle/surface availability and cell densities may promote 

the selection of identifiable traits common to sponge-associated and sediment communities not 

necessarily favored in planktonic settings. To address this hypothesis, in this study we tested 

whether (1) whole taxonomic and functional profiles and (2) abundance distributions of 

genotypic traits usually regarded as adaptive features of marine sponge symbionts were 

significantly different across sponge, sediments and seawater microbial metagenomes. 

Spongia officinalis Linnaeus 1759, the first described sponge species, is a canonical 

bathing sponge (Voultsiadou et al., 2008) displaying widespread occurrence from across the 

Mediterranean Sea (Dailianis et al., 2011) into the northeastern Atlanctic Ocean and beyond. 

However, signs of population decline as a consequence of human activity, warming 

temperatures and bacterial infections have been accumulating in recent years (Webster, 2007; 

Garrabou et al., 2009). S. officinalis belongs to the chemically-rich order Dictyoceratida 

(Gordaliza, 2010), and as such is the source of diverse biologically-active natural products 

(Gonzalez et al., 1984; Manzo et al., 2011). In spite of the unequivocal economic and societal 
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relevance of S. officinalis, functional information concerning its symbiotic community is 

scarce. Here, we employ S. officinalis as a model organism to quantitatively address the 

functional and taxonomic (dis)similarity between sponge, sediment and seawater microbiomes 

using shotgun metagenomic sequencing. To reveal the distinctive genomic features of the S. 

officinalis symbiotic consortium in the context of its natural environment, we used customized 

pipelines enabling differential abundance analysis of symbionts (i.e., Operational Taxonomic 

Units - OTUs - set at 97% 16S rRNA gene similarity) and predicted protein 

families/domains/sites (i.e. InterPro - IPR - entries) across the studied biotopes. Alternative 

analytical pipelines were used to verify the consistency of the major trends found, and to 

compare the S. offcinalis microbial metagenome with those of other sponge hosts. 

 

Materials and Methods  

 
Sampling and sponge identification 

Sampling of Spongia officinalis specimens (c. 10 g, n = 4), seawater (2L, n = 3) and sediments 

(c. 50 g of upper 5 cm layer, n = 3) took place in May 2014 by SCUBA diving at 20 m depth 

off the coast of Pedra da Greta (36º 58' 47.2N ;7º 59' 20.8W), Algarve, southern Portugal. 

Seawater samples were taken 1 m above the sponge specimens, while sediment samples were 

taken 1 m away from the sampled specimens. Underwater procedures and sample 

transportation were as described previously (Hardoim et al., 2012). Water pH was 8.13, 

temperature 18o C, and salinity 36.40 ‰. Sponge individuals were identified in the laboratory 

using standard macro- and microscopic morphological criteria (Hardoim et al., 2012). To aid 

the traditional identification of the specimens, phylogenetic inference of the subunit I of the 

mitochondrial cytochrome oxidase (CO1) gene was undertaken. To this end, total community 

DNA was directly extracted from 0.25g of the inner body of each specimen (see below). 

Amplification, sequencing and phylogeny of CO1 genes were performed using previously 

established procedures (Hardoim et al., 2012; Hardoim and Costa, 2014b). 

Microbial metagenomic DNA extraction and Next-Generation Sequencing (NGS)  

For the analysis of the sponge-associated endosymbiotic community, microbial cell pellets 

were retrieved from 2.5 g of the inner sponge body as detailed elsewhere (Hardoim et al., 2014). 

Briefly, cell homogenates obtained from the samples by maceration in calcium/magnesium free 

artificial seawater (CMFASW) (Garson et al., 1998) were subjected to a differential 

centrifugation step adapted from earlier protocols (Fieseler et al., 2006; Thomas et al., 2010). 
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Seawater samples (2L) were passed through 0.22 µM nitrocellulose membranes which were 

thereafter cut into small pieces, whereas 0.25g of sediment were retrieved from each sample 

after aseptic sieving (1 mm mesh) and thorough homogenization. All processed samples, 

including excised sponge pieces used for phylogenetic inference (see above), were stored at -

80 0C prior to total community DNA (TC-DNA) extraction with the UltraClean® Soil DNA 

isolation kit (MO BIO, Carlsbad, CA, USA) following the manufacturer’s instructions. TC-

DNA quantity and concentration were determined using the Qubit (Life Technologies Qubit 

2.0®) dsDNA HS Assay Kit. Next generation TC-DNA sequencing was performed on an 

Illumina Hiseq 2500 device at Mr. DNA (Shallowater, TX, USA). DNA libraries were prepared 

for sequencing using the Nextera DNA Sample preparation kit (Illumina) after the 

manufacturer's instructions, and sequenced paired end for 200 cycles with sequence depth 

calibrated at c. 15 million 101-bp reads per sample. 

 

Metagenome data processing 

Preliminary data processing and analysis revealed that, for most highly ranked taxa (domains, 

phyla, classes), no sensible changes in microbial community composition could be detected 

between assembled and unassembled data. However, assembly procedures often reduced 

considerably the total number of reads that could be used in downstream analysis, especially 

for sediment samples (Appendix I- File S1). Therefore, for the purposes of this study, we 

primarily employed complementary tools within the Meta-Genome Rapid Annotation using 

Subsystems Technology server (MG-RAST) v3.0 (Meyer et al., 2008) and the EBI 

Metagenomics platform (EMG) v2.0 (Mitchell et al., 2016) to deliver accurate metagenomic 

profiling from unassembled reads, making optimal use of all information generated by our 

sequencing effort. Prediction of cds, translation into protein sequences and annotation searches 

were performed using default settings in both MG-RAST and EMG (hard-coded data 

processing). Briefly, within MG-RAST gene calling was performed using FragGeneScan (Rho 

et al., 2010), and predicted cds were translated into proteins with clustering at 90% identity 

level using uclust (Edgar, 2010). Within the EMG pipeline, after quality filtering and length 

trimming, reads with rRNA sequences were detected using RNA Selector and subjected to 

taxonomic profiling using QIIME for OTU picking, clustering (at 97% gene similarity) and 

classification. Reads with rRNA masked were subjected to cd prediction using FragGeneScan, 

and predicted cds were finally processed with InterProScan for functional annotation against 

the InterPro database release 31.0, which integrates several protein sequence databases such as 

Pfam, TIGRFams and PANTHER, among others. 
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 With MG-RAST we extracted an “all domains-all reads” profile of microbiome 

structure based on all sequences (including “phylogenetic marker” and “functional” genes) that 

could be assigned a taxonomic origin. Sequencing reads were annotated using the best-hit 

annotation tool against the M5NR database (Wilke et al., 2012).  

The stringency of the BLAST parameter was a maximum e-value of 1e-5, a minimum 

identity of 60 %, and a minimum alignment length of 15 measured in aa for predicted proteins 

and in bp for RNA databases. A negligible amount (0.02%) of the reads obtained from S. 

officinalis specimens was assigned as of poriferan origin using MG-RAST, corroborating the 

efficiency of the microbial enrichment protocol used to process these samples. With the EMG 

data processing pipeline, we obtained taxonomic and functional profiles of the metagenomes 

based on 16S rRNA genes (archaeal, bacterial, and microeukaryotic - chloroplast and 

mitochondrial - operational taxonomic units - OTUs) and InterPro (IPR) protein domain 

entries, respectively, fetched from the data (Mitchell et al., 2016). Our downstream statistical 

analyses focused primarily on the OTU and IPR contingency tables delivered using the EMG 

pipeline given the high dominance of bacterial reads (> 95% of the classifiable reads) verified 

using MG-RAST, and the possibility to explore the widely integrative, comprehensive and 

updated InterPro protein sequence database (Finn et al., 2017). Complementary analyses on 

COG annotations derived from both unassembled and assembled data were performed, and are 

detailed below.  

 

Metagenome data analysis 

The contingency (OTU and IPR) tables extracted from the EMG data processing pipeline were 

imported into R version 3.2.4 (RCoreTeam, 2015) using the read.delim() function. Since 

differences in library sizes among samples did not require rarefaction of the data to the least 

sequenced samples (McMurdie and Holmes, 2014; Weiss et al., 2017) analyses were performed 

on the full OTU and IPR datasets after Hellinger transformation of the data. This procedure 

was found to perform better than using relative abundances alone to assess variability in IPR 

and OTU data across samples by preventing the emergence of false positives and down-

weighting the impact of very dominant IPR entries (usually representing primary metabolic 

traits) on the determination of most differentiating functional attributes among biotopes. 

Variation in taxonomic (OTU) and functional (IPR) microbial community structures across 

sediment, seawater, and sponge samples was assessed by principal coordinates analysis (PCoA) 

using Bray–Curtis dissimilarity matrices as input data within the cmdscale() function in R. 

Differences were tested for significance by permutational analysis of variance 
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(PERMANOVA) using the abovementioned matrices and the adonis() function within the 

VEGAN package, with the number of permutations set at 1000. Similarity Percentage 

(SIMPER) (Clarke, 1993) analyses were performed with the PAST software v. 3.14 (Hammer 

et al., 2001) to rank the individual contribution of each annotated OTU and IPR to total data 

variation in taxonomic and functional profiles, respectively. Analyses performed using 

Euclidean (instead of Bray-Curtis) distances led to equivalent outcomes and are available on 

request.  

Pairwise tests of significance were run to diagnose differences in IPR, OTU and phylum 

relative abundances among biotopes with the sim() function in R using Hellinger-normalized 

data as input. Heat maps were generated to display the top, most differentiating microbial 

phyla, OTUs and IPR entries (identified via SIMPER analyses) using the heatmap2() function 

in the gplots package within R. Additionally, we manually inspected all IPR entries oscillating 

significantly among the biotopes to identify potential “umbrella” functions of likely ecological 

and evolutionary relevance for sponge microbiome assembly, including traits usually regarded 

as “specific” genomic signatures of sponge symbionts, and assessed the cumulative 

contribution of all IPR entries belonging to these so-created, major functional categories in 

distinguishing between the biotopes. To test whether abundance values of major functional 

categories assembled manually (Figure 2-5) varied significantly among the biotopes, the 

Shapiro-Wilk statistics was computed in R to inspect the distribution of each measure around 

means. Thereafter, one-way ANOVA was performed followed by an all pairwise multiple 

comparison procedure using the Tukey’s HSD (honest significant difference) test. For non-

normal distributed data, Kruskal-Wallis one-way analysis of variance by ranks was employed 

followed by post-hoc kruskal nemenyi tests for pairwise multiple comparisons. The same 

strategy was applied to test for differences among Bray-Curtis dissimilarities between samples, 

calculated for both IPR and OTU data (Table 2-1). 

 

Alternative analytical pipelines and data validation 

Besides the core analyses described above using EMG taxonomic and functional profiling of 

unassembled reads, we performed COG-based annotations of both unassembled and assembled 

reads on MG-RAST. Assembly of metagenomes was carried out using MetaVelvet (Namiki et 

al., 2012) with default parameters. Thereafter, assembled and unassembled data were processed 

within MG-RAST as described above. Predicted protein sequences were searched against the 

COG database (Tatusov et al., 2003) using a maximum e-value of 1e-10, minimum identity of 

60 %, and minimum alignment length of 15 aa. The resulting COG vs. samples tables, for 



Microbial metagenomics of Spongia officinalis 
 

 36 

unassembled and assembled data, were then subjected to ordination analysis using Hellinger 

transformation and PCoA, as described above, to test whether COG profiles were different 

according to their origin (that is, S. officinalis, seawater and sediments). To contrast the 

functional profiles retrieved from S. officinalis with those obtained for other sponge hosts, we 

downloaded the COG annotations available on MG-RAST describing the microbiomes of 

Rhopaloeides odorabile (id: mgm4530290.3), Cymbastela concentrica (id: mgm4530252.3) 

and Cymbastela coralliophila (id: mgm4530427.3)(Fan et al., 2012) and merged them with 

COG annotations retrieved in this study in a single file. Only assembled data were used in this 

comparison. The resulting COG vs. samples matrix was subjected to ordination analysis after 

Hellinger data transformation as delineated above. Venn diagrams were constructed using 

Venny 2.1.0 (Oliveros, 2007) to count the number of specific and shared COGs across the four 

analysed sponge species. Finally, the COGs assigned to the microbiomes of all four sponge 

species were lumped together and subjected to SIMPER analysis against sediment and seawater 

metagenomes to rank COG entries contributing the most to differentiate between sponge (all 

species), sediment and seawater biotopes. All results deriving from these analyses are described 

in detail as supplementary material (Appendix I- File S1). 

 

Nucleotide sequence accession numbers  

Sponge CO1 sequences were deposited in the National Center for Biotechnology Information 

(NCBI) under the accession numbers KX574847 to KX574851. All metagenomes are 

accessible through the MG-RAST (project ID:13419_021215RCmetagenomes) and EMG 

platforms (project #ERP012972), and were deposited in the European Nucleotide Archive 

(ENA) under the accession numbers ERR1103453 to ERR1103462. 

 

Results 

 
Sponge identification 

Sponge specimens were identified as Spongia officinalis (Linnaeus, 1759) based on macro- 

and microscopic morphology coupled with phylogenetic inference of the subunit 1 of the 

mitochondrial cytochrome oxidase (CO1) gene. Analysis of CO1 diversity (Appendix I- 

Figure S1) revealed 100% homology between the nucleotide sequences of our specimens and 

the Mediterranean (“MEDIT”) S. officinalis haplotype (GenBank accession no. HQ830362) as 

defined elsewhere (Dailianis et al., 2011). 
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Microbial metagenomes - dataset overview 

About 15 million paired-end reads (including forward and reverse reads) of 100 nucleotides in 

length were generated per sample, totaling 15.25 Gb of sequencing information (Appendix I- 

Table S1). Quality filtering and length trimming of reads using the EBI metagenomics pipeline 

(EMG) resulted in 103,104,001 high-quality reads (averaging 10,310,400 reads per sample) 

effectively used in downstream analyses (Appendix I- Table S1). Overall, 20 - 22% of the 

reads per sample could be assigned a function (i.e. IPR category) after ORF prediction and 

annotation with EMG, resulting in 22,156,186 annotated coding sequences (CDs) across the 

data, which constituted the functional analytical dataset. The number of annotated CDs per 

sample ranged from 1,808,840 to 2,446,913 reads (Appendix I- Table S1) totaling 10,272 IPR 

domains detected. The taxonomic analytical dataset consisted of 53,551 prokaryotic 16S rRNA 

gene reads identified from the data using the RNA Selector tool coupled to QIIME-driven 

operational taxonomic units (OTUs) picking and taxonomic assignment. 16S rRNA gene reads 

were assigned to 784 operational taxonomic Units (OTUs) in total. Details pertaining to COG 

annotations performed with MG-RAST can be found in Appendix I. 

 

Functional and taxonomic ordination 

Principal Coordinates Analysis (PCoA) performed on Bray-Curtis dissimilarity matrices 

calculated from normalized data revealed that sediments, seawater and S. officinalis harbor 

highly divergent microbial communities at the finest functional (IPR entries) and taxonomic 

(16S rRNA gene OTUs) levels of resolution (Figure 2-1). Sponge and seawater microbial 

communities presented the highest levels of divergence at both the functional and taxonomic 

levels, whereas sponge and sediment microbiomes shared the highest extent of functional (IPR) 

equivalence (Table 2-1). Between-biotope community distances were significantly higher than 

within-biotope distances in all possible combinations (Table 2-1) corroborating the consistent 

trends obtained by ordination analysis (Figure 2-1). Highly divergent functional profiles from 

sediment, seawater and S. officinalis microbiomes could as well be depicted using COG 

annotations of assembled and unassembled data (Appendix I). However, the significantly 

closer similarity between sponges and sediments observed with IPR functional profiling (Table 

2-1) could not be re-verified employing COG annotations with MG-RAST (see Appendix I 

for details).  
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Figure 2-1. Principal Coordinate Analysis (PCoA) of taxonomic (A) and functional (B) microbial 
community profiles across biotopes. Community ordinations were based on pairwise Bray-Curtis 
dissimilarities (Table 2-1) calculated from normalized data, considering oscillations of relative OTU 
and IPR abundances among samples. Analyses were performed on OTU and IPR community profiles 
extracted from the 10 metagenomes using the EBI metagenomics (EMG) pipeline. Values on axes 
denote the extent of variation explained by each principal coordinate, whereas the total variation 
explained in the ordination space is indicated in the inlet. Significance values result from 
permutational analysis of variance (PERMANOVA) applied to the corresponding dissimilarity 
matrices. 

 

 
Table 2-1.Functional (IPR) and taxonomic (OTU) community dissimilarities calculated between- and 
within-biotope samples. Shown are average Bray-Curtis dissimilarity values ± standard deviations. 
Within each row, values tagged with different letters are significantly different (p < 0.05) according to 
One-Way ANOVA, except for the OTU-based comparison between biotopes where non-parametric 
ANOVA on Ranks was used. 

Between sponge vs. seawater sponge vs. sediment sediment vs. seawater 
IPRs 0.280 ± 0.020 a 0.222 ± 0.016 b 0.252 ± 0.028 c 
OTUs 0.827 ± 0.015 a 0.718 ± 0.017 b 0.664 ± 0.030 b 
Within sponge seawater sediment 
IPRs 0.091 ± 0.027 a 0.043 ± 0.002 b 0.076 ± 0.031ab 
OTUs 0.320 ± 0.027 a 0.196 ± 0.017 b 0.326 ± 0.047 a 
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16S rRNA gene taxonomic profiling 

OTUs established at 97% 16S rRNA gene similarity were fetched with the EMG pipeline (see 

Materials and Methods for details) and used in taxonomic profiling. The S. officinalis symbiotic 

consortium was characterized by a relatively even distribution of diverse and dominant 

bacterial phyla, namely Proteobacteria, Bacteroidetes, Poribacteria, Chloroflexi, 

Actinobacteria, Acidobacteria and Gemmatimonadetes, with 33 prokaryotic phyla (one 

archaeal, 32 bacterial) being detected across all sponge individuals (Appendix I- Table S2A). 

In contrast, Proteobacteria and Bacteroidetes dominated the seawater microbiome, followed 

by Cyanobacteria and phytoplankton. The former were also the most abundant phyla in 

sediments, along with an enormous variety of less abundant groups among which 

Planctomycetes, Crenarchaeota, Actinobacteria, Acidobacteria and Verrucomicrobia 

prevailed. All above-mentioned phyla significantly contributed to data variation among the 

three inspected biotopes (Figure 2-2) (p < 0.05, Appendix I- Table S3A). 

We detected 293, 607 and 341 16S rRNA gene OTUs in sponges, sediments and 

seawater, respectively (Appendix I- Table S2B). Corresponding to 63.8% of all 16S rRNA 

gene reads from sponges, the ten most abundant OTUs from S. officinalis were, without 

exception, remarkably enriched in the sponge host, showing much lower abundances in the 

environmental vicinities (Appendix I- Table S3). Noteworthy in this regard was OTU 399 

belonging to the canonical sponge-enriched phylum Poribacteria. It dominated the S. 

officinalis microbiome accounting for 11% of all 16S rRNA genes retrieved from this source, 

ranking as the second OTU contributing the most to the total phylogenetic divergence 

computed in the taxonomic dataset (Appendix I- Table S3B). The 25 most dominant S. 

officinalis OTUs comprised 86.9% of all sponge-associated 16S rRNA reads. These OTUs 

encompassed a cocktail of as-yet uncultivable phylotypes in the dominant phyla mentioned 

above, besides less-abundant lineages belonging to Nitrospirae and the candidate groups 

PAUC39f, SBR1093 and AncK6. All these OTUs could be considered typical S. officinalis 

endosymbionts not only because of their high abundance but also sharp enrichment in numbers 

within the host in comparison with the environment (Figure 2-3) (Appendix I- Tables S2 and 

S3). Remarkably, this highly selected group of symbionts consistently displayed, with only a 

few exceptions, greater residual abundances in sediments than in seawater (Appendix I- Table 

S3).  
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Figure 2-2. Heat map of the most differentiating microbial phyla across biotopes based on OTU data. 
Shown are the 17 phyla whose (OTU) relative abundances were found to oscillate the most among 
biotopes, explaining > 85% of the variation in phylum distributions. The dendrogram clusters phylum 
entries according to their abundance distributions across biotopes, labeled at the bottom of the 
diagram. Red squares show higher relative abundance values than the mean, whereas grey squares 
show lower relative abundance values than the mean. Within each phylum, color intensities are 
determined as a linear function of the Z-score calculated for each phylum abundance value as the 
subtraction of that value by the mean divided by the standard deviation around that mean (Z=(x-
mean)/sd). SP230-SP233, sponge microbial metagenomes; Sd, sediment metagenomes; Sw, seawater 
metagenomes. 

Particularly, OTUs 40 and 37, representing uncultured lineages in the Acidimicrobiales 

(Actinobacteria) and Sva0725 (Acidobacteria) clades, ranked among the top-25 most abundant 

OTUs of the complex sediment communities (Appendix I- Table S3). In addition, the three 

most dominant S. officinalis gammaproteobacterial symbionts (OTUs 621- order 

Chromatiales, 690 - order Thiotrichales and 639 - order HTCC2188) displayed equivalent or 

even higher abundances in sediments (Appendix I- Table S3). Conversely, the very dominant 

OTUs in seawater, essentially representing a mix of Flavobacteriia, Alphaproteobacteria and 

Gamaproteobacteria phylotypes, were all markedly de-selected in the sponge host except for 

OTU 442 (uncultured Rhodobacteraceae, the second most abundant seawater phylotype), 

which was the 5th and 14th most abundant OTU in sediments and sponges, respectively 

(Appendix I- Table S3).   
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Figure 2-3. Heat map of the most differentiating OTUs across biotopes. Shown are the 31OTUs (97% 
cut-off) found to oscillate the most among biotopes, explaining > 32 % of the variation in the OTU 
dataset. Heat map details are as in legend to Figure 2-2. 

 
 
IPR Functional profiling 

From the 10,272 IPRs detected throughout the functional dataset using the EMG data 

processing pipeline (see Materials and Methods for details), 6046 were present in all biotopes, 

whereas 234, 695, and 1130 were specific to S. officinalis, seawater and sediments, 

respectively. However, 8325 IPRs displayed significantly different (p < 0.05) abundance 

values (normalized data) among at least two biotopes (Appendix I- Table S4), further 

substantiating the disparate functional assembly among the studied microbiomes (Figure 2-1). 

Due to the high complexity of the functional profiles and the thousands of IPR entries found to 

vary among biotopes, we used SIMPER analysis to rank those IPRs contributing the most to 

the total dataset variation (Appendix I- Table S4). A heat map of the 44 IPR entries varying 

the most across the biotopes, found to explain > 5% of (normalized) IPR abundance oscillations 

altogether, is shown (Figure 2-4). This group comprised several IPR entries contrasting the 

ecological and evolutionary contexts of the surveyed biotopes. Several functional traits 

strongly selected in the S. officinalis microbiome could be pinpointed, the majority of which 
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showing higher residual abundances in sediments than in seawater. These included a series of 

eukaryotic-like protein (ELPs) repeats (namely, WD40, leucine-rich, tetratricopeptide and 

ankyrin repeats, in this order) which remarkably populated the top-oscillating IPRs list (Figure 

2-4 and Appendix I- Table S4), along with luciferase-like, TolB-like beta propeller, ABC-

transporter type 1, several transposases, and cytochrome P450 and CoA transferase III domain 

entries, among others (Figure 2-4).  

 

 
Figure 2-4. Heat map of the 44 most differentiating IPR entries across biotopes. The dendrogram 
clusters IPR entries according to their abundance distributions across biotopes, labeled at the bottom 
of the diagram. Heat map details are as in legend to Figure 2-2. 

 

Worth mentioning among IPR entries more abundant in sediments were the GGDEF and EAL 

domains involved in synthesis and degradation of cyclic di-guanylate (c-di-GMP), known to 

regulate key cell physiology and life-style features such as motility, biofilm formation and 

virulence factors. Manual inspection of thousands of IPR entries contributing significantly to 

data variation (Appendix I-Table S4) allowed us to single out a number of “umbrella” 
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functions (each encompassing several IPR entries) presenting sharply different abundances 

among the biotopes (Figure 2-5 and Appendix I- Figure S2). This approach clearly depicted 

the collective enrichment, in the S. officinalis microbiome, of all IPR entries classified into the 

above-mentioned ELPs (Appendix I- Figure S2), and those representing the coding of 

CRISPR-Cas, restriction endonucleases, plasmids, polyketide synthases, terpene/terpenoid 

synthases, Type IV secretion proteins and ABC transporters (Figure 2-5). Most of the observed 

sponge-enriched functional attributes showed, to varying degrees, significantly higher 

abundances in sediments than in seawater (Figures 2-5 and Appendix I- Figure S2), except 

for the ABC transporters category, which includes both import and export transporters, and the 

restriction endonucleases category, more abundant in seawater than in sediments. Particularly, 

we uncovered striking diversity of both CRISPR-Cas and restriction endonuclease CDs from 

the S. officinalis microbiome (42 and 50 IPR entries, respectively). Restriction endonuclease 

reads represented, collectively, about 0.19% of the total number of annotated reads from S. 

officinalis, exceeding the relative abundance of CRISPR-Cas elements (0.11%) in these 

samples. Highly abundant in both sponge and sediment metagenomes were sulfatases, involved 

in the utilization of organic sulfated compounds, whereas type II secretion proteins involved in 

virulence were pronouncedly enriched in sediments metagenomes (Figure 2-5). Finally, 

predicted proteins involved in motility and chemotaxis were much more prevalent in sediments 

and seawater than in S. officinalis (Figure 2-5). While gliding and fimbriae types of motility 

were abundant in seawater, flagellar motility traits were more abundant in sediments. 

 

Functional conservation among Spongia officinalis and other sponge hosts 

To verify the extent to which the microbial metagenome of S. officinalis resembles those of 

other sponge hosts regarding their functional attributes, we used MG-RAST to compare the 

COG profiles obtained in this study (using metagenome reads assembled with MetaVelvet - 

see Appendix I) with those retrieved by Fan et al. (2012) for Rhopaloeides odorabile, 

Cymbastela concentrica and Cymbastela coralliophila. In spite of the large geographical 

distance between sampling sites and of the different sampling, sequencing, and data processing 

methods utilized in both studies, ordination analysis revealed a gradient in COG functional 

profiles corresponding to the phylogenetic relatedness of the hosts, with S. officinalis and R. 

odorabile (order Dictyoceratida) being placed closer to one another in the ordination diagram 

and farther apart from C. concentrica and C. coralliophila (order Axinellida) (Appendix I). 

The functional profiles of marine sponges, when pooled into one major group, differed 

significantly from those of seawater and sediment microbiomes. A high degree of functional 
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conservation, at the COG-level, was observed among the sponge hosts, with 62.7% of all COGs 

listed being shared by the four species. Furthermore, sponges were collectively found to share 

more COGs in common with sediments than with seawater (Appendix I- File S1). SIMPER 

analysis (Appendix I- Table S5) revealed that several of the common, enriched sponge 

symbiont functions were re-verified to contribute sharply to distinguish sponge from seawater 

and sediment metagenomes as observed in the analysis of S. officinalis IPR profiles. 

Particularly relevant in this regard were restriction-modification systems (i.e. restriction 

endonucleases), site-specific and adenine-specific DNA methylases, ABC transporters and 

plasmid-maintenance systems (Appendix I- Table S5). As determined in the analysis of IPR 

profiles, sulfatases were abundant in both sponge and sediment metagenomes, whereas Type 

II secretion proteins were more abundant in sediments (Appendix I- Table S5).  

 

All domains-all genes taxonomic profiling using MG-RAST 

Within MG-RAST, we performed a taxonomic assessment, primarily at the domain level, 

taking all gene reads (and not only 16S rRNA gene reads) that could be taxonomically classified 

into account, enabling us to determine the distribution of major groups (i.e. domains and 

viruses) across the biotopes in a more comprehensive fashion. In all biotopes, bacteria were 

clearly the most dominant group, comprising over 95% of all classifiable gene reads 

(Appendix I- Figure S3). While archaea were less represented in seawater (c. 0.18% of 

classifiable reads) than in sponges (1.6 - 3.9%) and sediments (1.7 - 3.2%), eukaryotic reads 

were slightly more abundant in the former biotope (3.11 - 4.36% of classifiable reads) than in 

the latter (2.12 - 2.39% and 2.04 - 2.32% in sponges and sediments, respectively). In spite of 

their minor representativeness across the entire dataset in terms of read numbers, from among 

all analyzed groups, viruses were found to oscillate the most in relative abundance among 

biotopes, displaying up to 13-fold higher abundances in seawater than in sponge and sediment 

samples (Appendix I- Figure S3).   
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Figure 2-5. Abundance distributions of broad functional categories across biotopes. Values on the 
y-axis represent mean cumulative IPR relative abundances (%) in each biotope ± standard deviations. 
ABC transporters - 19 IPR entries used in plot construction; Plasmids - 10 IPR entries; Polyketide 
synthases - 1 IPR entry; Type IV secretion - 6 IPR entries; CRISPR-Cas - 43 IPR entries, Motility - 
8 IPR entries involved in gliding and fimbriae-based motility; Flagellum, 56 IPR entries involved in 
flagellum assembly and motility; chemotaxis - 5 IPR entries; Type II secretion proteins -13 IPR 
entries; Terpene/Terpenoid biosynthesis - 3 IPR entries; Restriction endonucleases – 68 IPR entries; 
Sulfatases - 4 IPR entries. All IPR entries can be identified in Appendix I-Table S4. Results of the 
general test for differences among biotopes are shown at the top of each chart, below the label of 
each analyzed function. One-Way ANOVA with F statistics results are shown for normally 
distributed data, whereas ANOVA on Ranks results are shown for data distributions that did not pass 
normality tests. Bars labeled with different letters represent statistically distinct biotopes in terms of 
IPR relative abundances according to post-hoc pair-wise tests of significance. 

 

 

Discussion 
The taxonomic distinctiveness of the S. officinalis symbiotic consortium in comparison with 

those from its neighboring biotopes can be readily observed at the phylum level (Figure 2-2, 

Appendix I- Table S2). Consistent with primer-based studies undertaken for other keratose 

sponges off the Algarve coast (Hardoim et al., 2014; Hardoim and Costa, 2014b) and also from 

the Mediterranean Sea (Erwin et al., 2012a; Pita et al., 2013) and the Great Barrier Reef 

(Webster et al., 2010), this community is primarily made of a complex mix of so-far 

uncultivable, sponge-enriched symbiotic bacteria. Owing to our comparative experimental 

design, we gathered compelling evidence for higher sponge symbiont abundances in sediments 
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than in seawater, revealing an unexpected pattern of distribution of these microorganisms 

across marine biotopes and extending previous knowledge gained on their occurrence, at very 

low abundances, in the bacterioplankton (Webster et al., 2010; Webster and Taylor, 2012). 

Particularly, we identified one possible “generalist par excellence” bacterium in the 

Rhodobacteraceae clade (OTU 442) which, although clearly being a profuse member of 

seawater communities, likely performs well both in sediments and sponges. Further, the high 

prevalence of sponge-enriched Acidobacteria (especially Sva0725 phylotypes), Actinobacteria 

(Acidimicrobiales phylotypes) and Gammaproteobacteria (several different orders) in 

sediments adds further layers of complexity to our understanding of sponge symbiont 

occurrence in the marine realm. Future cultivation-independent, genome-wide studies targeting 

the adaptive features of these lineages not only hold promise in revealing their likely roles in 

the sponge endosymbiotic consortium, but may also improve our view of the genetic traits 

underpinning the persistence of sponge symbionts in the open environment, and consequently 

of the evolutionary and ecological forces that mediate the dispersal and community assembly 

of marine sponge symbionts. However, specific studies aiming at uncovering the potential 

metabolism, linking identity and function, of foundational sponge-associated bacteria are still 

relatively scarce. SCG and cultivation-independent genome binning from metagenomes have 

been proven useful in this regard, unveiling e.g. halogenation capacities within sponge-

associated Chloroflexi, Actinobacteria and Poribacteria spp.(Bayer et al., 2013), non-

ribosomal peptide biosynthesis potential within the Chloroflexi (Siegl and Hentschel, 2010) 

and multiple adaptive features of the keystone sponge-associate cyanobacterium 

Synechococcus spongiarium (Gao et al., 2014; Burgsdorf et al., 2015). Recently, the ability of 

several, so-far uncultivable sponge symbionts to utilize carnitine, a quaternary ammonium 

compound regularly present in the mesohyl matrix of sponges, has been revealed, suggesting 

parallel adaptation of multiple lineages to a common resource within the in-spongia microniche 

(Slaby et al., 2017). Our taxon-independent, primer-less sequencing approach revealed a 

pronounced dominance of one Poribacteria OTU in S. officinalis. It is therefore reasonable to 

argue that some of the potential metabolic features recently revealed for poribacterial 

symbionts by means of SCG (Siegl and Hentschel, 2010; Siegl et al., 2011; Kamke et al., 2013) 

are likely to mediate major bioprocesses and molecular interactions within the S. officinalis 

endosymbiotic consortium. These features include, among others, polyketide biosynthesis 

capacities (possibly involved in host’s chemical defense), a vast, specialized carbohydrate 

degradation repertoire (considered pivotal to host’s nutrient provision), and enrichment of 

eukaryotic-like repeat proteins (e.g. TRPs, ANKs, LRRs, usually considered to enable 
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symbionts to evade phagocytosis by the host) all of which could be verified, from our 

community functional profiles, as characteristic of the S. officinalis microbial metagenome. 

Because these attributes have been commonly verified in diverse sponge symbiont lineages 

(Slaby et al., 2017), it can be argued that they contribute significantly to the observed difference 

in taxonomic assembly between sponges, sediments and seawater observed here. 

One important finding in this study was the observation that several of the features 

identified as genomic signatures of the S. officinalis microbiome displayed higher abundances 

in sediments than in seawater. Among these traits we highlight IPR entries underlying the 

coding of an array of eukaryotic-like proteins (ELPs) or involved in plasmid assembly, stability 

and conjugative transfer (e.g. plasmid replication, toxin-antitoxin systems and type IV 

secretion IPRs), secondary/cytotoxic metabolite biosynthesis (e.g. polyketide and 

terpene/terpenoid synthases, TolB-like and cytochrome P450 IPRs), remediation of oxidative 

stress (a luciferase-like domain), organic carbon utilization (e.g. sulfatases) and literally 

hundreds of other individual IPR entries (Figure 2-5, Appendix I- Figure S2 and Table S4). 

Therefore, some of the features previously regarded as “unique” adaptations of the sponge 

symbiotic consortium may be well represented in other marine settings. Below, we give 

emphasis to the abovementioned functions and discuss their patterns of occurrence across 

bacterial genomes and the marine biotopes studied here.   

 Inspection of the IPR entries contributing the most to variation in the functional dataset 

(Figure 2-5) revealed the consistent prevalence of ELPs (TRPs, ANKs, LRRs and WD40) 

among the most sensitive IPRs differentiating the studied biotopes, all of which were enriched 

in S. officinalis (Appendix I- Figure S2). The abundance of TRPs and ANKs in sponge 

microbiomes has been well documented (Thomas et al., 2010; Fan et al., 2012), and a role for 

these ELPs in preventing phagocytosis of bacterial symbionts by the sponge host has been 

proposed (Nguyen et al., 2014; Reynolds and Thomas, 2016). In the present study, contrary to 

previous reports addressing other sponge hosts (Thomas et al., 2010; Fan et al., 2012), WD40 

repeats were by far the most abundant ELPs in the S. officinalis microbiome, with several 

entries varying markedly in abundance across the surveyed biotopes (Figure 2-4, Appendix I- 

Table S4). WD40 repeats are regarded as prevalent in eukaryotes and uncommon in 

prokaryotes, and act as a protein-protein or protein-DNA platforms to allow for various protein 

complex assemblies in cellular metabolism (Xu and Min, 2011; Wang et al., 2015). However, 

evidence from this study and elsewhere (Díez-Vives et al., 2016; Reynolds and Thomas, 2016) 

is now accumulating for a broad distribution of these motifs among sponge symbiotic bacteria, 

offering a new angle from which the spread of these macromolecule network hubs can be seen 
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throughout the tree of life. Collectively, the presence of ELPs in prokaryotic genomes has been 

interpreted as suggestive of lateral host-microbe gene transfer given their presumed eukaryotic 

origin (Horn et al., 2016). Recently, ELPs were shown to be positively expressed in sponge 

microbial metatranscriptomes (Díez-Vives et al., 2016), supporting their likely importance in 

mediating cell-cell interactions within the sponge holobiont. In particular, the expression of 

WD40 repeats was found to be associated with domains of the Tol-dependent translocation 

system, which is involved in outer membrane integrity, cell invasion and, eventually, 

pathogenesis of Gram-negative bacteria, suggesting a pivotal role of these repeats in host-

microbe interactions (Díez-Vives et al., 2016). The enriched abundance of both WD-40 repeats 

and one TolB-like domain (IPR011042) in the S. officinalis microbial metagenome speaks for 

distinguishing host colonization capacities and/or virulence potential within this symbiotic 

consortium. 

 Polyketides have been intensively studied as sponge-derived natural products whose 

biosynthesis is primarily mediated by bacteria (Piel, 2002; Piel et al., 2004; Wilson et al., 2014), 

and are thought to play a role in defense of the sponge host against natural enemies, as 

demonstrated for the bryozoan host Bugula neritina (Lopanik et al., 2004). Terpenes and 

terpenoids, in their turn, encompass a large class of natural products commonly regarded as of 

fungal and plant origin whose biosynthesis by bacteria is attracting increasing research interest 

(Yamada et al., 2015). The most abundant IPR entry related with terpene/terpenoid 

biosynthesis in S. officinalis (IPR008930) corresponds to a family of terpenoid cyclases/protein 

prenyltransferases responsible for a wide chemodiversity of terpenoid natural products 

(Christianson, 2017). Considering the broad distribution of terpene/terpenoid systhase genes 

across bacterial genomes (Yamada et al., 2015), it is tempting to argue that terpenoid 

biosynthesis in S. officinalis, and marine sponges in general, could be as well mediated by 

bacterial symbionts, emerging as a further mechanism possibly conferring host defense against 

natural enemies or mediating microbe-microbe interactions within the sponge host. Likewise, 

cytochrome P450 enzymes (IPR001128) are a superfamily of monooxygenases presenting 

broad substrate spectrum, being widespread in all domains of life. Particularly in bacteria, they 

are important in the biosynthesis of secondary metabolites such as erythromycin, and bear 

potential for applications in synthetic biology and the pharmaceutical industry (Girvan and 

Munro, 2016). Taken together, these observations suggest high microbially-driven chemical 

complexity within the Spongia officinalis holobiont. Such a vast secondary metabolite 

repertoire may play pivotal roles in microbiome community assembly, host-symbiont signaling 

and host defense. Widely known for their key role in bioluminescence, bacterial luciferases are 
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flavin monooxygenases which incorporate or reduce molecular oxygen in redox reactions, and 

may have originally evolved as enzymes responsible for reactive oxygen species (ROS) 

detoxification (Szpilewska et al., 2003). The sharp enrichment of this trait in the S. officinalis 

microbiome, followed by sediments, leads us to posit that these enzymes may primarily act as 

anti-oxidant agents in these particular settings, along with other anti-oxidant enzymes known 

to be enriched in sponges such as glutathione peroxidases (Thomas et al., 2010), observed here 

to possess high abundance in both sponges and sediments (Appendix I- Table S4, IPR 

IPR000889). Enrichment in sulfatases/aryl sulfatases have been suggested as a specialization 

of marine sponge symbionts enabling them to utilize sulfated polysaccharides from the host’s 

extracellular matrix (Slaby et al., 2017). Sulfatase-encoding genes were abundant not only in 

the S. officinalis (Appendix I- Table S4, Figure 2-5) metagenome, but ranked as one major 

genetic signature of several sponge-associated microbiomes (Appendix I- Table S5). Here, 

we reveal that this trait is equivalently enriched in both sponge and sediment biotopes in 

comparison with seawater, providing evidence for the common selection of fundamental 

nutrient acquisition capacities in phylogenetically contrasting microbiomes. In the context of 

the marine sponge holobiont, sulfatases are supposed to be involved in nutritional exchange 

between host and microbes, playing a vital role in the cycling of sulfur within the animal. 

Altogether, the outcomes delineated above indicate closer resemblance in functional 

attributes between sponges and sediments than sponges and seawater: a hypothesis 

corroborated by Bray-Curtis dissimilarity measures calculated for the three biotopes based on 

the whole array of 10,272 IPR entries uncovered from the data (Table 2-1). However, the 

quantitative trend revealed with whole functional profiles must be considered with caution 

since statistical significance varied depending on data processing methodology and on the 

reference database employed (Appendix I). Importantly, the level of phylogenetic disparity 

between all microbiomes was high (Table 2-1) in spite of our observation for higher residual 

symbiont abundances in sediments than in seawater (see above). Therefore, it is likely that 

surface sediments and endosymbiotic sponge communities, although being chiefly composed 

by different microbial populations (especially regarding their very dominant members) display 

a certain degree of independent functional convergence. This prompts us to argue that selective 

pressures common to particle- and host-associated modes of living constitute an important 

evolutionary force shaping functional assembly in marine biomes. Several factors, ranging 

from cell-cell interactions to availability (in quality and quantity) of solid surfaces for cell 

attachment to modes of symbiont acquisition and release by sponges, may contribute to the 

observed trends. Microbial cell densities alone, known to be about three orders of magnitude 
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higher in coastal sediments (Schmidt et al., 1998) and in Dictyoceratida sponges (Hardoim et 

al., 2012) than in seawater, may be a key factor promoting genetic exchange and adaptive 

features likely to prevail in the former biotopes. In highly dense circumstances, gene clusters 

involved in the biosynthesis of natural products such as polyketides and terpenes - or more 

specifically terpene-quinones very often enriched in Dictyoceratida species such as S. 

officinalis (Gordaliza, 2010; Manzo et al., 2011; Li et al., 2017) - are likely to confer selective 

advantage to its carriers. Similarly, strategies to neutralize cytotoxic effects are likely to elicit 

a selective advantage in communities where inhibitory compounds abound. ABC transporters 

(Figure 2-5) comprise a large family of bacterial trans-membrane proteins mediating the 

import and export of small and large-sized molecules throughout the cell, and may play a 

fundamental role as detoxifying agents permitting microbial survival in competitive 

microniches. Particularly, we found permeases within the ABC transporter category (e.g. IPRs 

001851, 0038381 and 025966, Appendix I- Table S4) with presumed, manifold detoxifying 

functions commonly abundant in sponges and sediments. Polyketide synthases, type IV 

secretion and ABC transporter-encoding genes have all been detected on plasmids from several 

microorganisms (Stinear et al., 2004; Kadlec and Schwarz, 2009; Bruto et al., 2017). The 

prevalence of these genes along with the higher incidence of plasmid, transposase and ELP-

encoding genes (which by themselves speak for greater genetic exchange potential) in the S. 

officinalis microbiome, followed by sediments, hints at a possible convergent selection of these 

traits in phylogenetically divergent microbial communities. Future studies aiming to define the 

gene content of the community of circular plasmids present in marine sponges will certainly 

shed new light on the functional features more likely to traffic about in the mobile gene pool 

within the Porifera.  

Physical connectivity between sponges and sediments, although usually given less 

importance in microbiology studies than seawater intake via filtering, takes place by the capture 

of particulate organic matter and particles in suspension by the sponge host (Schönberg, 2016). 

In addition, loss of sponge cells through shedding and sponge-expelled detritus, both found to 

be significant processes in sponge cell turnover (Alexander et al., 2014), may act as substantial 

inputs of sponge-associated microorganisms into superficial sediment layers. Thus, marine 

sediments may serve as both sources and sinks of sponge-associated microorganisms, but the 

magnitude and relevance of this exchange remains to be addressed. The moderate abundance 

of a few dominant sponge symbionts in sediments indicates that these bacterial lineages, if not 

optimal performers, are capable of persisting - for undetermined periods - at considerable 

densities in this alternative habitat, thereby enhancing their probability of future lateral 
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acquisition by the sponge host. Identifying an active role beyond environmental endurance for 

these lineages in the complex microbiome of marine sediments is challenging. It is known that 

several factors such as seawater temperature and the composition and age of biofilm and 

biofouling communities are decisive for invertebrate larval settlement in benthic ecosystems 

(Hadfield, 2011; Whalan and Webster, 2014). Therefore, it could be argued that increased 

inter-domain signaling between host larvae and a seeding community of competent sponge 

associates on particulate/hard substrate - or microbe-microbe signaling in such circumstances 

- may contribute to higher larval settlement rates in favorable microniches, promoting the 

selection, on the sea floor, of sponge symbiont lineages able to persist in the open environment. 

Contrasting the trends discussed above, microbial genes involved in motility and 

chemotaxis were altogether more prevalent in seawater and sediment communities, and much 

less abundant in the sponge host. The ability to move and orchestrate movement in response to 

chemical cues and gradients are widely acknowledged as imperative mechanisms dictating the 

distribution of microorganisms in the oceans (Stocker and Seymour, 2012) and as 

quintessential features of host-associated bacteria (Wadhams and Armitage, 2004; Rawls et al., 

2007). Here we show that the S. officinalis endosymbiotic consortium displays low abundance 

of genomic features involved in chemotaxis and flagellar, gliding and fimbriae-based motilities 

when compared to its surrounding environment, supporting the idea that loss of motility may 

be common among prevalently vertically transmitted symbionts (Bright and Bulgheresi, 2010). 

Or, alternatively, for symbionts whose mode of acquisition by the host is rather passive from 

the microbial standpoint. Particularly relevant in distinguishing sediments from sponges and 

seawater regarding the regulation of virulence and motility were the higher abundances of 

GGDEF and EAL protein domains and of Type II secretion proteins in sediments. The above-

mentioned domains modulate the concentrations of cellular cyclic-di-GMP, a signaling 

molecule involved in the regulation of biofilm formation, virulence, motility and cell surface 

adhesiveness in Gram-negative bacteria (Argenio and Miller, 2004). Indeed, increased cellular 

c-di-GMP was found to promote Type II secretion activity in Vibrio cholerae  (Beyhan et al., 

2006). Therefore, signal transduction via c-di-GMP and its modulation appears to be a 

determining factor in shaping the virulome of marine sediments in a singular fashion. 

Considering the S. officinalis endosymbiotic consortium, it is likely that this community 

essentially consists of “sit-and-wait” performers regarding their nutrient foraging strategies, 

especially if it is assumed that filtering activity alone is responsible for the total import and 

distribution of organic carbon and energy into the host. Our dedicated sampling of the inner 

sponge body disregards the profuse and complex community of epibionts known to populate 
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the pinacoderm of keratose sponges, where photosynthetic cyanobacteria are favorably 

selected (Erwin et al., 2012b) and motility and chemotaxis traits may be relevant for 

colonization and biofouling processes. The consistent trend found here for a primarily 

heterotrophic, less-motile community of endosymbionts highlights the need of approaching 

distinct microniches within marine sponges for a better understanding of microbiome spatial 

distributions and dynamics in these hosts (Webster and Thomas, 2016).   

Finally, we detected much higher incidence of CRISPR-Cas and restriction 

endonucleases in the S. officinalis microbiome than in seawater - in accordance with earlier 

metagenomics surveys (Thomas et al., 2010; Fan et al., 2012; Horn et al., 2016) - and 

sediments. Therefore, in the context of its two immediate environmental surroundings, the 

enrichment of both defense mechanisms can be indeed considered a true hallmark of the S. 

officinalis microbiome, and much likely of marine sponges in general. Much has been 

discussed on the diversity (Fan et al., 2012; Horn et al., 2016) and role of these genetic elements 

as an efficient, specific anti-phage defense system permitting bacterial survival within the 

sponge microbial consortium (Thomas et al., 2010; Fan et al., 2012; Horn et al., 2016). In 

agreement with this hypothesis, we here observed that the relative abundance of both defense 

systems and of bacteriophages were inversely correlated in S. officinalis and seawater, where 

viral particles were 13-fold more frequent than in sponges and CRISPR-Cas were virtually 

absent. However, low abundances of both defense systems and of viral DNA were detected in 

sediments, suggesting that viral populations might be regulated by other mechanisms in these 

settings rather than high abundance of CRISPR-Cas and R-M systems alone. In this regard, it 

was curious to note that the diversity and assemblage of restriction endonucleases uncovered 

from sponges and sediments was fairly comparable, with higher abundances in sponges being 

the primary factor distinguishing these biotopes (Appendix I- Table S4). Future efforts are 

therefore needed to disentangle the relative forces exerted by CRISPR-Cas and restriction-

modification systems on the regulation of viral populations within the Porifera and across 

marine biomes. To this end, better understanding of the structure of phage communities in host- 

and particle-associated settings will be much required.  

In conclusion, the comprehensive comparative metagenomics strategy employed in this 

study enabled us to critically assess the distribution of genomic features involved in symbiosis 

across marine habitats, and to address functional convergence versus divergence in contrasting 

marine microbial communities more thoroughly. We advocate that such an approach, which in 

the future shall include the assessment of other invertebrate hosts, is imperative for a holistic 
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understanding of microbial community dynamics and function in marine sponges and benthic 

ecosystems at large.  
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Abstract 
Marine sponges are filter-feeding, early-branched metazoans that usually host complex 

microbial communities comprised of several, so-far uncultivable symbiotic lineages. In this 

study, an alternative bacterial cultivation platform using a low-carbon marine medium, lower 

incubation temperature, and prolonged incubation time, was applied to sample the microbiome 

of the marine sponge Spongia officinalis. The approach led to the laboratory cultivation of 

diverse Alphaproteobacteria genera such as Anderseniella, Erythrobacter, Labrenzia, 

Loktanella, Ruegeria, Sphingorhabdus, Tateyamaria, Pseudovibrio, and two likely new genera 

of Rhodobacteraceae. Comparative genomics of representative strains of all above-mentioned 

genera revealed that the community of cultivable Alphaproteobacteria associated with S. 

officinalis could contribute to enhancing host fitness through detoxification mechanisms (e.g. 

heavy metal and metabolic waste removal, degradation of aromatic and halogenated 

compounds), provision of essential vitamins and inorganic ions, nutritional exchange 

(especially regarding the processing of organic sulfur and nitrogen) and chemical defense 

(through e.g. the biosynthesis of polyketides and terpenoids). COG-based genome annotation 

was employed to unveil patterns of functional convergence and divergence among the studied 

strains and genera, revealing three genome clusters which were a posteriori approached as two 

distinct functional groups: Roseobacter vs. non-Roseobacter genomes. We argue that 

representative species of the non-Roseobacter group were most likely to engage in closer 

symbiotic interaction with their sponge host than members of the Roseobacter group, since 

genomic features such as eukaryotic-like proteins-, adhesion proteins- and pili-encoding genes 

- usually regarded as “symbiosis factors” - were more prevalent in the former group. 

Particularly, the genus Anderseniella presented the most remarkable suite of traits underlying 

symbiotic behavior. Nevertheless, all the organisms inspected did not display signs of genome 

reduction usually considered indicative of obligate mutualism, and instead possessed highly 

versatile carbon, nitrogen, phosphorus and sulfur metabolisms underlying biphasic, host-

associated / free-living life styles. 
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Introduction 
Investigating sponge microbial symbionts is a fundamental part of todays’ marine microbial 

ecology due to the ecological and biotechnological value which these dense and diverse 

microbial communities possess (Piel et al., 2004; Piel, 2009; Ebada et al., 2010; Schippers et 

al., 2012). So far, 52 bacterial phyla have been reported to inhabit sponges via cultivation-

independent diversity surveys (Webster and Thomas, 2016) with Proteobacteria (mostly 

Alpha- and Gamaproteobacteria), Acidobacteria, Actinobacteria, Chloroflexi, Nitrospirae, 

Cyanobacteria and the candidate phylum Poribacteria being the most abundant (Thomas et 

al., 2016; Webster and Thomas, 2016). Sponge-associated bacteria engage in nutritional 

exchange with their hosts and as such are considered to play an important role in benthic 

biogeochemical cycling (Maldonado et al., 2012). Moreover, they are believed to produce most 

of the secondary metabolite repertoire of sponges (Piel, 2002; Piel et al., 2004; Fan et al., 2012; 

Hentschel et al., 2012; Gao et al., 2014; Tian et al., 2014; Wilson et al., 2014).  

Alphaproteobacteria display great versatility in their association with multicellular 

organisms, with interactions ranging from mutualistic over commensal to parasitic and 

pathogenic (Garrity et al., 2005). Microbial diversity surveys investigating different sponge 

taxa from various geographic locations and seasons have noted Alphaproteobacteria as regular 

sponge associates (Webster and Hill, 2001; Enticknap et al., 2006; Cleary et al., 2013; Thomas 

et al., 2016). Particularly, the families Rhodobacteraceae and Rhodospirillaceae have been 

found to be dominant members of the marine sponge microbiome and to harbor a high variety 

of so-far uncultivable lineages likely to be specific to or enriched in these hosts (Simister et al., 

2012; Karimi et al., 2017b; Karimi et al., 2018-in press). Genome reconstruction of 

uncultivated symbionts of the Mediterranean sponge Aplysina aerophoba via metagenomic 

binning revealed common anti-viral defense mechanisms and specialized nutrient acquisition 

pathways among diverse sponge-associated bacteria (Slaby et al., 2017). Alphaproteobacteria, 

for instance, were enriched in genes encoding for energy production and carnitine metabolism 

(Slaby et al., 2017). In a recent metagenomic-binning study, we assembled the genome of an 

uncultivated Rhodospirillaceae symbiont of Spongia officinalis, revealing taurine import and 

utilization, lack of motility and chemotaxis and enrichment in glutathione S-transferases as 

adaptive genomic signatures, among others, of a host-associated life-style within this family 

(Karimi et al., 2018-in press). Among cultivable (or so-far cultured) sponge-associated 

Alphaproteobacteria, members of the frequently cultivated genus Pseudovibrio, for example, 

are well equipped for a symbiotic lifestyle (Bondarev et al., 2013) and vertically transmitted 
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through the sponge larvae from parents to their next generation (Enticknap et al., 2006). 

However, our understanding of the contribution of cultivable sponge-associated bacteria to 

host health and homeostasis remains hindered by the current lack of information on their 

densities within the marine sponge microbiome, especially in comparison with those of the 

dominant and so-far uncultivable symbionts.   

Indeed, for decades scientists have tried to cultivate marine sponge-associated bacteria. 

However, the taxonomic and functional diversity of sponge-derived culture collections is still 

limited, with 1% to 14% of the total sponge bacterial community estimated to be cultivable 

using different methods (Webster and Hill, 2001; Olson and McCarthy, 2005; Sipkema et al., 

2011; Hardoim and Costa, 2014b). Yet the most abundant bacterial symbionts of sponges in 

particular remain uncultivated (Taylor et al., 2007a; Hardoim et al., 2014). One complication 

is that the cultivability of these bacteria is influenced not only by the cultivation method and 

media, but also by the initial sample processing method (Esteves et al., 2016). To overcome 

the difficulty in cultivating marine sponge symbionts, alternative strategies have been 

developed and shown promising results. These include the in-situ implantation of nutrient 

medium-containing diffusion growth chambers (DGCs; (Kaeberlein et al., 2002)) into sponge 

specimens and their subsequent incubation in the field (Steinert et al., 2014), and the 

concomitant use of several solid or liquid media (with and without antibiotics) to increase the 

phylogenetic breadth of the symbiotic bacteria captured in the laboratory (Sipkema et al., 2011; 

Versluis et al., 2017). In spite of these advances, more attempts to cultivate the “uncultivable” 

are needed if we are to achieve a comprehensive functional exploration and exploitation of the 

marine sponge microbiome. Cultured representatives allow full sequencing and precise 

annotation of bacterial genomes, providing more accurate data than ecogenomic techniques 

and supporting the analysis and interpretation of environmental sequence data (Rappé, 2013; 

Gutleben et al., 2017). The effective combination of information from both, cultivation-

dependent genomics and cultivation-independent metagenomics can deepen our understanding 

of microbial community functioning (Gutleben et al., 2017). Cultivated symbionts allow 

genetic manipulations and physiological, phenotypic characterizations that are essential to 

assign new proteins and to understand complex metabolic pathways (Gomez-Escribano and 

Bibb, 2011).  

In this study, we hypothesized that changing the solidifying agent agar which may 

inhibit the growth of certain bacterial taxa (Janssen et al., 2002; Tamaki et al., 2009) to the 

nontoxic agent gellan gum, combined with a low carbon content in the culture medium and a 

lower (19°C) incubation temperature with prolonged incubation (8 weeks), could lead to the 
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isolation of slow-growing, novel sponge-bacterial symbionts. Our culture conditions favored 

the cultivation of taxonomically diverse Alphaproteobacteria strains from S. officinalis, which 

prompted us to investigate the functional features of ten distinct Alphaproteobacteria genera, 

five of which belonging to the Roseobacter clade in the family Rhodobacteraceae, in more 

detail. Here, we define the core genomic functions of this Alphaproteobacteria consortium, 

highlight their taxon- and group-specific (i.e. Roseobacters vs. “non-Roseobacters”) 

particularities and tentatively predict the possible collective role of Alphaproteobacteria 

associated with S. officinalis. To assess the relative abundance of these ten 

Alphaproteobacteria symbionts in the S. officinalis associated microbial community, we 

mapped the metagenomic reads of the sponge microbiome (Karimi et al., 2017b) to the ten 

selected genomes.  

 

Material and methods 

 
Sample collection, cultivation of bacteria and phylogenetic analysis 

Four Spongia officinalis specimens (Alg230-Alg233, for details see Karimi et al. (2017b) were 

collected in May 2014 by SCUBA diving at 20 m depth off the coast of Pedra da Greta (36º 

58' 47.2N ;7º 59' 20.8W), southern Atlantic Ocean, Portugal, and transported to the laboratory 

within approximately 1 h in a cooling box. Specimens were processed immediately upon 

arrival: 2.5 g of the specimens’ inner body were cut and macerated with a sterile mortar and 

pestle in 22.5 mL of calcium and magnesium-free artificial seawater (CMFASW) (for details 

see Hardoim et al. (2012); Esteves et al. (2013)). The resulting cell suspension was then serially 

diluted in CMFASW and 100 µL of 10 -3 to 10 -8 dilutions were spread on marine gellan gum 

medium (hereafter called ‘MG50’) plates in triplicates. The ‘MG50’ medium was prepared by 

diluting marine broth (MB; ROTH®) 50 times in artificial seawater (ASW: 23.38 gL-1 NaCl, 

2.41 gL-1 MgSO4.7H2O, 1.90 gL-1 MgCl2.6H2O, 1.11 gL-1 CaCl2.2H2O, 0.75 gL-1 KCl, 0.17 

gL-1 NaHCO3 , final MB-concentration: 0.802 gL-1) and solidified with Phytagel™ (gellan 

gum; 5 gL-1). All plates were incubated for eight weeks at 19°C. Bacterial growth was 

monitored weekly and colony forming units (CFUs) counted. Colonies were selected based on 

their variations in color and shape with the aim to isolate as many different bacterial 

morphotypes as possible rather than to randomly collect a high number of strains. Nevertheless, 

highly abundant morphotypes were picked more often to enable access to different bacterial 

lineages eventually sharing the same colony morphology (see Appendix II-Table S1). 
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Average CFU counts ranged from 3.0×106 (sponge Alg232) to 8.1×106 (sponge Alg230) CFUs 

g-1 sponge wet tissue weight. Sponge specimen Alg231 had 6.9×106 ± 0.00015×106 CFUs g-1 

(mean±SE), and was chosen for colony isolation as it showed the greatest variety of 

morphologically distinct colonies. Here, we benefited from previous knowledge on the 

(equivalent) functional and taxonomic bacterial diversity present in each sponge specimen, 

acquired via shotgun metagenome sequencing (Karimi et al., 2017b), to calibrate our sampling 

effort to cover the total colony morphotype diversity within one specimen (higher morphotype 

sampling depth) rather than spreading the effort across several specimens, what would likely 

lead to the retrieval of the same and most abundant phylotypes from different specimens (lower 

morphotype sampling depth).  In total, 48 (many of them morphologically unique) colonies 

were picked and streaked to purity on MG50 plates. The purified isolates were then grown for 

48h in 1:2 diluted marine broth (‘MB2’) and stocked in fresh MB2 supplemented with 20% 

glycerol at -80°C. For genomic DNA extraction, 2 mL aliquots of the shaken MB2 cultures 

were centrifuged at 10,000 g for 30 min. Genomic DNA was extracted from the resulting cell 

pellets using the Wizard® Genomic DNA Purification Kit (Promega, Madison, USA) 

according to the manufacturer’s instructions. Genomic DNA samples of all isolates were then 

subjected to 16S rRNA gene amplification and Sanger sequencing for identification as 

previously described (Esteves et al., 2013). Closest matches to all sequence queries were 

identified using the BLAST algorithm (December 2016) of the national center for 

biotechnology information NCBI (Johnson et al., 2008). Taxonomic assignment of bacterial 

isolates to the genus level was performed using the classifier tool of the ribosomal database 

project (RDP, release 11, (Cole et al., 2009) as described earlier (Costa et al., 2013; Esteves et 

al., 2013). Closest 16S rRNA gene sequences from type strains were determined using the RDP 

sequence match tool. Operational taxonomic units (OTUs) at 100% sequence similarity were 

assigned by aligning all sequences using the ClustalW algorithm and by calculating a pairwise 

distance matrix in MEGA7 (Kumar et al., 2016). To construct a phylogenetic tree comprising 

all Alphaproteobacteria (most abundant class of the collection) isolates obtained in this study, 

and thus more precisely infer which isolates could represent novel bacterial taxa, the 16S rRNA 

gene sequences of closest matches observed in BLASTN searches and the respective closest 

Alphaproteobacteria type strains found in RDP were included in the alignment procedure. An 

appropriate evolutionary model was then determined using the ‘find best DNA models’ 

function of MEGA7. This was the Kimura 2-parameter model with a discrete gamma-

distribution and invariable sites (K2+G+I). A Maximum Likelihood tree was then determined 

with bootstrap support using 100 repetitions.  
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Genome sequencing of sponge-associated Alphaproteobacteria 

Genomic DNA samples of 10 phylogenetically distinct Alphaproteobacteria strains 

(representing all obtained Alphaproteobacteria genera) were sent for genome sequencing on 

an Illumina MiSeq platform at Mr. DNA (Shallowater, TX, USA). Paired-end libraries 

(2×301bp) were generated and the genomes were assembled de novo into contigs with the 

NGen DNA assembly software by DNAStar, Inc. as described previously (Karimi et al., 

2017a). All contigs of each genome were subjected to a BLAST (NCBI) search via the 

computational cluster facility ‘gyra’ (http://gyra.ualg.pt) of the Algarve Centre of Marine 

Sciences (CCMAR). The extracted BLAST files were then analyzed in MEGAN5 (Huson et 

al., 2016) to confirm whether the taxonomic affiliation of each contig matched the (16S rRNA 

gene-based) affiliation of its respective source strain. Contigs found not to fall within the 

expected taxonomic affiliation of its respective strain and or with less than 1000 bp in length 

were discarded prior to annotation and downstream comparative analyses. 

 

Annotation and comparative analysis of genomes  

Open Reading Frame (ORF) prediction and annotation of the genome sequences were 

performed using the RAST (Rapid Annotation using Subsystem Technology) prokaryotic 

genome annotation server (version 2.0) with standard procedures (Aziz et al., 2008). In 

addition, all genomes were uploaded to the software platform EDGAR 2.0 (Blom et al., 2016) 

to define core- and pan- genomes of strains in different combinations, and to assess the number 

of singleton genes for each genome based on the coding sequences (CDSs) predicted using 

RAST. CDSs were also subjected to annotation based on Clusters of Orthologous Groups of 

Proteins (COGs) using the on-line server WebMGA (e-value = 0.001)(Wu et al., 2011). Unless 

otherwise stated, quantitative functional comparisons between the genomes were performed 

using COG annotations. To this end, the COG profile of each genome was Hellinger-

transformed (i.e. square root calculation of the relative abundance of each COG entry in a given 

genome), after which one COGs vs. genomes contingency table merging the functional profiles 

of all ten genomes into one single file was generated using a customized script (mrg-cog.py)1 

and used as input to ordinate the genomes according to their (COG) functional profiles. This 

was achieved via principle components analysis (PCA) using the function ‘PCA’ of the 

FactoMineR package (Lê et al., 2008), with default parameters, within R version 3.2.4 

(RCoreTeam, 2015).   

1 https://github.com/ElhamKarimi/Merge-files-COGs/blob/master/mrg-cog.py 
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Genomes were clustered into functional groups (essentially, “Roseobacters” vs. “non-

Roseobacters”) according to trends revealed, after PCA, on the extent of 

similarity/dissimilarity among them. Thereafter, pair-wise comparisons between functional 

groups were conducted using White’s non-parametric t-test within STAMP v2.0.9 (Parks et al., 

2014) to identify COG entries that are differently abundant (i.e. “enriched” or “depleted”) 

between groups of genomes. Moreover, lists of COG entries shared by all genomes belonging 

to one group (e.g. “Roseobacters”) and absent in all genomes of the other (e.g. “non-

Roseobacters”), and vice-versa, were prepared to further explore the typical genomic traits of 

members of the Roseobacter clade in comparison with other alphaproteobacterial species 

retrieved from S. officinalis. Secondary metabolite gene clusters were predicted for each 

genome with antiSMASH-version3 (Weber et al., 2015).The CRISPRfinder online tool was 

used with default settings to detect and identify CRISPR repeats and spacer sequences for 

Anderseniella genome (Grissa et al., 2007).  

 

Representativeness of cultivated sponge-associated Alphaproteobacteria across marine 

biotopes  

Coverage variations of each Alphaproteobacteria genome were inspected by mapping the 

already available microbial metagenomes from S. officinalis (four specimens), surrounding 

seawater (three replicates) and sediments (three replicates) (Karimi et al., 2017b)  against the 

assembled genome of each bacterium. To this end, the sequencing reads from the replicate 

metagenome samples within each marine biotope mentioned above were pooled and thereafter 

aligned to each Alphaproteobacteria genome using bowtie2 v. 2.2.6 at default settings 

(Langmead and Salzberg, 2012). The alignment scores, displayed as proportions of reads in the 

metagenomes that could be aligned with each single genome, were used as comparative 

measures of relative abundance of the studied alphaproteobacterial strains across S. officinalis, 

sediments and seawater.  

 

Nucleotide sequence accession numbers  

The 16S rRNA gene sequences of the bacterial isolates were deposited at NCBI GenBank under 

the accession numbers KY363613-KY363636. Assembled genome sequences reported in this 

study were deposited at the European Nucleotide Archive - European Molecular Biology 

Laboratory (ENA-EMBL) under the study identification number PRJEB18465 (ERP020395). 

Genome accession numbers are shown in Table 3-1.  
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Results  
 
Isolation and identification of S. officinalis associated bacteria  

In total, 48 aerobic, heterotrophic bacterial isolates representing manifold colony morphologies 

were selected in this study for further genotypic characterization (Appendix II- Table S1), 

with 46 isolates belonging to the phylum Proteobacteria and two isolates to the phylum 

Actinobacteria (Appendix II- Table S2). Within the Proteobacteria, the vast majority of the 

isolates (41) affiliated with Alphaproteobacteria class, while the remainder (5 isolates) was 

classified as Gammaproteobacteria. Isolates in Alphaproteobacteria class encompassed three 

different orders: Rhizobiales, Sphingomonadales and Rhodobacterales, the latter comprising 

most isolates (38 strains) (Figure 3-1, Appendix II- Tables S1 and S2). Altogether, twelve 

formally-recognized bacterial genera and two phylotypes non-classifiable at the genus level 

were identified. Twenty-eight of Rhodobacterales isolates affiliated with the genus Ruegeria 

which was the most abundant genus of the collection and displayed a high degree of intra-

generic diversity. Indeed, Ruegeria strains grouped into ten distinct OTUs (100% cut-off) 

across five different Ruegeria species (R. arenilitoris, R. atlantica, R. conchae, R. halocynthiae 

and R. meonggei). (Figure 3-1). Overall, 24 unique 16S rRNA gene OTUs (at 100% sequence 

similarity cut-off) were observed across the data (Appendix II- Table S2). Many of the closest 

NCBI BLASTn hits and/or type strains to these OTUs originated from various marine sponge 

species or other invertebrate hosts including corals, bivalves, ascidians, squid and sea urchins. 

16S rRNA gene phylogeny revealed that most of the isolates reported in this study affiliated 

with two subgroups within the Rhodobacterales order, namely the Roseobacter group 

containing isolates classified as Ruegeria, Loktanella, Tateyamaria and Rhodobacteraceae 

spp. (two strains, see below), and the Stappia group containing isolates affiliated with the 

genera Pseudovibrio and Labrenzia.  

Two isolates (Alg231-04 and Alg231-30) of the Rhodobacteraceae family were not 

classifiable at genus level (Figure 3-1, Appendix II- Table S2) and likely represent at least 

novel bacterial species. Closest type strains Phaeobacter inhibens T5 and Thalassobius 

aestuarii JC2049 shared 98% and 97.8% 16S rRNA gene sequence similarity with strains 

Alg231-04 and Alg231-30, respectively, but phylogenetic analysis showed that these S. 

officinalis isolates clustered separately from both their closest type strains and other 

Phaeobacter and Thalassobius representatives (Appendix II- Figure S1). In fact, strains 

Alg231-04 and Alg231-30 grouped with other unclassified Rhodobacteraceae and/or 

uncultivated strains (Appendix II- Figure S1), leaving their genus-level taxonomic affiliation 
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unresolved. In contrast, 16S rRNA gene sequences of Ruegeria sp. strain 231-54 and 

Pseudovibrio sp. strain 231-02, representing well studied, sponge-associated cultivable 

bacteria, shared 100% sequence similarity to their respective closest NCBI BLASTn hits 

(Figure 3-1) which were isolated from S. officinalis sampled in the Mediterranean Sea 

(Bauvais et al., 2015).  
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Figure 3-1. Maximum Likelihood tree of Alphaproteobacteria species based on Kimura 2-parameter 
evolutionary distances calculated for 16S rRNA gene sequences. Alphaproteobacteria strains 
isolated from S. officinalis are shown in bold. Numbers of isolates obtained from S. officinalis that 
belong to the same OTU (100% cut-off) are given in brackets. Closest NCBI BlastN hits and type 
strains ((T), in bold) for each strain are shown on the tree. Blue marks sponge-associated, orange 
marks invertebrate associated and green marks marine algae-associated closest NCBI BLASTN hits 
and type strains. Strains that had their genome sequenced are marked with an asterisk. Bootstrap 
values (100 repetitions) above 70% (0.7) are shown on the tree nodes. 
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General features of sponge-associated Aphaproteobacteria genomes 

The genomes of ten Alphaproteobacteria isolates representing eight formally accepted genera 

in the Rhodobacteraceae, Rhodobiaceae, Sphingomonadaceae and Erythrobacteraceae 

families plus two phylotypes non-classified at the genus level (strains Alg231-04 and Alg231-

30 in the Rhodobacteraceae family, see above) were fully sequenced and subjected to 

comparative analyses of phylogeny and function (Table 3-1). The size of the assembled 

alphaproteobacterial genomes ranged between 3.13Mb for Erythrobacter sp. Alg231-14 and 

7.40Mb for Labrenzia sp. Alg231-36. G+C contents varied from 51.3% in Pseudovibrio sp. 

Alg231-02 to 59.6% in the unclassified Rhodobacteraceae strain Alg231-04 (Table 3-1). The 

number of coding sequences ranged from 3,139 to 5,120 and the number of RNA gene copies 

from 41 to 77 including 3 to 12 copies of ribosomal RNA (rRNA) genes (Table 3-1). 

 

Core- and pan-genome analysis  

To define the core- (i.e. the pool of genes that are common to all analyzed genomes) and pan-

genome (the sum of all genes in all analyzed genomes) of the S. officinalis associated 

Alphaproteobacteria fully sequenced in this study, the genome of Labrenzia sp. Alg231-36 

was chosen as reference as it was the largest genome of the collection. The core-genome 

consisted of 587 genes while the pan-genome comprised 25,449 genes. Genes encoding for 

ABC transporters, thioredoxins, nitrogen regulation (as an indicator to response in nitrogen 

limitation), peroxiredoxins, type II/IV secretion systems and glutathione S-transferases (GSTs: 

isoenzymes required in cellular detoxification) were identified as core genes present in all 

Alphaproteobacteria genomes analyzed here (Appendix II- Table S3, see below for further 

details on core genes). The number of singleton genes (those genes that are unique to each 

analyzed genome) was calculated for each genome and ranged from 955 singleton genes in 

Rhodobacteraceae bacterium Alg231-04 and 3,193 singleton genes in Labrenzia sp. Alg231-

36 (Figure 3-2). The number of singleton genes correlated to some extent with the 

phylogenetic position of the isolates; the five S. officinalis strains of the Roseobacter group 

had the smallest numbers of singleton genes, followed by the Sphingomonadales, the 

Rhizobiales and then the two Stappia group isolates Pseudovibrio Alg231-02 and Labrenzia 

Alg231-36, which possessed the larger genome as well.   
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Table 3-1. Basic genome features of sponge-associated Alphaproteobacteria cultivated in this study. 

 

 

 

 

 

 

Genomes 

GC 
content 
(%) 

Genome 
size 
(Mbp) 

Total 
sequence 
depth 
(Gbp) 

Genome 
coverage (x) 

Coding 
sequences 
(CDs) 

Number 
of   
RNAs 

Number 
of 
rRNAs 

Number 
of 
tRNAs Accession numbers  

Anderseniella sp. Alg231-50 57.9 4.61 0.65 143 4,635 45 3 42 LT703003-LT703010 

Erythrobacter sp. Alg231-14 56.2 3.13 0.69 221 3,139 44 3 41 LT702999-LT703000 

Labrenzia sp. Alg231-36 56.3 7.40 0.93 127 7,706 52 3 49 FREW01000001-FREW01000024 

Sphingorhabdus sp. Alg231-15 52.8 3.62 0.47 132 3,702 45 3 42 LT703001-LT703002 

Pseudovibrio sp. Alg231-02 51.3 5.96 0.73 124 5,674 77 12 65 FREX01000001-FREX01000026 

Rhodobacteraceae bact. Alg231-30 55 4.54 0.76 169 4,604 49 6 43 FREU01000001-FREU01000010 

Rhodobacteraceae bact. Alg231-04 59.6 4.81 0.95 198 4,784 61 11 50 FREY01000001-FREY01000029 

Ruegeria sp. Alg231-54 56.5 4.92 0.76 155 5,120 50 6 44 FREZ01000001-FREZ01000035 

Loktanella sp. Alg231-35 56.8 3.91 1.11 285 4,036 42 3 39 FREV01000001-FREV01000015 

Tateyamaria sp. Alg231-49 57.4 4.51 0.77 173 4,793 41 3 38 FRFA01000001-FRFA01000039 
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Functional and comparative genomics based on Clusters of Orthologous Groups of 

Proteins (COGs) 

As a first approach to compare the genomes at a coarse (i.e., COG classes) level, the number 

of CDSs in each COG class from each of the 10 Alphaproteobacteria genomes was summed 

up; this revealed that the classes ‘amino acid transport and metabolism’ (E), ‘transcription’ (K), 

‘carbohydrate transport and metabolism’ (G), and ‘energy production and conversion’ (C) 

together with ‘general function prediction’ (R) and ‘function unknown’ (S) were the most 

dominant COG classes of the entire dataset (Appendix II- Table S4). Although the rank 

distribution of COG classes differed somewhat between the individual genomes, the above-

mentioned COG classes always prevailed compared to other classes, in each genome 

(Appendix II- Table S4). At the finest level of (COG-based) functional resolution, in total 

2,804 individual COG entries were annotated in the 10 genomes, with the number of COGs 

per genome ranging from 2,309 COGs in Erythrobacter sp. Alg231-14 and 5,625 COGs in 

Labrenzia sp. Alg231-36 (Appendix II- Table S5). COG profiling identified 959 COG 

enteries that were shared among all 10 cultivated Alphaproteobacteria genomes (Appendix 

II- Table S6), further detailed below.  

 
Figure 3-2. Number of strain-specific (“singleton”) genes in each Alphaproteobacteria genome 
analyzed in this study. 
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Shared features of all genomes  

Carbon, nitrogen, sulfur and phosphorus metabolism 

All Alphaproteobacteria strains had in common several ABC-type transporter-encoding genes 

for the transport of sugars, dipeptides and branched-chain amino acids. All analyzed genomes 

had several copies of nitroreductase (COG0778)-encoding genes, an enzyme involved in the 

reduction of nitrogen-containing aromatic compounds. The nitrogen regulatory protein PII 

(COG0347), involved in the cell’s response to nitrogen source availability, was also present 

with at least two gene copies in all Alphaproteobacteria genomes along with ammonia 

permease (COG0004; transporter) encoding genes. Several important sulfur metabolic 

functions were common to the Alphaproteobacteria genomes inspected. All contained several 

gene copies encoding for arylsulfatase A (COG3119), an enzyme breaking down sulfatides 

thus liberating sulfate, sulfate permeases (COG0659; transporters), sulfur transferases 

(COG2897), 3'-phosphoadenosine 5'-phosphosulfate (PAPS) 3'-phosphatase (COG1218; 

enzyme involved in sulfur assimilation and/or sulfate reduction) and sulfite reductases 

(COG0155; enzymes catalyzing the reduction of sulfite (SO32-) to hydrogen sulfide (H2S)). 

Further, all cultivated strains harbored several different ABC-type phosphate transporters and 

phosphate uptake regulators (COG0704). All genomes shared one gene encoding for guanosine 

polyphosphate pyrophosphohydrolases/synthetases (COG0317; signal transduction 

mechanisms).  

 

Cofactors, vitamins and inorganic ions 

All Alphaproteobacteria strains shared several genes encoding for proteins that contain or 

require B vitamins including thiamine (B1, COG0352), riboflavin (B2, COG0054; COG0307, 

COG1985), nicotinic acid (B3, COG1057), pyridoxamine phosphate oxidase (B6, COG0259), 

biotin (B7, COG0340), and cobalamin (B12, COG4547) (Appendix II- Table S6). The 

presence of riboflavin synthase alpha and beta chain and of pyridoxal phosphate biosynthesis 

protein (PdxJ) encoding genes confirms the potential synthesis of vitamin B2 and B6 by all 

genomes. Multiple genes in the COG class P “inorganic ion transport and metabolism” were 

shared among the 10 genomes, ensuring the trafficking of various essential ions including 

Ca2+/Na+, K+, Fe2+/Zn2+, Fe3+, and Mg/Co/Ni (Appendix II- Table S6). In addition, all 

genomes harbored between one and three arsenate reductase-encoding genes for the reduction 

of arsenate to arsenite in arsenic detoxification processes.  
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Defense, antibiotic resistance and reactive oxygen species (ROS) protection  

All analyzed Alphaproteobacteria genomes shared several gene copies for cation and Na+ 

driven multidrug efflux pumps, ABC-type multidrug efflux systems and antimicrobial peptide 

transport systems (Appendix II- Table S6). Hydrolases of the metallo-beta-lactamase 

superfamily and beta-lactamase class C were collective antibiotic resistance functions, 

whereby the Sphingomonadales strains Sphingorhabdus sp. Alg231-15 and Erythrobacter sp. 

Alg231-14 had, with 16 and 11 genes, respectively, the highest gene copy numbers. A gene 

encoding for an uncharacterized protein (COG1968) conveying resistance against the 

polypeptide antibiotic bacitracin was also detected (Appendix II- Table S6). A shared catalase 

(peroxidase 1, COG0376) encoding gene could scavenge reactive oxygen species (ROS). 

Moreover, all genomes were equipped with varied restriction-modification (R-M) systems (i.e. 

endonucleases) involved in anti-viral defense, but only one single R-M system (COG1403) 

was common to all of them (Table 3-2). Likewise, all genomes possessed genes involved in 

the biosynthesis of polyketides, but only one COG entry (COG5285) corresponding to a 

conserved protein domain related with the synthesis of fumonisin was shared by all genomes 

(Table 3-3).  

 

Eukaryotic-like proteins (ELPs) encoding genes 

In all ten alphaproteobacterial genomes, genes encoding for eukaryotic like proteins (ELPs) 

usually regarded to play a role in sponge-microbe interactions including ankyrin repeats 

(ANKs), tetratricopeptide repeats (TPRs), WD40 proteins, and pyrroloquinoline quinone 

(PQQ) were identified (Figure 3-3). Leucine-rich repeats (LRR), however, were detected only 

in Pseudovibrio sp. Alg231-02. Besides, only Anderseniella sp. Alg231-50 possessed all the 

above-mentioned ELP types. Also, the Anderseniella strain together with Labrenzia sp. 

Alg231-36 possessed the highest numbers of gene copies for the respective ELP motifs (Figure 

3-3). 
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Table 3-2. Restriction-Modification systems identified in the genomes of sponge-associated Alphaproteobacteria analyzed in this study.

#COG An.1 Ey.2 Lab.3 Lak.4 Ps.5 R.46 R.307 Ru.8 Sp.9 Ta.10 Description   
COG0286 0 0 0 0 1 1 1 0 0 2 Type I restriction-modification system methyltransferase subunit 
COG0732 0 0 0 0 1 1 1 0 0 1 Restriction endonuclease S subunits 
COG1002 0 0 0 0 0 1 0 0 0 0 Type II restriction enzyme, methylase subunits 
COG1403 1 1 1 1 1 2 1 1 1 2 Restriction endonuclease 
COG3440 0 0 0 0 1 2 0 0 0 1 Predicted restriction endonuclease 

COG4096 0 0 0 0 0 0 1 0 0 0 
Type I site-specific restriction-modification system, R (restriction) 
subunit and related helicases 

COG3183 0 0 0 0 0 0 1 0 0 1 Predicted restriction endonuclease 
COG3440 0 0 0 0 1 2 0 0 0 1 Predicted restriction endonuclease 
COG3587 1 0 0 0 0 0 0 0 0 0 Restriction endonuclease 
COG1002 0 0 0 0 0 1 0 0 0 0 Type II restriction enzyme, methylase subunits 
COG1401 0 0 0 0 0 0 0 0 0 1 GTPase subunit of restriction endonuclease 
COG3587 1 0 0 0 0 0 0 0 0 0 Restriction endonuclease 
Total 3 1 1 1 5 10 5 1 1 9     
All the COG entries belong to the Class V " Defense mechanisms "; 1) Anderseniella sp. Alg231-50, 2) Erythrobacter sp. Alg231-14, 3) Labrenzia sp. Alg231-36, 4) Loktanella sp. 
Alg231-35, 5) Pseudovibrio sp. Alg231-02, 6) Rhodobacteraceae bacterium Alg231-04, 7) Rhodobacteraceae bacterium Alg231-30, 8) Ruegeria sp. Alg231-54, 9) Sphingorhabdus 
sp. Alg231-15, 10) Tateyamaria sp. Alg231-49. 
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Table 3-3. Distribution of COG entries involved in polyketide biosynthesis across the genomes of sponge-associated Alphaproteobacteria analyzed in 
this study.   

# COG  An.1 Ey.2 Lab.3 Lak.4 Ps.5 R.46 R.307 Ru.8 Sp.9 Ta.10 Description 

COG2761 1 1 2 2 1 1 2 2 1 3 
Predicted dithiol-disulfide isomerase involved 
in polyketide biosynthesis 

COG3315 0 1 0 0 1 0 0 0 0 0 O-Methyltransferase involved in polyketide biosynthesis 

COG3319 0 0 1 1 2 0 2 1 0 1 
Thioesterase domains of type I polyketide synthases or non-
ribosomal peptide synthetases 

COG3321 0 0 3 1 2 0 1 0 0 0 Polyketide synthase modules and related proteins 

COG5285 5 1 3 3 4 4 3 4 3 5 
Protein involved in biosynthesis of mitomycin 
antibiotics/polyketide fumonisin 

All the COG entries belong to the Class Q " Secondary metabolites biosynthesis, transport and catabolism"; 1) Anderseniella sp. Alg231-50, 2) 
Erythrobacter sp. Alg231-14, 3) Labrenzia sp. Alg231-36, 4) Loktanella sp. Alg231-35, 5) Pseudovibrio sp. Alg231-02, 6) Rhodobacteraceae 
bacterium Alg231-04, 7) Rhodobacteraceae bacterium Alg231-30, 8) Ruegeria sp. Alg231-54, 9) Sphingorhabdus sp. Alg231-15, 10) Tateyamaria sp. 
Alg231-49. 
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Figure 3-3. Heatmap on the absolute counts of coding sequences classified as COGs representing 
Eukaryotic-Like Proteins (ELPs) in the 10 cultivated Alphaproteobacteria genomes analyzed in this 
study. The numbers in each cell show the count of genes for each genome. The empty cells (dark blue) 
represent no counts (equals zero). * COG5424 (pyrrolso-quinoline quinone repeats), COG4886 
(Leucine-rich repeats(LRR)), COG1520 and COG2319 (WD40 repeats), COG0666 (Ankyrin repeats), 
and COG0457and COG0790 (Tetratricopeptide repeats).  
 

Roseobacter versus non-Roseobacter genome features  

To visualize the genetic relatedness or distance between the ten alphaproteobacterial strains, 

principle components analysis (PCA) was performed based on their COG profiles, considering 

presence and absence as well as relative abundances of COG entries across all genomes 

(Figure 3-4).  Three functional clusters were revealed: (1) five Roseobacter group 

genera/strains, (2) two Sphingomonadales genera/strains (Erythrobacter and 

Sphingorhabdus), (3) Anderseniella sp. Alg231-50 together with Labrenzia sp. Alg231-36 and 

Pseudovibrio sp. Alg231-02 (Figure 3-4). The third cluster indicates that the genomes of 

Alg231-36 and Alg231-02 are functionally closer to the Rhizobiales strain Anderseniella sp. 

Alg231-50 than to other genera belonging to their current (Rhodobacterales/ 

Rhodobacteraceae) taxonomic affiliation (cluster 1) (Figure 3-4).  

To determine the characteristic genomic traits of the tightly clustering Roseobacter 

group (hereafter called group G1: Loktanella sp. Alg231-35, Rhodobacteraceae bacterium 

Alg231-04, Rhodobacteraceae bacterium Alg231-30, Ruegeria sp. Alg231-54 and 

Tateyamaria sp. Alg231-4), their COG profiles were collectively compared with those of the 

remaining five alphaproteobacterial genomes (hereafter termed group G2: Anderseniella sp. 
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Alg231-50, Erythrobacter sp. Alg231-14, Labrenzia sp. Alg231-36, Pseudovibrio sp. Alg231-

02 and Sphingorhabdus sp. Alg231-15.) using a White’s non-parametric t-test within STAMP.  

 

 

 
Figure 3-4. Principal Components Analysis (PCA) ordination of the ten alphaproteobacterial genomes 
analyzed in this study based on their functional profiles (i.e. presence/absence and relative abundances 
of COG entries per genome). Strains grouped by ellipses have their taxonomic affiliations disclosed 
following the results shown in Figure 3-1. Note the closer functional similarity between members of 
the “Stappia group” (Pseudovibrio and Labrenzia, formally belonging to the family Rhodobacteraceae 
in the order Rhodobacterales) to the genus Anderseniella (order Rhizobiales) than to other genera of 
the Rhodobacteraceae family.  

 

The non-parametric t-test showed that 306 COGs were significantly different between the two 

groups in quantitative terms (Appendix II- Table S7 and Figure S2). Furthermore, in a 

stringent qualitative comparison, 15 Roseobacter group (G1)-specific COG functions were 

identified which were present in all G1 genomes and not present in all the other 

alphaproteobacterial genomes (G2) (Appendix II- Table S7). Conversely, 34 COGs were 

absent in all of the Roseobacter group genomes (G1) but present in all non-Roseobacter 

genomes (G2). Six of the unique Roseobacter COGs were uncharacterized proteins of 

unknown function. Other unique Roseobacter COGs included a phosphoglyceromutase 

(COG0696) involved in glycolysis, a phosphatidylglycero phosphatase A (COG1267) 

involved in lipid metabolism and D-alanyl-D-alanine carboxypeptidase/penicillin binding 

protein 4 (COG2027) which is susceptible to lactam-antibiotics, a Zn-dependent 

carboxypeptidase (COG2317), and the DNA-binding protein H-NS(COG2916). Among the 

unique functions present only in the non-Roseobacter genomes (G2) were high abundances of 

a predicted signal transduction protein (COG5001), a protease II entry (COG1770, protein 
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catabolism), two inorganic pyrophosphatases (COG0221; COG3808) important in lipid 

degradation and inorganic phosphate production, and a type IV pili component (COG5461) 

generally important for adherence, movement and host colonization. COGs related to ABC 

transporters and sulfate/phosphate metabolism were generally enriched in the Roseobacter 

group (G1). The COG class Q ‘Secondary metabolites biosynthesis’ was enriched in G1, with 

only one entry in this class (COG0412, dienelactone hydrolase involved in chlorocatechol 

degradation) being enriched in G2. Besides these, N-acyl-L-homoserine lactone synthetases 

(COG3916) were enriched in G1. In contrast, predicted xylanase/chitin deacetylases 

(COG0726) and ELPs COGs (COG0666, COG0790, and COG0457) were more abundant in 

G2 (Figure 3-3 and Appendix II- Table S7).  

 

Secondary metabolism  

To gain insight into their secondary metabolite production capacities, the ten 

alphaproteobacterial genomes were screened for the presence of secondary metabolite 

biosynthetic gene clusters using antiSMASH. All strains except Rhodobacteraceae bacterium 

Alg231-04 and Erythrobacter sp. Alg231-14 were found to harbor polyketide synthase (PKS) 

/ non-ribosomal peptide (NRPS) encoding gene clusters via antiSMASH screening, whereby 

type I (T1PKS) encoding gene clusters were detected in Pseudovibrio sp. Alg231-02, 

Loktanella sp. Alg231-35 and Rhodobacteraceae bacterium Alg231-30; type III (T3PKS) gene 

clusters in Anderseniella sp. Alg231-50, Labrenzia sp. Alg231-36, Sphingorhabdus sp. 

Alg231-15 and Pseudovibrio sp. Alg231-02 and NRPS gene clusters in Pseudovibrio sp. 

Alg231-02, Labrenzia Alg231-36 and Ruegeria Alg231-54 (Appendix II- Table S8). Terpene 

synthesis encoding gene clusters were detected in eight of the ten strains but not in Loktanella 

sp. Alg231-35 and Rhodobacteraceae bacterium Alg231-04 (Appendix II- Table S8). In 

Erythrobacter sp. Alg231-14, the terpene gene cluster showed 75% similarity to the 

astaxanthin-dideoxyglycoside biosynthethic gene cluster. This strain also possessed a lasso-

peptide encoding gene cluster. Bacteriocine (peptidic toxins) synthesis gene clusters have been 

detected for all cultivated strains except Anderseniella sp. Alg231-50. However, only 

Anderseniella sp. Alg231-50 harbored a gene cluster encoding for the osmolyte ectoine. Genes 

encoding for homoserine lactone signaling molecules were identified via antiSMASH in six 

Rhodobacterales strains, namely Loktanella sp. Alg231-35, Rhodobacteraceae bacterium 

Alg231-04, Rhodobacteraceae bacterium Alg231-30, Tateyamaria sp. Alg231-49, Ruegeria 

sp. Alg231-54 and Labrenzia sp. Alg231-36 (Appendix II- Table S8).   
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Representation of the cultivated Alphaproteobacteria genomes in marine metagenomes 

The available shotgun sequenced metagenomes of S. officinalis and surrounding seawater and 

sediment samples (Karimi et al., 2017b) were mapped against the 10 cultivated 

Alphaproteobacteria genomes. The numbers of aligned metagenome reads were generally low 

for all genomes (Table 3-4). Of the 10 cultivated strains, Anderseniella sp. Alg231-50 was the 

most dominant strain in the sponge metagenome followed by Labrenzia sp. Alg231-36 and 

Ruegeria Alg231-54, while Rhodobacteraceae bacterium Alg231-30 clearly was the least 

abundant one. All Alphaproteobacteria genome reads were somewhat more abundant in the 

seawater metagenome, followed by sediments and then S. officinalis (Table 3-4). As a frame 

of comparison with Anderseniella sp. Alg231-50, 7x as many metagenomic reads from S. 

officinalis were found to align with the genome of the dominant and uncultivated 

Rhodospirillaceae symbiont So9, reconstructed from the host’s microbial metagenome via 

genomic binning procedures (Chapter 4 and Karimi et al. (2018-in press)). 

 

Embedded description of the Anderseniella sp. Alg231-50 genome  

The genome of Anderseniella sp. Alg231-50 was further explored for several reasons: first, of 

the here presented Alphaproteobacteria strains, Alg231-50 was the most dominant one in the 

S. officinalis metagenome (Table 3-4). Second, many different types of eukaryotic like proteins 

(ELPs) were present in this genome, some of them even with high copy numbers, suggesting 

that Alg231-50 is well equipped for symbiotic life inside its host. Third, to the best of our 

knowledge, there is no Anderseniella genome available on public databases yet (stand: 14th of 

November 2017) and only eight genome sequences exist for the entire Rhodobiaceae family 

but none of them derived from a sponge host. Of the 4,635 CDSs predicted in the Anderseniella 

genome using the RAST server, 1,494 were annotated as encoding for hypothetical proteins, 

but 4,109 CDSs could be assigned a COG function (Appendix II- Table S4). A total of 45 

RNA genes were identified including 3 rRNAs and 43 tRNAs (Table 3-1). Quite remarkably, 

this strain shares several genome features in common with the sponge-specific, so-far 

unculturable Rhodospirillaceae symbiont So9 (Karimi et al., 2018-in press), including the 

potential to degrade aromatic hydrocarbons (e.g. toluene, biphenyl, benzoate, salicylate ester), 

tolerate heavy metals (copper, cobalt, mercury, chromium) and antibiotics (becta-lactams, 

fluoroquinolones, colicin E2), and utilize taurine and alkanesulfonates. Moreover, as observed 

for the symbiont So9, RAST and COG annotations did not reveal any genes encoding for 

flagellar cell motility and chemotaxis in the Anderseniella genome (Appendix II- Table S5).  
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Table 3-4. Percent alignment of total metagenomic reads from S. officinalis, seawater and sediments with the genomes 
assembled in this study. 
 

Genome vs metagenome  
Aligned 
reads1 

Percent 
(%)2 Genome vs metagenome  

Aligned 
reads1 

Percent 
(%)2 

Anderseniella sp.  Alg231-50   Ruegeria sp. Alg231-54  
S. officinalis 2610 0.00829 S. officinalis 2135 0.00678 
Sediment  3264 0.01476 Sediment  6728 0.03043 
Seawater  4846 0.0214 Seawater  7022 0.03101 
Erythrobacter sp. Alg231-14   Sphingorhabdus sp. Alg231-15  
S. officinalis 1790 0.00568 S. officinalis 1708 0.00542 
Sediment  2006 0.00907 Sediment  1794 0.00811 
Seawater  4197 0.01854 Seawater  4050 0.01789 
Labrenzia sp. Alg231-36   Tateyamaria sp. Alg231-49  
S. officinalis 2157 0.00685 S. officinalis 2008 0.00638 
Sediment  2124 0.00961 Sediment  5485 0.02481 
Seawater  4856 0.02145 Seawater  7380 0.03259 
Loktanella sp. Alg231-35   Pseudovibrio sp. Alg231-02  
S. officinalis 1911 0.00607 S. officinalis 1776 0.00564 
Sediment  2445 0.01106 Sediment  1709 0.00773 
Seawater  7285 0.03217 Seawater  3913 0.01728 
Rhodobacteraceae bact. Alg231-04  Rhodobacteraceae bact. Alg231-30  
S. officinalis 1987 0.00631 S. officinalis 236 0.00075 
Sediment  3331 0.01507 Sediment  932 0.00422 
Seawater  6326 0.02794 Seawater  2200 0.00972 
The total number of paired-end sequence reads in the metagenome dataset (Karimi et al., 2017b) were as follows: S. officinalis - 
31497820; Sediment - 22107730; Seawater - 22641917.  
1Aligned reads - the number of metagenomic sequence reads from a given environment that aligned with the genome sequence of the 
respective Alphaproteobacterium isolate. 
2 Percent (%) - the percentage of metagenomic sequence reads from a given environment that aligned with the genome sequence of the 
respective Alphaproteobacterium isolate. 



 

 81 

 

Nevertheless, a type IV pili component (COG5461) and a protein required for attachment to 

host cells (COG5622) has been detected. Furthermore, a highly versatile carbohydrate 

metabolism and the potential ability to biosynthesize polyphosphates were also inferred for 

strain Alg231-50. Nitrate (NO3-) transporter (COG0600, COG0715, COG1116, COG2223) and 

nitrate reductase (composing subunit alpha, beta, gamma and delta) (COG5013, COG1140, 

COG2181, COG2180 and COG3005) genes were as well observed (Appendix II- Table S5). 

Additionally, three possible CRISPR repeats with four spacers in total were predicted for this 

genome, and polyketides and terpene biosynthesis capacities likely contribute to the secondary 

metabolite repertoire of the strain (Appendix II- Table S8). 

 

Discussion  

In this study, we used an oligotrophic medium along with low temperature and prolonged 

incubation time to attempt the cultivation of sponge–associated bacteria other than those 

usually retrieved with regular procedures (e.g. Brinkmann et al. (2017); Esteves et al. (2013); 

O’Halloran et al. (2011); (Kennedy et al., 2009)). Although with 48 isolates the size of our 

collection was rather small, selecting isolates according to their distinctive morphological 

characters under the above-mentioned culturing conditions resulted in the collection of 14 

bacterial genera, enabling the cultivation of novel species. In comparison, a previous study that 

collected 327 strains with standard cultivation procedures (i.e. full strength marine agar 

medium; 25°C incubation over three days and random, quantitative-based colony picking and 

purification) obtained only slightly more (17) bacterial genera despite the much larger 

cultivation effort (Esteves et al., 2013). While the latter approach enables quantitative 

assessments of symbiont diversity and the analysis of genome diversification below species 

level, the methodology employed here led to the retrieval of a broad phylogenetic panel of 

isolates, enabling deep comparative genomic assessments among symbionts above the species 

level. 

The here implemented culturing condition was very adequate for the growth of diverse 

Alphaproteobacteria species. These results are in line with the observations of Sipkema et al. 

(2011) who retrieved a majority of Alphaproteobacteria strains from the marine sponge 

Haliclona sp. using diverse oligotrophic media. Typically, most bacteria isolated from sponges 

to date have been affiliated with the phyla Actinobacteria, Bacteroidetes, Firmicutes, and 

Proteobacteria (Muscholl-Silberhorn et al., 2008; Esteves et al., 2013; Hardoim and Costa, 
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2014b; a). In this study, 24 OTUs were uncovered from 48 isolates of which two OTUs 

representing Rhodobacteraceae phylotypes were regarded as possible candidates for new 

genera (Appendix II- Figure S1). Although isolate 231-04 showed 98% homology with the 

type strain Phaeobacter inhibens T5 isolated from water surface North Sea (Martens et al., 

2006) and isolate 231-30 indicated 97% similarity with type strain Thalassobius aestuarii 

JC2049 isolated from tidal surface sediment (Yi and Chun, 2006), both strains were clustered 

in a different clade after dedicated phylogenetic assessments (Appendix II- Figure S1), 

suggesting that they may represent novel genera, what needs to be confirmed in future 

phylogenomic assessments including multiple genes from several closely-related genomes.  

 

Communal metabolite features of cultivable sponge-associated Alphaproteobacteria 

The functional and comparative genomics assessment performed this study enabled us to delve 

into common genomic attributes of ten sponge-associated Alphaproteobacteria, and to address 

whether any of these redundant functions may be relevant in improving both host and symbiont 

fitness within the marine sponge microbiome. One possible, common nutrient cycling role has 

been predicted through the presence of genes encoding for the nitrogen regulatory protein PII, 

which regulates glutamine synthetase (GS) activity by activating GS under nitrogen-limiting 

conditions (de Zamaroczy et al., 1990). However, this appears to be a generalist function 

important both in host-associated as well as free-living microhabitats. Perhaps more relevant 

in terms of possible associations between these bacteria and their sponge hosts are the presence 

of gene copies encoding for arylsulfatases in all genomes, an attribute verified to be enriched 

in the marine sponge microbiome (Karimi et al., 2017b), underlining therefore one possible 

role of this pool of Alphaproteobacteria species in consuming sulfated polysaccharides, a 

feature that has also been discussed for uncultivated, widespread Rhodospirillaceae species 

from S. officinalis (Karimi et al., 2018-in press and Chapter 4) and revealed to be common 

among several uncultivated lineages of sponge symbionts (Slaby et al., 2017). Furthermore, 

we revealed that several genes encoding for vitamin B biosynthesis were shared among the 

Alphaproteobacteria species studied here, suggesting a potential role of members of this class, 

in general, in providing essential nutrients for host growth and functioning. This hypothesis 

has been tested in a marine dinoflagellate (Lingulodinium polyedrum) and provided evidence 

that associated Alphaproteobacteria nourish vitamins B1 and B12 required by the host for 

growth (Cruz-López and Maske, 2016). Besides, arsenate reductases encoding genes for 

reduction of arsenate (As(V)) to arsenite (As(III)) in arsenic detoxification processes highlights 

the capacity of our isolates to reduce toxic heavy metals (Mukhopadhyay and Rosen, 2002; 
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Silver and Phung, 2005), a function that has been proved for the sponge symbiont 

Entotheonella sp. which mineralizes arsenic and barium on intracellular vesicles (Keren et al., 

2017). Furthermore, genes involved in ABC-type multidrug efflux systems, hydrolases of the 

metallo-beta-lactamase superfamily, and remediation of ROS stress underline how versatile 

the mechanisms of cell detoxification employed by these organisms can be (Yung et al., 2011; 

Santos et al., 2012). Such capabilities may substantially increment bacterial fitness within 

dense and chemically-rich microbial communities which is the case of the marine sponge 

microbiome.  

 

Antimicrobial agents  

Using antiSMASH, we could detect several antibiotic biosynthetic gene clusters across the 

studied genomes, in line with accumulating, in vitro evidence for mild to high antimicrobial 

activities by sponge-associated Alphaproteobacteria such as Rugeria, Pseudovibrio, and 

Labrenzia (Hentschel et al., 2001; O’Halloran et al., 2011; Esteves et al., 2013; Graça et al., 

2013; Crowley et al., 2014; Naughton et al., 2017). Particularly, both terpene-synthase and 

polyketide-synthase (PKS) biosynthetic gene clusters were common among the studied strains, 

each being present in eight out of ten genomes (see Appendix II- Table S8). Interestingly, we 

have previously documented the enrichment of these biosynthetic gene clusters in the 

microbial metagenome of the S. officinalis endosymbiotic consortium (Karimi et al., 2017b), 

highlighting the potential participation of such usually inhibitory molecules in microbe-

microbe antagonistic interactions within the sponge holobiont or in sponge chemical defense. 

The roles and activities of polyketides from sponge symbiotic bacteria have been largely 

explored in the last fifteen years (Piel, 2002; Piel et al., 2004; Hentschel et al., 2012; Wilson 

et al., 2014), and the presence of PKS biosynthetic gene clusters have been consistently 

documented for culturable, sponge-associated Pseudovibrio spp. (Bondarev et al., 2013; 

Esteves et al., 2013; Naughton et al., 2017). However, much less is known about the potential 

contribution of bacterial symbionts as producers of terpenoids in marine sponges. Intriguingly, 

terpenoid biosynthesis has been regularly documented in marine sponges of the order 

Dictyoceratida (Keyzers et al., 2006). Yet the origin of the biosynthesis (host or symbionts) 

has been, to our knowledge, not addressed so far. Spongian diterpenoids have shown 

antimicrobial activity against pathogenetic bacteria such  as Pseudomonas aeruginosa 

(Keyzers et al., 2006). Dihydrogracilin A, aterpene extracted from the sponge host Dendrilla 

membranosa, has been shown to possess immune modulatory and anti-inflammatory action 

(Ciaglia et al., 2017). Furthermore, except for Anderseniella, all other Alphaproteobacteria 
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strains possessed the potential to produce bacteriocins, proteinaceous toxins synthesized by 

bacteria usually regarded to inhibit growth of closely related strains and, as such, considered 

to be major molecules shaping the structure of microbial communities in situ (Drider et al., 

2016). In this study, we demonstrate that polyketide, terpene and bacteriocin biosynthesis 

capacities are widespread across diverse sponge-associated Alphaproteobacteria, suggesting a 

pivotal contribution of this group to the chemical complexity, natural product biosynthesis 

repertoire and taxonomic composition of the marine sponge microbiome. 

Finally, we observed ectoine biosynthesis potential exclusively for the Anderseniella 

strain (Appendix II- Table S8). Ectoine was detected as protector against osmotic and 

environmental stresses such as high salinity and cold (Kuhlmann et al., 2011). 

 

Representativeness of cultured Alphaproteobacteria in the marine sponge microbiome 

We used microbial metagenome-genome mapping as a means to infer abundance relationships 

between the bacteria analyzed in this study in the marine sponge microbiome. We further 

contrasted the percentage of metagenome-genome aligned reads obtained for the cultivated 

symbionts inspected here with that of a dominant, uncultivated alphaproteobacterial symbiont 

of S. officinalis, namely Rhodospirillaceae bacterium So9 (Chapter 4). The percentage of 

reads from sponge, sediment and seawater microbial metagenomes which aligned with the 

genomes of our cultured Alphaproteobacteria was generally low. It is possible that technical 

limitations such as insufficient sequencing depth and/or the usage of only short read lengths 

which may not align properly with reference genomes (Clooney et al., 2016; Tessler et al., 

2017) contribute to an underestimation of relative abundances calculated in this fashion. 

However, usually higher percentages of aligned metagenome-genome reads were obtained for 

seawater metagenomes, suggesting that most of the cultures surveyed here may be more 

abundant in this habitat than in sponges. This reinforces the notion fostered by Hardoim and 

Costa (2014b) and Montalvo et al. (2014), for instance, that current cultivation attempts of 

marine symbiotic bacteria tend to enrich and select for low abundant to only moderately 

abundant members of this consortium. Regardless of possible limitations, the relative 

abundance of a dominant, uncultured alphaproteobacterium member of the S. officinalis 

microbiome (Rhodospirillaceae bacterium So9) was about 7-fold higher than that estimated 

for the most abundant isolate retrieved in this study, Anderseniella sp. strain Alg231-50. 

Therefore, interpretations regarding the possible ecological roles of the here cultivated 

symbionts - and essentially all sponge symbiotic bacteria thus far obtained in culture - must be 

taken with caution. It is felt that a deeper perspective of the true abundance of bacterial 
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symbionts (both cultivated and uncultivated) in marine sponges is still required for a proper 

understanding of the relative forces exerted by several bacterial symbionts in holobiont 

functioning. This perspective cannot be achieved with the sole use of DNA sequencing 

technologies and, most likely, only a dedicated effort integrating taxon-oriented, high 

resolution imaging (enabled e.g. by fluorescent in situ hybridization coupled to confocal laser 

scanning microscopy, FISH-CLSM), symbiont cultivation, and deep microbiome sequencing 

may altogether enhance our understanding of symbiont abundance ranks in marine sponges, 

from the very dominant to the very rare bacterial associates. In spite of this, the several 

common genome features revealed in this study for cultivated and uncultivated bacteria is 

indicative of functional redundancy and compatible metabolic circuitry among diverse 

alphaproteobacterial symbionts of marine sponges, substantiating their importance as 

collective mediators of microbiome functioning and structure in these hosts.  

ELPs are known as symbiotic factors in sponges because of the role they play in the 

modulation of cellular protein-protein interactions and in the prevention of symbiont 

phagocytosis by host cells (Díez-Vives et al., 2016; Reynolds and Thomas, 2016). Previous 

studies have shown that sponge-associated bacterial genomes are enriched in genes encoding 

for ELPs such as ANKs, TRPs, WD40, and LRR (Thomas et al., 2010; Fan et al., 2012; Liu et 

al., 2012; Díez-Vives et al., 2016; Karimi et al., 2017b). ELP-encoding genes can be gained 

from both horizontal and lateral transfer (Lurie-Weinberger et al., 2010). These proteins have 

been shown to affect phagocytosis of amoeba cells in vitro by interrupting phagosome 

maturation process (Reynolds and Thomas, 2016). Because sponges feed on their trapped 

bacteria by using specialized archaeocytes (amoeboid-like cells), ELPs might act as molecular 

signatures enabling bacteria to evade digestion by sponge cells. We found that all 

Alphaproteobacteria genomes analyzed in this study carry ELPs. Non-Roseobacter genomes 

(group G2) had higher ELP counts in comparison with Roseobacters (group G1), suggesting 

higher affinity of members of the former group in establishing favorable or more stable 

interactions with marine sponges. It remains to be determined whether such molecular 

signatures may likewise be involved in bacterial adaptation to other sessile marine hosts such 

as ascidians, corals and bryozoans, therefore supporting a generalist pattern of occurrence of 

these symbionts across several host organisms, as already documented for Pseudovibrio and 

Ruegeria species (see e.g. Keller-Costa et al. (2017)).   
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Genome features of Anderseniella sp. Alg231-50 

The 16S rRNA gene of Anderseniella sp. strain Alg231-50 shares 100% similarity with the 

“marine sponge bacterium strain FILTEROTU17”, isolated from Haliclona sp. (Sipkema et 

al., 2011). Anderseniella species have not been frequently reported from sponges, suggesting 

recalcitrance to common cultivation procedures. Analysis of the Anderseniella genome 

revealed two COGs (COG5461; Type IV pili component and COG5622; cell attachment 

protein) involved in adhesion and attachment to host cells. The type IV pilus system (T4PS) is 

a multifunctional machine which, among other features, promotes adherence to eukaryotic 

cells (Burrows, 2012). It has been shown that T4PS is important for pathogenic bacteria 

(Melville and Craig, 2013), for instance, to maximize biofilm formation upon host colonization 

(Varga et al., 2008). Overall, the presence of adhesion proteins in the Anderseniella genome 

suggests eukaryotic host colonization aptitude consistent with other genomic traits identified 

in this organism to favor a symbiotic life-style. Another noticeable encoding genes found for 

this strain were nitrate (NO3-) transporter and reductase genes (comprising alpha, beta, gamma 

and delta subunits) shown to modulate ammonia uptake and utilization via the general nitrogen 

regulatory system (Ntr) (Moreno-Vivián et al., 1999), suggesting a potential role of strain 

Alg231-50 strain in metabolic waste (that is, ammonia) removal thereby contributing to host 

fitness. Furthermore, three CRISPR-Cas were detected in the Anderseniella Alg231-50 

genome. CRISPRs are adaptive defense systems in bacteria which can memorize any attack 

from viruses and plasmids based on keeping conserved repeats and different spacer sequences 

(Barrangou and Marraffini, 2014). Metagenomic studies have shown that the marine sponge 

micorbiome is enriched in CRISPR-Cas encoding genes (Horn et al., 2016; Karimi et al., 

2017b) and, therefore, the presence of these elements in the Andeseniella genome is indicative 

of a close interaction between this symbiont and its sponge host. 

In conclusion, the use of simple modifications to regular culture conditions coupled to 

dedicated genome-wide analysis of marine sponge symbionts enabled unprecedented access to 

highly versatile metabolisms across diverse Alphaproteobacteria. Although the cultivated 

symbionts reported here clearly do not rank among the most dominant members of the sponge 

endosymbiotic consortium, they were found to display a multitude of genomic features 

enabling persistence in this particular microenvironment which have been regularly described 

as genomic signatures of the marine sponge microbiome. Taken together, the outcomes 

compiled here contribute to novel insights into the potential roles of alphaproteobacterial 

communities in mediating molecular interactions and shaping the structure of the marine 

sponge microbiome. The several, phylogenetically distinct bacterial cultures retrieved in this 
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study can now be used in the determination of biological activities and natural product 

biosynthesis in the laboratory. 

 

Supplemental material  

The supplementary materials and explanations for this chapter can be found in Appendix II. 
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Abstract 

 

Marine sponges are early-branched metazoans known to harbor dense and diverse microbial 

communities. Yet the role of the so far uncultivable alphaproteobacterial lineages that populate 

these sessile invertebrates remains unclear. We applied a sequence composition–dependent 

binning approach to assemble one Rhodospirillaceae genome from the Spongia officinalis 

microbial metagenome and contrast its functional features with those of closely-related sponge-

associated and free-living genomes. Both symbiotic and free-living Rhodospirillaceae shared 

a suite of common features, possessing versatile carbon, nitrogen, sulfur and phosphorus 

metabolisms. Symbiotic genomes could be distinguished from their free-living counterparts by 

the lack of chemotaxis and motility traits, enrichment of genes required for the uptake and 

utilization of organic sulfur compounds - particularly taurine -, higher diversity and abundance 

of ABC transporters, and a distinct repertoire of genes involved in natural product biosynthesis, 

plasmid stability, cell detoxification and oxidative stress remediation. These sessile symbionts 

may more effectively contribute to host fitness via nutrient exchange, and also host 

detoxification and chemical defense. Considering the worldwide occurrence and high diversity 

of sponge-associated Rhodospirillaceae verified here using a tailored in silico approach, we 

suggest that these organisms are not only relevant to holobiont homeostasis but also to nutrient 

cycling in benthic ecosystems. 
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Introduction  

 

Marine sponges contain dense and diverse microbial communities. These sessile filter-feeders 

have emerged in the evolutionary history of our planet about 600 million years ago, and are 

known to establish close interactions with prokaryotes. It has been documented that up to 35% 

of the sponge wet weight can be comprised of bacterial cells (Vacelet and Donadey, 1977). 

Diverse and usually abundant bacterial communities populate the mesohyl matrix of marine 

sponges (Taylor et al., 2007b; Webster and Taylor, 2012; Kamke et al., 2014), but much 

remains to be learned about the actual in situ ecological functions of sponge-associated 

microorganisms and their potential benefits to the sponge host (Kamke et al., 2014; Webster 

and Thomas, 2016). Molecular evidence suggests that sponge-associated prokaryotes play 

fundamental roles in nutrient provision, removal of metabolic by-products, chemical defense 

and shelter from disease (Piel et al., 2004; Hentschel et al., 2006; Thomas et al., 2010; Fan et 

al., 2012; Wilson et al., 2014; Lackner et al., 2017). 

 The class Alphaproteobacteria (Garrity et al., 2005) ranks among the most widespread 

and abundant bacterial groups in the oceans, in great extent owing to the high 

representativeness of members of the complex marine group Roseobacter (Rhodobacteraceae) 

in planktonic settings (Giovannoni and Rappé, 2000; Buchan et al., 2005; Wagner-Döbler and 

Biebl, 2006; Giebel et al., 2011; Simon et al., 2017). Consequently, knowledge of the diversity 

and function of free-living Alphaproteobacteria has grown enormously in recent years (Morris 

et al., 2002; Luo et al., 2012b; Simon et al., 2017). In contrast, genome-wide analysis of several 

marine alphaproteobacterial groups other than Rhodobacteraceae (e.g. Rhizobiales, 

Rhodospirillales, Rickettsiales) and of symbiotic Alphaproteobacteria remains comparatively 

scarce in spite of their ever-increasing documentation as dominant players of eukaryote-

prokaryote associations in the oceans (Tujula et al., 2009; Simister et al., 2012; Erwin et al., 

2014; Pantos et al., 2015). For instance, a Sulfitobacter (Rhodobacteraceae) symbiont has been 

shown to promote diatom growth through indole-3-acetic acid (auxin) biosynthesis (Amin et 

al., 2015), while symbiotic Roseovarius (Rhodobacteraceae) induces cell elongation and 

division during the morphogenesis of the green macroalgae Ulva mutabilis (Spoerner et al., 

2012; Grueneberg et al., 2016). A chemoautotrophic, sulfur-oxidizing symbiont in the order 

Rhodospirillaceae was further found to profusely colonize the mouthless catenulida flatworm 

Paracatenula in an example of intimate and ancient animal-alphaproteobacterial symbiosis 

(Gruber-Vodicka et al., 2011).  
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 Alphaproteobacteria species represent one of the most widespread, diverse and 

dominant groups of sponge-associated bacteria (Enticknap et al., 2006; Schmitt et al., 2007; 

Simister et al., 2012; Hardoim et al., 2014; Thomas et al., 2016). In the last two decades or so, 

alphaproteobacterial lineages have often been reported as prevailing sponge-associated 

bacteria both via cultivation-dependent (O’Halloran et al., 2011; Esteves et al., 2013) and 

cultivation-independent (Taylor et al., 2007a; Hardoim et al., 2009; Simister et al., 2012; 

Thomas et al., 2016) studies. Alphaproteobacteria have been detected in both adult and larval 

samples of marine sponges (Schmitt et al., 2007), suggesting a pattern of vertical symbiont 

transmission through successive host generations, and thus an intimate association between 

these bacteria and their sponge hosts. A dedicated survey of 1,385 sponge-derived 

alphaproteobacterial 16S rRNA gene sequences revealed that 18% of the entries represented 

“sponge-specific bacterial clusters” (SC), with >30 alphaproteobacterial SCs being observed 

(Simister et al., 2012). This suggests that several distinct, deeply branched “sponge-specific” 

or “enriched” lineages likely representing novel alphaproteobacterial taxa are yet to be fully 

described. 

 Due to advances in next generation sequencing technologies and bioinformatics, 

reconstruction of genomes of uncultivated symbiotic bacteria from metagenomes is now 

achievable. To date, several studies reported the successful binning of genomes from diverse 

metagenomic samples (Iverson et al., 2012; Luo et al., 2012a; Albertsen et al., 2013; Sharon 

and Banfield, 2013; Nielsen et al., 2014; Burgsdorf et al., 2015; Britstein et al., 2016). In this 

study, we reconstruct the genome of a prevalent and uncultivated alphaproteobacterial 

symbiont of the Rhodospirillaceae family (order Rhodospirillales) from microbial 

metagenomes of the model sponge host Spongia officinalis. We reveal the genomic signatures, 

adaptive features and distinguishing functions of this lineage using an unprecedented 

comparative genomics endeavor to symbiotic Rhodospirillaceae that includes further analysis 

of closely-related symbiotic genomes binned from the marine sponge Aplysina aerophoba 

(Slaby et al., 2017) and of free-living phylotypes. We further perform an in silico assessment 

of the worldwide abundance and distribution of symbiotic Alphaproteobacteria, 

Rhodospirillales and Rhodospirillaceae in marine sponges using a recent dataset release 

(Thomas et al., 2016) to address the implications of the symbionts’ metabolism to the 

functioning of the marine sponge holobiont and of benthic ecosystems at large.  
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Materials and Methods 

 

Sample collection, DNA extraction and sequencing 

S. officinalis specimens (4 biological replicates) and seawater (3 replicates) were collected off 

the Algarve coast, southern Portugal (Northeast Atlantic, 36º 58' 47.2N ;7º 59' 20.8W) in May 

2014, from c. 20 m depth and transported to the laboratory in a cooling box within 1 h. 

Sampling and sample processing followed the methods described in detail by Hardoim et al. 

(2014). DNA extraction and Illumina metagenome sequencing procedures were described by 

Karimi et al. (2017b) and are available as Supporting Information in Appendix III. Briefly, 

metagenome sequencing of the S. officinalis endosymbiotic consortium was performed on 

microbial cell pellets (MCPs) retrieved from the host samples. To this end, differential 

centrifugation of homogenates obtained by maceration was carried out as explained previously 

(Hardoim et al., 2014) and detailed in Appendix III- File S1. 

Metagenome assembly  

To enable higher completeness and coverage of the genomes to be binned from metagenome 

samples, metagenomic reads from sponge and seawater replicates were pooled per habitat prior 

to metagenome assembly, which was performed with metaSPAdes of SPAdes 3.9.1 (Nurk et 

al., 2016). The resulting assemblies were inspected with the metaquast script of QUAST v.4.4 

(Gurevich et al., 2013). Only contigs of at least 1,000bp were used for further investigation.  

Genome binning from metagenomes 

All contigs ≥ 20,000bp in length were split into min. 10,000bp sub-contigs as part of the 

binning protocol of CONCOCT v. 0.4.0 (Alneberg et al., 2013). The non-concatenated read 

datasets were mapped to the sub-contigs of the respective metagenome with bowtie2 v. 2.2.6 

using default settings (Langmead and Salzberg, 2012). Sorting, indexing, transformation into 

BAM format, and read depth calculation were performed with Samtools v. 1.2 (Li et al., 2009). 

A python script (avgcov_from_samtoolsout.py)1 was used to calculate the average coverage 

for each contig from the read depth values. For each habitat (sponge and seawater) the coverage 

tables from every read dataset were merged into one differential coverage table. Binning was 

performed with CONCOCT v. 0.4.0 (Alneberg et al., 2014) at default settings. After merging 

sub-contigs back into the original contigs, a fasta file was created for each bin with a python 

script (mkBinFasta.py)1.  

1 https://github.com/bslaby/scripts/blob/master/ 
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The completeness of the genomic bins was estimated based on a hmm search (HMMER 

3.1b1) against a database of 111 essential single-copy genes (Finn et al., 2011; Alneberg et al., 

2013) after prediction of open reading frames (ORFs) with prodigal v. 2.6.1 (Hyatt et al., 2010). 

Only bins with more than 85% estimated completeness were considered for further analyses. 

The JSpeciesWS server (Richter et al., 2016) was used to specify the phylogenetic affiliation 

of all selected bins. After nominating possible target bins (Alphaproteobacteria), the reads 

mapping to the selected bins were assembled de novo with SPAdes 3.9.1 and IDBA-UD of 

IDBA 1.1.3 (Peng et al., 2010; Peng et al., 2012) as an attempt to improve the genome 

assemblies. The best genome assembly was chosen for each candidate bin by comparing 

original bins from metagenomic assemblies with re-assemblies from SPAdes and IDBA-UD 

according to the genome completeness and number of duplicate single-copy genes. The above-

described completeness estimation and QUAST (Gurevich et al., 2013) were used to obtain the 

genome statistics underlying this qualitative comparison. 

Genome annotation for comparative genomics 

Final draft genomic bins obtained in this study and all other genome sequences, coming from 

BLAST search and Slaby et al. (2017) study, used in comparative analyses were subjected to 

open reading frames (ORFs) prediction and subsequent annotation with the Rapid Annotation 

using Subsystem Technology (RAST) prokaryotic genome annotation server (Aziz et al., 2008; 

Overbeek et al., 2014), using the “classic RAST” algorithm. Additionally, genome annotation 

based on Clusters of Orthologous Groups of proteins (COGs) was performed using amino acid 

fasta files retrieved from RAST in searches against a local version of the COG database 

downloaded on 2016-02-10 (cdd.tar.gz) from ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/ (last 

updated 2015-05-28) (Tatusov et al., 2003), with the Rpsblast+ algorithm of BLAST 2.2.28+. 

Both RAST and COG-based annotations were employed in a comparison of six genomes 

comprising sponge-associated (n = 3) and closely-related free-living (n = 3) Rhodospirillales 

bacteria come from BLAST. Finally, EMBL annotation files of our genomic bins and their 

relatives were exported from RAST and uploaded on EDGAR (Blom et al., 2009; Blom et al., 

2016), where comprehensive phylogenomic assessments and pan- and core-genome 

estimations were carried out.   
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Phylogenomics of sponge-associated Alphaproteobacteria 

Genome-wide phylogenetic inference of alphaproteobacterial species was performed using the 

genome sequences (1) retrieved in this study (two from seawater, one from S. officinalis), (2) 

from the closest (cultured and uncultured) relatives of the genomes retrieved in this study (11 

genomes), (3) from S. officinalis-associated Alphaproteobacteria obtained on culture medium 

(Chapter 3)(10 genomes), and (4) from free-living representatives closest to our S. officinalis-

associated genome (4 genomes). This approach encompassed the analysis of 60 core genes 

common to all inspected alphaproteobacterial genomes (n = 28). In addition, a detailed analysis 

of the three bins produced in this study and their very closest matches was carried out. Here, 

sharper focus was placed on the relationships between the sponge-associated genomes 

assembled in this study and closest relatives representing (1) genome bins from the sponge host 

A. aerophoba (Slaby et al., 2017), and (2) free-living bacteria. This analysis encompassed 128 

genes common to the inspected alphaproteobacterial genomes (n = 9). Phylogenomic trees 

were computed using PHYLIP within the EDGAR environment, and were based on predicted 

amino acid sequences of protein-encoding genes in the core genome of each analytical dataset. 

Sequence alignments were performed using muscle, after which evolutionary distances among 

sequences were calculated with the Kimura 2-parameter, and trees constructed using the 

Neighbor-Joining method. Bootstrapping tests of clade robustness were performed with 250 

iterations using Consensus tree version 3.69.650. Average nucleotide (ANI) and average amino 

acid (AAI) identities between genome sequences were computed on EDGAR using BLAST 

hits between all genes common (core genes) to the genomes used in the abovementioned 

approaches. Further, Venn diagrams were constructed in EDGAR, considering reciprocal best 

BLAST hits of the coding sequences (CDSs) predicted with RAST, to determine the number 

of genes specific and common to sponge-associated and free-living Rhodospirillales. 

 

Geographic distribution of uncultivated, sponge-associated Rhodospirillales 

We examined the global 16S rRNA gene operational taxonomic units (OTUs) table recently 

released by Thomas et al. (2016), hereafter called Sponge Microbiome (SM) dataset, to 

determine the worldwide distribution of Alphaproteobacteria, Rhodospirillales and 

Rhodospirillaceae phylotypes (i.e. OTUs) across marine sponges and geographic locations. 

Briefly, the SM dataset describes the prokaryotic diversity found in 804 marine sponge samples 

(encompassing 81 sponge species) collected (mostly) from shallow waters of the Atlantic, 

Pacific and Indian Oceans, and of the Mediterranean and Red Seas (Thomas et al., 2016) in 

addition to 133 and 36 seawater and sediment samples. Besides, 16S rRNA gene sequences 
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assembled in Alphaproteobacteria bins from marine sponges (Slaby et al., 2017) were 

subjected to phylogenetic inference with the Rhodospirillales OTUs present in the SM dataset 

(Thomas et al., 2016) to determine the geographical range of occurrence and degree of host 

specificity of the sponge-associated bins examined in this study. A detailed methodological 

description pertaining to this analysis is provided as Supporting Information (Appendix III -

File S1). 

 

Genome features and life strategy of Rhodospirillaceae sponge symbionts  

Two Alphaproteobacteria bins assembled from A. aerophoba (Slaby et al., 2017) were used 

along with the S. officinalis-derived bin retrieved in this study to form a group of sponge-

specific Rhodospirillaceae. The three closest relatives to the abovementioned genomes 

representing free-living Rhodospirillaceae were then employed in the comparative scheme. To 

explore key differences in functional attributes between sponge symbiotic Rhodospirillaceae 

and their closest free-living relatives, three approaches were employed on this set of six 

genome sequences (three symbiotic vs. three free-living). First, RAST annotations were used 

to (1) obtain an overview of basic genome features (length, GC content, rRNA and tRNA 

numbers etc) and (2) compare the nutrient metabolism, at the finest level of genetic resolution 

(i.e. annotated CDSs) between symbiotic and free-living phylotypes. Second, to discover 

COGs displaying significantly different abundances among symbiotic and free-living genome 

pools, we carried out a two-sided White´s non-parametric t-test (White et al., 2009) in STAMP 

2.0.9 (Parks et al., 2014) at the COG-entry level, with a p-value cut-off of 0.05. We enhanced 

the stringency of the search by considering only those COGs which also displayed differences 

in mean proportions among pools (symbiotic vs. free-living) larger than 0.04%, corresponding 

to a minimum of 2-fold increase/decrease in COG relative abundances. Finally, we manually 

performed a Venn diagrams-assisted, qualitative search for life-style-specific COGs present 

exclusively either in the symbiotic or the in free-living genome pool. Using STAMP 2.0.9, heat 

maps illustrating the abundance distribution of highly differentiating COGs across symbiotic 

vs. free-living genomes were created, and the unweighted pair group method with arithmetic 

mean (UPGMA) algorithm was used to construct a dendrogram with a clustering threshold of 

0.05. Additionally, the abundance distribution of COGs corresponding to genomic features 

often reported to be enriched in marine sponge symbionts, i.e. eukaryotic-like proteins (ELPs), 

clustered regularly interspaced short palindromic repeats (CRISPRs) and restriction 

modification (R-M) systems, was specifically determined in both genome pools.  
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Nucleotide sequence accession numbers 

Metagenome sequences used for genome binning were deposited by Karimi et al. (2017b) in 

the European Nucleotide Archive (ENA) under the accession numbers ERR1103453 to 

ERR1103456 (S. officinalis samples) and ERR1103460 to ERR1103462 (seawater samples). 

The genomic bins retrieved in this study were deposited in ENA under the accession numbers 

FZLQ01000001-FZLQ01000157 (Phyllobacteriaceae bacterium Water-Bin73), 

FZLR01000001-FZLR01000323 (Rhodospirillaceae bacterium Spongia-Bin9) and 

FZLS01000001-FZLS01000274 (Rhodobacteraceae bacterium Water-Bin34). 

 

Results 

 

Phylogenomics of sponge-associated Alphaproteobacteria and relatives 

We obtained three Alphaproteobacteria draft genomes with ≥ 90% completeness: one derived 

from the marine sponge S. officinalis and two from seawater (Appendix III- Table S1). Using 

genome-wide taxonomy, they were assigned to the families Rhodospirillaceae, 

Rhodobacteraceae and Phyllobacteriaceae, respectively. A summary of their genome features 

is shown in Table 4-1. No genome closely related to the Rhodospirillaceae genome from S. 

officinalis (Table 4-1, hereafter termed “Spongia So9”) could be assembled from seawater and 

sediment metagenomes. Phylogenomic analysis revealed that Spongia So9 and genomic bins 

retrieved from A. aerophoba (Slaby et al., 2017) formed a concise phylogenetic clade 

exclusively comprising so-far uncultivated sponge symbionts. Members of this clade did not 

resemble any of the diverse, cultivated Alphaproteobacteria lineages retrieved recently from 

S. officinalis on culture medium (Chapter 3) (Figure 4-1). Closest cultured relatives to the 

sponge bins constituting the abovementioned clade encompassed terrestrial, plant symbiotic 

genera such as Azospirillum and Rhodospirillum (not shown) as well as free-living 

Magnetospirillum species from freshwater, and Thalassospira and Oceanibaculum species 

from seawater (Figure 4-1), all belonging to the family Rhodospirillaceae within the 

Alphaproteobacteria. While bins 65 and 129 from A. aerophoba (hereafter termed Aplysina 

Aa65 and Aplysina Aa129, respectively) were as well assigned to the family Rhodospirillaceae 

using both 16S rRNA gene and genome-wide phylogenies, the other A. aerophoba-associated 

alphaproteobacterial bins (Slaby et al., 2017) could not be classified to the family level. 

Because the sponge-associated genomes stood clearly apart from their closest genome matches, 

forming a sister group to the cultivable Rhodospirillaceae   
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Table 4-1. Basic features of sponge-associated and seawater-derived Alphaproteobacteria genomes 
assembled in this study. 

 
species in our phylogenomic survey (Figure 4-1), we hereafter refer to this phylogenetic group 

of symbionts as sponge-enriched Rhodospirillales clade (SERC). A considerable degree of 

evolutionary heterogeneity was depicted within the SERC, with AAI measures ranging from 

62.5% to 96.5% for the least (Aplysina Aa65 and Aplysina Aa95 from A. aerophoba) and most 

similar genomes (Spongia So9 and Aplysina Aa65) in the group when 60 core-genes were used 

in the analysis (Figure 4-1). Deeper inspection of Spongia So9 and its closest 

Rhodospirillaceae relatives from sponges (Aplysina Aa65 and Aplysina Aa129) and aquatic 

habitats (Magnetospirillum magneticum strain AMB-1 and Thalassospira australica strain 

NP3b2), encompassing thus only five genomes and their 647 core genes (Figure 4-2, 

Appendix III- Table S2), revealed that Spongia So9 and Aplysina Aa65 shared AAI and ANI 

values of 93.7% and 91.3%, respectively (Appendix III- Table S2). These values dropped to 

59.5% and 77.8%, respectively, in a comparison between Spongia So9 and M. magneticum 

AMB-1; and to 61.2% and 81.1%, respectively, when Spongia So9 and Aplysina Aa129 were 

compared (Appendix III- Table S2).   

Genome  Spongia So91 Wat342 Wat733 
Family Rhodospirillaceae Rhodobacteraceae Phyllobacteriaceae 
Completeness estimation (%) 91.9 91.0 91.9 
GC content (%) 66.1 37.0 54.5 
Genome Size (Mb) 4.1 3.6 1.8 
Number of Contigs 323 274 157 
Coding sequences 4,171 3,902 1,790 
Number of RNAs 42 50 37 
5S rRNA n.d. 1 n.d. 
16S rRNA n.d. 1 1 
23S rRNA n.d. 1 1 
tRNAs  42 47 35 
1Rhodospirillaceae bacterium Spongia-Bin9, 2Rhodobacteraceae bacterium Water-Bin34, 
3Phyllobacteriaceae bacterium Water-Bin73. n.d., Not detected 
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Core- and pan-genomes of sponge-associated and free-living Rhodospirillaceae 

The pan-genome of Spongia So9 and its closest relatives from sponges and aquatic habitats 

(Appendix III- Table S2) consisted of 13,908 genes, whereas the core-genome consisted of 

647 genes (Figure 4-3A). Spongia So9 shared 3,041 genes with its closest relative Aplysina 

Aa65, supporting the closer relationship between these phylotypes as predicted by 

phylogenomic inference (Figures 4-1 and 4-2, Appendix III- Table S2). A higher proportion 

of phylotype-specific genes was detected for Aplysina Aa129 than for Spongia So9 and 

 
Figure 4-1. Phylogenomic tree of sponge-associated Alphaproteobacteria and close relatives. The tree 
was generated using PHYLIP within the EDGAR environment using the neighbor joining method on 
a matrix of Kimura distances between predicted amino acid sequences of protein-encoding genes in 
the genome sequences. It consists of 35 genome entries (28 from Alphaproteobacteria species). Sixty 
genes common to all genomes were used in tree construction. Genomes in green were assembled from 
sponge, seawater or sediment metagenomes, whereas genomes in blue represent alphaproteobacterial 
cultures obtained from S. officinalis (Chapter 3). Genomes in black were obtained from public 
databases. Entries marked in bold correspond to genome bins generated in this study. Bootstrap values 
above 70% (0.7) are shown on tree nodes.  
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Aplysina Aa65, and symbiotic genomes shared more genes with one another than with free-

living Rhodospirillaceae (Figure 4-3A). Also within the SERC a large degree of variability 

was depicted (Figure 4-3B). Although somewhat reduced pan- and core-genomes were 

observed for this group, amounting to 12,862 and 536 genes, respectively (Figure 4-3B), the 

core/pan-genome ratios calculated for the genome sets analyzed in Figures 3A (symbiotic and 

free-living) and 3B (symbiotic only) were of similar magnitude (0.047 and 0.042, respectively).  

 

 
 

Figure 4-2. Phylogenomic tree of genomic bins retrieved in this study and their closest relatives. The 
tree was generated using PHYLIP within the EDGAR environment using the neighbor joining method 
on a matrix of Kimura distances between predicted amino acid sequences of protein-encoding genes in 
the genome sequences. It consists of 14 genome entries (nine from Alphaproteobacteria species), and 
128 genes common to all genomes were used in tree construction. Entries marked in bold correspond 
to genome bins generated in this study. Bootstrap values above 70% (0.7) are shown on tree nodes. 
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Figure 4-3. Genes shared by and specific to symbiotic and free-living Rhodospirillaceae genomes. 
Venn diagrams comparing the gene inventories of three Rhodospirillaceae genomes reconstructed from 
sponges along with their closest free-living (A) and further sponge-associated (B) relatives are shown. 
Diagrams were computed on EDGAR based on reciprocal best BLAST hits of the coding sequences 
predicted by RAST. Full names of symbiotic and free-living strains are as in the footnote to Table 4-2. 
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Functional genomics of sponge-associated and free-living Rhodospirillaceae 

Table 4-2 summarizes the basic genome features of the symbiotic and free-living 

Rhodospirillaceae genomes inspected in closer detail in this study. We found no evidence for 

reduced genome sizes within sponge symbionts (Table 4-2). GC contents were fairly high, 

varying from 61.1% (Spongia So9) to 69.5% (Aplysina Aa129), except for the T. australica 

NP3b2 genome (53.6%). The amount of classifiable CDSs from each genome was quite 

similar, with 39% to 48% of the predicted CDSs categorized in RAST subsystems, and 70% to 

76% of the predicted CDSs assigned a COG entry. We observed a complete lack of genes in 

the RAST upper category “Motility and Chemotaxis” for the symbiotic genome pool, whereas 

around one hundred of such genes were found in each genome of the free-living pool (Table 

4-2).  

From both RAST and COG annotations, prediction of a functional Calvin–Benson–

Bassham (CBB) cycle (CO2 fixation via photosynthesis) could only be achieved for M. 

magneticum AMB-1. All symbiotic genomes lacked both ribulose 1,5-bisphosphate 

carboxylase (RuBisCO) and phosphoribulokinase (prkB) encoding genes, the major indicators 

of CBB-based photosynthesis in bacteria, although 21 genes involved in photorespiration 

(oxidative photosynthetic carbon cycle, or C2 photosynthesis), which also requires RuBisCO, 

could be detected in Aplysina Aa129. A chiefly heterotrophic metabolism was instead revealed 

for all free-living and symbiotic genomes through the presence of complete tricarboxylic and 

glyoxylate bypass cycles. The symbiotic genomes were characterized by an enrichment of 

genes involved in fermentative processes (86 to 93 genes in symbiotic vs. 41 to 48 genes in 

free-living genomes), including acetyl-CoA fermentation to butyrate and butanol biosynthesis. 

Similarly, genes involved in the degradation of aromatic compounds (119 to 154 genes in 

symbiotic vs. 23 to 58 genes in free-living genomes) including toluene, biphenyl, benzoate and 

salicyclate ester, among others, were more abundant in the symbiotic genomes. 

 Using RAST, versatile nutrient cycling and utilization capacities were uncovered for 

all phylotypes regardless of life-style (Table 4-3). Presumably, the sponge symbionts are 

capable of importing and utilizing organic sulfur in the form of taurine as suggested by the 

presence of all required genes TauABCD. The sponge symbionts further shared with M. 

magneticum the capacity to assimilate alkanesulfonates, however through different 

mechanisms: while the free-living bacteria possess the SsuABC system for alkanesulfonates 

binding and transport, the symbionts rely on alternative ABC-type 

nitrate/sulfonate/bicarbonate transporters (Pc, Ac and Prc proteins). All symbionts possessed 

higher numbers of arylsulfatase-encoding genes (hydrolysis of phenol sulfates; alkanesulfonate 
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metabolism) in comparison with free-living strains (Appendix III- Table S3). Congruent with 

the higher sensitivity of Rhodospirillaceae spp. to sulfides, all free-living and symbiotic 

genomes analyzed lacked the ability to oxidize sulfide to sulfite via the dissimilatory sulfite 

reductase (Dsr) pathway (a typical feature of purple-sulfur bacteria, including symbionts – see 

e.g. Tian et al. (2014). Sulfur oxidation capacities observed for Spongia So9, Aplysina Aa65, 

O. indicum and M. magneticum relied rather exclusively on the Sox pathway for thiosulfate 

oxidation to sulfate. Particularly, Spongia So9 and Aplysina Aa65 displayed identical and 

versatile genomic organization concerning their sulfur oxidation coding potential, which 

consisted of five sulfur oxidation proteins SoxABXYZ, the sulfite and sulfide dehydrogenases 

SoxD and SoxF, the thioredoxin SoxW and the regulatory protein SoxS, whereas only one Sox-

encoding gene (SoxZ) was found in the genome of M. magneticum. Regarding phosphorus 

metabolism, all organisms possessed the genes required for the biosynthesis of phosphatase 

kinases 1 and 2 (ppk1 and ppk2), both of which catalyze the formation of polyphosphate 

(PolyP) chains through the transfer of the terminal phosphate from ATP. Likewise, all 

phylotypes used in the comparison were found to be capable of Poly-P breakdown via 

hydrolysis catalyzed by the exo-polyphosphatase Ppx, and to regulate the uptake of inorganic 

phosphorus (Pi) via the PHO regulon (Table 4-3). Conversely, only the free-living strains 

contained genes for assimilation and utilization of organic phosphorus in the form of 

alkylphosphonates (Table 4-3). The sponge symbionts possessed furthermore a variety of N-

cycling capabilities, sharing with M. magneticum AMB-1 the potential to engage in nitrate and 

nitrite ammonification, ammonia assimilation and denitrification (Appendix III- Table S3). 

However, while the ammonification and ammonia assimilation pathways were similar among 

all these phylotypes, their involvement in the denitrification process differs. The symbionts 

reduce nitrate to nitrite via the NarGHIJ operon, taking part of the first denitrification step, 

whereas M. magneticum possesses genes conferring nitrite (Nir), nitric oxide (Nor) and nitrous 

oxide (Noz) reduction capabilities (Table 4-3)
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Table 4-2. Genome features of sponge-associated and free-living Rhodospirillaceae. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Spongia So9, Rhodospirillaceae bacterium bin9 from Spongia officinalis (this study); Aplysina Aa65, Rhodospirillaceae bacterium bin65 
from Aplysina aerophoba (Slaby et al., 2017); Aplysina Aa129, Rhodospirillaceae bacterium bin129 from Aplysina aerophoba (Slaby et 
al., 2017); Free-living strains: Magnetospirillum magneticum strain AMB-1, Thalassospira australica strain NP3b2 and Oceanibaculum 
indicum strain P24. n.d.: Not detected.

 
 
 
 
 
 
 
 
 

Genomic features 
Spongia  
So9 

Aplysina 
Aa65 

Aplysina 
Aa129 

Magnetospirillum 
magneticum  

Thalassospira 
australica 

Oceanibaculum 
indicum 

Genome size (Mb) 4.06 4.28 4.83 4.96 4.27 3.95 
GC content (%) 61.1 66.2 69.5 65.1 53.6 65.5 
Protein coding genes 4,171 4,370 4,907 4,087 4,183 3,797 
In Subsystem 1,726 (42%) 1873 (43%) 1,869 (39%) 1,723 (43%) 1,908 (46%) 1,793 (48%) 
Not in Subsystem 2,445 (58%) 2,497 (57%) 3,038 (61%) 2,364 (57%) 2,275 (54%) 2,004 (52%) 
In COGs 2,899 (70%) 3,083 (71%) 3,450 (70%) 3,119 (76%) 3,143 (75%) 2,883 (76%) 
rRNA genes       
5S   n.d. 1 n.d. 2 1 1 
16S   n.d. 1 1 n.d. 1 1 
23S  n.d. 1 n.d. 2 1 1 
tRNA genes  42 46 38 90 56 44 
  
Motility and chemotaxis 0 0 0 112 98 91 
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Table 4-3. Nutrient cycling features in sponge-associated and free-living Rhodospirillaceae genomes.  

N-cycling category/subcategory/subsystem 
Spongia 
So91 

Aplysina 
Aa65 

Aplysina 
Aa129 

Magnetospirillum 
magneticum 

Thalassospira 
australica 

Oceanibaculum 
indicum 

Nitrogen metabolism       
Cyanate hydrolysis 0 0 0 0 0 7 
Dissimilatory nitrite reductase 0 0 0 13 0 0 
Nitrosative stress 3 1 1 0 1 2 
Nitrate and nitrite ammonification 6 6 7 24 6 6 
Ammonia assimilation 18 19 26 9 10 9 

GS-GOGAT pathway yes yes yes yes yes yes 
Denitrification 4 4 5 31 0 4 

Nitrate reductases NarGHIJ yes yes yes no no yes 
Nitrite (Nir), nitric oxide (Nor) and nitrous oxide (Nos) 

reductases no no no yes no no 
Others (amidase) 2 2 5 0 0 0 

Sulfur metabolism       
Inorganic sulfur assimilation 0 0 0 32 11 0 
Release of DMS from DMSP 0 0 0 0 1 0 
Sulfur oxidation 13 13 0 1 0 6 
Sulfate reduction-associated complexes 0 0 0 10 0 0 
Thioredoxin-disulfide reductase 4 5 4 6 9 9 
Galactosylceramide and sulfide metabolism 2 2 2 3 0 0 
Organic sulfur assimilation and utilization 21 26 51 161 0 9 

Taurine utilization yes yes yes no no no 
Alkanesulfonates utilization yes yes yes yes no yes 

Phosphorus metabolism       
High-affinity PO4 transporter and PHO regulon 7 8 8 11 9 8 
Polyphosphate 4 4 4 3 4 3 

Poly-P synthesis (Ppk1-2) and hydrolysis (Ppx) yes yes yes yes yes yes 
Alkylphosphonate utilization 0 0 0 4 12 11 

1Full names of symbiotic and free-living strains are as in the footnote to Table 4-2. Values in cells correspond to number of CDSs classified in each 
subcategory/subsystem using RAST annotation. The presence of specific genes/complete pathways in selected subsystems is highlighted in italics.  
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Adaptations to (sponge) symbiotic and free-living life-styles 

The genes from the six Rhodospirillaceae genomes (Table 4-2) were assigned to 2,435 COGs 

(Appendix III- Table S3). Of these, 1,521 COGs (62.5%) occurred in both the sponge-

associated and free-living genome pools, whereas 205 and 709 COGs were specific to the 

sponge-associated and free-living pool, respectively (Appendix III- Figure S1). The sponge-

associated genome pool contained a higher degree of functional conservation among 

phylotypes (63.7% of COGs in the core) than the free-living genome pool (50.9%) (Appendix 

III- Figure S1). From a two-sided White’s t-test, 287 COGs displayed significantly different 

frequencies among sponge-associated and free-living genome pools (Appendix III- Figure 

S2). Of these, 141 COGs were sponge-enriched and 146 COGs were sponge-depleted 

(Appendix III- Tables S4A and B). Sixty-six sponge-enriched and 67 sponge-depleted COGs 

displayed > 2-fold differences in relative abundance between pools, and were more thoroughly 

inspected. We fetched 13 COGs representing four categories of ABC-type transport systems 

enriched in the symbiont genomes. Among these, we highlight the transport system proteins 

TauABC which mediate taurine uptake (Table 4-3), and the leucine-specific transport system 

proteins LivFGHM (Figure 4-4).  

 

 

Figure 4-4. Heat map of ABC-type transport systems significantly enriched in sponge symbiont 
genomes. The heat map illustrates shifts in the absolute abundance of CDSs assigned to each COG 
category listed in each of the six genomes (three sponge-associated, three free-living; see Table 4-2) 
used in the comparative analysis. Full names of symbiotic and free-living strains are as in the footnote 
to Table 4-2. 
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Furthermore, we found that COG1028 (FabG, dehydrogenases), well represented in both 

sponge and free-living genomes (Figure 4-5), was nevertheless the COG entry most 

pronouncedly enriched in the symbiotic genome pool (Appendix III- Table S4). Specific 

hydrolases, amidases and dioxygenases (including taurine TauD dioxygenase), along with 

COG2124 (cytochrome P450 family of oxidative enzymes) and COG5285 (fumonisin 

polyketide biosynthesis) were further identified as secondary metabolism features (COG class 

“Q”) enriched in sponge symbiont genomes (Figure 4-5). Several other COGs notably 

enriched in the sponge symbiont genomes could be pinpointed (Appendix III- Table S4). For 

instance, COG0346 (lactoylglutathione lyase GloA) and COG0625 (glutathione S-transferase 

GST) displayed 3 and 2.4-fold increases in abundance in sponge-associated versus free-living 

genomes, respectively. Also noteworthy were COGs involved in toxin-antitoxin (TA) systems, 

such as COG3093 (VapI, plasmid maintenance system antidote protein; 7-fold increase in 

sponge-associated genomes), COG4118 (Phd, antitoxin of TA stability system, 7-fold 

increase), and COG3549 (HigB plasmid system maintenance protein) (Appendix III- Figure 

S2, Table S4).  

 
Figure 4-5. Heat map of COGs in the class “secondary metabolites biosynthesis, transport, and 
catabolism” found to be significantly enriched in sponge symbiont genomes. The heat map illustrates 
shifts in the absolute abundance of CDSs assigned to each COG category listed in each of the six 
genomes (three sponge-associated, three free-living; see Table 4-2) used in the comparative analysis. 
Full names of symbiotic and free-living strains are as in the footnote to Table 4-2.  
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Further screening for sponge-depleted COGs allowed us to gather evidence for the 

(complete or nearly complete) loss of motility, chemotaxis and biofilm formation capacities 

among sponge symbionts (Tables S4). This was reflected by a list of COGs involved in (1) 

biosynthesis/assembly of chemotaxis proteins (e.g. COG0840, Tar protein) and of response 

regulators linked to environmental sensing and chemotaxis control (COG0784, Chey-like 

receiver; COG2204, Atoc response regulator); (2) flagellar motor protein assembly (e.g. 

COG1360 and COG1291) and flagellin biosynthesis (e.g. COG1344); and (3) synthesis and 

degradation of c-di-GMPs which act on the regulation of all the above-mentioned traits (e.g. 

COG2199 and COG2200, c-di-GMP synthetase and phosphodiesterase, respectively). All 

these COGs were among the most sponge-depleted functions, usually showing no hits in the 

symbiont genomes but being highly abundant among the free-living bacteria (Appendix III- 

Table S4). Likewise, specific features related with cell membrane composition and integrity 

(e.g. COG0438, RfaG glycosyltransferase; COG0859, RfaF LPS heptosyltransferase) and iron 

transport (e.g. COG1269 and COG0848, ferric ion uptake) were noticeably de-selected from 

the sponge symbiont genomes. 

 Finally, among the genomic signatures usually reported as diagnostic of a typical 

sponge symbiotic life-style, CRISPR-Cas and ankyrin repeats, along with one specific R-M 

system (COG3440), surfaced as elements clearly more frequent in the sponge-associated 

genomes, whereas no evidence for the enrichment of WD40, TPR and LRR motifs, and other 

R-M systems in sponge genomes could be gathered (Table 4-4).
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Table 4-4. COG-based abundance distribution of phage defense mechanisms and eukaryotic-like protein repeats across symbiotic and free-living genomes.

 

COG description 
Spongia 
So91 

Aplysina 
Aa65 

Aplysina 
Aa129 

Magnetospirillum 
magneticum 

Thalassospira 
australica 

Oceanibaculum 
indicum 

CRISPR-Cas systems               
COG1203 CRISPR-associated helicase Cas3 0 1 1 0 0 0 
COG1343 CRISPR-associated protein Cas2 0 1 0 0 0 0 
COG1518 CRISPR-associated protein Cas1 0 1 1 0 0 0 
COG3512 CRISPR-associated protein, Cas2 homolog 1 0 0 0 0 0 

Total CDSs in COGs   1 3 2 0 0 0 
Restriction-modification systems               

COG0286 
HsdM, Type I restriction-modification system 
methyltransferase subunit 3 1 2 0 2 1 

COG0732 HsdS, Restriction endonuclease S subunits 0 1 1 0 1 1 
COG1002 Type II restriction enzyme, methylase subunits 2 0 0 1 0 0 
COG1403 McrA, Restriction endonuclease 1 2 2 1 1 1 
COG1715 Mrr, Restriction endonuclease 1 0 1 0 0 1 
COG3440 Predicted restriction endonuclease 2 2 1 0 0 0 

COG4096 
HsdR, Type I site-specific restriction-modification 
system, R (restriction) subunit 0 1 0 0 1 1 

Total CDSs in COGs   9 7 7 2 5 5 

Ankyrin repeats               
COG0666 Arp, FOG: Ankyrin repeat 1 1 0 0 0 0 

Tetratricopeptide repeats               
COG0457 NrfG, FOG: TPR repeat 1 2 1 6 1 2 
COG0790 FOG: TPR repeat, SEL1 subfamily 2 3 4 7 3 2 
Total CDSs in COGs   3 5 5 13 4 4 
WD40 repeats               
COG1520 FOG: WD40-like repeat 1 1 1 2 1 1 
COG2319 FOG: WD40 repeat 0 1 2 0 0 1 
Total CDSs in COGs   1 2 3 2 1 2 
1Full names of symbiotic and free-living strains are as in the footnote to Table 2. Values correspond to the number of CDSs classified in each COG category.
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Discussion 

 

Since the earliest molecular-based studies of the marine sponge microbiome (e.g. Hentschel et 

al. (2002)), evidence has been accumulating for a central relevance of Alphaproteobacteria 

species as abundant and diverse members of this distinct symbiotic consortium (Taylor et al., 

2007b; Schmitt et al., 2012). To this date, several lineages within the class have been broadly 

recognized as either sponge-specific (Hardoim et al., 2009; Hardoim et al., 2012; Simister et 

al., 2012) or sponge-enriched (Taylor et al., 2013), and have been suggested to be vertically 

transmitted across successive host generations (Schmitt et al., 2007). Current availability of 

large-scale, next-generation sequencing data permits standardized, molecular-based inspection 

of the diversity and abundance of microorganisms in nature at unprecedented levels of 

resolution and comprehensiveness. In this study, screening of the SM dataset (Thomas et al., 

2016) was instrumental to solidify the status of the Alphaproteobacteria as major players of 

the marine sponge microbiome at a global scale due to their considerable relative abundance 

across several hosts. Furthermore, we unveiled large, previously unrecognized phylotype 

diversification within sponge-associated Rhodospirillales and Rhodospirillaceae, with up to > 

500 OTUs assigned to these groups worldwide (Appendix III- File S1). Inspection of so-far 

uncultivated, sponge-specific Rhodospirillaceae lineages via genome binning allowed us to 

address the evolution and adaptive features of this unique group of symbionts in detail, 

contributing with a growing body of contemporary surveys to deepen our understanding of the 

likely roles of several sponge symbiotic lineages in a cultivation-independent manner (Tian et 

al., 2014; Burgsdorf et al., 2015; Moitinho-Silva et al., 2017; Slaby et al., 2017). 

Intriguingly, our phylogenomic assessment revealed an unanticipated, reasonably large 

degree of diversification within the studied sponge-associated genomic bins. We gathered 

evidence for both genome conservation of Rhodospirillaceae symbionts from different hosts 

and biogeographical settings (Spongia So9 and Aplysina Aa65) and genome diversification 

among Rhodospirillaceae and closely related symbionts inhabiting the same host at a single 

location (all A. aerophoba genomic bins) (Figures 4-1 and 4-3). In fact, the pattern of gene 

gain and loss gleaned here for the symbiont genomes was of the same magnitude as that 

observed for an equally-sized group of symbiont and free-living Rhodospirillaceae genomes 

(Figure 4-3), and much larger than that observed by Burgsdorf et al. (2015) for a group of four 

closely-related “Candidatus Synechococcus spongiarum” (Cyanobacteria) phylotypes, with 

core/pan-genome ratios of 0.042 and 0.26 obtained for the Rhodospirillaceae (this study) and 
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“Ca. Synechococcus spongiarum” symbiont groups (Burgsdorf et al., 2015), respectively. This 

is consistent with a picture of inter-species and inter-general diversification, to the least, within 

the pool of sponge-derived, alphaproteobacterial genome bins analyzed here (Figures 4-1 and 

4-3A). Comparatively, a striking core/pan-genome ratio of 0.94 was obtained for six closely-

related strains of the human pathogen Klebsiella pneumoniae, with values dropping to 0.79 and 

0.72 when strains from subspecies K. pneumoniae ozaenae and K. rhinoscleromatis were 

subsequently added to the analysis (Caputo et al., 2015). In contrast, the core/pan-genome ratio 

of 20 Escherichia coli strains was found to be 0.11 (Touchon et al., 2009). Altogether, these 

data suggest high genome-wide rearrangement (and eventual adaptive irradiation) within 

sponge symbionts sharing common ancestry both below (Gao et al., 2014; Burgsdorf et al., 

2015) and above (this study) species level. Although biogeographical isolation and host 

species-driven selection could be evoked as main forces underlying this pattern, we advocate 

that much of the observed variation may as well result from (i) microniche partitioning across 

environmental gradients within the host and (ii) independent host colonization events leading 

to unique host persistence trajectories and genetic exchange with vicinal sponge symbionts. 

These emerge as more plausible causes of the divergence observed e.g. between Aplysina Aa65 

and Aplysina Aa129, both from the same host and location (Slaby et al., 2017). When core- 

and pan-genomes were delineated on the basis of annotated COGs instead of predicted CDSs, 

much higher degrees of conservation were observed among the sponge-associated genomes 

(Appendix III- Figure S1). Although this hints at a considerable degree of functional 

equivalence among the studied symbionts, still a large proportion of CDSs could not be 

assigned to COG categories (or RAST subsystems), making it challenging to infer the complete 

functional divergence that derives from the gene composition heterogeneity observed among 

the strains.  

As usual for members of the family Rhodospirillaceae (Baldani et al., 2014), the 

sponge-associated genomes had an elevated GC content. Correlations between DNA length 

and GC content are known to vary across the tree of life depending on the studied taxa (Li and 

Du, 2014). Nevertheless, it has been postulated that obligate host-associated bacteria usually 

contain small genomes with low GC content (McCutcheon and Moran, 2012). Our data stands 

in sharp contrast with this perspective (Table 4-2), and this opposition could be interpreted as 

an indication for a recently-established rather than ancient association. Recent associations are 

usually regarded as examples of facultative, secondary symbioses whereas ancient associations 

would correlate with obligate, primary symbioses (Moya et al., 2008). While the functional 

commonalities found between the sponge-associated and free-living phylotypes studied here 
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are supportive of a recent association hypothesis, it is rather difficult to favor the facultative 

symbiosis picture given the virtual inexistence, based on 16S rRNA gene assessments 

(Appendix III- Table S5), of the symbiotic lineages in sediments and seawater. In fact, several 

adaptive features to symbiotic living, detailed below, have been uncovered, which distinguish 

these symbionts from their free-living relatives. We moreover perceived that sponge-depleted 

COGs more often represented complete loss of function in the sponge-associated genome pool 

(e.g. absence of several motility and chemotaxis COGs) whereas sponge-enriched COGs more 

often resulted from quantitative differences in abundance of orthologous genes present in both 

pools. Assuming that Rhodospirillaceae sponge symbionts evolved from free-living ancestors, 

adaptation to the sponge host involved transition from motility to sessility resulting from the 

disposal of costly cell appendages (Martínez-García et al., 2014) - and their coding DNA - of 

pivotal relevance to the fitness of several particle- and host-associated bacteria (see e.g. Utada 

et al. (2014); Rossez et al. (2015)).We speculate that such a transition might take place quickly 

once the symbionts have accrued the necessary genetic machinery, and ensuing metabolic 

circuitry, that make them apt as true members of the sponge endosymbiotic consortium. In this 

context, the large metabolic versatility typical of both marine Rhodospirillaceae and the sponge 

symbiotic consortium would provide the evolving symbionts with a formidable gene repertoire 

with which fine adjustment to the novel conditions could be promoted. Availability of diverse 

carbon and nutrient sources as a consequence of the host’s filtering activity (Maldonado et al., 

2012) would drive the maintenance of large and versatile genomes for optimal nutrient 

acquisition. Mechanisms used by bacteria to silence foreign DNA with GC percentages lower 

than their own (Navarre et al., 2006) could act as a “purifying” selective force keeping GC 

contents high as observed for the symbionts inspected in this study. This process could be of 

relevance in the marine sponge microbiome given the high exposure to viral particles and 

horizontal gene transfer proneness within this consortium (Taylor et al., 2007a; Fan et al., 

2012). 

 In terms of nutrient metabolism, one feature obviously enriched in the symbiont 

genomes regards their capability to import and utilize organic sulfur compounds. Particularly, 

the complete set of all proteins required for taurine-specific import (TauABC) and 

desulfonation (TauD) was markedly more abundant in the symbiotic genomes (Figure 4-4, 

Appendix III- Table S4). This indicates that taurine (2-aminoethanesulfonic acid) metabolism 

constitutes an important adaptive feature of sponge symbiotic Rhodospirillaceae. Taurine 

occurs naturally as an abundant compound in the tissues of a wide range of animals, from 

marine invertebrates (Allen and Garrett, 1971) to mammals (Schuller-Levis and Park, 2003), 
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and potential for taurine utilization was recently reported for an uncultivated sponge symbiont 

in the order Chromatiales (Gammaproteobacteria) (Gauthier et al., 2016). Taurine-conjugated 

fatty acids and N-acyl taurines from diverse marine sponges such as Axinella (Huang et al., 

2013), Callyspongia (Huang et al., 2015), Ircinia (Emura et al., 2006) and Geodia (Olsen et 

al., 2016) have been increasingly reported in recent years, providing evidence for diverse and 

available organic sulfonated compounds that may be utilized by sponge symbionts. TauD 

desulfonates taurine as an alternative sulfur source to sulfite, succinate and 2-

aminoacetaldehyde. Through the action of a sulfite oxidase (e.g. COG2041), the potentially 

toxic sulfite can be oxidized to sulfate, which can be easily excreted or incorporated into 

cellular components. In addition, the higher frequency of arylsufatase A (COG3119)-encoding 

genes in the sponge-associated genome pool highlights the potential of these Rhodospirillaceae 

spp. to utilize sulfated polysaccharides - known to be present in marine sponges (Vilanova et 

al., 2009) -, a feature that has been suggested to be of relevance for diverse sponge-associated 

bacteria (Slaby et al., 2017). We observed that our symbionts may be capable of utilizing 

carnitine - a quaternary ammonium compound present in the mesohyl matrix of sponges - in 

agreement with Slaby et al. (2017) who reported that many of the typical sponge symbionts 

may possess this ability. However, carnitine usage was not verified in this study to be a 

distinguishing feature of symbiotic Rhodospirillaceae (White´s p-value > 0.05; see COG1804 

in Table S3 for details) as observed for sulfonated (e.g. taurine) and sulfated organic 

compounds. We moreover found that the sponge-associated Rhodospirillaceae are capable of 

transforming both organic (ammonification) and inorganic (nitrate reduction) forms of nitrate. 

The latter reaction, which in our survey was an exclusive feature of the sponge-associated 

genomes, corresponds to the first step of the denitrification process, and has been considered a 

signature feature of marine sponge metagenomes (see e.g. Fan et al. (2012)). This suggests that 

symbiotic Rhodospirillaceae spp. may rank as one major mediator of denitrification processes 

within the marine sponge holobiont, whereas coupling between ammonification and 

ammonium assimilation processes may enable these organisms to obtain constant supplies of 

nitrogen that can be incorporated into cell biomass. Similarly, Rhodospirillaceae may be key 

players in poly-P formation within marine sponges, a process postulated to significantly 

contribute to phosphorous sequestration in benthic ecosystems (Zhang et al., 2015). 

 While fine-tuning their nutrient-scavenging repertoire and metabolism to establish 

themselves within the marine sponge holobiont, concomitant selective pressures might have 

acted on membrane and cell wall composition, and on trans-membrane protein diversity, of the 

evolving Rhodospirillaceae spp. symbionts. This is reflected by the clear-cut enrichment of 
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several and specific ABC transport systems (Figure 4-4) along with the acute reduction of 

glycosyltransferases (e.g. RfaF and RfaG) involved in outer membrane biogenesis in the 

symbiotic genome pool. Besides using ATP hydrolysis to pump molecules across cellular 

membranes (Wilkens, 2015), ABC transporters may also be involved in the regulation of 

osmolarity and membrane integrity (Higgins, 2001). Several ABC importers have been 

identified as key factors in the acquisition of essential nutrients and energy for growth (Skaar 

et al., 2004; Cui and Davidson, 2011), and indeed the number and variety of transporter motifs 

correlate with the life-style of microorganisms (Ren and Paulsen, 2007). Apart from the taurine 

system highlighted above, particularly intriguing was the selection, in the symbiotic genomes, 

of the full high-affinity branched-chain amino acid transport system LivFGHMK, involved in 

leucine uptake and metabolism (Figure 4-4, Appendix III- Table S4). Evidence has been 

gathered for the spread of this transport system from alphaproteobacterial (Rhodospirilalles 

and Rhodobacterales species) to gammaproteobacterial (Chromatiales species) sponge 

symbionts via horizontal gene transfer (Tian et al., 2014; Gauthier et al., 2016). Along with our 

findings, this illustrates how positive, vertical selection of nutritional factors in a given lineage 

may spread laterally across other genomes in a community setting, a feature that may be 

promoted in highly dense and integrative symbiotic consortia.  

 Two COGs involved with the metabolism of the antioxidant glutathione were 

remarkably enriched in the sponge-associated genomes (Appendix III- Table S3). While 

the glutathione lyase GloA (COG0346) plays a role in the detoxification of methylglyoxal 

in bacterial cell metabolism (MacLean et al., 1998), glutathione S-transferases (GSTs, 

COG0625) are involved in different metabolic processes including protection against 

oxidative stress, cellular detoxification and antimicrobial drug resistance  (Guengerich et 

al., 1996; Allocati et al., 2009). Bacterial GSTs also may ensure the correct folding, 

synthesis and degradation of enzyme complexes (Vuilleumier, 1997). The much greater 

frequency of GloA and GST-encoding genes in the symbiotic genomes therefore hints at 

oxidative stress and antimicrobial agents as key selective forces shaping the evolution of 

Rhodospirillaceae sponge symbionts, and likely of sponge-associated bacteria in general. 

Taken together, our data suggest that the major contribution of these symbionts to host 

fitness relate with nutritional exchange and host detoxification (through e.g. ammonium 

assimilation). Considering their versatile nutrient assimilation profiles, participation in 

numerous geochemical processes, and widespread occurrence and abundance in association 

with marine sponges, we posit that these so-far uncultivated symbiotic bacteria could be 
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relevant not only to sponge holobiont homeostasis but also to the functioning of reef 

ecosystems. 

 

Supplementary data 

Supplementary materials and explanations for this chapter can be found in Appendix III 

and on digital format of the thesis (CD). 
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General discussion  

 

Sponges carry complex communities of symbiotic microbes believed to provide many benefits 

to their hosts through different ways (Lackner et al., 2017). Although sponges feed on 

microbes, it is now known that several microbial lineages have adapted to live within their 

sponge hosts by preventing being ingested while concomitantly performing diverse functions 

suited to this particular microenvironment (Nguyen et al., 2014; Slaby et al., 2017). Besides, 

compelling evidence has been gathered for vertical transmission of symbiotic bacteria through 

sponge generations (Schmitt et al., 2007; Lee et al., 2009; Bright and Bulgheresi, 2010), 

suggesting that these bacteria play crucial roles in sponge physiology. Moreover, microbial 

community composition within a given host species has been documented to be stable across 

geographical distances (see e.g Pita et al. (2013)) and time (Hardoim and Costa, 2014b), 

favoring the notion of regulatory mechanisms promoting sponge holobiont homeostasis 

regardless of environmental circumstances. In contrary, it has been often observed that the 

sponge-associated symbiotic consortium is likely to change considerably according to the host 

species (Hardoim et al., 2012; Pita et al., 2013; Thomas et al., 2016), indicating that host 

physiology and modes of living (e.g. erect, eroding, encrusting, with thick or thin mesohyl) 

play a major role in shaping the structure of its own microbiome.  

It is now clear that sponges harbor remarkable microbial diversity which involves 

common and specific microbial populations (Thomas et al., 2016). It is also evident that sponge 

symbiotic bacteria have evolved specialized metabolic traits (such as the ability to import and 

utilize sulfated polyssacharides) that allow them to thrive in particular microniches within their 

hosts (Slaby et al., 2017). However, we current lack in-depth knowledge of (1) the precise 

functional capacity of each of the diverse symbiotic bacteria that inhabit sponges (the diversity-

function linkage problem, that is: who does what?), (2) the extent to which these functional 

traits may contribute to host fitness and (3) how each of the major symbiotic lineages interact 

and communicate with their hosts to establish and maintain their symbiosis. This thesis 

approaches the above-mentioned issues by revealing the unique genetic signatures of the 

microbiome associated with the economically important model organism Spongia officinalis 

(see below) and by delving specifically into the functional traits and adaptive features of 

cultivated and uncultivated alphaproteobacterial symbionts inhabiting this host.  

 The marine sponge microbiome comprises several so-far uncultivated, yet highly 

abundant, lineages of symbiotic bacteria within manifold phyla such as Acidobacteria, 
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Actinobacteria, Chloroflexi, Poribacteria, Proteobacteria and Tectomicrobia, among others 

(Taylor et al., 2007a; Simister et al., 2012; Wilson et al., 2014; Thomas et al., 2016). Within 

the phylum Proteobacteria, many previous reports have unveiled a diverse range of sponge-

specific or sponge-enriched alphaproteobacterial lineages likewise recalcitrant to cultivation to 

this date (Hardoim et al., 2009; Simister et al., 2012; Naim et al., 2014; Thomas et al., 2016). 

Revealing the precise functional features of these manifold difficult-to-cultivate symbiotic 

bacteria, fostering knowledge of their metabolism, potential use in biotechnology, and 

contribution as host fitness-enhancing factors is one of the major challenges of today’s sponge 

microbiology research.  Previous research performed by the Microbial Ecology and Evolution 

Research Group (MicroEcoEvo) at CCMar has consistently reported on the prevalence of so-

far uncultivatable alphaproteobacterial lineages belonging to the families Rhodospirillaceae 

and Rhodobacteraceae in Dictyoceratida sponges (i.e. keratose sponges possessing a protein 

fibers skeleton) from the Algarve shore (Hardoim et al., 2012; Hardoim et al., 2014; Hardoim 

and Costa, 2014a), prompting our team to approach this relevant sponge-associated group in 

more detail. In this context, this thesis combines both cultivation-independent and alternative 

cultivation-dependent procedures to advance our knowledge of the coding potential of 

phylogenetically distinct sponge-associated symbionts, resulting in an unprecedented 

comparative genomics endeavor revealing the functional and adaptive attributes of diverse 

Alphaproteobacteria species found in association with Spongia officinalis. 

Although much research has addressed different sponge species to explore or describe 

their associated microbial communities (Hentschel et al., 2012; Costa et al., 2013; Hardoim 

and Costa, 2014b; Horn et al., 2016; Thomas et al., 2016; Moitinho-Silva et al., 2017; Slaby et 

al., 2017), it is clear that further knowledge must be fostered for a number of  other important 

sponge species that may serve as key model organisms in the study of host-microbe 

relationships, especially if we consider that there are more than 8,500 sponge species described 

to date and as many yet to be described (Van Soest et al., 2012). One compelling case is that 

of Spongia officinalis Linnaeus 1759, the first-ever described sponge species. S. officinalis 

possesses an Atlanto-Mediterranean geographical range and is well-known for its historical use 

by humans as a bath sponge (Dailianis et al., 2011). Several biologically-active natural 

products, particularly terpenoids, have been consistently obtained from S. officinalis (Gonzalez 

et al., 1984; Manzo et al., 2011), highlighting its potential use as sources of novel 

biotechnological appliances. However, whether such compounds are effectively produced by 

the sponge itself or by its symbionts has not yet been disclosed. In spite of the acknowledged 

societal, economical and biotechnological relevance of Spongia officinalis, knowledge of its 
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associated microbial community is scarce and apparently restricted, to the best of our 

knowledge, to one inaugural study performed by Bauvais et al. (2015). Using PCR-DGGE 

fingerprinting, these authors revealed that the structure of the S. officinalis symbiotic 

consortium diverged from that of seawater communities. They moreover inspected the heavy 

metal resistance capacity of several S. officinalis-associated bacterial cultures, documenting 

tolerance to nickel, copper, zinc or lead for some of the alphaprotobacterial taxa investigated 

in this thesis such as Pseudovibrio and Ruegeria (Bauvais et al., 2015). 

Given the abovementioned, the work compiled in this thesis dissects the S. officinalis 

microbiome in an unprecedented fashion by (1) unveiling its functional and taxonomic 

diversity using high-end, cultivation-independent metagenome sequencing technologies, (2) 

revealing the coding potential of hard-to-culture and phylogenetically unique 

alphaproteobacterial isolates obtained from this host, and (3) disclosing the adaptive features 

and functional attributes of a so-far uncultivable alphaproteobacterial symbiont using in silico 

genome reconstruction via binning of metagenomic reads.  

The aim of this section is to integrate the most relevant outcomes from the three original 

research chapters presented in this thesis to achieve a systematic understanding of the S. 

officinalis holobiont (and of the marine sponge holobiont at large) functioning and 

homeostasis, focusing on the participation of, and roles played by, symbiotic 

Alphaproteobacteria species in this dynamics.  

 

Comparative metagenomics reveals unique life strategies of the Spongia officinalis 

endosymbiotic consortium (Chapter 2) 

 

Next generation sequencing (NGS) technologies have experienced dramatic improvements in 

throughput and final data quality in the past few years. Consequently, these techniques have 

been essential for the development of the microbial ecology field, which intrinsically deems 

with complex systems composed by thousands (if not hundreds of thousands) of invisible 

organisms, several of which (so-far) uncultivable in the laboratory and interacting with one 

another in multiple and often unknown ways. Nowadays, metagenomics and genomics-based 

procedures, from DNA extraction to NGS to bioinformatics methodologies, are being used as 

tools of trend in this area. These approaches have accordingly paved the way to access the 

diversity and function of sponge-associated microbial communities, with pioneering shotgun 

metagenomic sequencing studies revealing for the first time a series of so-called “genetic 

signatures” underlying microbial adaptation to live within sponges (Thomas et al., 2010; Fan 
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et al., 2012). Among these, the enrichment of CRISPR-Cas and R-M systems involved in 

antiviral defense, and of a range of eukaryotic-like proteins (ELPs) possibly mediating 

molecular interactions between host and symbionts, emerged as pivotal features apparently 

“unique” to sponge-associated microbiomes. In this thesis, the distribution of these and several 

other genetic elements found to be enriched in sponge-associated microbial consortia was 

diligently verified across our model sponge host S. officinalis and its environmental 

surroundings using shotgun metagenome NGS (Chapter 2). Although one challenging aspect 

of these approaches is their dependence on available reference genomes for precise annotation 

of protein functions from gene sequences (Nielsen et al., 2014), they provide an alternative 

route with which the functionality of (particularly) uncultivable microorganisms (the case of 

most of the dominant sponge symbionts) can be assessed. As such, metagenomic NGS is 

substantially contributing to advance our understanding of the functions of the vast 

uncultivable majority that makes-up the microbiome of marine sponges (Siegl et al., 2011; Fan 

et al., 2012; Wilson et al., 2014; Burgsdorf et al., 2015; Slaby et al., 2017). 

Taking advantage of this approach, we could reveal, in the S. officinalis microbiome, 

multiple functional traits/adaptive features promoted in this particular consortium in 

comparison with seawater and sediment microbial metagenomes. These include genes 

encoding for polyketide and terpene/terpenoid biosynthesis, a vast carbohydrate degradation 

repertoire, the presence of eukaryotic-like proteins, biosynthesis of CRISPR-Cas and R-M 

endonucleases, Type IV secretion proteins, ABC transporters and plasmids. Some of these 

functions were found to be enriched in the microbial metagenomes of other sponge hosts, being 

generally interpreted as “specific” genomic signatures of sponge-associated bacteria (Fan et 

al., 2012; Horn et al., 2016; Thomas et al., 2016). However, previous studies delivering 

metagenomic functional and taxonomic profiling of marine sponge microbiomes have only 

contrasted this consortium with the vicinal seawater, what is understandable given the fact that 

sponges pump thousand liters of water per day into their bodies, and thus planktonic microbial 

communities inevitably make part of sponge microbiome dynamics, probably as source of both 

food and symbiotic bacteria. Nevertheless, our study in Chapter 2 demonstrates that several 

of the functional traits and bacterial taxa enriched in the sponge microbiome possess higher 

residual abundances in marine sediments than in seawater. We evoke sponge cell shedding and 

higher availability of solid surfaces and microbial cell densities in sediments and sponges (than 

in seawater) as plausible explanatory mechanisms underlying the observed, closer functional 

resemblance between sponge and sediment microbiomes in comparison with sponge and 

seawater microbiomes. Our observation bears implications to our understanding of the 
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evolutionary mechanisms involved in bacterial adaptation to sponge and eukaryotic hosts in 

general, and the patterns observed here should be verified in other sponge hosts as well as in 

other symbiotic systems such as corals, ascidians, bryozoans etc. 

From the taxonomic standpoint, most of the abundant endosymbiotic bacteria detected 

in S. officinalis were found to possess higher relative abundances in sediment than in seawater 

microbiomes, further strengthening the notion that the participation of the former habitat as 

source and sink of marine sponge symbionts shall not be undervalued. The taxonomic approach 

employed in this study was fundamental to reveal the diversity of Alphaproteobacteria lineages 

associated with S. officinalis, whereby uncultivated members of the families 

Rhodobacteraceae and Rhodospirillaceae were clearly the most prevalent. As observed for the 

other symbiotic lineages, S. officinalis-associated Alphaproteobacteria were usually more 

abundant in sediments than in seawater, with the exception of one particular Rhodobacteraceae 

lineage (OTU 442) found to be highly abundant in seawater and very well represented both in 

the sponge and in sediments (Appendix I -Table S3B). In the following chapters, this thesis 

approaches the phylogeny, evolution and function of sponge-associated Alphaproteobacteria, 

including Rhodobacteraceae and Rhodospirillaceae species, in a cultivation-dependent and -

independent manner, respectively, using comprehensive functional and comparative genomics.  

 

The Alphaproteobacteria symbiotic community in S. officinalis - a comparative and 

functional genomics approach 

 

Genomes from cultivated bacteria 

In spite of the large amount of information obtained from novel, cultivation-independent 

molecular techniques, microbial cultivation, especially if providing alternatives to more 

traditional protocols, can be a powerful complementary method leading to the retrieval and 

laboratory maintenance of novel, readily identifiable organismal biomass that can be promptly 

described and categorized, both genotypically and phenotypically. Therefore, using alternative 

strategies to cultivate sponge symbiotic bacteria, and thus helping to overcome the inherent 

difficulties in cultivating these microorganisms, was one of the main aims of this PhD thesis. 

In Chapter 3, we coupled alternative cultivation to full genome sequencing of sponge 

symbiotic bacteria, aiming at linking bacterial identity and function for a broad phylogenetic 

range of symbionts retrieved in vitro. For example, some typical features of sponge symbionts 

such as the production of bioactive secondary metabolites, which is believed to play an 
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important role in host defense (Hentschel et al., 2012), can be predicted from genome-wide 

analyses and subsequently straightforwardly tested in the laboratory. In Chapter 3, we adapted 

a general culture isolation approach in an attempt to access as much phylogenetic diversity of 

slow-growing bacteria as possible, optimally including rare and abundant symbionts, which 

have not been cultivated so far. Although this approach was very helpful for the retrieval of so-

far understudied as well as novel bacterial species, it was considered to fail in enabling the 

laboratory domestication of highly abundant sponge-associated bacterial lineages, a difficult-

to-overcome problem inherent to all attempts to cultivate marine sponge symbionts so far 

(Sipkema et al., 2011; Hardoim et al., 2014). Instead, the approach, which relied on the usage 

of lower incubation temperatures, lower amounts of organic carbon provided in the medium 

and longer incubation periods, enriched almost exclusively for rarer sponge-associated bacteria 

usually detected superficially using regular cultivation-independent NGS, as observed 

previously by our team (Hardoim et al., 2014). Interestingly, most of the isolates retrieved 

belonged to the phylum Alphaproteobacteria spanning several different families within this 

class, allowing us to deeply interrogate the genomes of cultivable sponge-associated 

Alphaproteobacteria in a comprehensive fashion, emphasizing on functional attributes of 

members of the highly versatile Roseobacter clade (family Rhodobacteraceae), and to 

discriminate between diverse alphaproteobacterial taxa on the basis of their genotypic features. 

Taxonomically, the panel of isolates subjected to genome sequencing comprised 

representatives of well-studied sponge associates with sequenced genomes such as Ruegeria 

(Zan et al., 2012) and Pseudovibrio (Bondarev et al., 2013; Alex and Antunes, 2015) as well 

as less-studied alphaproteobacterial taxa such as Anderseniella, Labrenzia, Sphingorhabdus, 

Loktanella, Tateyamaria and two Rhodobacteraceae lineages non-classifiable at the genus 

level, thus contributing with highly novel genomes and cultured bacterial biomass to be deeply 

explored in future studies (see below). In summary, we found that genes enconding for N-acyl-

L-homoserine lactone synthetases were enriched in Roseobacter clade genomes in comparison 

with non-Roseobacters, in agreement with the known quorum-sensing capacities reported for 

members of this clade (see e.g. Zan et al. (2012) for an example from a sponge symbiont). 

Conversely, genes encoding for type IV pilus biosynthesis (involved in host colonization and 

adherence) and ELPs (involved in host-microbe molecular interactions) were more frequent in 

non-Roseobacter genomes, leading us to argue that the latter group may comprise bacterial 

taxa more efficient in engaging in symbiotic relationships than Roseobacter clade lineages well 

known for their occurrence as free-living, planktonic bacteria (Chapter 3). Moreover, we 

observed that nearly all isolates (eight out of ten) were found to be putative producers of 
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terpenoids, leading us to hypothesize that terpenoid biosynthesis, frequently reported for 

Dictyoceratida sponges, may in fact be boosted by their alphaproteobacterial symbionts. 

Putative novel bacterial species are regularly isolated from sponges (Lee et al., 2006; 

O’Halloran et al., 2011; Jackson et al., 2015). As suggested above, in Chapter 3 we described 

the isolation of two likely novel species in the family Rhodobacteraceae. Also, strain 

Anderseniella Alg231-50 is, to the best of our knowledge, the first representative of the 

Anderseniella genus with a full genome sequenced. Indeed, nearly all information about this 

genus on databases is based on 16S rRNA sequences with only one strain of marine organism 

(soft coral mucus) reported so far (stand: 14th of November 2017). From all the 

alphaproteobacterial lineages submitted to full genome sequencing, Anderseniella Alg231-50 

displayed the highest representativeness in Spongia officinalis according to the metagenome-

genome mapping approach used in our study to infer relative abundances in the total sponge 

microbial community. This suggests that, among the cultures studied here, this strain may 

correspond to the most relevant in ecological terms. Interestingly, all of the isolated strains did 

not rank among highly dominant taxa in seawater, sediments or sponge microbiomes, 

reinforcing the notion raised by Hardoim et al. (2014) that current sponge symbiont cultivation 

platforms usually promote the enrichment of rare to only moderately abundant bacteria on 

culture plates, what somehow can be explored as an useful alternative to shed light on the 

coding potential of microbial dark matter from sponge microbiomes and other marine settings. 

Indeed, much of the metabolism and genome architecture of the ten sponge-associated 

alphaproteobacteria studied here can be explored in future studies aiming at promoting or 

confirming, in the laboratory, the activities inferred from genome mining. This approach seems 

to be particularly promising regarding the in vitro biosynthesis of natural products such as 

terpenes and polyketides, and their corresponding inhibitory activities, from these cultures.  

 

Genome reconstruction of a sponge-specific Rhodospirillaceae symbiont  

With the latest progress in sequencing technologies and the availability of straightforward and 

simple programs, genome binning and mining procedures have been ever increasing in speed 

and reliability. As many sponge-associated microbes cannot be simply cultivated with existing 

microbial isolation procedures, we benefited from this in silico approach to reconstruct the 

genome of an abundant Alphaproteobacteria (family Rhodospirillaceae) symbiont of Spongia 

officinalis from our sponge-associated microbial metagenomes (Chapter 4). By analyzing the 

binned genome (termed “So9” in Chapter 4) using a comparative genomics approach that 
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included other sponge-associated Rhodospirillaceae genomes built in silico (Slaby et al., 2017) 

along with the genomes of free-living relatives, we could verify and confirm, in the So9 

genome and its closest sponge-associated relatives, the presence of several adaptive features 

reported in Chapter 2 as genetic signatures of the overall sponge microbiome. Therefore, as a 

consequence of our study in Chapter 4, we now know that some of these features are typical 

of the genome of symbiotic Alphaproteobacteria in the Rhodospirillaceae family. These 

include the presence of polyketide synthase, terpenoid synthase, sulfatase and ABC transporter 

encoding genes, for instance, which were enriched in Rhodospirillaceae genomes and could be 

verified in our metagenomes in Chapter 2. Besides, the lack of motility and chemotaxis traits 

observed in Chapter 2 for the total microbial community could be verified again among these 

symbiotic Alphaproteobacteria, in a remarkable example of gene and cell accessory disposal 

underlying the adaptation of bacteria to a host-associated life-style involving the switching 

from a motile to a sessile state. We moreover suggest that fine-tuning of nutrient metabolism 

has been a key aspect in the evolutionary history of sponge-specific Rhodospirillaceae lineages 

given the enrichment, in their genomes, of genes involved in the import and metabolism of 

organic sulfur compounds such as taurine. 

 In Chapter 4 we further revealed, using an in silico approach, the widespread 

occurrence of diverse Rhodospirillaceae species across several sponge hosts and geographic 

locations (Atlantic Ocean, Mediterranean Sea, Pacific Ocean), further strengthening the 

relevance and likely stability of this particular symbiotic relationship. Finally, the recovery of 

this draft Rhodospirillaceae genome allowed us to gain insights into the adaptation and 

metabolic versatility of these yet-uncultured endosymbiotic bacteria in S. officinalis, and it is 

likely that the functional traits revealed in this study may be conserved among prevalent 

Rhodospirillaceae species inhabiting other sponge hosts.   
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Conclusions  

 

Collectively, the findings of this thesis illustrate:  

 

Chapter 2: “Comparative metagenomics reveals the distinctive adaptive features of the 

Spongia officinalis (Porifera, Dictyoceratida) endosymbiotic consortium” 

1- Microbial diversity and function in S. officinalis sharply differs from those of vicinal 

sediments and seawater, highlighting the uniqueness of the S. officinalis endosymbiotic 

consortium and of marine sponges in general (through comparative analyses, performed 

in this study, between the microbiomes of S. officinalis and those of other sponge hosts). 

2-  In spite of the striking divergence in microbiome structure mentioned above, closer 

functional and phylogenetic resemblance was found between sponge and sediment than 

between sponge and seawater microbial communities, an observation that bears 

implications to our understanding of the evolution of sponge-microbe and host-microbe 

symbiotic relationships in marine ecosystems.  

3- Among literally thousands of individual protein domains/functions (that is, IPR entries) 

found to oscillate significantly in relative abundance across S. officinalis, sediment and 

seawater microbiomes, IPR entries collectively involved in the coding CRISPR-Cas, 

restriction endonucleases, plasmids, polyketide synthases, terpene/terpenoid synthases, 

Type IV secretion proteins and ABC transporters were highlighted as some of the most 

significant contributors shaping the distinct functionality of the S. officinalis 

endosymbiotic consortium.  

4-  The distinctiveness of the S. officinalis symbiotic consortium could be readily observed 

at a very coarse level of taxonomic resolution, since the relative abundance of > 20 

microbial phyla changed significantly across sponge, sediments and seawater. Among 

these, the bacterial phyla Acidobacteria, Gemmatimonadetes, Poribacteria, 

Chloroflexi, Actinobacteria and Nitrospirae, and the candidate phyla SBR1093, 

PAUC34f and AncK6, were pronouncedly enriched in the sponge samples.   
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Chapter 3: “Functional genomics of cultivated sponge-associated Alphaproteobacteria 

reveals shared and unique traits underlying a bimodal symbiotic-free-living life-style” 

5-  The use of an oligotrophic medium (MG50) along with low-temperature (18°C) and 

prolonged incubation (8 weeks) permitted the cultivation of diverse sponge-associated 

Alphaproteobacteria not usually retrieved in most traditional cultivation attempts, 

likely by suppressing/preventing overgrowth of copiotrophic bacteria such as Vibrio 

spp. that tend to dominate culture plates rich in organic carbon. 

6-  Genes encoding for ABC transporters, thioredoxins, nitrogen regulation, 

peroxiredoxins, type II/IV secretion systems and glutathione S-transferases were 

identified as core genes present in all analyzed Alphaproteobacteria, suggesting 

functional redundancy within a broad phylogenetic panel of bacterial symbionts of 

sponges, what ultimately may confer functional resilience to the S. officinalis holobiont. 

7- At the COG-level, genes encoding for arylsulfatase A (an enzyme breaking down 

sulfatides), sulfate permeases, sulfur transferases, 3'-phosphoadenosine 5'-

phosphosulfate (PAPS) 3'-phosphatase and sulfite reductases were detected as common 

features of all cultured Alphaproteobacteria. 

8- Genes encoding for vitamin B biosynthesis were shared by the cultivated 

Alphaproteobacteria symbionts of S. officinalis. The presence of riboflavin synthases 

(alpha and beta chains) and of pyridoxal phosphate biosynthesis protein-encoding 

genes validate the synthesis of vitamin B among these symbionts. 

9- Terpene synthesis and polyketide synthase (PKS)/non-ribosomal peptide (NRPS) 

encoding gene clusters were found for the vast majority (eight out of ten) of the 

cultivated Alphaproteobacteria cultures, revealing their potential to contribute to the 

complex biochemistry known for keratose sponges and, eventually, to host defense 

against natural enemies.  

 

Chapter 4: “Metagenomic binning reveals versatile nutrient cycling and distinct adaptive 

features in alphaproteobacterial symbionts of marine sponges” 

10-  A Rhodospirillaceae sp. draft genome with ≥ 90% completeness was assembled from 

the microbial metagenome (Chapter 2) of the marine sponge S. officinalis, allowing 

the appraisal of the functional attributes of a so-far uncultivable, dominant sponge-

associated (alpha-) bacterium in this thesis.  

11-  The genome reconstructed from S. officinalis (Spongia So9) and the genomic bin 

retrieved from the marine sponge A. aerophoba (Aplysina Aa65) were found to be 
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highly similar in spite of their geographical distance and host origin, sharing AAI and 

ANI values of 93.7% and 91.3%, respectively.  

12- Symbiotic Rhodospirillaceae genomes were characterized by an enrichment of genes 

involved in fermentative processes, degradation of aromatic compounds, importing and 

utilizing organic sulfur in the form of e.g. taurine (TauABCD enconding genes) and 

sulfatides (arylsulfatase-encoding genes), and toxin-antitoxin (TA) systems. 

13- Evidence for the (complete or nearly complete) loss of motility, chemotaxis and biofilm 

formation capacities among sponge Rhodospirillaceae symbionts. 

14-  CRISPR-Cas and ankyrin repeats, along with one specific R-M system arose as anti-

viral genetic elements more frequent in sponge-associated than free-living 

Rhodospirillaceae genomes. 

 

Altogether, these results underline that the use of multiple methods is worthwhile to increase 

our understanding of the function and to describe the life-strategies of specific groups of host-

associated bacteria, fostering knowledge of their potential contributions as individual 

symbionts to host fitness, the possibilities of inter-dependent metabolism among members of 

one particular phylogenetic clade (i.e., Alphaproteobacteria), and the extent to which diverse 

lineages within one such clade display functional redundancy, an aspect that may bear 

important implications to holobiont dynamics and homeostasis. In the specific context of the 

marine sponge-microbe association, such a taxon-oriented endeavor helps disentangling the 

microbial identity-function (who does what?) conundrum typical of highly diverse microbial 

communities often consisting of several so-far uncultivable lineages. In this regard, particularly 

noteworthy was the congruence between a taxon-idenpendent, open-metagenomics sequencing 

study (Chapter 2) and the following taxon-oriented surveys implemented in this thesis 

(Chapters 2 and 3), identifying in individual alphaproteobacterial symbionts several genotypic 

features found to characterize the uniqueness of the collective marine sponge microbiome. 

Indeed, combining metagenomics and genomics approaches with microbial cultivation holds 

much promise in the exploitation of the metabolism and biotechnological potential of marine 

sponge microorganisms, therefore scientists still need to sufficiently associate these two 

techniques as “two sides of the same coin” (Gutleben et al., 2017).  
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Future perspectives 

 

While this thesis has applied a combination of cultivation-independent and cultivation-

dependent approaches to better explore and understand the marine sponge microbiome using 

one thus-far understudied yet relevant model organism, providing new insights into the 

structure and function of the S. officinalis microbiome and the possible roles of 

Alphaproteobacteria in sponges, still many more aspects remain to be addressed for a more 

accurate picture of the S. officinalis microbial consortium and its functional attributes, and 

obviously microbial communities inhabiting sponges in general. Considering the particular 

approach applied in this thesis, which describes one attempt - among manifold other 

possibilities - to increase the cultivability of marine sponge associates, it is clear that more 

research is needed to fully elucidate the coding potential of other cultivated or yet-to-be 

cultivated bacterial genomes, with the ultimate goal of incrementing our capacity not only to 

read the potential roles that symbionts may play in this particular association, but also to 

advance our understanding of bacterial metabolism. In this context, a shift in research effort 

and investment, from the simple identification of bacterial cultures using 16S rRNA gene 

sequencing to full genome sequencing, as attempted in Chapter 3, can substantially improve 

our knowledge of the genetic diversity and metabolism of such cultures, with direct 

consequences to a new perspective of host-microbe and microbe-microbe molecular 

interactions and signaling mechanisms within this system. If geared with novel symbiont 

cultivation platforms enabling manipulation of an ever-increasing phylogenetic breadth of 

microorganisms in the laboratory, full genome sequencing of symbionts will sharply enlarge 

the comprehensiveness of high-quality genomic databases, facilitating laboratory- and in 

silico-based studies of marine microorganisms.  

Moreover, the data published in this thesis open new perspectives to the formulation 

and design of new media and alternative cultivation attempts for capturing more sponge-

associated bacteria besides the Alphaproteobacteria lineages described here. Members of other 

so-far uncultivated phyla from sponges such as Acidobacteria and Actinobacteria (which we 

have shown to be particularly high abundant in S. officinalis) have been successfully retrieved 

from other environmental matrices such as soils and seawater, and adjustments in methodology 

can be made towards the retrieval of symbiotic lineages within such groups using specific, 

metagenomics-derived information gained here and in past studies. Different culture conditions 

using e.g. media enriched with organic sulfur compounds whose efficient assimilation and 
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utilization seem to be a common feature of several so-far uncultivable sponge symbionts, in 

combination with different incubation temperatures, may improve efficiency in capturing 

further sponge-associated bacterial lineages. This way, continuous (alternative) cultivation 

attempts may significantly contribute to lead, in the long-term, to a clearer understanding of 

the role and metabolism of the typically hard-to-culture, yet highly abundant bacterial 

symbionts of sponges. Bearing this in mind, during the course of the research leading to this 

thesis additional cultivation experiments have been performed. The data retrieved have been 

partially analyzed in what will constitute a future scientific article deriving from this research 

yet not included in the main body of the present thesis. These cultivation experiments have 

been done using two media named VXA (double-strength VL55 medium (Sait et al., 2002)) 

and 1/10R2A (low nutrient medium) which succeeded in enabling access to further so-far 

uncultivated bacterial symbionts of sponges belonging to the groups  Alphaproteobacteria, 

Gammaproteobacteria, and Actinobacteria from Spongia sp. specimens. This has encouraged 

us to deposit more 15 genomes in public databases that will be addressed in a future study in a 

comparative fashion, as performed in Chapter 3. Nevertheless, as mentioned above the 

genomics and metagenomics datasets generated in this study equipped us with an enormous 

amount of detailed information with which many more suitable media and incubation 

conditions can be designed. 

Besides, some further ideas could be tested, from the technical standpoint, which I 

would have considered for designing future experiments. For example, it could be interesting 

to use third generation sequencing technologies such as Pacific Biosciences’ (PacBio) single 

molecule realtime (SMRT) sequencing (Eid et al., 2009), which delivers very long reads and 

has been shown to generate suitable data for the reconstruction of genomes from metagenomes 

using sequence-dependent binning approaches (Slaby, 2017; Slaby et al., 2017). Applying 

technologies enabling the retrieval of long reads can for instance increase the success rates in 

reconstructing the genomes of other important, uncultivated bacteria which are not that 

prevalent in marine sponges or other symbiotic systems in general. 

Moreover, in as far as innovative studies relying on genome and metagenome 

sequencing can increase our knowledge of complex microbiomes, current sponge microbiology 

research can largely benefit from metatranscriptomics (see. e.g. Kamke et al. (2010) and 

Moitinho-Silva et al. (2014)) and experimental transcriptomics (from cultivated symbionts) 

surveys to better identify those taxa and functions truly performing and being expressed in situ 

and in controlled microcosms. The fact that scarce are the studies that so far made full use of 

these possibilities is to some extent suggestive of the technical challenges that need to be 
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overcome to increase the reliability of the data generated using these approaches. Eventually 

and likewise, the future application of proteomics technologies bears promise in fostering 

knowledge of actively expressed functions in the marine sponge microbiome, permitting 

analyses of this truly unique symbiotic system with ever-increasing levels of detail (Horgan 

and Kenny, 2011). 
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File S1 

Preliminary data analyses and data validation with alternative analytical pipelines 

 

Metagenome data assembly 

Metagenome assembly was performed using MetaVelvet (Namiki et al., 2012) under default 

settings. This procedure enabled us to obtain higher numbers of assembled nucleotides from 

complex sediment metagenomes than assembly using IDBA_UD, whereas performance of both 

assemblers was comparable for seawater and sponge metagenomes (data not shown). Still, 

because of the low proportions of reads actually used in the generation of contigs, and the low 

average contig length obtained for sediment samples (Table I-FS1), we opted to perform our 

core comparative metagenome analysis using unassembled data (see Figures. 1 to 5 in the main 

text, and Figures. S2 and S3 in the supplements). Metagenome assemblies obtained with 

MetaVelvet were subjected to COG-based annotations. While COG profiles from both 

unassembled and assembled data were used to (1) verify whether patterns described for IPR 

profiles using unassembled data could be reproduced using other analytical pipelines, COG 

profiles from assembled data only were used to (2) compare the functional profiles obtained for 

the metagenomes analysed in this study with those published by Fan et al. (2012) to screen for 

common functions (i.e. COG entries) across different sponge hosts (see below). 

 
Appendix I- Table FS 1. MetaVelvet assembly of Spongia officinalis (SP), sediment (Sd) and seawater 
microbial metagenome samples. 

Sample # contigs Reads used 

(%) 

N50 

(bp) 

Largest contig 

(bp) 

Mean contig 

(bp) 

Total assembly 

(bp) 

SP230 122 435 51.51 631 45 968 510 62 460 207 

SP231 31 651 52.63 1 615 42 085 1 128 35 694 965 

SP232 152 240 51.75 385 70 453 393 59 774 639 

SP233 91 672 53.69 842 84 626 570 52 254 976 

Sd_01 1 437 527 19.10 97 1 203 76 109 116 486 

Sd_02 2 097 956 26.43 83 1 006 65 135 483 210 

Sd_03 2 858 973 28.35 88 1 151 60 171 780 628 

Seawater_01 759 222 68.95 320 22 151 102 77 133 569 

Seawater_02 75 462 35.63 600 18 025 320 24 150 712 

Seawater_03 68 013 32.23 666 35 041 344 23 372 397 
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COG annotations of unassembled and assembled reads 

Within MG-RAST, we performed COG-based annotations for both the (1) unassembled dataset 

(also used in IPR annotations with the EBI metagenomics pipeline (EMG) - see main text) and 

(2) the assembled dataset obtained with MetaVelvet (Table AS1.1). In both cases, Principal 

Coordinates Analysis (PCoA) performed on the functional profiles recovered the overall trend 

observed with the analysis of InterPro (IPR) functional categories (see main text, Figure 1), 

depicting highly contrasting, significantly different microbiomes in terms of function (p < 

0.0006) across the three biotopes (Figure FS1.1). Particularly, the sponge symbiotic 

consortium was found to significantly differ from seawater and sediment microbiomes for both 

assembled and unassembled datasets, whereas no significant, pairwise differences between 

seawater and sediment microbiomes were found (Figure FS1.1). In contrast with results 

obtained using the IPR database (main text), COG annotations did not reveal the specific 

pattern of closer functional resemblance between sponges and sediments than between sponges 

and seawater (p > 0.05 for differences between Bray-Curtis dissimilarities). Thus, this 

particular outcome may slightly shift depending on the data processing pipelines and databases 

being used. Differently from the IPR annotation using EMG, COG annotations for both 

assembled and unassembled reads resulted in skewed numbers of reads with assigned functions 

among the different samples. Although the data transformation procedure used in this study 

corrects quite well for highly skewed data, it is important to consider this aspect when 

interpreting the results retrieved with COG annotations. Further, for all samples analyzed, 

much higher numbers of reads could be assigned functions using the IPR database in 

comparison with the COG database (22,156,186 vs 4,559,625 reads with function across the 

whole unassembled dataset, respectively). Likewise, the total number of IPR entries uncovered 

from the whole unassembled dataset was as well much higher than the total number of COGs 

(10,272 IPR vs. 2497 COG entries). Altogether, these outcomes suggest that the use of the 

EMG processing pipeline resulted in a more refined annotation of our data due to both (1) 

higher equitability among the total number of reads analysed in each sample (see Table S1) 

and (2) much higher numbers of annotated reads computed along with higher diversity of 

functions (i.e. IPR entries) retrieved for all samples, substantiating our choice to use this 

particular analysis in our main results. Yet the COG annotations were very useful to contrast 

our data with COG-based profiles obtained previously for other sponge hosts, such as 

Rhopaloides odorabile, Cymbastela concentrica and Cymbastela coralliophila, all 

characterized by Fan et al. (2012).  
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Appendix I- Figure FS 1. Principal Coordinate Analysis (PCoA) of functional microbial community 
profiles across biotopes based on COG annotations of unassembled (A) and assembled (B) 
metagenomes. Community ordinations were based on pairwise Bray-Curtis dissimilarities calculated 
from normalized data, considering oscillations of relative COG abundances among samples. 
Analyses were performed on COG community profiles extracted from the metagenomes using MG-
RAST. The first and second coordinates explain 39.7% and 36.1% (A) and 51.2% and 24.6% (B) of 
the total dataset variation within unassembled and assembled metagenomes, respectively. 
Significance values resulting from permutational analysis of variance (PERMANOVA) applied to 
the corresponding dissimilarity matrices are as follows. Overall differences among groups: p = 
0.0004 and 0.0005 for unassembled and assembled metagenomes, respectively. Pairwise 
significances: sponges were found to be different from seawater and sediment metagenomes in both 
datasets, with p values < 0.03 and < 0.04 for unassembled and assembled data, respectively. No 
significant difference was found between sediment and seawater functional profiles in both datasets 
(p > 0.05). 

 

 

Contrasting functional profiles of different sponge hosts 

As mentioned above, functional COG profiles retrieved for metagenomes assembled in this 

study were compared with those retrieved by Fan et al. for the sponge hosts Rhopaloeides 

odorabile (belonging to the order Dictyoceratida, as Spongia officinalis), Cymbastela 

concentrica and Cymbastela coralliophila (belonging to the order Axinellida). In spite of the 

differences in sampling and sample processing procedures, next-generation sequencing 

methodology and throughput, data processing, and size of the metagenome libraries produced 

in this and in the Fan et al. (2012) studies, PCoA on Hellinger transformed data (for both non-

rarefied and rarefied datasets) revealed a interesting gradient in functional profiles resembling 

the taxonomic relatedness of the sponge hosts, whereby S. officinalis and R. odorabile shared 

greater similarities with one another than with either of the Cymbastela hosts (Figure  FS-2). 

When lumped together as one single group, marine sponge microbial metagenomes were found 



 

   142 

to possess functional profiles significantly different from those retrieved for the sediment and 

seawater metagenomes sequenced in this study (Figure FS-2). Here, the same trend observed 

for IPR profiles retrieved from unassembled reads could be gathered: marine sponges had, 

collectively, significantly greater similarity with sediments (average Bray-Curtis dissimilarity: 

23.4%) than with seawater metagenomes (average Bray-Curtis dissimilarity: 26.1%) (p = 

0.0042). However, it is worth mentioning, as explained above, that the different data generation 

methods and analytical pipelines may influence these results to some extent.  

 

 
Appendix I- Figure FS 2. Principal Coordinate Analysis (PCoA) of COG functional profiles obtained 
for microbial metagenomes assembled in this study and those obtained for other sponge hosts. 
Community ordinations were based on pairwise Bray-Curtis dissimilarities calculated from normalized 
(Hellinger-transformed, non-rarefied) data, considering oscillations of relative COG abundances among samples. 
Ordination using data normalization after rarefying the metagenome libraries (standardization of all samples to 
the least sequenced sample) revealed the same trends as ordination using normalization on non-rarefied libraries 
libraries. Analyses were performed on COG community profiles extracted from the corresponding metagenomes 
using MG-RAST. Rhopaloeides odorabile (Rho), Cymbastela concentrica (Cyn) and Cymbastela coralliophila 
(Cyr) microbial metagenomes (Fan et al., 2012) were used in a comparative analysis against the COG-annotations 
retrieved in this study from S. officinalis, sediment and seawater metagenome assemblies. The first and second 
coordinates explain 34.3% and 17.7% of the total dataset variability, respectively. Significance values resulting 
from permutational analysis of variance (PERMANOVA) applied to the corresponding dissimilarity matrix are as 
follows. Overall differences among groups (all sponges vs. seawater vs. sediments): p = 0.0001. Pairwise 
significances: sponges were found to be different from seawater (p = 0.0057) and sediment (p = 0.0153) 
metagenomes, while no significant difference was found between sediment and seawater functional profiles (p = 
0.309). 

 

COGs specific to and shared by S. officinalis and other sponge hosts 

Independently of the quantitative assessments highlighted above, our comparative scheme 

enabled us fetch those COG entries shared by and specific to each of the sponge metagenome 

p230

p231p232 p233

SD01
SD02SD03

SW01

SW02SW03

Cyn.A

Cyn.B

Cyn.C

Rho.B Rho.C

Cyr.A Cyr.B Cyr.C

S. officinalis

Sediment

Seawater

C. concentrica

C. coralliophila

-0.40 -0.32 -0.24 -0.16 -0.08 0.08 0.16 0.24 0.32

Coordinate 1
-0.5

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

C
oo

rd
in

at
e 

2

R. odorabile



 

   143 

libraries analysed. In line with PCoA results (Figure FS-2), we found that S. officinalis had 

more COGs in common with R. odorabile than with C. concentrica and coralliophila (Figure 

FS-3). Likewise, sponges altogether possessed more COGs in common with sediments than 

with seawater (data not shown). The functional core of the four sponge species was high (1691 

COGs), representing 61.2% of all COGs identified in these metagenomes and revealing a 

considerable extent of functional convergence not only across a wide host phylogeny spectrum 

(as observed by Fan et al., 2012), but also geographical distances. Interestingly, SIMPER 

analysis of COG profiles listed for all four sponges together against sediment and seawater 

metagenomes revealed several sponge-enriched functions ranking as the most differentiating 

among biotopes (Table S5). Remarkably frequent among such top COG entries were type I 

and II restriction-modification systems identified here and by Fan et al. (2012) as sponge 

microbiome genetic signatures. Also, several of the observations made for IPR functional 

profiles obtained from unassembled reads could be revisited in this analysis, such as the higher 

abundance of ankyrin, tetratricopeptide, leucine-rich and WD-40 repeats in the sponge 

metagenomes, followed by sediments, as well as the distribution of polyketide, plasmid 

stabilization systems, ABC transporters and cytochrome P450 predicted functions, for instance, 

which followed the same trends observed for IPR annotations (Table S5). 

 

 
 

 
 

Appendix I- Figure FS 3.COGs shared by and specific to Spongia officinalis and Rhopaloeides 
odorabile (A) and S. officinalis, R. odorabile, Cymbastela concentrica and Cymbastela coralliophila 
(B). Results derive from COG annotations of assembled metagenomes retrieved in this study (S. 
officinalis) and by Fan et al. (2012) (R. odorabile, C. concentrica and C. coralliophora).  

(A
) 

(B) 
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Supplementary Figures and Tables 

 
 
 

 
 

 

Appendix I-Figure S1.Cytochrome oxidase I (COI) gene-based phylogenetic inference of sponge 
specimens examined in this study and their closest relatives. All sequences were aligned within the 
software package MEGA7. The evolutionary history was inferred using the Maximum Likelihood 
method based on the Kimura 2-parameter model. The tree for the heuristic search was obtained by 
applying the Neighbor-Joining method to a matrix of pairwise distances estimated using the Maximum 
Composite Likelihood (MCL) approach. A discrete Gamma distribution was used to model 
evolutionary rate differences among sites. Percent bootstrap values greater than 70% are shown. The 
tree is rooted to the Rhopaloeides genus and sponges from the present study are shown in bold. 
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Appendix I -Figure S2. Abundance distributions of ELPs (TRPs, ANKs, LRRs and WD40) across 
biotopes.Values on the y-axis represent mean cumulative IPR relative abundances (%) in each biotope 
± standard deviations. Ankyrin repeats - 3 IPR entries used in plot construction; Tetratricopeptide 
repeats - 10 IPR entries; WD40 repeats - 4 entries; leucine-rich repeats - 5 IPR entries. Results of the 
general test for differences among biotopes (One-Way ANOVA) are shown at the top of each chart, 
below the label of each analyzed function. Bars labeled with different letters represent statistically 
distinct biotopes in terms of IPR relative abundances according to pair-wise tests of significance. 

 

 

Appendix I-Figure S3. Relative abundance and distribution of microbial domains (A) and 
viruses (B) across the biotopes based on best-hit classifications using MG-RAST 
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Appendix I-Table S1. Number of sequence reads per quality control steps using the EBI metagenomics 
(EMG) pipeline (v. 2.0). 

x a b 
a    
b    

 

Appendix I-Table S2. 16S rRNA gene-based distribution of microbial phyla (A) and OTUs (B) across 
biotopes 

x a b 
a    
b    

 

Appendix I-Table S3. Most differentiating microbial phyla (A) and OTUs (B) among biotopes. 

x a b 
a    
b    

 

Appendix I-Table S4. Most differentiating IPR entries among biotopes. 

x a b 
a    
b    

 

Appendix I-Table S5. Most differentiating COG entries among biotopes, with "sponges" representing 
functional profiles of S. officinalis, R. odorabile, C. concentrica and C. coralliophila. 

x a b 
a    
b    

 
*Above files are available on digital format due to their large sizes. 
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Supplementary Figures 

 
231_04  Closest type strain (RDP, ≥1200bp); accession number Similarity % 

1 Phaeobacter inhibens strain T5 (T); (NR_042761) 98.06 
2 Phaeobacter gallaeciensis strain BS107 (T); (NR_027609) 97.98 
3 Leisingera methylohalidivorans strain MB2 (T); (NR_025637) 97.69 
4 Leisingera aquimarina strain R-26159 (T); (NR_042670) 97.57 
5 Ruegeria scottomollicae LMG 24367 (T); (AM905330) 97.28 
6 Leisingera caerulea LMG 24369 (T); (AM943630) 97.25 
   
 Closest hit on NCBI BLASTN; accession number  

1 Rhodobacteraceae bacterium ACEMC 26-3; (FM163007) 99.88 
2 Uncultured bacterium clone OS3BR21; JN233117 99.42 
3 Phaeobacter sp. P97; (KX163077) 98.68 
4 Phaeobacter inhibens strain DSM17395; (CP002976) 98.63 
5 Phaeobacter gallaeciensis strain 2.10; (CP002972)  98.63 
6 Phaeobacter sp. P104; (KX163079) 98.61 
7 Leisingera methylohalidivorans strain MB2; (NR_121711) 98.02 
8 Phaeobacter sp. strain 8-1; (AJ536670) 97.61 
 
 
 
  

 

 

231_30  Closest type strain (RDP, ≥1200bp); accession number Similarity % 

(A) 

(B) 

Figure S1.1. (A) The six closest type strains (T) (RDP Sequence match) and the eight closest NCBI BlastN hits to Rhodobacteraceae 
bacterium 231-04 are shown with their sequence similarity values. (B) 16S rRNA gene phylogeny of Rhodobacteraceae bacterium 231-
04 (highlighted in grey) and close relatives based on the Maximum Likelihood method using the Kimura 2-parameter model. The top-
three closest type strains (T) are highlighted in bold and underlined. The top-three closest NCBI BlastN hits are marked in bold. The tree 
with the highest log likelihood (-1688.3662) is shown. One hundred replicates were run to bootstrap the tree. The percentage of trees in 
which the associated taxa clustered together is shown next to the branches (60% cut-off). A discrete Gamma distribution was used to 
model evolutionary rate differences among sites (5 categories (+G, parameter = 0.0558)). The rate variation model allowed for some sites 
to be evolutionarily invariable ([+I], 51.9478% sites). The tree is drawn to scale, with branch lengths measured in the number of 
substitutions per site. The analysis involved 19 nucleotide sequences. All positions containing gaps and missing data were eliminated. 
There were a total of 817 positions in the final dataset. 

(A) 
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1 Thalassobius aestuarii JC2049 (T); (AY442178) 97.8 
2 Shimia marina CL-TA03 (T); (AY962292) 97.69 
3 Thalassobius mediterraneus CECT 5383 (T); (AJ878874) 97.15 
4 Shimia haliotis WM35 (T); (KC196071) 97.14 
5 Leisingera aquimarina LMG 24366T (T); (AM900415) 96.49 
6 Leisingera methylohalidivorans MB2 (T); (AY005463) 96.06 

   

  Closest hit on NCBI BLASTN; accession number  
1 Rhodobacteraceae bacterium Ph113; (HE818273) 98.57 
2 Shimia sagamensis strain JAMH 011; (NR_137204) 98.35 
3 Rhodobacteraceae bacterium 2tb2; (FJ952817) 98.13 
4 Uncultured bacterium clone B12_10.3_2; (FJ716880) 98.13 
5 Uncultured bacterium clone BF5_1108; (KC307193) 98.02 
6 Alphaproteobacterium C32; (AB302373) 98.02 

 
 

 
 

Figure S1.2. (A) The six closest type strains (T) (RDP Sequence match) and the six closest NCBI BlastN hits to Rhodobacteracae 
bacterium 231-30 are shown with their sequence similarity values. (B) 16S rRNA gene phylogeny of Rhodobacteraceae bacterium 231-
30 (highlighted in grey) and close relatives based on the Maximum Likelihood method using the Tamura-Nei model. The top three closest 
type strains (T) are highlighted in bold and underlined. The top three closest NCBI BlastN hits are marked in bold. The tree with the 
highest log likelihood (-2050.0808) is shown. One hundred replicates were run to bootstrap the tree. The percentage of trees in which the 
associated taxa clustered together is shown next to the branches (60% cut-off). A discrete Gamma distribution was used to model 
evolutionary rate differences among sites (5 categories (+G, parameter = 0.2182)). The rate variation model allowed for some sites to be 
evolutionarily invariable ([+I], 75.8138% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions 
per site. The analysis involved 19 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a 
total of 906 positions in the final dataset. 
 

(B) 

Appendix II- Figure S1. The closest type strains (T) (RDP Sequence match) and the closest NCBI BlastN hits 
to the Rhodobacteraceae bacterium 231-04 and 231-30. 
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Appendix II- Figure S2. Bar plots of COG entries displaying significantly different relative 
abundances in Roseobacter clade (Group 1) versus non-Roseobacter clade (Group 2) genomes*. 
*This figure was too large for paper formatting but can be found in digital format (CD). 
 

Supplementary Tables 

 
Appendix II- Table S1. Colony morphology and classification of bacterial isolates obtained on MG50 
medium from Spongia officinalis. 

x a b 
a    
b    

 

Appendix II- Table S2. 16S rRNA gene-based taxonomic affiliation of the 48 Spongia officinalis 
isolates retrieved on MG50 medium. 

Phylum Class Order Family Genus 
N° 
isolates 

N° 
OTUs 
(100%) 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Ruegeria 28 10 
Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio 4 2 
Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Pseudovibrio 3 1 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae 

Unclassified 
Rhodobacteraceae 
Alg231-04  1 1 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae 

Unclassified 
Rhodobacteraceae 
Alg231-30  1 1 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Tateyamaria 2 1 
Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Loktanella 2 1 
Actinobacteria Actinobacteria Actinomycetales Dermacoccaceae Dermacoccus 1 1 
Proteobacteria Alphaproteobacteria Sphingomonadales Erythrobacteraceae Erythrobacter 1 1 
Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Labrenzia  1 1 

Proteobacteria Gammaproteobacteria Alteromonadales Shewanellaceae 
Shewanella 
woodyi 1 1 

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingorhabdus 1 1 
Proteobacteria Alphaproteobacteria Rhizobiales Rhodobiaceae Anderseniella 1 1 
Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Nocardioides 1 1 

2 phyla 3 classes 6 orders 8 families 
12 classified + 2 
unclassified 48 24 
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Appendix II- Table S3. List of protein encoding-genes shared between the 10 Alphaproteobacteria 
genomes. 
 
x a b 
a    
b    

 
 
Appendix II- Table S4. Number of protein-encoding sequences (CDSs) present in each Clusters of 
Orthologous Groups of Proteins (COG) class for each of the 10 Alphaproteobacteria genomes. 

x a b 
a    
b    

 
Appendix II- Table S5. Number of protein-encoding sequences (CDSs) classified into Clusters of 
Orthologous Groups of Proteins (COG) for each of the 10 Alphaproteobacteria genomes analysed in 
this study. 

x a b 
a    
b    

 

Appendix II-Table S6. Clusters of Orthologous Groups (COG) entries shared between the ten 
alphaproteobacterial genomes analysed in this study. 
 
x a b 
a    
b    

 

Appendix II- Table S7. COG entries displaying significantly different relative abundances in 
Roseobacter clade (Group 1) versus non-Roseobacter clade (Group 2) genomes. (B) COG entries absent 
in all Roseobacter genomes and present in all non-Roseobacter genomes. (C) COG entries present in 
all Roseobacter genomes and absent in all non-Roseobacter genomes. 

x a b 
a    
b    

 
Appendix II- Table S8. Antibiotics and Secondary Metabolite Analysis Shell (antiSMASH) results. 
Shown are all secondary metabolite biosynthetic gene clusters found on each Alphaproteobacteria 
genome by the antiSMASH search tool. 

x a b 
a    
b    

 
*Above tables and figure are only available on digital format due to their large sizes.  
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File S1 Data analysis 

 
Supplementary Methods 

Sponge and seawater sample processing 

Briefly, 2.5 g of the inner body of each sponge specimen were cut and macerated with 

sterile mortar and pestle containing 22.5 mL of calcium/magnesium free artificial seawater 

(CMFASW) (Garson et al., 1998). The resulting homogenates were subjected to a 

differential centrifugation step (Hardoim et al., 2014) to discard host-derived cells and 

retrieve microbial cell pellets (MCPs) from the host samples. MCPs were stored at -80 oC 

until total community DNA (TC-DNA) extraction. Two liters of seawater from each 

replicate were filtered through a 0.22 µm nitrocellulose membrane (Merck Millipore, 

Billerica, MA, USA) which was then stored at -80 oC until TC-DNA extraction. TC-DNA 

was extracted from MCPs and nitrocellulose membrane filters with the UltraClean® Soil 

DNA isolation kit (Mo Bio, Carlsbad, CA, USA) according to the manufacturer’s protocol. 

TC-DNA concentrations were determined with the Qubit (Life Technologies Qubit 2.0®) 

dsDNA HS Assay Kit. TC-DNA sequencing was carried out on an Illumina Hiseq 2500 

apparatus at Mr. DNA (Shallowater, TX, USA). Briefly, sequencing DNA libraries were 

prepared using the Nextera DNA Sample preparation kit (Illumina) following the 

manufacturer's instructions, and sequenced paired end for 200 cycles with depth calibrated 

at c. 15 million 101bp reads per sample (Chapter 2) (Karimi et al., 2017b)  

 

Geographic distribution of uncultivated, sponge-associated Rhodospirillales 

All OTUs assigned to Alphaproteobacteria, Rhodospirillales and Rhodospirillaceae in the 

SM dataset by any of the three taxonomies employed in the analysis, namely Greengenes, 

RDP and SILVA, were retrieved from the list of representative OTU sequences delivered 

by Thomas et al. (2016). Thereafter, a customized R script designed to merge this list of 

classifications with the general SM OTU table was used to create a specific sample vs. 

OTUs table containing only (and all) alphaproteobacterial OTUs. The ascertainment of the 

distribution and relative abundance of the three target taxa across (1) all sponge samples, 

(2) sponge taxonomic orders and (3) geographical locations was accomplished by merging 

the customized OTU table with accompanying metadata released by Thomas et al. (2016). 

Furthermore, 16S rRNA gene sequences assembled in Alphaproteobacteria bins from 

marine sponges (Slaby et al., 2017) were subjected to phylogenetic inference with the 
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Rhodospirillales OTUs present in the SM dataset (Thomas et al., 2016).The closest SM 

OTU to our 16S rRNA gene queries was thereafter subjected to an in silico analysis of 

worldwide distribution and abundance across sponge hosts to delineate the likely degree of 

host fidelity and dispersal patterns of the sponge-associated bins examined closely in this 

study. 

Supplementary Results 

Distribution of Rhodospirillaceae species across marine sponges 

Depending on the database used in taxonomic assignments, the total number of 16S rRNA 

gene OTUs (from c. 3600 to 4150) and reads (from 1,181,054 to 1,434,120) assigned to the 

class Alphaproteobacteria represented around 8-9.5% of the total microbiome make-up of 

marine sponges within the SM dataset, in terms of both richness (OTU numbers) and 

abundance (read numbers) (Table S5). Using the RDP and Greengenes databases, the 

family Rhodospirillaceae approached 11% and 19% of the total Alphaproteobacteria 

richness (OTUs) and abundance (reads) uncovered in the SM dataset, respectively. These 

numbers dropped to around 3.5% (richness) and 4.5% (abundance) when taxonomy was 

assigned with the SILVA database (Table S5), found to label as “unclassified” several 

OTUs assigned as Rhodospirillaceae by the former databases. In any case, many hundreds 

of Rhodospirillaceae and closely related OTUs were found to occur in association with 

marine sponges worldwide. 16S rRNA gene sequences of phylotypes Aa65 and Aa129 were 

assigned as Rhodospirillaceae by the three databases (data not shown). Specifically, the 

16S rRNA gene of phylotype Aa65 from Aplysina aerophoba - the closest relative to 

phylotype So9 assembled in this study - shared greatest relatedness with OTU 003276 from 

the SM dataset. This OTU was found in 204 of the 804 sponge samples examined by 

(Thomas et al., 2016), amounting to 4,801 reads. Only one read belonging to OTU 003276 

was found in a sediment sample (out of 36), whereas no reads from this OTU could be 

found in the seawater samples (n = 133) from the SM dataset. We noticed that OTU 003276 

alone accounted for c. 23% and 8.7% of all Rhodopirillaceae reads detected in sponge 

species of the order Dictyoceratida (to which S. officinalis belongs) and Verongiida, and 

that its representativeness in the Mediterranean Sea is likely correlated with high sampling 

effort of such host species in this zone. Indeed, OTU 003276 was a particularly dominant 

alphaproteobacterium of Aplysina aerophoba (Verongiida, Croatia) and Ircinia variabilis 

(Dictyoceratida, Spain) microbial communities, being also commonly found in the 
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Mediterranean dictyoceratiids Sarcotragus fasciculatus, Ircinia oros and Ircinia strobilina 

(Table S5B).  

Supplementary Figures and Tables  

 

 
Appendix III- Figure S1. Specificity and sharedness of COG entries among free-living and 
symbiotic Rhodospirillaceae genomes. COGs specific and common to individual free-living (A) and 
sponge-associated (B) genomes are shown along with COGs specific and common to free-living and 
symbiotic genomes pools (C), each encompassing the three individual genomes shown in (A) and 
(B), respectively. Full names of symbiotic and free-living strains are as in the footnote to Table 4-2. 

 
 
Appendix III- Figure S2. Bar plots of sponge-enriched or sponge-depleted COGs (n = 287) 
displaying statistically significant differences in abundance among sponge-associated (orange) and 
free-living (blue) Rhodospirillaceae genome pools are shown. Error bars indicate within-group 
standard deviations. All presented categories passed a corrected p-value of 0.05 in White´s non-
parametric t-test. This figure was too large for paper formatting but can be found in digital format 
(CD). 
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Appendix III- Table S1. Alphaproteobacteria genome bins produced in this study and selected for further analysis after assembly improvements attempted 
with Spades and IDBA-UD. 

Samples  
Raw sum of 
ORF*  

#Dup.
** Sum 

Completeness 
estimation 
(%)*** 

 Selected 
for further 
analysis # contigs 

# contigs 
(≧1000 bp) 

Largest 
contig Total length N50 

Spongia                     
Bin9 (So9)1 108 5 103 92.79%  470 434 64,933 4,034,471 14,271 
Bin9_re-assembly SPAdes 102 0 102 91.89% ✓ 281 273 94,913 4,052,441 24,896 
Bin9_re-assembly IDBA-UD 100 1 99 89.19%  333 333 68,041 4,222,698 19,238 
           
Water                     
Bin34 (Wat34)2 104 3 101 90.99% ✓ 274 274 195,517 3,617,015 30,799 
Bin34_re-assembly SPAdes 103 4 99 89.19%  573 439 113,781 3,634,468 14,420 
Bin34_re-assembly IDBA-UD 103 4 99 89.19%  761 491 98,106 3,677,683 13,031 
           
Bin73 (Wat73)3 105 3 102 91.89% ✓ 157 157 60,648 17,925,66 20,176 

Bin73_re-assembly SPAdes 105 3 102 91.89%  140 137 78,859 1,784,018 22,544 
Bin73_re-assembly IDBA-UD 104 3 101 90.99%   243 223 36,324 1,777,061 14,660 

* Number of essential single-copy genes out of 111, ** number of duplicate single-copy genes, *** Genome completeness percentage (sum of essential 
coding genes minus the number of duplicates divided by 111).1Rhodospirillaceae bacterium Spongia_Bin9, 2Rhodobacteraceae bacterium Water_Bin34, 
3Phyllobacteriaceae bacterium Water_Bin73. 



 

 159 

Appendix III- Table S2. Average amino acid identity (AAI, A) and average nucleotide identity 
(ANI, B) measures among sponge-associated and free-living Rhodospirillaceae. 

(A) AAI           
Genomes So9  Aa65 Aa129 Taus Mmag 
Spongia So9 100 93.71 61.2 57.18 59.52 
Aplysina Aa65 93.71 100 60.69 57.24 59.35 
Aplysina Aa129 61.2 60.69 100 58.2 60.47 
Magnetospirillum mag 57.16 57.38 58.2 100 60.53 
Thalassospira aus 59.52 59.35 60.47 60.53 100 

(B) ANI           
Genomes Taus Mmag Aa129 So9 Aa65 
Thalassospira aus 100 78.77 82.32 76.67 77.15 
Magnetospirillum mag 79.18 100 77.12 77.57 77.73 
Aplysina Aa129 75.13 77.97 100 81.11 81.56 
Spongia So9 74.59 77.79 81.36 100 91.3 
Aplysina Aa65 76.73 78.39 80.85 91.36 100 

*Full names of genomes are as in the footnote to Table 4-2. 

Appendix III- Table S3. COG annotation of sponge-associated (highlighted in green) and free-living 
Rhodospirillaceae genomes. 

x a b 
a    
b    

 

Appendix III- Table S4. COGs enriched (A) and depleted (B) in sponge-associated Rhodospirillaceae. 

x a b 
a    
b    

 

Appendix III- Table S5. Worldwide abundance, distribution and richness of Alphaproteobacteria, 
Rhodospirillales and Rhodospirillaceae OTUs (A) and of SM OTU 003276 (B) in marine sponges. 

x a b 
a    
b    

 

* Above tables can be found in digital format (on CD) due to their large sizes. 
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