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Abstract: In general, the thermal cutting processes of steel plates are considered to have an influence
on microstructures and residual stress distribution, which determines the mechanical properties
and performance of cut edges. They also affect the quality of the surface cut edges, which further
complicates the problem, because in most cases the surface is subjected to the largest stresses.
This paper studies the influence of plasma cutting processes on the mechanical behavior of the cut
edges of steel and presents the characterization results of straight plasma arc cut edges of steel plate
grade S460M, 15 mm thick. The cutting conditions used are the standard ones for industrial plasma
cutting. The metallography of CHAZ (Cut Heat Affected Zones) and hardness profiles versus distance
from plasma cut edge surface are tested; the mechanical behavior of different CHAZ layers under
the cut edge surface were obtained by testing of instrumented mini-tensile 300 µm thick specimens.
Also, the residual stress distribution in the CHAZ was measured by X-ray diffraction. The results for
the mechanical properties, microstructure, hardness, and residual stresses are finally compared and
discussed. This work concludes that the CHAZ resulting from the plasma cutting process is narrow
(about 700 µm) and homogeneous in plate thickness.
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1. Introduction

The use of steel plates in construction elements, structures, parts of machinery, etc. requires,
in practically all cases, the cutting of these metallic sheets into smaller parts. These parts will later be
connected to other elements using mechanical joints or welds. Nowadays we have at our disposal
a plethora of cutting techniques: shear, oxy-cut, laser, plasma, water jet (with or without abrasive
particles), thermal lance, etc., but all these cutting techniques introduce modifications in the regions
close to the cut surface: they modify their surface roughness and, when they provide enough heat,
they introduce modifications in the microstructure [1]. These changes result in local variations in the
mechanical properties; in many cases, they also introduce or modify the profiles of the residual stresses
in the areas close to the cutting surface [2–5]. A question arises here as to whether it is preferable
to leave the cutting edge as it is or, on the contrary, if it is preferable to eliminate it, for example,
by grinding (as specified or recommended in some construction standards [6,7]) to optimize the use of
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the cut pieces and, in particular, their subsequent performance in applications under alternating loads
(fatigue) [8–11].

Criteria to establish whether it is better to keep the original edge or to remove it was one of
the objectives proposed within the European project HIPERCUT (“High Performance Cut Edges
in Structural Steel Plates for Demanding Applications”, RSFR-CT-2012-00027 [12]). In this project,
the results obtained using different cutting techniques were analyzed. Steel plates with thicknesses
ranging from 8 mm up to 25 mm were studied, while the grades and mechanical strength of the plates
varied between S355M and S890Q [13–16]. The cutting techniques that were analyzed and compared
were plasma jet, laser beam, and oxyfuel (oxy-acetylene). This article presents the results obtained
with the plasma cutting technique in a 15 mm S460M structural steel plate.

2. Materials and Methods

The characterization of the cutting edge obtained in a 15 mm thick steel plate with nominal yield
stress of 460 MPa is summarized. The chemical composition of the steel was as follows (wt. %): 0.12 C,
0.45 Si, 1.49 Mn, 0.012 P, 0.001 S, 0.062 Cr, 0.001 Mo, 0.016 Ni, 0.048 Al, 0.011 Cu, 0.036 Nb, 0.005 N,
0.002 Sn, 0.003 Ti, 0.066 V. This plate was cut with a plasma jet, in the standard industrial conditions
for the cutting of this thickness. The cutting parameters for the cutting equipment used (Hypertherm
260) and for the referred thickness were: Plasma arc current 200 A, arc voltage 131 V, cutting speed
2200 mm/min., torch standoff 4.1 mm, O2 plasma gas flow rate 69 L/min. and shielding gas flow rate
28 L/min. Here, it should be noted that the objective of the research is not to optimize the cutting
parameters, but to determine how well-defined industrial parameters affect the cut edge properties
and characteristics.

After the cutting process, samples were obtained (from the cut edge area) for metallographic
study, hardness measurements and machining of mini-specimens for tensile tests. The metallographic
samples were fixed in a conductive acrylic resin (Condufast™, Struers, Cleveland, OH, USA). Then,
the surface under observation was polished with SiC papers up to grade 1200 and finally polished
with 0.6 µm diamond paste, on velvet, until a specular finish is achieved. The polished samples were
etched with 2% Nital for 15 s, rinsed with ethyl alcohol and dried under a hot air stream, before being
observed in an optical microscope (Leica MEF-4, Leica, Wetzlar, Germany).

The hardness profiles were made using a LECO hardness tester (model M-400-G2, Leco,
Saint Joseph, MI, USA) equipped with a Vickers pyramidal tip. The indentations were carried out with
a load of 4.93 N (0.5 kg).

The mini-tensile samples were cut from the plate using a wire electro-discharge machine (WEDM).
Four dog bone shaped prisms were cut from the surface of the cut edge, with their longitudinal axes in
the direction of the cut. These prisms were in the mid plane of the plate thickness (or the cut edge),
as shown in Figure 1.
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Figure 1. (a) General geometry of the cut plate including the orientation of tensile specimens, zones
where hardness measurements were made, and directions used for measuring stresses. (b) Extraction of
four bone shaped blocks (for later slicing and extraction of the mini-tensile samples), by electro-erosion
of the central zone of the cut edge. Scale shown is in millimeters.
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These four prisms were sliced into 300 µm-thick specimens. The distance between two consecutive
specimens obtained from the same block was also 300 µm, due to the material removed by the wire
during the machining process (see Figure 2). In other words, between two consecutive mini-tensile
specimens obtained from the same block, there were 300 µm of material that were lost during the
machining process that, consequently, could not be characterized. To better characterize the tensile
properties all along the depth from the cut edge, the initial cut of each block or prism was moved (in
depth) 150 µm from one another. With this shift between blocks, it was possible to obtain mini-tensile
samples each of 150 µm in depth (or distance to the cutting edge).
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Figure 2. Slicing of one of the prisms to obtain tensile mini-samples.

As can be seen from Figures 1 and 2, the mini-tensile samples have a longitudinal orientation
(same as the cut edge) and their faces are parallel to the cut edge.

According to the bibliography [17], wire EDM cutting (WEDM) introduces residual stresses up
to a depth of approximately 80 µm. To eliminate, as much as possible, the effects of the WEDM,
50 µm were eliminated on each side of the mini-tensile samples by polishing (with SiC grade 1200
sandpaper and a subsequent polishing with 1 µm diamond paste in a velvet cloth) [18]. To remove the
material, an automatic Struers polishing machine (Struers, Cleveland, OH, USA) was used. During the
polishing, the orientation of the samples was fixed to provide a longitudinal polishing pattern, parallel
to the future direction of loading. The final thickness of the mini-tensile samples was nominally 200 µm
(the real thickness was measured and recorded for each sample. Average sample thickness was 203 µm
with a standard deviation of 25 µm).

Exceptionally, in the sample containing the surface of the cutting edge, this surface was not
removed by polishing, but it was preserved. This first mini-tensile specimen was polished only on the
inner side (polishing was carried out removing 100 µm on the inner side, so that the final thickness
was also approximately 177 µm).

Figure 3 shows a mini-tensile sample. Its nominal dimensions are 20 mm in length, 5 mm in total
width (the gauge length having 2.5 mm width and 3 mm length) and 0.2 mm in thickness.

To obtain accurate strain measurements, each specimen was instrumented with a strain gauge
(HBM 1-LY11-3/120, HBM, Darmstadt, Germany, with 5% maximum strain), as shown in Figure 3.
A San-Ei (San-Ei Electric Co., Ltd., Osaka, Japan) amplifier is used to record the lengthening of the
strain gauge. The tensile tests were carried out in a universal testing machine with a crosshead
displacement speed of 0.1 mm/minute. For deformations greater than 5%, the crosshead position
records were used (based on the correlation between the position of the actuator and the previous
measurements of the strain gauge). The strain gauge stiffness is not negligible when compared to
that of the specimen, and it was measured in an independent test. Thus, the contribution of the strain
gauge to the force measured by the load cell was considered when defining the actual load applied to
the mini-tensile specimens during tests.
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Figure 3. Mini-tensile specimen with the strain gauge for measuring deformations up to 5%. Scale
shown is in millimeters.

The tensile tests were carried out in an electro-mechanical machine (Instron Mini 44, Instron,
High Wycombe, UK). This test machine is equipped with a load cell of ±500 N. For fixing the samples,
their ends were inserted in two narrow channels machined at the end of two bolts. These channels were
300 µm wide. The mini-tensile samples shoulders were fixed into the channels with a cyanoacrylate
adhesive (Loctite); the capillarity of glue guarantees the complete fixation of the sample.

Finally, X-ray diffraction equipment was used to measure longitudinal (along the cutting direction)
and transversal (thickness direction) residual stresses at different depths from the cut edge. Prismatic
samples of 8 × 10 × 35 mm were machined (using WEDM) from half the thickness of the plate to
avoid the influence of the top/bottom surfaces. These samples were cleaned in a solution of 500 mm3

of HCl and 500 mm3 of distilled water, for 20 min at room temperature. The measurements were
made on a X-Ray diffractometer (X’Pert, Philips, Amsterdam, The Netherlands), with the following
parameters: anode material Cr (K-α2 = 2.2936663 Å), voltage 40 kV, current 40 mA, angle 2θ scanning
range 144.1~166.0◦ (0.3◦/step), ψ scan range 60.00~60.00◦ (7.76◦/step), time per step 12.05 s. The lattice
equivalent planes considered for measuring the residual stresses were the {211}.

For the measurement of stresses at different depths, the cut surface material was eliminated
in a controlled manner. To remove these thin layers of steel, an electrolytic polish setup was used.
This technique allowed us to remove material without introducing additional stresses in the samples.
The material was etched applying a potential of 14 V on blocks in an electrolytic medium made of
90% perchloric acid and 10% ethanol. This procedure (electro-polishing and X-ray diffraction) was
repeated four times, until reaching a depth of 700 µm from the original cut surface. The stresses were
always measured on the polished surface. The measured residual stress does not correspond to the
original stress at that depth because the removal of material induces a relaxation of internal stresses.
It is possible to deduce the original stresses at a certain depth, σ, using expression [19]:

σ(z1) = σm(z1) + 2
∫ H

z1

σm(z1)

z
dz − 6z1

∫ H

z1

σm(z1)

z2 dz

where H corresponds to the initial sample thickness, z1 to the current thickness and σm to the measured
stress obtained after eliminating the material. An in-house developed code was used to deduce the
stress profile that exists on the original plate from measurements and material thickness removed.

To validate this measurement methodology, a set of 5 tests were carried out on a pre-stressed
sample. These 5 samples were stressed up to 390 MPa. Results from X-Ray measurements provided
stress values of 388 ± 7 MPa.
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3. Results

3.1. Metallography

Figure 4 shows the metallographic section (already etched) of the zone affected by the cut (CHAZ).
In the figure, the left side corresponds to the cut edge, whereas the right side corresponds to the bulk
material, or remaining plate. Moreover, the top side of the picture corresponds to the plate surface
where the plasma nozzle was located, and the bottom side corresponds to the zone that rested on the
cutting table (slag side). Rounding and a thickness reduction of around 1.0 mm are observed in the
upper-left zone (jet entry) of the cut. The CHAZ (in principle, the darker material) is very thin, around
0.4 mm deep, especially when compared to that obtained by other cutting procedures with lower
energy densities, such as oxyfuel. The latter generates a CHAZ whose depth varies between 1 mm
(nozzle side) and 4 mm (slag side) [12,20]. The CHAZ provided by the plasma cut is, however, deeper
than that obtained in the same material when cutting with laser, which varies between 0.1 mm (nozzle
side) and 0.4 mm (slag side) [12,20]. Moreover, the depth of the CHAZ obtained when performing
plasma cuts is nearly constant, whereas oxyfuel and laser cuts generate HAZs with variable depths
along the plate thickness.

The heat generated during the cutting process produces phase transformations and the grain growth of
the underlying matrix material, as shown in Figure 5. The microstructure shown in this figure corresponds
to the area highlighted in the frame in the middle section of Figure 4. Grain size reduces drastically in
areas close to the cut edge. At distances from the cut edge greater than approximately 600 µm, there are no
changes in gran size.

Just below the cutting edge, layers of martensite and bainite are observed. At a depth of about
200 µm from the cutting edge, polygonal ferrite is observed. At approximately 400–500 µm, the ferrite
grains are larger and beyond the 700 µm pearlite and (even larger) polygonal ferrite grains are observed;
this last microstructure corresponds to the base material, not affected by the cut (a hypoeutectoid steel,
with bands of perlite and ferrite).

3.2. Microhardness

Figure 6 shows the Vickers hardness profiles (0.5 kg, HV05) of the cutting edge measured at the
upper part of the plate (at 0.5 mm and 2.5 mm from the plate upper surface, or nozzle side), at half
the thickness plate, and at the lower part of the plate (at 0.5 mm and 2.5 mm from the plate lower
surface). The measurements are presented as a function of the distance to the cutting edge (see also
Figures 1a and 4 to clarify the position of the measurements). To obtain detailed hardness profiles,
indentations of 0.5 kg (4.91 N) were made instead of 1 kg (9.81 N). It is known that non-standard
hardness measurements can differ from standard ones but the indentations of half a kilogram are
smaller and can be placed closer to one to another and to the cutting edge itself. At each height,
three lines of indentations were made, with a small shift between them, with the purpose of obtaining
in greater detail the evolution of hardness in the CHAZ versus depth. For each depth a single
measurement was made.

It can be observed that the microhardness measurements provide very similar results in the upper,
middle, and lower part of the cut section. This is related with the uniform thickness of the CHAZ,
as revealed in the images included in Figure 4. The effect of plasma cutting vanishes at a distance
of approximately 700 µm from the cut edge, along all the cut thickness. The European standard EN
1090-2 [21] sets a limit of 380 kg/mm2 for the Vickers hardness after cutting. The microhardness
measured near the surface slightly exceeds this limit in a thin layer, with a depth of about 350 µm
(EN 1090-2 [21] specifies Vickers with 1 kg load and here, the results are presented with only 0.5 kg).
The problem with a very hard cut surface is that it is prone to cracking in subsequent bending processes.
Several bend tests of the cut edges analyzed in the HIPERCUT project were carried out (e.g., [12,22]).
All samples tested were bent 180◦ without cracks, including those specimens that had the entire surface
of the cutting edge on the tensile side, revealing that the observed hardness measurements, which are
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slightly above the limits provided in [21], do not negatively affect the bending behavior of the plasma
cut edges analyzed.Metals 2018, 8, x FOR PEER REVIEW  6 of 13 
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measuring hardness profiles are visible. The upper-left part corresponds to the plasma inlet (see also
Figure 1a).
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Figure 5. Detail corresponding to the framed area on Figure 4 close to the middle section. The microstructures
shown in the second row correspond to the zone closer to the cut edge and its microstructure is finer in
regions closer to the cut edge (left).
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Figure 6. Hardness profiles against the distance to the cut edge. Each color corresponds to a region of
the sample, blue corresponding to the one closest to the plasma nozzle and red to the region further
from the plasma nozzle. Images included in the graph show the microstructure and indentations
distribution used to make the plot in three regions (top, middle and bottom).
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3.3. Mini-Tensile Tests

Figure 7 shows the (ductile) fracture observed in a tensile test, typical of a mini-tensile specimen
after necking. Figure 8 summarizes the results obtained in the mini-tensile tests. The engineering
stress is plotted against the (engineering) strain, as a function of the distance to the original surface
produced by the plasma cut. As mentioned above, the mini-tensile specimens were obtained from
four blocks extracted from the center of the thickness of the cut edge. For each depth, a single tensile
test was carried out. It can be observed that the closer to the cut edge, the larger the resistance
parameters and the lower the ductility. Differences in stress-strain curves tend to stabilize at a distance
of approximately 750–900 µm. This is basically consistent with the microhardness measurements made
at the center of the cutting edge.
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Figure 9 represents the change in the mechanical behavior (yield stress, Ultimate tensile strength, etc.)
versus distance to plasma cut, for mini-specimens extracted from the central section of the cut. From this
figure, it is clear that the material strength decreases as the distance from cut edge increases. For distances
of over 800 µm there are no changes in the ultimate tensile strength, UTS, and the mechanical properties
of the base material are reached. Something similar happens with the yield stress, which decreases from
1060 MPa at 88.5 µm to 526 MPa at 750 µm. For distances greater than 750 µm there are no changes in UTS,
so it could be assumed that base material has been reached.
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Figure 10 shows the evolution of the uniform strain (up to necking), fracture strain, hardening
index, and critical strain for Voce’s fitting, versus distance to plasma cut (Appendix A).

Metals 2018, 8, x FOR PEER REVIEW  9 of 13 

 

Figure 9 represents the change in the mechanical behavior (yield stress, Ultimate tensile strength, 

etc.) versus distance to plasma cut, for mini-specimens extracted from the central section of the cut. 

From this figure, it is clear that the material strength decreases as the distance from cut edge increases. 

For distances of over 800 μm there are no changes in the ultimate tensile strength, UTS, and the 

mechanical properties of the base material are reached. Something similar happens with the yield 

stress, which decreases from 1060 MPa at 88.5 μm to 526 MPa at 750 μm. For distances greater than 

750 μm there are no changes in UTS, so it could be assumed that base material has been reached. 

 

Figure 9. Evolution of mechanical properties as a function of distance to cut edge. 

Figure 10 shows the evolution of the uniform strain (up to necking), fracture strain, hardening 

index, and critical strain for Voce’s fitting, versus distance to plasma cut (Appendix A). 

 

Figure 10. Evolution of the uniform strain, fracture strain, hardening index, and critical strain as a 

function of the distance to edge cut by plasma. 
Figure 10. Evolution of the uniform strain, fracture strain, hardening index, and critical strain as a
function of the distance to edge cut by plasma.
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From this figure, it is possible to appreciate that the material gets softer with the distance from the
cut edge. There are no significant changes in the ductility over distance but the fracture strain increases,
making the material tougher. From the fitting parameters shown in this figure, it is not possible to say
that at 1 mm the base material has been reached, but with the information of Figures 8 and 9 it could
be assumed that, from a practical point of view, CHAZ reaches 700 µm. This deduced value is smaller
than the one observed for other thermal cutting processes [23].

3.4. Residual Stresses

Figure 11 shows the residual stresses measured in the longitudinal direction (L) and thickness
direction (T) obtained by X-ray diffraction, after its deconvolution. Error in depth was obtained by
measuring the removed material in different locations of the sample. The error in residual stress
was obtained from the error given by the X-Ray equipment used and the error previously measured
in depth. Plasma cutting generates at the surface of the cut a great compression in both directions;
L and T (see Figure 1a). The residual compression extends to a distance of approximately 700 µm in
the underlying material, located under the cut surface.

The values of these compressive residual stresses measured on the surface are in the order of the
material yield stress. These big stresses are probably produced by the great cooling gradients that
appear in the plate during the cutting process and they can play a key role in the fatigue behavior
of these cut edges (for example, delaying the initiation of cracks and, therefore, increasing fatigue
life). However, this behavior also depends on other parameters such as the surface roughness and
the microstructural characteristics at those areas underlying the cut [14–17]. Whether or not the
removal of the plasma cut surface would be beneficial for the material fatigue performance requires
further research.
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4. Conclusions

• The Cut Heat Affected Zone (CHAZ) generated by plasma cutting is quite narrow (around 700 µm
and, in any case, lower than 1 mm) and quite uniform across the entire thickness of the cut.
These results agree with metallographic observations and microhardness measurements.

• The hardness measured (HV05) on the surface of the cutting edge is slightly higher than the limit
set in the standard EN 1090-2 [21] (although it does not seem to affect bend behavior).
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• It was possible to obtain Stress-strain curves for the material at different depths under the cut.
This was done by testing mini-tensile specimens, extracted by means of WEDM, and instrumented
with strain gauges.

• The yield stress and the UTS change with the distance to the cut edge. In the areas closest to the
cut, values are obtained that can be 100% higher than those measured at the base material.

• The greater the mechanical strength, the lower the ductility and resilience. Obviously, their values
are related to those microstructures formed in the CHAZ.

• Plasma cutting introduces large residual compressive stresses, up to depths of approximately 700 µm.
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Appendix A

The simplest fit to tensile behavior (stress vs. strain curve) of a material is given by Hollomon’s
expression [24]

σ = σ0εn
p (A1)

where σ represents the stress as a function of the plastic strain, εp. Only two parameters are used: σ0

and n. n is known as strain hardening index.
A little more sophisticated and realistic is Voce’s relation [25];

σ = σ∞ − (σ∞ − σ0)e
− ε p

εc (A2)

This expression has three parameters: σ∞ represents the saturation stress (the stress that ideally
will be reached for infinite strain), σ0 is the stress for a negligible plastic deformation and σc is a critical
strain (as shown in Figure A1, at intercept with the abscissa).
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