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Abstract: The LPV modelling paradigm grew up from the desire of having a gain scheduling
method with guaranteed stability and performance bound by using as much as possible from
the LTI design techniques. In the last decades the framework has proven its applicability in the
field of robust control design. Some basic modelling issues, however, such as system equivalence,
state transformation, loop transformation, does not gain much attention. The main goal of the
paper is to provide an initialization of the novices in LPV modelling in order to eliminate the
possible pitfalls that still often occur in the related literature. On the other side, we would like
to point out some potential research topics that might also be interesting for a much larger
audience.

Keywords: LPV system, state transformation, loop transformation.

1. INTRODUCTION AND MOTIVATION

Rooted in the idea of gain scheduling, linear parameter
varying (LPV) modelling has proven to be an efficient
approach in many areas of control and filtering in treating
nonlinear problems in the past decades. A broad class of
nonlinear system models can be converted into a quasi-
linear form, obtaining the system:

ẋ(t) = A(ρ)x(t) +B(ρ)u(t), x(0) = 0, (1)

y(t) = C(ρ)x(t) +D(ρ)u(t), (2)

where x ∈ X ⊂ Rn is the state, u ∈ Rm and y ∈ Rp are
the input and output functions, respectively, while ρ ∈ Ω
is the vector of scheduling functions, which are determined
by the measured variables. This means that their values
are known in operational time by measurement. The ap-
proach is particularly appealing when a natively nonlinear
problem, embedded in the LPV framework, can be solved
by using traditional linear techniques.

Depending the actual model, the collection of the allowed
scheduling variable might vary from a subset Ω of the
measurable functions (when we actually have a switched
system) to a subset of constant functions (when we actu-
ally have a class of LTI systems: more precisely an LTI
system with some uncertain parameters). Concerning the
topic of this paper the later class is completely uninterest-
ing. Moreover, the worst mistake that one could do when
dealing with LPV systems is to confuse it with a collection
of LTI systems.

In order to decrease the conservativeness of the design,
often the elements of Ω are also supposed to be sufficiently
? This work has been supported by the GINOP-2.3.2-15-2016-00002
grant of the Ministry of National Economy of Hungary and by the
European Commission through the H2020 project EPIC under grant
No. 739592.

smooth, taking values from a compact set P. Usually
smooth means that the scheduling parameter is of class
C1, i.e., it has a continuous derivative. It is a standard
assumption that P is of box type, i.e., each parameter ρi
ranges between its known extremal values ρi(t) ∈ [ρ

i
, ρi].

While the derivatives of the scheduling variables usually
are not measured, in control design problems they are
supposed to be bounded, i.e., ρ(i)(t) ∈ Pi ⊆ Rnρ . Typically
i = 1. We will denote by Ω∞ the case when the scheduling
variables are measurable functions taking values from P,
while Ω1 stands for the case when the scheduling variables
are smooth, their values being constrained by the condition
(ρ, ρ̇) ∈ P × P1, respectively.

While during the last decades the framework has proven
its applicability in the field of robust control design,
some basic modelling issues, such as system equivalence,
state and more generally, loop, transformation, does not
gain much attention. Constant state transformations are
intimately related to the concept of invariant subspace
known from the geometric theory of LTI systems and
it were extended to LPV dynamics by introducing the
notion of parameter-varying invariant subspace, see Balas
et al. (2003). In introducing the various parameter-varying
invariant subspaces an important goal was to set notions
that lead to computationally tractable algorithms for
the case when the parameter dependency of the system
matrices is affine. These invariant subspaces play the same
role in the solution of the fundamental problems, such as
disturbance decoupling, unknown input observer design,
fault detection, as their counterparts in the time invariant
context, see Szabó et al. (2003); Bokor and Balas (2004).

State transformations provide a tool to define or, which
is more important from a practical point of view, to test
the equivalence of the representations of type (1)-(2). In
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the context of the LPV framework it is desirable to also
apply parameter varying transformations, e.g., for model
reduction tasks, Luspay et al. (2018). In contrast to the
LTI case, the issue has shown to be highly nontrivial, see,
e.g., Alkhoury et al. (2017).

Traditionally the LPV framework is formulated in terms of
a state space representations. There is a possibility, how-
ever, to develop a sound input-output (I/O) description
related to this model class. For a motivating example see
the LPV null space generator methods, Szabó et al. (2015),
and its applications to fault detection and reconfiguration,
Péni et al. (2017). In this paper we present a general sta-
bility preserving loop transformation result which, among
others, describes the parameter varying state space trans-
formation, Youla parametrization, etc.

The main goal of the paper is to provide an initialization
of the novices in LPV modelling in order to eliminate
the possible pitfalls that still often occur in the related
literature. We focus on two transformation techniques:
state and loop transformation, respectively, and we visit a
series of issues related to these transformations specific for
the LPV model class. As a result of this challenging travel
we would like to point out and to formulate some potential
research topics related to the LPV modelling framework
that might also be interested for a much larger audience.

Section 2 shows how an LPV system can be considered
as an I/O operator. Through elementary examples we
highlight the main difference between the LTI view and the
LPV framework. Section 3 points out that the parameter
varying (time varying) state transformations inherently
violate the causality requirement imposed in the defini-
tion of the model class. The main question that we can
formulate at this point is how to eliminate the derivatives
of the scheduling variable, if it is possible, from the state
matrices.

In the second part of the paper Section 4 revisits some
stability issues related to LPV and recalls the fundamental
results concerning the double coprime factorization and
related Youla parametrization in the LPV context. In
Section 5 we formualate the general loop transformation
result and we emphasise its role in the development of
robust control results.

2. LPV VS. I/O FRAMEWORK

Viewed at a fixed parameter trajectory ρ, the linear system
that obeys to (1)-(2) can be cast as a linear time varying
(LTV) system. Thus, it is convenient to consider the LPV
system as a collection of time varying systems:{

Σ(ρ) ∼
[
A(ρ) B(ρ)
C(ρ) D(ρ)

]
| ρ ∈ Ω

}
. (3)

While this embedding of the LPV plant as a class of LTV
systems bears significant advantages there are some issues
that evades the LTV framework, which will be highlighted
next in the paper. Nevertheless, by a slight abuse of the
notation, in what follows we identify and denote the LPV
system as (Σ(ρ),Ω). If it is clear from the context, we will
drop Ω from the notation. We emphasise, however, that
the parameter set – as a collection of different parameter
trajectories – is an essential part in the definition of the
LPV system.

LTI systems are often represented through their transfer
functions. While transfer functions are tight to frequency
domain, nothing prevents us to identify them with time
domain input-output (I/O) operators that stands for the
same LTI system. In the time varying context we do not
have a sound frequency domain description and trans-
fer functions. Nevertheless, the idea can be extended to
LTV systems and thus to a collection of LTV systems
parametrized through some ρ ∈ Ω, hence, to an LPV
system. In this sense we can talk on Σ(ρ) as an I/O map,
regardless to the possible/actual state space representa-
tion.

Thus, the well known algebraic operations as Γ(ρ1)+Σ(ρ2)
or Γ(ρ1)Σ(ρ2), make sense among the corresponding LPV
systems provided that the input(output) dimensions are
compatible.

Classical LTI realization theory that links transfer func-
tions to state space descriptions does not have an LPV
counterpart. However, the results of the classical LTV
realization theory, which links the zero-initial state input-
output representations of the form

y(t) =

∫ t

0

K(t, τ)u(τ)dτ

to the state matrices (A(t), B(t), C(t)), see, e.g., Kalman
(1963); Silverman (1966); Isidori and Ruberti (1976); Ka-
men (1979); Sontag (1979); Dewilde and van der Veen
(1998) just to mention a few of the dozens of relevant
accounts, are applicable, see, e.g., Tóth (2010); Tóth et al.
(2012); Petreczky et al. (2017). At this point we would like
to recall only one significant element related to the topic,
namely the equivalence of different representations.

For LTV systems Kalman (1963) sets the fundamental
concept: a state transformation ξ = T (t)x with nonsin-
gular T (t) on the time axis defines an equivalent system
(algebraic equivalence), while if both T (t) and T−1(t) is
bounded we have a so called topological equivalence that
preserves stability. If the system matrices are sufficiently
smooth, Silverman and Meadows (1969) provides addi-
tional details. Considering the matrices

Pi+1(t) = −A(t)Pi(t) +
d

dt
Pi(t), P0(t) = B(t),

Si+1(t) = Si(t)A(t) +
d

dt
Si(t), S0(t) = C(t),

and defining the correspondingQk(t) = [P0(t) · · · Pk−1(t)]

controllability and RTk (t) =
[
ST0 (t) · · · STk−1(t)

]
observ-

ability matrices, respectively, the constant rank system
representation is completely controllable (observable) if
there exists integers α (β) such that if rankQk(t) = n
(rankRk(t) = n) for all t and k ≥ α (k ≥ β), where n is
the dimension of the state. Two controllable constant rank
system representations (A,B,C) and (Ā, B̄, C̄) of order n
are algebraically equivalent if and only if P̄k(t) = T (t)Pk(t)
and C̄(t) = C(t)T−1(t), i.e, T (t) = Q̄γ(t)Q†γ(t) for all t,
and γ = max{ᾱ, α}. By duality we have an analogous
statement.

Note, that while it is hard to test it in practice, in the
context of LPV systems it is desirable to have a constant
rank representation for every ρ. E.g., considering the
restriction of Ω to constant functions and the minimality

Joint ROCOND & LPVS 2018
Florianopolis, Brazil, September 3-5, 2018

265



of the resulting LTI representations it is desirable to have
the same state space dimension.

We conclude this section by arguing against a bad habit
to mix transfer function notations with time domain
scheduling variables of type G(s, ρ(t)). The next example
reveals that there is no sound interpretation of such
formulas even if s is interpreted as time differentiation:
consider the system

ẏ(t) = −αy(t) + ρ(t)u(t). (4)

Associated to this system we often encounter the notation
ρ(t)
s+α whose interpretation is ambiguous.

The key point here is that the differentiation operator does
not commute with the multiplication operator defined by
time varying functions. In particular

ρ(t) · 1

s+ α
6= 1

s+ α
· ρ(t).

Thus, the systems

ẋ = −αx+ ρ(t)u(t), y(t) = x(t) (5)

and

ẋ = −αx+ u(t), y(t) = ρ(t)x(t) (6)

are different. This small example also reveals the fact that
in contrast to the misbelieve often encountered in some
papers, by merely defining some LTI systems on a given
parameter grid does not define an LPV system. Further
examples can be found in Blanchini et al. (2010). To define
an LPV system a rule is also necessary, that uniquely
provides the system matrices in every frozen parameter
point. This rule is often a linear interpolation.

We emphasize, that there is a fundamental difference
between the interpretation sketched above and the case
when an operator, which for convenience might be denoted
by 1/s, enters in a linear fractional transform (LFT), e.g.,

D(ρ) + C(ρ)(1/s)[I −A(ρ)(1/s)]−1B(ρ). (7)

The latter stands for the following set of constraints:

η = A(ρ)ξ +B(ρ)u

y = C(ρ)ξ +D(ρ)u,

ξ = (1/s)η, i.e., ξ(t) =

∫ t

0

η(τ)dτ,

provided that the loop make sense (is well-posed). Note
that in contrast to (7) the notation G(s, ρ(t)) can not
imply a priori any particular realization in the LPV
context, i.e., any particular LPV system.

3. STATE TRANSFORMATIONS

Having an LPV system it is natural to consider parameter
varying state transformations, i.e., x̃ = T (ρ)x for ρ ∈ Ω
that leads to

Σ̃(ρ) ∼
[
Ã(ρ, ρ̇) B̃(ρ)

C̃(ρ) D̃(ρ)

]
= (8)

=

[
T (ρ)A(ρ)T−1(ρ) + Ṫ (ρ)T−1(ρ) T (ρ)B(ρ)

C(ρ)T−1(ρ) D(ρ)

]
,

provided that the scheduling variables are smooth.

We arrive here to some problematic points which makes a
clear difference between LTV and LPV systems. If ρ is not
smooth, e.g., the LPV system is in class Ω∞, then state

transformations might send the system description to a
different class, namely to the class of impulsive systems.

As we have already seen, if the system is sufficiently
smooth, the system equivalence is exhausted by transfor-
mations that might depend up to the (n−1)th derivative of
the scheduling variable. Even ρ is supposed to be smooth,
such a state transformation will send our description out-
side the LPV framework, in general.

Actually there are two problems here. The first problem
is more apparent: even if we allow reparametrization
(inflation of the parameter space) the type of the problem
might change. Starting from an Ω1 type system we might
obtain an Ω̃∞ type of system.

The second problem is more subtle: derivation is not a
causal operation, thus we violate our assumption on the
availability of the information. To make this point more
clear, consider the same transformation in discrete time:

A(ρk) 7→ T (ρk+1)A(ρk)T
−1(ρk), B(ρk) 7→ T (ρk+1)B(ρk)

As an illustration we slightly modify an example from
Tóth et al. (2007): consider the input–output map defined
by

y(k) = −ρ(k − 1)y(k − 1)− ρ(k − 1)y(k − 2) + ρ(k − 1)u(k − 1)

(the original example have used ρ(k)). Considering x(k) =[
y(k − 1)
y(k)

]
as state, it is immediate that

Σ(ρ) ∼

 0 1 0
−ρ(k) −ρ(k) ρ(k)

0 1 0


is a realization. It is less trivial that the reachability
(observability) canonical realizations for the same system
are provided by

Σc(ρ) ∼

 0 −ρ(k − 2) 1
1 −ρ(k − 2) 0

ρ(k − 1) −ρ(k − 1)ρ(k − 2) 0


and

Σo(ρ) ∼

 0 1 ρ(k)
−ρ(k + 1) −ρ(k + 1) −ρ(k + 1)ρ(k)

1 0 0

 ,
respectively.

Concerning continuous time systems, revisit (9) and (10)
applying the state transform defined by ξ = ρx to obtain:

ξ̇ = (−α+ ρ̇/ρ)ξ + ρ2(t)u(t), y(t) = (1/ρ)ξ(t) (9)

and

ξ̇ = (−α+ ρ̇/ρ)ξ + ρu(t), y(t) = ξ(t), (10)

respectively.

These examples clearly reveal an aspect related to the LPV
modelling that remains in shadow up till now: identifica-
tion approaches ignore causality, as an important property
of the model class, i.e., the possibility to implement it. In
control design applications this is definitely a requirement:
ρ̇ (ρ(k+1)) is not available. One could argue that a remedy
were a reformulation of the model class by requiring the
availability of the necessary signals. In practice this would
mean, for example, the use of a suitably filtered scheduling
variable ρf where ρ̇f (or even ρkf ) would be also available.
The introduced delay makes such an artefact useless for
control purposes, in general.
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Moreover, identification approaches often assume that the
LPV system is given in a certain structure (e.g., ARMA,
controllability like form). In contrast to the LTI case it is
not clear which class of LPV systems can be modelled in
that way.

In contrast to the LTI case, to test equivalence of two
different LPV representations is highly nontrivial. From
both theoretical and practical point of views this is a big
deficiency of the LPV modelling paradigm which raises the
quest for further research in this direction. The practical
question is how to eliminate, if it is possible, by an
application of a suitable transformation the derivatives of
the parameters from the state matrices.

To conclude this section we would like to reveal some prob-
lems related to the applicability of the gridding approach
in this context. It was already emphasised that the knowl-
edge of the LTI systems on a grid does not define an LPV
system regardless to the resolution of the grid. Adding
an interpolation method, e.g., linear, however, leads to
an LPV system. One might think that the same idea can
be used for the transformation, too. Unfortunately, this is
not true, in general: e.g., if Σ(ρ) and Σ̂(ρ) represent the
same LPV system, defined on a grid through linear inter-
polation, the state transformation relating them cannot be
(piecewise)linear on the same grid. For a smooth system,
see, e.g., the formula T (t) = Q̄γ(t)Q†γ(t) that make this
impossible.

4. STABILITY, STABILIZABILITY

Closed loop stability and as a related issue, parametriza-
tion of the controllers that renders a given plant stable, is
a central topic in classical control theory. In the context of
stability, causality plays a definite role: systems are stable
if they define a bounded and causal map. In the standard
linear model signals are elements of some normed linear
spaces, the system is identified with an operator that acts
between signals, while boundedness of the system is re-
garded as boundedness in the induced operator norm. For
more details on nest algebras, causality and time varying
systems, see, e.g., Feintuch (1998).

Stability of an LPV system can be defined in a straightfor-
ward manner: the LPV system is stable if for each ρ ∈ Ω
the LTV system Σ(ρ) is stable. Observe that stability of
LPV systems are tight to the parameter set. The two cases
encountered in practice are Ω∞ and Ω1, respectively. We
prefer to term the first case as strong stability (as a hint
for switched systems) and as parameter varying stability
the second.

4.1 Youla parametrization

The feedback connection depicted on Figure 1(a), i.e., the
pair (P,K), is called stable if for every w there is a unique
p and k such that w = p + k (causal invertibility) and if
the map w → z is a bounded causal map, where

w =

(
d
n

)
, p =

(
u
yP

)
, k =

(
uK
y

)
, z =

(
u
y

)
.

Accordingly the pair (P,K) is called stable if and only if
the inverse

P

K
n

d

y

u yP

uK

�

C

C�

(a) Basic loop: stability

Pzw Pzu
Pyw Pyu

K n

d

y

u

w z

−

−

(b) LFT: performance

Fig. 1. Closed loop: performance and internal stability(
I K
P I

)−1

=

(
Su Sc
Sp Sy

)
=

=

(
(I −KP )−1 −K(I − PK)−1

−P (I −KP )−1 (I − PK)−1

)
(11)

exists and is stable, i.e., all the block elements are stable.

It follows that if a plant can be stabilized by feedback
then it has a stable factorization P = SpS

−1
u . Ii is usually

assumed that among the stable factorizations there exists
a special one, called double coprime factorization, i.e.,
P = NM−1 = M̃−1Ñ and there are causal bounded
systems U, V, Ũ and Ṽ such that(

Ṽ −Ũ
−Ñ M̃

)(
M U
N V

)
= Σ̃PΣP =

(
I 0
0 I

)
, (12)

an assumption which is often made when setting the
stabilization problem, Vidyasagar (1985); Feintuch (1998).

Recall that

(
M
N

)
and

(
U
V

)
are determined only up to

stably invertible factors (invertible with stable inverse) T
and T ′. The existence of a double coprime factorization
implies feedback stabilizability. In most of the usual model
classes actually there is an equivalence.

Given a double coprime factorization the set of the stabi-
lizing controllers is provided through the well-known Youla
parametrization:

Kstab = {K = MΣP (Q) | Q ∈ Q, (V +NQ)−1 exists},
where Q = {Q |Q stable } and

MΣP (Q) = (U +MQ)(V +NQ)−1.

Note that Q = MΣ̃P
(K) and thus Q = 0K corresponds to

K0 = UV −1. Since the dimensions of the controller and
plant are different, it is convenient to distinguish the zero
controller and zero plant by an index, i.e., 0K and 0P ,
respectively.

It is obvious that the entire scheme remains valid for the
LPV framework, too. See the Appendix for an illustration
of the relevant calculus. The only constraint is to respect
the stability concept set by the given LPV model, i.e., by
the parameter set. In practice one can use either the strong
stability or the parameter varying stability, when selecting
the elements of the parametrization.

Closely related to stability is the concept of stabilizability,
i.e., the ability to obtain a stabilizing controller K. For
practical reasons this concept is traditionally closely re-
lated to a state space representation of the linear system
and it boils down to finding a stabilizing parameter varying
state feedback gain.
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Recall that, analogous to the LTI case, having a stabilizing
state feedback gain F and a stabilizing output injection
gain L one has

ΣP (ρ) ∼

A(ρ) +B(ρ)F (ρ) B(ρ) −L(ρ)
F (ρ) I 0
C(ρ) 0 I

 (13)

At this point, due to the embedding of the LPV systems
into the class of LTV systems, we can talk on asymptot-
ically, exponentially or uniform exponentially stabilizable
systems, see, e.g., Anderson et al. (2013).

Some authors prefer to qualify stability of LPV systems,
and hence the corresponding Youla parametrization, ac-
cording to our ability to provide for them a (quadratic)
Lyapunov function, see, e.g., Xie and Eisaka (2004). Thus,
if we have a stability guarantee for some Ω∞ proved
by a constant Lyapunov matrix then we have quadratic
stability. For Ω1 a parameter varying Lyapunov matrix
is associated, and the corresponding stability is termed
as parameter varying quadratic stability. Note, that these
stability tests provide only sufficient conditions.

Finally, note, that the entire construction has a consider-
able freedom in the choice of the given elements, like ΣP
and Q, which makes possible to embed a given system in
different frameworks. The standard example is to let the
parameter Q to be a stable LPV system obtaining an LPV
controller. But nothing prevents us to set also M and N
to be LPV systems even the original system was an LTI
one. To achieve this, it is sufficient to consider parameter
varying gains in (13). Thus, we obtain an example when
N(ρ)M−1(ρ) leads to an LTI system, i.e., there is a pa-
rameter cancellation effect.

If we get rid of the actual context of coprime factorizations
it is possible to formulate another research question: given
an LPV system Σ(ρ) under which condition is it possible
to impose ”parameter cancellation”, i.e., to eliminate some
(or the entire) parameter dependence by a suitable filtering
from the resulting LPV system Σ(ρ)Γ(ρ).

5. LOOP TRANSFORMATIONS

Besides the application of a suitable factorization, the
technique that leads to the Youla parametrization is
closely related to the application of a loop transformation,
that relates the original configuration with an other one,
with possible simple structure, in such a way that the
stability properties are kept intact.

In robust control problems often it is convenient to per-
form loop-transformations, i.e., to consider maps between
controller sets that are defined by Möbius transformations.
These loop-transformations are also intimately related to
different factorizations, that simplify the structure of the
problem. Since a (robust) performance problem can be
handled in the robust stability framework, these transfor-
mations are also relevant in a much wider context.

In what follows we present a result that reveals under
what conditions the internal stability of the loop is pre-
served by performing a loop transformation defined by a
Möbius transform. For convenience, the controller K is
transformed; the other case (∆ in a ∆−P −K structure)
can be obtained by using straightforward manipulations.

This question has already got a partial answer in Ball
et al. (1991) based on the scattering approach through

the Potapov-Ginsburg transformation P̂ of the generalized
plant P . However, that method should assume a left or
right invertibility of P and does not provide an explicit
formula for the transformed configuration.

To fix the notations, the lower and an upper LFT is defined
as

Fl(Pg,K) = Pzw + PzuK(I − PyuK)−1Pyw
and

Fu(Pg,∆) = Pyu + Pyw∆(I − Pzw∆)−1Pzu.

In the generalized plant paradigm the loop should be
stable and the resulting system should satisfy some norm
constraints. In general, stability of the LFT loop means
that the causal map that relates the signals (z, u, y) to
(w, d, n) is invertible and the inverse map is stable, see
Figure 1(b).

Let us consider the linear map T :

(
z
y

)
7→
(
w
u

)
, and its

inverse (if exists) described by the operator matrices

T =

(
A B
C D

)
, and T −1 =

(
E F
G H

)
, (14)

respectively. We will use this notation throughout the rest
of the paper.

Möbius transformations, which are usually defined as

Z ′ = MT (Z) = (C +DZ)(A+ BZ)−1,

relate two graph subspaces through the invertible linear
operator T on the domain

domMT = {(A+ BZ)−1 exists }.
Thus they inherit the group structure of the linear opera-
tors, i.e.,

MP ◦MQ(Z) = MPQ(Z). (15)

provided that the corresponding expressions exist.

Analogously, one can introduce a Möbius transformation
that relates inverse graph subspaces according to

Z ′′ = MT̄ (Z) = (AZ + B)(CZ +D)−1.

Due to their role in the control oriented context, we
associate MT (P ) = PT (P ) with a plant transform and
MT̄ (K) = KT (K) with a controller transform, respec-
tively.

The following result, see, Szabó et al. (2017), provides an
explicit loop-transformation formula:

Theorem 1. Let us consider the transformation of the
standard LFT control loop from Figure 1(b) defined by

an unimodular T which sends K to K̂ = KT (K) and we
also assume that Pyu ∈ domPT . Then we have

Fl(Pg,K) = Fl(P̂g, K̂), (16)

where P̂g =

(
P̂zw P̂zu
P̂yw P̂yu

)
=(

Pzw − Pzu(A+ BPyu)
−1BPyw Pzu(A+ BPyu)

−1

(PyuF −H)−1Pyw (C +DPyu)(A+ BPyu)
−1

)
.

(17)

Moreover the (internal) stability of the corresponding
LFT loops are equivalent.
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5.1 State transform vs. loop transform

It might be surprising at the first glance that the time
varying state transformation formula fit into this frame-
work: consider Fl(Pg, 1/s) with

Pg =

(
D(ρ) C(ρ)
B(ρ) A(ρ)

)
and apply the loop transform

T (ρ) =
(
T (ρ) 0

Ṫ (ρ) T (ρ)

)
, T −1(ρ) =

(
T−1(ρ) 0

T−1Ṫ T−1(ρ) T−1(ρ)

)
.

Observe that (17) gives

P̂g =

(
D(ρ) C(ρ)T−1(ρ)

T (ρ)B(ρ) T (ρ)A(ρ)T−1(ρ) + Ṫ (ρ)T−1(ρ)

)
,

as expected. The nontrivial part is that

1/s = KT (1/s) = T (1/s)[T + Ṫ (1/s)]−1,

which is an easy consequence of the identity

d

dt
(Tw) = Tẇ + Ṫw,

i.e.,

(T1/s)(ẇ) = (1/s)[T + Ṫ (1/s)](ẇ).

Thus

Fl(Pg, 1/s) = Fl(P̂g, 1/s).

5.2 Loop transform and Youla parametrization

The classical Youla result for LFTs also fits into this
framework: one of the key observations is that the LFT
loop is stable for aK if and only if the pair (Pg,diag{0,K})
is stable. If the loop is stabilizable, by fixing a particular
stabilizing K0 we have a double coprime factorization
induced by the stable pair (Pyu,K0) (inner loop): K0 =
uv−1 = ṽ−1ũ and Pyu = nm−1 = m̃−1ñ. Considering

the unimodular matrix T =

(
m u
n v

)
it is immediate that

P̂yu = 0 and K̂0 = 0. Moreover, it is immediate that the
pair (0, q) is stable if and only if q is stable. Thus, applying
Theorem 1 we obtain all the stabilizing controllers of Pyu
as KT−1(q), i.e., the Youla parametrization.

One can also prove that for LFTs the Youla parametriza-
tion provides the same set that internally stabilizes the
LFT loop. In order to prove this fact let us start from a
double coprime factorization of diag{0,K0}. It turns out
that, by inverting the usual roles, we have a dual Youla
parametrization of Pg. It follows that Pg should have the
following form

Pg =

(
qzw qzu
qyw 0

)
?

(
−m−1u m−1

m̃−1 0

)
?

(
0 I
I Pyu

)
,

where qzw, qzu, qyw are stable systems and ? denotes the
Redheffer (star) product

A ? B =

(
Fl(A,B11) A12(I −B11A22)

−1B12

B21(I −A22B11)
−1A21 Fu(B,A22)

)
.

The resulting closed–loop form for a stabilizing controller
is given by

Fl(Pg,K) = qzw + qzuqqyw, (18)

where q is the Youla parameter of K relative to the given
double coprime factorization of Pyu. As we have already

emphasised all these results are also valid in the LPV
framework.

A more advanced classical LTI application is the derivation
of the suboptimal H∞ controller set, see, e.g., Tsai and
Gu (2014). The direct analogues of the J-unitary/outer
factorizations computationally are not feasible in the LPV
context. Nevertheless the so called J-negative/outer factor-
izations are applicable. Due to space limitations the topic
cannot be elaborated further in this paper.

While the basic H∞ controller design problem is tractable
by using LMI techniques there is room for further im-
provements. Despite the fact that LPV design has been
applied successfully for more then a decade, fundamental
problems, e.g., tight estimation for the induced L2 gain,
are still waiting for a solution.

Robust LPV design algorithms are quite involved, in
general. We emphasise that besides the development of
the design algorithms loop transformation tools might also
facilitate the conceptual understanding of these methods.
Moreover, as we have already seen, there is an intimate
relationship between state and loop transforms. Both
Lyapunov and IQC based approaches to robust design
problems can be cast as transformations that allow to put
the given problem in a particular advantageous form whose
solution is almost trivial. This fact motivates our interest
in the study of the loop transform in the LPV framework.

6. CONCLUSION

In this paper we have revisited some facts related to LPV
models and LPV modelling. We focused on two different
aspects of the topic: the state transformation, as a tool
that relates equivalent descriptions of the same system and
the loop transformation, which is based on an I/O view
and concerns the preservation of stability of the closed
loop.

The main goal of the paper was to provide an initialization
of the novices in LPV modelling to obtain a concentrate
view of the topic and in order to eliminate the possible
pitfalls that still often occur in the related literature. More-
over, our intention was to point out some new research top-
ics related to these transformation techniques that might
also be interesting for a much larger audience. One of them
was related to the lack of causality of the transformed
systems if the transformation is parameter varying. The
related practical question targets the possibility of the
elimination of certain parameters (parameter derivatives)
from the description of the system by applying suitable
transformations.
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Appendix A. LPV I/O VS. STATE SPACE

Let us consider the LPV plant (P (ρ),Ω) and the controller
(K(ρ),Ω) through one of their particular state space
representation as

P (ρ) ∼
[
A(ρ) B(ρ)
C(ρ) 0

]
, and K(ρ) ∼

[
AK(ρ) BK(ρ)
CK(ρ) 0

]
,

i.e.,

ẋ(t) = A(ρ)x(t) +B(ρ)u(t), x(0) = 0,

yP (t) = C(ρ)x(t),

and

ẋK(t) = AK(ρ)xK(t) +BK(ρ)y(t), xK(0) = 0,

uK(t) = CK(ρ)xK(t) +DK(ρ)y(t),

respectively.

Recall that for an invertible D and any ∆ we have

Fu(

[
A B
C D

]
,∆)−1 = Fu(Mi,∆),

where

Mi =

[
A−BD−1

a C BD−1
a

−D−1
a C D−1

a

]
,

as an easy consequence of the matrix inversion lemma.

Then (
I K
P I

)
(ρ) and

(
I K
P I

)−1

(ρ)

are LPV systems, represented through ρ ∈ Ω and

ξ̇ =

(
A(ρ) 0

0 AK(ρ)

)
ξ +

(
B(ρ) 0

0 BK(ρ)

)
z, ξ(0) = 0,

w =

(
0 CK(ρ)

C(ρ) 0

)
ξ +

(
I DK(ρ)
0 I

)
z,

for the notations see Figure 1(a), and

η̇ =

(
A(ρ) +BDkC(ρ) −BCK(ρ)
−BKC(ρ) AK(ρ)

)
η +

(
B(ρ) −BDK(ρ)
0 BK(ρ)

)
w

z =

(
DGC(ρ) −CK(ρ)
−C(ρ) 0

)
η +

(
I −DK(ρ)
0 I

)
w, η(0) = 0,

respectively.

Then, it is also straightforward to identify the state space
representations for the block elements that appear in (11).
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