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Abstract: The paper presents a reconfigurable control strategy for the lateral stability of
autonomous vehicles. The control strategy is based on the analysis of big data, which are
provided by the sensor networks of autonomous vehicles. The core of the analysis method is
a machine learning algorithm, with which the impacts of various vehicle signals on the lateral
dynamics have been examined. In the analysis several scenarios with faults in the steering and
in-wheel systems are considered using a high-fidelity simulation software. The results of the
examination are built into the fault-tolerant reconfiguration strategy.
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1. INTRODUCTION AND MOTIVATION

In the last years the autonomous vehicle functionalities
have high impact on the trends of the vehicle control
research area. Novel perspectives and technological ap-
proaches have been appeared in this field (e.g. artificial in-
telligence, deep learning and big data), while some conven-
tional vehicle dynamic problems have been transformed.
For example, in most advanced safety systems the pur-
poses of the lateral stability analysis are to detect the crit-
ical interventions of drivers, and perform control actions
by using control systems and actuators to avoid the loss of
stability, see Géspér et al. (2017); Palmieri et al. (2011).
However, the purpose of the stability analysis in the field of
autonomous vehicles is to avoid all of the critical situations
by monitoring the environment and the traffic and apply
the appropriate coordinated control systems of the vehicle,
see Carvalho et al. (2013); Funke et al. (2017).

Ensuring stability is a crucial task in the reconfigurable
and fault-tolerant control of autonomous vehicles. A re-
configurable control methodology has been developed to
guarantee the stability and the performances of the system
against various fault scenarious Géspar et al. (2017). In the
reconfigurable control the control systems and the actua-
tors have similar impact on the dynamics of the vehicle.
In the case of automated lateral control systems the most
common faults might be the degradation of electric power
steering mechanisms or wiring failures. Moreover, when
torque-vectoring control is used, the fault or performance
degradation of in-wheel hub motors due to overheating,
mechanical failures, or motor control faults may result
in hazardous vehicle instability Ifedi et al. (2013). In
the reconfigurable control the coordination of actuators is
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modified by a so-called selection strategy. The appropriate
actuator selection requires information about the impact
of the interventions on vehicle dynamics. A theoretical
background of the actuator selection in the reconfiguration
strategy is proposed in Géspar and Németh (2015). In
this paper the reconfiguration strategy is based on the
controllability analysis of the control interventions using
the Sum-of-Squares method. Although the methods yield
promising results, due to the numerical complexity of
the controllability problem the application often leads to
difficult solutions.

Reachability has an important role in the derivation of
the reconfiguration strategy Gaspar et al. (2017), which is
defined as follows. It given is a continuous-time linear time
invariant system & = A(p)z + B(p)u with initial condition
x(0) = 0. It is considered the set of reachable states with
inputs u whose components have unit-energy u’u < 1 as
Boyd et al. (1997):

(z(t),u(t)) | &(t) = Az(t) + Bu(t), z(0) = 0,
R 2 { x(T) (1)

uT(tu(t) <1,
In this paper a data-driven reachability analysis is applied
to the reconfiguration strategy. The numerous measured
data concerning autonomous vehicles are used for different
purposes in driverless vehicles and intelligent traffic con-
trol. The reconfiguration strategy is developed by using
data-mining and machine learning algorithms. Big data
have been used in the prediction of vehicle slip through
the combination of individual measurements of the ve-
hicle and database information, see Jeon et al. (2015).
Deep learning methods using the adaptive neuro-fuzzy
modeling framework together with big data analysis have
been applied to vehicle velocity prediction in Cheng et al.
(2017). Data-mining algorithms to process electric vehicle
battery data for energy-consumption and driving range
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purposes have been utilized by Lee and Wu (2015). An
optimal trajectory selection strategy focusing on the safety
of the autonomous vehicles using cloud database is found
in Najada and Mahgoub (2016). Zhu et al. (2016) has
presented the idea of the path planning strategy of public
vehicle systems, which uses the traffic data. Big data can
also be used for safety purposes, as e.g. Ghomi et al.
(2017) has presented an application example to identify
vehicle passenger injury factors. A reachability analysis
using machine learning approach for space aircraft and
robotic vehicles is performed in Allen et al. (2014).

This paper proposes the analysis of autonomous lateral
vehicle dynamics using machine learning and big data
mining methods. The results of the analysis are used to
derive a reconfiguration strategy which handles the fault
scenarios of different actuators, such as steering and in-
wheel electric motors. The reconfigurable control improves
the lateral stability of the vehicle and guarantees various
performances to be specified. The application of the big
data mining methodology provides new possibilities and
challenges in the field of autonomous vehicle control sys-
tems, especially on the reconfigurable control strategy to
handle fault scenarios.

The structure of the paper is the following. Section 2
proposes the fundamentals of the applied machine learning
algorithm. It also presents the core of the applied machine
learning algorithm with which the relationships are ex-
plored. The results are demonstrated in Section 3 through
various figures. Section 4 shows the reachability analysis
in the reconfiguration strategy. Finally, the contributions
of the paper and the further challenges are summarized
in Section 5. Furthermore, Appendix A provides a brief
summary of the background of the reachability set com-
putation.

2. FUNDAMENTALS OF THE APPLIED MACHINE
LEARNING ALGORITHM

The following section presents the fundamentals of the
applied machine learning algorithm, which is used for the
reachability analysis. In this paper C4.5 machine learning
algorithm is used to perform the analysis. This widely used
machine learning algorithm is able to generate decision
trees for the classification of large amounts of data. The
original algorithm was developed in 1960 by Hunt (1962).
Over the past decades, the original method has been
significantly improved, see e.g. Mitchell (1997); Quinlan
(1993). In the following the basic concept of C4.5 method
is presented.

The initial step of the algorithm is the collection of data
from varying instances. In general, an instance has several
types of values called attributes A = {41, As, ..., Ax}. An
attribute can be an independent variable or a dependent
variable called class. A dependent, class variable C is
always discrete with a predefined set of values C =
C1,C5...C,, with m members. The collected data are
divided into two parts:

(1) a training set, which is used for teaching the algo-
rithm,
(2) a test set, which is used for evaluating the results.

The aim of the algorithm is to create a function based on
the training set which is able to classify the instances by
the selected class

DOM(Ay) x DOM(A3) x ... x DOM(Ay) - DOM(C),

(2)
where DOM (%) denotes the selected domain of function.
The created function is ordered into a tree structure, as
illustrated in an example, see Figure ?7. A tree consists of
nodes and leaves. A node is associated with an attribute
and a condition, and has at least two outcomes, which
depend on the current value of the attribute. A leaf
determines the value of the class for the current instance.
The size of the resulting tree is a crucial part of the
algorithm, since a large and complex tree makes it difficult
to understand and use the results. Thus, C4.5 algorithm
uses the greedy search method to produce the decision
tree. Moreover, C4.5 algorithm considers the information
gain and gain ratio criteria in the generation of the decision
tree.

In the method, the information content 7(S) of a training

set is determined as
m

ZRF

where S'is a tralnlng set that belongs to C; and RF(C;, S)
denotes the relative frequency of the instances. Let B be
a test that divides S into subsets Si,S55..S;. Then the
information gain G(S, B) can be calculated in the following
form Quinlan (1993):

(Cj, S)log(RF((C5,5)),  (3)

G(S,B)=1(5)- Y 'l“z,i" 1(Sy). (4)

The purpose of the gain criterion is to select the best test
B that maximizes G(S, B). However, the maximization of
G(S, B) leads to a large number of outcomes in test B,
which can lead to numerical difficulties. It can be avoided
through the consideration of the potential information
P(S, B), such as

¢
=1
The ratio of G(S, B) and P(
a test B:
G(S,B)
max(P(&B)). (6)

Finally, C4.5 algorithm builds up the appropriate decision
tree using the optimized test B.

|S| ()

must be maximized by

3. DATA COLLECTION AND THE
DEMONSTRATION OF THE ANALYSIS

Since machine learning methods request large number of
data to train their algorithms, several vehicle dynamic
signals must be provided for the reachability analysis. Gen-
erally, these data are reached through measurements, but
in the design and analysis of the vehicle control systems
the simulations also have important role. Therefore, in the
paper, the training data have been generated using Car-
Sim, which is a high-fidelity vehicle dynamics simulation
software.



During the simulation scenarios the autonomous vehicle in
CarSim has been controlled by a lateral tracking controller,
which is able to modify the lateral position and the yaw
motion of the vehicle. It can result in huge number of
simulations, which is the fundamental of the big data
analysis. The results of this paper have been built on ten
million simulations. In the simulations the amplitude and
the frequency of the vehicle signals are sufficiently large
to reach wide ranges of states of the vehicle, e.g. yaw-
rate, vehicle and tyre side-slips. Thus, stable and unstable,
controllable and uncontrollable regions of the vehicle are
reached. The classification of the instances is performed in
the following way.

There is a well-known kinematic relationship between the
slip angle of the front wheel «j, the yaw-rate 1, the
steering angle  and the vehicle side slip f Rajamani
(2005):

L4

Vg

alzé—ﬁ—

(7)

where [; parameter is the distance between the front
wheels and the vehicle center of gravity and v, is the actual
longitudinal velocity. During the CarSim simulations all of
these signals are measured. The instances can be classified
by the percentage of the deviation which is derived from
(7), such as

1
if L+ aa — < ¢, then i*" instance is controllable,
[1+6—p— 42
(8a)
i |1 + 041|
14+0—-08-

(8b)
where ¢ is an experimentally defined parameter.

The reachability is examined through the data-mining
WEKA software, in which the C4.5 algorithm has been
implemented by Witten and Frank (2005). The attributes
of the instances are oy, as, 8 side-slip angles of the vehicle,
1 yaw rate, v, longitudinal velocity and p adhesion coef-
ficient. The C class has two values, i.e., good and bad, and
the instances are classified by the algorithm (8). During
the analysis the training set contains approximately 1.2
million instances, while the test set for the validation has
2 million members.

The generated trees are evaluated by the cross-validation
technique, the results can be found in Table 1. The
first column in Table 1 shows the minimum number
of instances which are contained in a leaf. The second
column illustrates the percentage of the correctly classified
instances. The sizes of the produced trees are in the last
column. Note that the increasing number of the minimum
objects decreases both the percentage of the correctly
classified instances and the sizes of the trees.

Figure 1 shows the results of the decision tree and the
classified test sets in the plane of 1/1 and 8 at different
velocities. These two attributes have high impacts on the
resulting decision tree, which shows that the calculated
sets fit well. Thus, the resulting sets from the machine
learning algorithm approximate the experimental results
appropriately. The sizes of the polytopic sets become larger

Table 1. Relationship between the tree size and

the object number

Min. Objects [

Correctly Classified Inst. [ Size of Tree ]

2 99.6797% 2344
10 99.5885% 1174
100 99.3214% 255
500 99.1301% 78
1000 98.9508% 39
5000 98.8% 11

with increasing velocity, which means that the vehicle can
reach larger 8 —1) regions at high velocities. This tendency
is confirmed by the experience in vehicle dynamics.
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In the following, the reachability sets of the vehicle are
investigated in three different cases:

(1) Both front wheels and torque vectoring are used for
steering (Torq. Vect. + 2WS), which means a fault-
free scenario.

(2) The vehicle uses only its front wheels for steering
(2WS), which means that torque vectoring function-
ality cannot be guaranteed due to the fault of an in-
wheel motor.

(3) The vehicle uses only one wheel and torque vectoring
for steering (Torq. Vect. + 1WS). This scenario is
related to the fault of one wheel in the independent
steering.

Figure 2 illustrates the reachability sets in the plane of the
yaw rate ¢ and side-slip angle 5 at fixed adhesion coeffi-
cient © = 0.5 and at different velocities. It is concerned
with a wet road, which may cause dangerous situations
at high velocity. The figure shows that the largest sets
belong to the combined steering case, in which both front
wheels are used. The sets of the case "Torq. Vect. + 1WS1’
are close to the previous case, while the sets of the case
2WS’ are significantly smaller. It means that the fault of
one steered wheel has a lower impact on vehicle dynamics
than the fault of the entire torque vectoring functionality.

In Figure 3 the reachability sets of 7721 and 8 are shown
at a higher adhesion coefficient 4 = 0.9. Compared to
the previous results, the sets of the case "Torq. Vect +
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2WS’ vary at all velocities. The regions of the case 2WS’
and "Torq. Vect + 1WS’ become smaller at all velocities,
which means that the impact of the fault on the actuators
of vehicle dynamics varies, e.g. the sets of the case "Torq.
Vect. + 1WS’ are approximately half the size of the regions
of the case "Torq. Vect + 2WS’. However, at ;= 0.5 these
scenarios are almost the same.
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In the following examinations the velocities are fixed, while
the adhesion coefficients are modified, see Figure 4. Figure
4(a) shows the reachability sets of ¢ and g at different
adhesion coefficients and at the fixed velocity of 70km/h.
The sizes of the sets become smaller at high adhesion
coefficients and larger at low adhesion coefficients. The
same trend can be observed at velocity v = 120km/h, see
Figure 4(b). In this case the sets of 2WS’ become larger at
high adhesion coefficients, while the the sets of the other
two cases are the same at all adhesion coefficients. Thus,
the effect of the faults must be considered dependent on p
and v jointly.
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4. APPLICATION POSSIBILITIES IN THE
RECONFIGURATION STRATEGY

In this section the results of the reachability analysis using
big data for the control interventions of the lateral dy-
namics will be exploited. The results will be built into the
coordinated control of steering and torque vectoring. In the
following the application possibilities of the reachability
analysis in the design of the fault-tolerant control will be
illustrated.

Autonomous vehicles must guarantee a large number of
performances. Results obtained by the model-based reach-
ability and controllability analysis have yielded exact re-
lationships between the interventions and the vehicle sig-
nals, see e.g. Németh et al. (2017). However, due to the
complexity of the model-based methods the formulation of
the relationships may be difficult. Data analysis provides
a possibility to extend the model-based results in the
coordination and reconfiguration strategies of autonomous
vehicle control systems. It means that the measured and
estimated signals (velocity, adhesion coefficient, side-slip
angle, etc.) provide inputs for the supervisory control,
whose decision concerning the coordinated actuation can



be made. Through this extension the reachability and the
controllability of the system are improved.

The reachability sets provide information about the states,
which are reached by a given control intervention. The
size and shape of these sets can be different from each
other, as it has been shown in Section 3. The sets vary
depending on the current intervention, e.g. at fault-free or
fault cases. The fault of an actuator modifies the reachable
set, which means that reconfiguration must be performed
to guarantee the stability and the performances of the
system.

Figure 5 illustrates three reachability sets, which are
related to two actuators A; and As. Ry is the reachable
set of the actuation of Ay, while R is related to As. The
goal of the control problem is to guarantee the following
inequahty: wmzn < ¢ < wma:m where wminawmam are
determined by a high level autonomous vehicle control
algorithm. The healthy actuator A; guarantees the yaw-
rate criterion, see the state x1. However, in case of vehicle
dynamic actuator faults the reachability set is generally
reduced. Thus, if a fault occurs in the operation A;, the
reachable set R; ; is smaller than R; and the yaw-rate
criterion cannot be guaranteed. Figure 5 shows that the
yaw-rate criterion is also guaranteed by As. Since the
impact of Ay on the reachable set is a priori known from
the data analysis, the reconfiguration to As from A; can
be performed, which leads to the new state x. Through
the reconfiguration of the actuators, the performance of
the entire system can be guaranteed. Since the shapes
and the sizes of the steering, torque-vectoring and their
combined intervention are different, the proposed method
can be efficiently used in the reconfiguration strategy of
the lateral control systems.
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Fig. 5. Background of the reconfiguration strategy

5. CONCLUSIONS

The paper has proposed a data-based analysis on the
lateral dynamics and the reconfiguration strategy for au-
tonomous vehicles. In the analysis the big data from the
signals of the vehicles have been processed through the
machine learning algorithm C4.5. The paper has proposed
the determination of the reachable regions of the vehicle,
in which the impact of the actuator fault on the vehicle
dynamics has been shown. The results of the analysis
have been built into the reconfiguration strategy, which

handles the fault scenarios of different actuators, such as
steering and in-wheel electric motors. In the future the
data-based method will be extended to analyse additional
vehicle dynamics and actuators.
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Appendix A. A BRIEF INTRODUCTION TO THE
COMPUTATION OF REACHABLE SETS

The aim of the following description is to briefly summa-
rize the mathematical background of some reachability set
(1) computation problems. In the case of linear and LPV

systems & = A(p)z + Bu the ellipsoidal approximation of
the reachable sets can be applied ¢ = £ {fTX§ < 1}, see
Shin (2002), which leads to LMI conditions:

AT(p) X (p) + X (p)Alp) + aX (p) + X (p) X(p)B

B x(0) 7 <0 (Adw
X(p)>0 (A.lb)
a>0 (Alc)

In the case of nonlinear systems an appropriate solution is
the approximation in a polynomial form & = f(z)+ g(x)u,
where f, g are matrices with polynomial functions. Using
the Sum-of-Squares (SOS) programming the reachable sets
of the system can be inner approximation through higher-
order ellipsoids, see Jarvis-Wloszek et al. (2005); Németh
et al. (2017). The SOS conditions are formulated by Jarvis-
Wloszek et al. (2005)

(A.2)

min I}
such that
V-lel,
(A.3a)
(1= V)sa+(p—B)ss + (1= V)(p — B)se + (p — £)*) € &
(A.3b)
—((1=V)s10 + (VI (f(@) + g(x)u) — u"w)) € Sptn,
(A.3c)
where s; are polynomials in SOS form and V' is the poly-
nomial Lyapunov function. The reachable set is yielded

the level set V' = 1. Moreover, [ and p are fixed predefined
polynomials.

Another efficient method for the computation of the reach-
able sets in the vehicle control is their approximation with
convex polyhedral, see e.g. Althoff et al. (2007); Seron
et al. (2008); Palmieri et al. (2012). In these reachability
analyses the reachable regions are covered with polyhedral,
which can guarantee a less conservative approximation
compared to the ellipsoidal approach Stursberg and Krogh
(2003); Girard (2005).



