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Abstract: A class of large-scale systems with decentralized information structures such as multi-
agent systems can be represented by a linear system with a generalized frequency variable. In
these models agents are modelled through a strictly proper SISO state space model while the
supervisory structure, representing the information exchange among the agents, is represented
via a linear state-space model. In this paper the fundamental problem of residual generation, as
a basic detector filter design task, is solved in the context of homogeneous multi-agent networks.
In order to reduce the dependence of the filter on the particular agent and to exploit the inherent
informational structure of the network system the same local-global structure is imposed to the
filter as of the original system. It is shown that a stable detection filter can be designed if the
same structural conditions are fulfilled as in the unstructured LTI case.
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1. INTRODUCTION AND MOTIVATION

Modern engineering systems in the areas of manufacturing,
transportation, and telecommunications can be effectively
represented as a network of agents that mutually interact
and exchange information. Dynamical interactions among
agents, and the intrinsic complexity of the physical net-
works make the analysis and control of multi-agent net-
work systems quite a challenging task.

In order to make the analysis computationally tractable,
the simplifying assumption that the agents can be de-
scribed by the same transfer function is often introduced.
Then, the overall dynamics can be represented as the in-
terconnection of a scalar transfer matrix and of a feedback
control block, that represents the communication exchange
among the agents. Under these assumptions, Hara and co-
authors have been able to describe the homogeneous multi-
agent system dynamics as a linear system with generalized
frequency variable, Hara et al. [2009]. A series of powerful
results were derived regarding controllability, stability and
stabilizability , H2 and H∞-norm computation of the over-
all system, see Harat et al. [2007], Hara et al. [2010, 2014].
This class of system descriptions has a potential to provide
a theoretical foundation for analyzing and designing large-
scale dynamical systems in a variety of areas.

Safety is of great importance in modern control, and one of
the main requirements of this problem is its task of fault
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detection and isolation. There are various approaches to
residual generation, see, e.g., the detection filter approach
initiated by Massoumnia [1986] for LTI systems and used
also by Edelmayer et al. [1997], Bokor and Balas [2004] for
LTV and LPV systems, the dedicated observers and the
parity space approaches Gertler [1998], just to mention a
few.

In the so called ”geometrical approach” to some fundamen-
tal problems of LTI control theory, such as disturbance
decoupling, unknown input observer design, fault detec-
tion, a central role is played by the (A,B)-invariant and
(C,A)-invariant subspaces and certain controllability and
unobservability subspaces, Wonham [1985], Massoumnia
et al. [1989]. The nonlinear version of this geometrical
approach deals with certain distributions and codistribu-
tions, Hermann and Krener [1977], Isidori [1989].

In this paper we investigate the problem of the geometry
based fault detection and isolation in the context of
homogeneous multi-agent networks.

1.1 Problem statement

Let us consider the following model for hierarchical multia-
gent dynamical systems: the system consists of N identical
SISO agents whose state space realization is expressed as

ẋi = Ahxi + bhui (1)

yi = chxi

and the transfer function is given by

h(s) = ch(sInh
−Ah)

−1bh, (2)

where cTh , bh ∈ Rnh and Ah ∈ Rnh×nh .

In what follows we make the standing assumption that
h(s) is stable.
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The agents are connected to each other through the input
and output according to the following rule:

α = Aβ +Bu (3)

y = Cβ +Du,

β = (IN ⊗ h(s))α,

where u ∈ Rm, y ∈ Rp, α, β ∈ RN and A,B,C are real
matrices of corresponding dimensions. If the connection is
well-defined, the overall system will be given by the upper
linear fractional transformation (LFT), see Figure 1:

G(s) = Fu(

[
A B
C D

]
, h(s)). (4)
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Fig. 1. Homogeneous multi-agent network

A short computation reveals that the state-space realiza-
tion (A,B, C,D) of G(s) can be expressed as

A = IN ⊗Ah +A⊗ (bhch), (5)

B = B ⊗ bh, C = C ⊗ ch, D = D, (6)

or

A = Ah ⊗ IN + (bhch)⊗A, (7)

B = bh ⊗B, C = ch ⊗ C, D = D. (8)

Remark 1. Given (1) one can immediately check that for

the aggregate state ξ =
[
xT
1 , · · · , xT

N

]T
we have

ξ̇ = (IN ⊗Ah)ξ + (IN ⊗ bh)α, (9)

β = (IN ⊗ ch)ξ. (10)

Then, from (3) we have

ξ̇ = (IN ⊗Ah +A⊗ (bhch))ξ + (B ⊗ bh)u,

y = (C ⊗ ch)ξ.

Observe that this realization is free of interblock mixing.
This fact motivates to call these realizations as compatible
(to the given hierarchical structure).

Interblock mixing means that the states of the realization
are obtained by a blending of the components of ξ defined
by (9) that corresponds to the different blocks. Note
that not all realizations of G are compatible, e.g., (7) is
not a compatible realization. Thus, compatibilty of the
realization reflects not only the fact that in the global state
matrices the component local state matrices appear in a
certain structure but also the corresponding state should
be obtained as a stack of the local (agent) states. Observe
that the dynamics is given entirely by the agents, the
informational level (3) is only the glue that connect them
in a certain structure.

Example 2. Let us consider a very simple example of for-
mation control: there are N identical agents moving be-
tween the walls placed at l1 and l2 in the one-dimensional
space. The position of the ith agent is represented as yi.
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ad− bc ≥ 0

beta

−0.5

−2.5

0.0

0

x

0.5

5.0

1.0
y

q(x, y)

−10

−20

−30

−40

Figure 4.2: q(x, y) for the
case of ad− bc ≥ 0

equation in α and β:

q(α,β) ! c2dα3 − 2acdα2 − bc2α2 + a2dα+ a2dα

+ c2dαβ2 + 2abcα− a2b+ acdβ2 + d2β2

= 0. (17)

Since h(s) is assumed to be stable, it follows from Proposi-
tion 3.2 that Ωc

+ contains the origin and is the smallest con-
nected region partitioned by the image of φ(jω), ω ∈ R.
Depending on the sign of ad− bc, the image of φ(jω) yields
two types of diagrams as shown in Figures 4.1 and 4.3.

The case of ad − bc ≥ 0. Let z ∈ Ωc
+ be expressed as

z = x+jy, x, y ∈ R, then Ωc
+ is given by q(x, y) < 0. In the

case of (14), q(x, y) is shown in Figure 4.2. By substituting
x = z+z̄

2 and y = z−z̄
2j into q(x, y), the Hermitian matrix R

in (11) is given by

R =

2

4

−4a2b 2a(ad+ 2bc) −acd− bc2 − d2

2a(ad+ 2bc) −6acd− 2bc2 + 2d2 2c2d
−acd− bc2 − d2 2c2d 0

3

5.

(18)

Note that this matrix has only one negative eigenvalue.
Hence, it follows from iii) of Lemma 4.1 that G(s) =
G0(φ(s)), where G0(s) ∼ (A0, B0, C0, D0), is stable if and
only if the linear matrix inequality

−4a2bX + 2a(ad+ 2bc)
!
AT

0 X +XA0

"

−(6acd+ 2bc2 − 2d2)AT
0 XA0

−(acd+ bc2 + d2)
#!

AT
0

"2
X +XA2

0

$

+2c2d
#!

AT
0

"2
XA0 +A0XA2

0

$
< 0, (19)

has the positive-definite solution X .

The case of ad − bc < 0. In this case, q(x, y) is shown
in Figure 4.4. Comparing Figures 4.3 and 4.4, it is observed
that the region implied by q(x, y) < 0 includes more region
than Ωc

+. Hence, it is required to additionally impose the

condition z+z̄
2 < a

c . In fact, this condition is equivalent to
the fact that the LMI

AT
0 X +XA0 −

2a

c
X < 0, (20)
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Figure 4.4: q(x, y) for the
case of ad− bc < 0

has the positive-definite solution X . Thus, in the case where
ad − bc < 0, stability of G(s) is determined by solving the
two LMIs (19) and (20).

5. Application to Formation Control

5.1. Problem Formulation

In this section we apply the framework developed in the
earlier sections. Specifically, consider the dynamics of N
identical agents between the walls placed at ℓ1 and ℓ2 in the
one-dimensional space (see Figure 5.1), where the position of
the ith agent is represented as yi, i = 1, . . . , N . Furthermore,
we assume that the agents are collision-free and all the agents
share the common dynamics P (s) and the controller K(s).
The control objective for the ith agent is to control its posi-
tion by collecting its relative position with respect to the other
agents and the walls. In particular, the target (reference) po-
sition ri(t) of the ith agent is given by

ri(t) = Fiy(t) + bi, (21)

where y = [y1, . . . , yN ]T, Fi = [Fi1, Fi2, . . . , FiN ] ∈
R1×N characterizes the weighted relative position with re-
spect to the other agents, and bi ∈ R. Here we assume that
bi takes nonzero value when the information of the wall po-
sitions is known and zero when no information is available
for the agent i. Furthermore, note that Fij has the property
given by

Fij

%
̸= 0, j ∈ Ni,
= 0, j ̸∈ Ni or j = i,

(22)

where Ni represents the set of indices of the agents
that the ith agent can communicate with. Defining
r(t) = [r1, . . . , rN ]T, F = (Fij) ∈ RN×N , and b =
[b1, b2, . . . , bN ]T, control scheme of this formation is de-
picted in Figure 5.2. Note that the matrix F representing the

ℓ1 ℓ2

· · ·

y

1 2 3 N − 1 N

Figure 5.1: System configuration of the agents between the
walls. Arrows represents the information flow.
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Fig. 2. Formation control example

We assume that the agents are collision-free and all the
agents share the common dynamics h(s).

The control objective for the ith agent is to control its
position by collecting its relative position with respect to
the other agents and the walls. In particular, the target
(reference) position ri of the ith agent is given by

ri = Fiy + bi, (11)

where Fi characterizes the weighted relative position with
respect to the other agents and bi takes a nonzero value
when the information of the wall positions is known and
zero when no information is available for the agent i. Note
that Fij 6= 0 if j is an agent that the ith agent can sense,
and zero otherwise.

In this paper we suppose that the fault occurs on the
informational structure level described by (3), i.e., the
faulty system is modeled as

α = Aβ +Bu+ Lν (12)

y = Cβ +Du,

β = (IN ⊗ h(s))α.

With this model structure possible faulty communication
channels, intruders or the presence of misbehaved agents
can be described.

We would like to design a filter for fault detection and
isolation (FDI) that has the same structure as the original
system:

F(s) = Fu(

[
Af Bf

Cf Df

]
, h(s)), (13)

i.e., our goal is to obtain an FDI filter with a compatible
realization.

The main motivation behind this problem setting is to
confine the design task on the level of the information
structure and make it independent on the choice of the
agents’ dynamics h(s). By using this strategy one should
not redesign the FDI filter if the dynamics of the agents
changes.

In this paper we propose a geometry based solution to
this problem based on the detection filter design approach
that solves the so called fundamental problem of residual
generation (FPRG), see Massoumnia [1986], Massoumnia
et al. [1989]. The nontrivial part of the extension of
this method to homogeneous multi-agent networks is to
guarantee the stability of the designed filter.

Section 2 recall the FPRG design problem for LTI systems,
provides the solvability conditions and the filter equations.
In order to apply the method to our problem, we need
to stabilize the filter. Section 2.1 provides the theoretical
background of the stabilization problem and shows that
the classical solvability condition is also valid for the design
of the filters having the imposed compatibility structure.
Section 3 provides a short simulation example, while the
paper is concluded by some conclusions.



2. THE FUNDAMENTAL PROBLEM OF RESIDUAL
GENERATION

Let us consider first the following LTI system, that has
two failure events:

ẋ(t) = Ax(t) +Bu(t) + L1v1(t) + L2v2(t), (14)

y(t) = Cx(t) +Du(t). (15)

The task of designing a residual generator that is sensitive
to the fault associated with the L1 direction and insensitive
to the fault associated with the L2 direction is called
the fundamental problem of residual generation. More
precisely, one has to design a residual generator.

If we denote by r1 the output of the residual generator,
then we should ensure that when a fault is present, i.e.,
v1 6= 0, then r1 6= 0 while if v1 = 0 limt→∞ ‖r1(t)‖ = 0,
i.e., to guarantee a stability condition requirement of the
residual generator.

In the solution of this problem a central role is played by
the (C,A)-invariant subspaces and certain unobservabil-
ity subspaces, see Massoumnia [1986], Massoumnia et al.
[1989], or, in the nonlinear version of this problem, ob-
servability codistributions, see De Persis and Isidori [2000,
2001].

Let us recall some of the basic notions used to construct
the detection filter: it is known that for LTI systems, a
subspace W is (C,A)-invariant if A(W ∩ KerC) ⊂ W .
This is equivalent to the existence of a matrix G such that
(A+GC)W ⊂ W . A (C,A)-unobservability subspace S is a
subspace such that there exist matrices G and H with the
property that (A + GC)S ⊂ S, i.e., S is (C,A)-invariant,
and S ⊂ KerHC. The family of (C,A)-unobservability
subspaces containing a given set L has a minimal element
S∗. It is important to stress that efficient algorithms exist
to compute these invariant subspaces, e.g., see Wonham
[1985], Basile and Marro [2002].

Let us denote by Li = ImLi, i = 1, 2 and denote by S∗

the smallest unobservability subspace containing L2. Then
one has the following result:

Theorem 3. (FPRG). The fundamental problem of resid-
ual generation has a solution if and only if S∗ ∩ L1 = 0,
moreover, if the problem has a solution, the dynamics of
the residual generator can be assigned arbitrary.

The conditions of Theorem 3 ensure that the fault to be
detected is not hidden in the unobservability subspace
of the detection filter. In fact, the fault direction will
be decoupled from the rest of the fault directions since
they are contained in the unobservability subspace of the
residual generator.

The residual generator associated with fault direction L1

can be described by the following observer form:

ẇ(t) = Nw(t)−Gy(t) + (F +GD)u(t), (16)

r1(t) = Mw(t)−Hy(t) +HDu(t),

where u, y are the known input and measured output
signals of the original LTI system, the components of w are
the states of the residual generator and r1 is the residual.

In order to construct the detection filter, denote by P the
projection operator P : X → X/S∗ and then the state
matrices can be determined as follows: H is a solution of

the equation KerHC = KerC + S∗, and M is the matrix
associated to the unique solution of MP = HC.

Let us consider a gain matrix G0 such that condition (A+
G0C)S∗ ⊂ S∗ holds and let A0 = A + G0C|X/S∗ denote
its restriction to the factor space. It is a standard result,
see, e.g., Wonham [1985], that on this factor space one
can assign the eigenvalues arbitrarily, i.e., there is a gain
matrix G1 such that N = A0 + G1M has the prescribed
eigenvalues. Then set G = PG0 + G1H and F = PB to
complete the design.

Noe that while D is present in the filters dynamic equa-
tions (16) it does not affect the computation of the invari-
ant subspaces.

In order to assure the decoupling property it is sufficient
that S∗ ∩ L1 = 0 holds for any unobservability subspace
S∗ containing L2. Besides the fact that the minimal
unobservability subspace can be determined by a well
defined algorithm, minimality guarantees the necessity
of the condition and the observability property of the
constructed filter. In the LTI case this latter property
makes possible the construction of a stable filter. While the
geometrical ideas can be extended quite straightforward
for the more general time varying situation the question
of stability will be quite involved since the pole allocation
property of observable pairs has no counterpart in the
general theory.

This result can be extended to the case with multiple
events, called the extension of the fundamental problem of
residual generation (EFPRG). The EFPRG has a solution
if and only if S∗

i ∩ Li = 0, where S∗
i is the smallest

unobservability subspace containing Li :=
∑

j 6=i Lj .

It is clear that one can apply this algorithm in the context
of the problem set in this paper, too. Al the computations
should be performed for the fictitious system defined by
the state matrices (A, [B L1 L2], C,D). Observe, however,
that the solvability of the FPRG problem on the global
level, i.e, with a detection filter having a not necessarily
compatible realization, does not imply the solvability of
the FPRG problem set in this paper.

If the design condition of Theorem 3 is fulfilled, the only
nontrivial problem is the stabilization condition needed to
ensure the stability of the overall filter defined by

F(s) = Fu(

[
N [−G, F +GD]
M [−H, HD]

]
, h(s)). (17)

This is actually a compatible stabilizing output injection
gain computation, i.e., a compatible detectability problem
in the context of the framework set by homogeneous multi-
agent networks.

2.1 Compatible stabilizability and detectability

In the case of LTI system if the realization is minimal then
it is obvious that we have stabilizability (detectability).
This section shows that this is also true for the compatible
case., i.e., when we impose the condition that the feed-
back (output injection) fit the structure imposed by the
network. The nontriviality of the assertion is given by the
fact that the informational level does not have access to
the entire state, only to the outputs of the agents.



Let us consider the following setting:

α = Aβ +BFβ (18)

β = (IN ⊗ h(s))α,

and

α = Aβ +GCβ (19)

β = (IN ⊗ h(s))α,

respectively. We call F a compatible stabilizing feedback
gain and G a compatible stabilizing output injection gain,
respectively, if the corresponding closed loop systems are
stable. Compatible stabilizability (detectability) means
that there exists a stabilizing compatible feedback (com-
patible output injection).

By applying (5) one has

A = IN ⊗Ah +A⊗ (bhch) +BF ⊗ (bhch)

and

A = IN ⊗Ah +A⊗ (bhch) +GC ⊗ (bhch),

respectively. This shows that in this case the stabilization
problem reduces to a problem which is similar to a classical
(LTI) static output feedback problem. It is known that
the static output feedback problem does not always has a
solution.

As a motivation background consider the following ob-
server design problem associated to system (4):

α̂ = Aβ̂ −Gy + (B + LD)u

β̂ = (IN ⊗ h(s))α̂,

which leads to the error equation

ζ = (A+GC)η (20)

η = (IN ⊗ h(s))ζ (21)

with η = β − β̂ and ζ = α − α̂. On the global level the
error equation is

ė = (IN ⊗Ah +A⊗ (bhch) +GC ⊗ (bhch))e

which can be written as

ė = (IN ⊗Ah + (IN ⊗ bh)(A+GC)(IN ⊗ ch))e,

with e = ξ − ξ̂. As it is already clear from (20) this is a
static output feedback connection for IN ⊗ h(s).

The state feedback case in analogous and it is omitted in
what follows, for brevity.

Concerning controllability, observability and minimality of
the realizations we have the following results:

Theorem 4. (Hara et al. [2009]). If rankB = N (rankC =
N), then (A,B) is controllable ((A, C) is observable) if and
only if (Ah, bh) is controllable ((Ah, ch) is observable).

If rankB 6= N (rankC 6= N), then (A,B) is controllable
((A, C) is observable) if and only if (Ah, bh, ch) is a min-
imal representation and (A,B) is controllable ((A,C) is
observable).

Theorem 5. (Hara et al. [2009]). Assume that h(s) is stric-
tly proper. Then the realization (A,B, C,D) of G(s) is
minimal if and only if the realization (Ah, bh, ch) of h(s)
and the realization (A,B,C,D) of G(s) is a minimal.

Thus, if (A,C) is observable and (Ah, bh, ch) is a mini-
mal representation then one can always design a stable
observer on the global level. Which is not clear for the
first glance that this is also possible by using a structured

variant, i.e., an observer having a compatible representa-
tion, using a compatible output injection gain, provided
that Ah is stable.

To prove the assertion we use the following result, Hara
and Tanaka [2010]:

Theorem 6. A in (5) is Hurwitz stable if and only if for all
λ ∈ σ(A) all the eigenvalues of Ah + λbhch belong to the
open left-half complex plane.

It is immediately obvious that the condition of the theorem
is fulfilled if σ(A) = {0}. Since (A,C) is observable, there is
a feedback gain G that places all the eigenvalues of A+GC
to the origin. Thus, we have the desired result:

Proposition 7. If Ah is stable and (A,C) is observable then
there is a compatible stabilizing output injection gain.

Remark 8. The assumption on stability of Ah is essential,
in general: e.g., with the minimal realization defined by

Ah =

[
0 1
0 0

]
and bh =

[
0
1

]
, ch = [1 0] we have that

Ah + λbhch =

[
0 1
λ 0

]
, which has as eigenvalues ±

√
λ, i.e.,

it cannot be stable for any λ.

Compatible realizations impose a certain structure which
leads to a reduced ability in stabilizing or in achieving
certain performances (pole allocation) compared to the
unconstrained versions. This might be a serious limitation
of this type of solutions in practical applications.

We conclude this section with the main result of this paper:

Theorem 9. The fundamental problem of residual genera-
tion has a compatible solution if and only if S∗ ∩ L1 = 0.

3. SIMULATION EXAMPLE

In this section we demonstrate the proposed method
through a simulation example. At the informational level
we set

A =




0 1 1 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0


B =




1 0
0 0
0 0
0 0
0 1


L1 =




0
0
1
0
0


L2 =




0
0
0
0
1




C =

[
0 1 0 0 0
0 0 0 1 0

]
D =

[
0 0
0 0

]

These matrices defines the detection problem according
to (14). The agents are supposed to obey the dynamics
defined by h(s) = s−1

(s+1)(s+2) .

Following the steps of the proposed algorithm the filter
matrices that corresponds to (16) are

N1 =

[
0 0 0
1 0 0
−1 −1 0

]
, G1 =

[−1.0 −1.0
−1.0 0
0 0

]
, F1 =

[
0 0
1 0
0 0

]

M1 = [0 0 −1] , H1 = [1 0] ,

and
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Fig. 3. Fault signals

N2 =

[
�0.2886 �1.0774 �0.2113
0.0773 0.2887 0.7887

0 0 0

]
, G2 =

[
0.5774 �0.7888
0.5773 0.2113

0 �1

]
,

F2 =

[
�0.5774 0
�0.5774 0

0 1

]
, M2 =

[
0.7071 �0.7071 0

]
,

H2 =
[
0.7071 �0.7071

]

respectively.

The fault signals are depicted on Figure 3 while the
detected residuals are on Figure 4.
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Fig. 4. Residuals (λ = 0)

We tried to influence the detection performance by tuning
the pole placement in the second step of the algorithm in
a way that still maintains the stability of the overall filter
by using Theorem 6.

The re-designed filter dynamics are defined by

N1 =

[
0 0 0
1 0 1.0001
�1 �1 �2.0001

]
, G1 =

[
�1 �1

�2.0001 0
2.0001 0

]

and

N2 =

[
�1.0774 �0.2887 �0.2113
0.2888 0.0773 0.7887
�1.0001 1.0001 0

]
, G2 =

[
�0.2113 0
0.7888 �0.0001
�1.0001 0.0001

]

respectively.

The obtained residuals are depicted on Figure 5.

The simulation examples show that the restriction im-
posed to the pole allocation by the stability condition of
Theorem 6 seriously deteriorates the achievable detection
performance (detection speed) compared to the unstruc-
tured filters.
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Fig. 5. Residuals (tuned)

4. CONCLUSION

The fundamental problem of residual generation, as a basic
detector filter design task, has been set in the context of
homogeneous multi-agent networks: in order to reduce the
dependence of the filter on the particular agent and to
exploit the inherent informational structure of the network
system a compatibility structure is imposed to the filter.
As a result the FDI filter is designed based only on the data
determined by the informational structural (global) layer.
It is shown that the design can be performed if and only
if the associated classical LTI FPRG problem is solvable.

Compatible realizations impose, however, a certain struc-
ture to the filter to be designed. The resulting constraint
leads to a reduced ability in stabilizing or in achieving
certain performances (pole allocation) compared to the
unconstrained versions. This might be a serious limitation
of this type of solutions in practical applications.

APPENDIX

4.1 Notations and basic facts

For the matrices A ∈ Rm×n and B ∈ Rp×q their Kronecker
product A⊗B is the block matrix:

A⊗B =



a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 ∈ Rmp×nq. (22)

The Kronecker product has the following properties:

A⊗ (B + C) = A⊗B +A⊗ C, (23)

(A+B)⊗ C = A⊗ C +B ⊗ C, (24)

(kA)⊗B = A⊗ (kB) = k(A⊗B), (25)

(A⊗B)⊗ C = A⊗ (B ⊗ C). (26)

If the matrices are nonsingular, then

(A⊗B)−1 = A−1 ⊗B−1, (27)

while theu have compatible dimensions, then

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (28)

In general, the Kronecker product is not commutative.
However, there exist permutation matrices P and Q such
that

A⊗B = P (B ⊗A)Q. (29)

If A and B are square matrices, then we can take P = QT .
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