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Abstract. Time delay generally represents the transport delay in a real process. It may deteriorate 

significantly the properties (stability and transient performance) of a closed-loop control process. 

But uncertainty in the knowledge of the time delay may cause instability and influences the 

robustness of the control. Control algorithms are generally very sensitive to delay mismatch. In this 

paper the robust design of the YOULA parameterized controller is investigated considering delay 

mismatch. Stability region is given providing design method to ensure stability and the required 

performance. 

Introduction 

Identification, control even adaptive algorithms usually assume the apriori knowledge of the 

process time-delay. This knowledge is sometimes very uncertain and the mismatch coming from a 

lack of precision in mathematical modeling of the plant and/or changes in the plant parameters with 

time can result instability. It would be desirable to know how the time-delay mismatch influences 

the basic robustness and performance behaviors of the closed-loop control. 

Some controller design methodologies, mostly for discrete-time systems, include the time-delay 

of the plant also into the parameters [1,2]. Unfortunately relatively few papers (e.g., [3-6]) can be 

found dealing with the influence of the accuracy of the apriori knowledge or estimate of the time-

delay, which is sometimes called the time-delay mismatch problem. Our paper investigates the 

influence of the time-delay uncertainty on the robust stability and performance. 

The framework how this issue will be discussed is the generic two-degree of freedom (GTDOF) 

system topology [7] which is based on the YOULA-parameterization [8] providing all realizable 

stabilizing regulators (ARS) for open-loop stable plants and capable to handle the plant time-delay. 

The advantage of this approach is that it is easy to calculate the “best” reachable optimal regulator 

depending on the applied  H 2  and/or  H ∞  norms as criteria. The drawback is that this 

methodology can be applied only for open-loop stable plants. 

A GTDOF control system is shown in Fig. 1, where yr ,u,y  and w  are the reference, process 

input, output and disturbance signals, respectively. The optimal ARS regulator of the GTDOF 

scheme [9] is given by 

Ro =
PwKw

1 − PwKwS
=

Qo

1 − QoS
=

PwGwS+
−1

1 − PwGwS−z
−d

 (1) 

where 

Qo = Qw = PwKw = PwGwS+
−1  (2) 

is the associated optimal Y-parameter [10] furthermore 

Qr = PrKr = PrGrS+
−1      ;    Kw = GwS+

−1      ;    Kr = GrS+
−1  (3) 

assuming that the process is factorable as 
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S = S+S− = S+S−z
−d  (4) 

where S+  means the inverse stable (IS) and S−  the inverse unstable (IU) factors, respectively. 

z
−d  corresponds to the discrete time-delay, where d  is the integer multiple of the sampling time. 

Here Pr  and Pw  are assumed stable and proper transfer functions (reference models). An 

interesting result was [11] that the optimization of the GTDOF scheme can be performed in  H 2  

and  H ∞  norm spaces by the proper selection of the serial Gr  and Gw  embedded filters. 
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Figure 1. The generic TDOF (GTDOF) control system. 

Robust Stability Conditions for GTDOF Control Systems 

Be M  the model of the process. Assume that the process and its model are factorizable as  

S = S+S− = S+S−z
−d ; M = M+M− = M+M−z

−dm  (5) 

where S+  and M+  mean the inverse stable (IS), S−  and M−  the inverse unstable (IU) factors, 

respectively. z
−d and z

−dm  correspond to discrete time delays, where d  and dm  are the integer 

multiple of the sampling time, usually d = dm  is assumed. (To get a unique factorization it is 

reasonable to ensure that S−  and M−  are monic, i.e., S− 1( )= M− 1( )= 1 , having unity gain.) It is 

important that the inverse of the term z
−d  is not realizable, because it would mean an ideal 

predictor z
d . These assumptions mean that S− = S−z

−d  and M− = M−z
−dm  are uncancelable 

invariant factors for any design procedure. Introduce the additive 

∆ = S − M ; ∆+ = S+ − M+   ; ∆− = S− − M−  (6) 

and the relative model errors 

 

� =
∆

M
=

S − M

M
     ;    

 

�+ =
∆+

M+

     ;    

 

�− =
∆−

M−

 (7) 

It is easy to show that the characteristic equation using the ARS regulator is (for d = dm = 0 ) 

M+M− = 0  (8) 

if a 
 
Q = %Q M+M−( )−1

 parameter is applied, i.e., if someone tries to cancel both factors. This means 

that the zeros of the IU factor will appear in the characteristic equation and cause instability. This is 

why these zeros (and the time delay itself) are called invariant uncancelable factors. 

Introducing the model based, nominal complementary sensitivity function 

Ẑ =
R̂M

1 + R̂M
= Q̂M  (9) 

the well known robust stability condition 
 
Ẑl

∞
< 1  for the ARS regulator gives 

 
Q̂Ml

∞
< 1 , i.e., 
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Q̂M <
1

l
     or     

 

� <
1

Q̂M
     ∀ω  (10) 

Thus the robust stability strongly depends on the model M  and how the model-based Y-

parameter Q̂  is selected. 

Consider the practical form of the optimal regulator (using M  in Eq.1) of the GTDOF system 

based on the available model M  of the process 

R̂ =
PwGwM+

−1

1 − PwGwM−z
−dm

=
PwGwM+

−1( )
1 − PwGwM+

−1( )M+M−z
−dm( )

=
Q̂

1− Q̂M
 (11) 

where 

Q̂ = PwGwM+
−1 and Ro = R M = S( ) (12) 

is the nominal Y-parameter depending on the model of the plant, which gives back Eq.2 as 

Q̂
M =S

= Qo = PwGwS+
−1 . The dependence on the inverse stable part is direct and visible, however, 

Gw  generally depends on the inverse unstable part. We can now state that R̂  is also an ARS 

controller (but do not forget that only for the model M  and not for the true process S ). 

Analyze the basic robust stability condition Eq.10 obtained for ARS regulators in case of the 

generic scheme, where the optimal regulator is given by Eq.10 and Q̂ = PwGwM+
−1  from Eq.11. 

We get 

 
Q̂M l = PwGwM+

−1
M l = PwGwM−z

−d l = Pwl  (13) 

where GwM− = 1 can be ensured for a monic M−  by the optimization of Gw , furthermore 

z
−d = 1 , thus 

 

sup
ω

l ≤ 1 Pw or
 
�

∞
≤ 1 Pw ∞

 (14) 

Because the right hand side of this inequality depends only on Pw , which is the reference model 

for the regulatory property of the GTDOF system, this means that this is a special controller 

structure, where the performance of the closed-loop is directly influenced by the robustness limit 

(via the selected Pw ). 

Computation of the Relative Model Error 

Let us compute the relative model error  �  for an IS plant, where the model uncertainty comes only 

from a time-delay mismatch. The delay-free term is assumed to be known exactly, so M− = 1 and 

M+ = S+ . In this case 

 

� = l d =
∆

M
=

S − M

M
=

S+z
−d − S+z

−dm

S+z
−dm

= z
− d−dm( ) − 1  (15) 

Assume an equivalent continuous time plant with time-delay τ  and a model with time-delay 

τm . The analogous equivalence means 

 
� = l τ = e

−∆τs − 1 (16) 

where ∆τ = τ − τm . The robust stability condition Eq.14 for the continuous time case is now 
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sup
ω

l τ = sup
ω

e
− j∆τω − 1 ≤ 1 Pw jω( )  (17) 

For the sake of simplicity assume a first order reference model now 

Pw =
1

1+sTw

     ;    Pw jω( )=
1

1+jωTw

 (18) 

which means an 1 Tw  bandwidth design goal for the resulting closed-loop. Using the first order 

reference model Eq.18 the inequality to be solved for ∆τ  is 

sup
ω

e
− j∆τω − 1 ≤ 1+ jωTw  (19) 

which has the solution as a robust stability (RS) condition 

 

�τ =
∆τ

τ
= 1−

τm

τ
<

π

3

Tw

τ
= 1.82

Tw

τ
 (20) 

This inequality is one of our major result. The solution of the inequality Eq.19 can be easily 

followed on Fig. 2. 

It is interesting to mention that using the first order TAYLOR expansion of the exponential term 

one can get a good approximation of Eq.19 and a sufficient but not necessary condition for small 

deviations 

 

�τ =
∆τ

τ
= 1−

τm

τ
<

Tw

τ
 (21) 

The interpretation of Eq.20 and Eq.21 is very simple: for small Tw , which means high closed-

loop performance, the model time delay τm  must be close to the true delay τ . So it is obtained 

that the admissible time-delay mismatch is limited by the inverse of the performance. It could be 

furthermore very interesting how this limit influences the robustness of the loop, see the next 

section. 

There is a simple, however, a somewhat virtual way to increase the robust stability limit Eq.20 by 

a higher order cutting filter form of the reference model 

Pw =
1

1+sTw( )n
     ;    Pw jω( )=

1

1+jωTw( )n
 (22) 

Following the same procedure how Eq.20 was obtained from Eq.19, a more general RS form can 

be derived 

 

�τ =
∆τ

τ
= 1−

τm

τ
< a n( )

Tw

τ
 (23) 

where the increasing coefficient a n( ) is plotted in Fig. 3. 
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sup
ω

� τ

 

Figure 2. Simple graphics helping to understand the solution of inequality Eq.19. 
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Figure 3. The 
a n( ) function. 

Performance, Robustness and Time-Delay Mismatch 

Detailed investigation of the above mentioned limiting behavior needs further numerical 

computations. Simple calculations give that the sensitivity function of the GTDOF system with IS 

plant, having time-delay mismatch for the discrete-time case is (assuming Gw = 1 ) 

 

E =
1 − Pwz

−dm

1+l Pwz
−dm

=
1− Pwz

−dm

1+l dPwz
−dm

 (24) 

and the continuous time equivalent follows as  

 

E =
1 − Pwe

−sτm

1+l Pwe
−sτm

=
1 − Pwe

−sτm

1+l τPwe
−sτm

 (25) 

For Pw  given by Eq.18 the sensitivity function Eq.25 becomes 

E =
1+ sTw − e

−sτm

1 + sTw +Pw e
−sτ − e

−sτm( )
 (26) 

The well-known NYQUIST stability margin (the simplest robustness measure) is defined by 
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ρm = ρmin R( )= min
ω

ρ ω ,R( ) = min
ω

1+RS = min
ω

1+Y jω( ) =
1

E
∞

 (27) 

which is the distance between the point −1+ 0 j( ) and the closest point of the open-loop transfer 

function Y jω( ). The reciprocal value of the norm is E
∞

. Unfortunately there is no simple 

analytical solution to obtain how the closed-loop robustness depends on the time-delay mismatch 

and on the performance. It is, however, possible to compute the graphical plot of a complex 

functional relationship ρm = ρmin τm τ ,Tw τ( ) with the help of MATLAB. 
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Figure 4. Function 
ρmin Tw τ( ) for τm = 0.5τ,τ,2τ .

 

As a result Fig. 4 shows the function ρmin Tw τ( ) for τm = 0.5τ,τ,2τ . For the ideal τm = τ  (no 

mismatch) case ρmin  depends only on our design goal (Tw ) and on the plant time-delay ( τ ), more 

exactly on their relative value Tw τ . The best robustness measure is ρmin 0( )= 0.5  for cases when 

the reference model Pw  requires a very fast transient response from the time-delay process and the 

measure is ρmin ∞( )= 1, if τ  is negligible comparing to the time lag of Pw . It can be well seen 

that either under- or over-estimation of the time-delay causes considerable decrease of the 

robustness. Virtually ρmin  is more sensitive for over-estimation. (The left ends of the plots 

correspond to the robust stability limit.) While the no mismatch case provides an all stabilizing 

property for any performance requirement, in case of a non zero time-delay mismatch one can 

always expect the violation of the robustness stability limit for higher performance design. 

It may be more reasonable to plot the function ρmin τm τ( ) parametrized by Tw τ  as Fig. 5 

shows (our second major result). One can see how the robustness is extremely sensitive for high 

performance requirement, when Tw τ  is small and how this sensitivity decreases when Tw τ  is 

large for low performance design. It is also interesting to observe, that for small mismatch the over-

estimation of the delay gives higher ρmin , however, for large mismatch ρmin  is somewhat more 

sensitive, as it is shown in Fig. 5. 
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Figure 5. The function 
ρmin τm τ( ) parametrized by Tw τ .

 

In a relatively wide range ofTw τ , the over-estimation of the time-delay by τ∗ τ  improves (i.e. 

increases) the ρmin  to ρmin
∗  according to the maxima of the curves observable in Fig. 5. The over-

estimation is less than 25% and the improvement is marginal, less than 5% as Fig. 6 shows. 

If we assume that the time-delay mismatch is less than 20% in a practical case, the robustness 

degradation is always less than 10% for Tw τ ≥ 0.5 , which can be well seen in Fig. 6. So if we 

want to speed up the open-loop process to a time constant, which is considerably less than the delay, 

then it can only be done using a quite accurate knowledge of the time-delay. Contrary, if someone 

can expect a considerable variation in the time delay then only a less demanding (slower) design is 

more reliable and robust. 

The above results strengthen the conservative practical design experience that the time-delay is 

practically equivalent to an IU zero, i.e. invariant. 

It is interesting to summarize the complex relationship between performance, robustness and 

time-delay uncertainty and indicate an acceptable area as Fig. 7 shows. 
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Figure 6. Influence of the time-delay over-estimation. 
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Figure 7. The shaded area is suggested for acceptable good deal between performance, 
robustness and time-delay mismatch. 

Simulation Examples 

Example 1. 

The continuous plant is given by the transfer function 

S s( )=
1

1 + 2s( ) 1+ 4s( ) 1+ 6s( )
e

−10s  

For the YOULA parameterized design separate the transfer function to invertible and non-

invertible parts. The non-invertible part of the process is the dead time. The inverse of the invertible 

part, which is equal to its model: 

S+ s( )= M+ =
1

1 + 2s( ) 1 + 4s( ) 1 + 6s( )
 

Let us choose now the disturbance filter as Pw = 1 1 + 5s( )3
 and the reference filter as  

Pr = 1 1 + 8s( )3
. Pw  has to be of the same or higher order than Pr . The YOULA parameter then is  

Q = PwM+
−1 =

1 + 2s( ) 1 + 4s( ) 1 + 6s( )
1 + 5s( )3

. 

In the choice of Pw  the condition of robustness, Tw τ ≥ 0.5  discussed above was taken into 

consideration. 

It is expected, that from relationship 

1 −
τm

10
< a 3( )

1

10
≈ 0.4  

acceptable behavior will be reached within mismatch 6 < τm < 14  

Figure 8 shows the step response and the disturbance rejection of the control system when there is 

no mismatch between the time delay of the system and its model and in the mismatched cases when 

the time delay of the model is 6 sec and 14 sec, respectively. A step disturbance of amplitude 0.5 

acts at time point 150 sec. It is seen that the control system is robust for these uncertainties in the 

time delay.  

Further simulations show that with this disturbance filter the control system tolerates even much 

bigger uncertainties in the time delay. 
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Figure 8. Step response of the control system with the YOULA controller. 

Full line: accurate model; dash-dotted line: τm = 6 , dotted line: τm = 14  

 

Example 2. 

The continuous plant is given by the transfer function 

S s( )=
1

1 + 2s( ) 1+ 4s( ) 1+ 6s( )
e

−10s  

The plant is sampled with sampling time Ts = 2  sec and a zero order hold is applied at its input. 

Let us design a YOULA parameterized controller. Analyze the effect of different filters. 

The pulse transfer function of the plant is 

G z( )=
0.017792 z + 2.396( ) z + 0.167( )

z − 0.7165( ) z − 0.6065( ) z − 0.3679( )
z

−5  

Let us separate the pulse transfer function into invertible and non-invertible parts. The dead time 

cannot be inverted. The zero outside the unit circle cannot be inverted either as it would cause 

unstable behavior between the sampling points. The second zero is supposed to be in the “good” 

region” considering Fig. 7. It usually can be cancelled, or if not, it is possible to derive another 

version of the control algorithm. In the terms of the shift operator z
−1  the separation of the pulse 

transfer function becomes as follows: 

G− z
−1( )=

1 + 2.396z
−1( )z

−1

3.396
z

−5  

(Its static gain has to be 1.) 

G+ z
−1( )=

0.017792 ⋅ 3.396 1 + 0.167z
−1( )

1 − 0.7165 z
−1( )1 − 0.6065 z

−1( )1 − 0.3679 z
−1( )

 

Let us apply now the sampled continuous filters used in the previous example: Pw = 1 1 + 5s( )3
 

and Pr = 1 1 + 8s( )3
. Their pulse transfer function is 

Pr z( )=
0.021615 z + 3.098( ) z + 0.2218( )

z − 0.7788( )3
 

and 
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Pw z( )=
0.007926 z + 2.774( ) z + 0.1978( )

z − 0.6703( )3
 

The YOULA parameter with the filters is 

Q = PwG+
−1 =

0.0079263 z + 2.774( ) z + 0.1978( )
z − 0.6703( )3

×
z − 0.7165( ) z − 0.6065( ) z − 0.3679( )

0.017792 ⋅ 3.396 z + 0.167( )z
2

  

See some results in Fig. 9. 

 

Figure 9. Step response of the discrete control system with the YOULA controller 

Full line: accurate model; dash-dotted line: τm = 6 , dotted line: τm = 14 . 

 

Figure 10. The course of the discrete control signal in case of mismatch 
(The x scale shows the sampling instants.). 

Figure10 demonstrates the course of the discrete control signal for the case of τm = 14 . Let us 

note that the plant is continuous, so the output signal is shown also between the sampling instants. 

Figure 11 shows two cases with big time delay mismatch, when there is no time delay considered 

in the model (full line) and when the time delay in the model is τm = 20  (dash-dotted line). Even 

in these cases the control system remains stable. 
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Figure 11. Step responses in cases of big time delay mismatch 

Full line: no time delay in the model, dash-dotted line: τm = 20 . 

Example 3. 

The continuous non-minimumphase plant is given by the transfer function 

S s( )=
1− s

1 + 2s( ) 1 + 3s( )
 

The step response of the plant is shown on Fig.12. This transfer function can be considered as a 

first-order PADE approximation of the time delay system given by transfer function 

Sappr s( )=
e

−10s

1 + 5s
. The step response of this system is also shown in the figure. 

Let us realize a YOULA parameterized control system, where the model is the approximating time 

delay model.  

Let us choose a first-order filter Pw = 1 1 + 10s( ) . In the choice of Pw  the condition of 

robustness, Tw τ ≥ 0.5 discussed above was taken into consideration. 

It is expected, that from relationship 1 −
τm

τ
< 1.82 ⋅

Tw

τ
 acceptable behavior will be reached 

within mismatch 0.9 < τm < 19.1. 

Be the reference filter also Pr = 1 1 + 10s( ). The YOULA parameter then is 

Q = PwM+
−1 =

1 + 5s

1+ 10s
. 

Figure 13 shows the reference step response and the disturbance rejection for the nominal model 

(full line), for the case when the time delay in the model is 1 sec (dash-dotted line), and when the 

time delay in the model is 15 sec. 

It is seen that the control can be designed based on the time delay approximation of the non-

minimum phase system, and the robustness considerations can be taken into account in the design 

of the time constant of the disturbance filter.  
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Figure 12. Step response of a non-minimum phase system and its approximation with time delay. 

 

Figure 13. Step response of the continuous control system with the YOULA controller of the non-minimum phase plant 
Full line: accurate model; dash-dotted line: mismatched model: τm = 1 , dotted line: τm = 15 .

 

Summary 

Real processes frequently contain time delay. If e.g. a proportional process contains several time 

constants it can be approximated by a first order lag and a time delay. Transportation processes also 

are modelled with time delay. In closed-loop control the controller design methods calculate the 

parameters of the controller taking into consideration the control specifications and the model of the 

process. These methods assume an apriori known time delay. But in practical applications time 

delay uncertainty, i.e. mismatch between the time delay of the process and its model has always to 

be assumed. Control methods as e.g. PID control or dead beat control are very sensitive to time 

delay mismatch which may cause instability or bad transient performance. YOULA parameterized 

controller design provides possibilities for robust performance. It has to be mentioned that other 

controller design methods are special cases of YOULA parameterization. Therefore robust design of 

YOULA parameterized controllers was discussed here. It was described how time delay mismatch 

influences the robustness degradation and the reachable closed-loop performance. 

A new necessary and sufficient inequality condition for robust stability is derived for the 

maximum allowable time-delay mismatch and a simpler sufficient condition is also given for a first 

and an n-th order reference model. 
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The relationship of robustness, performance and time-delay uncertainty is represented by a 

graphical plot helping to make an acceptable compromise between contradictory criteria. 

The investigations show that bandwidth higher than the bandwidth of the delay term (Tw < τ ) can 

be reached only for a considerably lower robustness and at the same time a much more accurate 

knowledge of the time-delay is necessary. So the acceptable performance domain means Tw ≥ τ . 

We found that a certain slight overestimation of the time-delay improves the robustness, but a 

higher overestimation causes considerable robustness degradation again.  

Simulation examples demonstrate the effectiveness of the robust design method. 
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