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Abstract

Active research has been carried out for human action recognition using

3D human skeleton joints with the release of cost-efficient RGB-D sensors.

However, extracting discriminative features from noisy skeleton sequences

to effectively distinguish various human action or interaction categories still

remains challenging. This paper proposes a structured multi-feature repre-

sentation for human action and interaction recognition. Specifically, a novel

kernel enhanced bag of semantic words (BSW) is designed to represent the

dynamic property of skeleton trajectories. By aggregating BSW with the

geometric feature, a GBSW representation is constructed for human action

recognition. For human interaction recognition where the cooperation of

each subject matters, a GBSWC representation is proposed via combining

the GBSW feature with a correlation feature which addresses the intrinsic

relationship between interactive persons. Experimental results on several hu-

man action and interaction datasets demonstrate the superior performances

of the proposed features over the state-of-the-art methods.
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1. Introduction

Human activity recognition has been an active research topic in com-

puter vision and can be applied into many wide applications, such as video

surveillance, virtual coaches, elderly care, and entertainment. Most early

approaches concentrate on recognizing human activity in 2D data streams

recorded by RGB cameras [1, 2]. Unfortunately, the high sensitivity to illu-

mination conditions and texture variability of the RGB data makes it chal-

lenging to achieve accurate human activity recognition. The emergence of

cost-efficient RGB-D sensors eases these difficulties and reveals a promis-

ing direction for human activity recognition by providing extra depth data.

The depth information also enables 3D human skeleton joints to be easily

estimated [3]. In this paper, human action denotes the activity performed

by a single person, while human interaction means the interaction between

two persons, and human activity includes both human action and human

interaction.

A large number of research has been done for human action recognition

using skeleton data. Various characteristics of skeleton joints, such as loca-

tions, angles, and geometric relationships, were utilized to model different

human actions [4, 5, 6, 7, 8]. Many researchers showed that discovering fea-

tures from a set of informative joints or focusing on discriminative features

could improve the performance [9, 10, 11]. Recently, many convolutional
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neural networks based methods have been proposed for action recognition

from skeleton sequences [12, 13, 14]. Most of them focused on transforming

the skeleton features into images and then adapted existing models for clas-

sification. However, it remains challenging to explore discirminative features

from noisy skeleton sequences.

Although the development of RGB-D sensors has motivated considerable

work conducted for human action recognition, research for human interaction

is relatively unexplored. Unlike single person actions, human interaction is

a behavior performed by more than one people, where the interaction rela-

tionship between people is of vital importance. Moreover, human interaction

has large feature dimensions which consist of individual information as well

as mutual relations. The mutual relations were typically represented by the

distance between body parts in most existing methods [15, 9, 16]. The dis-

tance property could provide useful geometric information, however, it might

be not effective enough to mine intrinsic characteristics embedded in diverse

interaction classes. Thus, exploring high level or semantic information could

help to enhance the performance of the traditional feature representation for

human interaction recognition [17].

In a previous work [18], a histogram of 3D moving directions for each joint

was constructed to represent the moving trend of skeleton joints using an ef-

fective histogram projection method. This feature could describe the specific

tendency of skeleton joints in 3D space and was proven to be competitive

in human action recognition. Based on this feature extracted from individu-

als, the moving similarity between body parts was proposed to describe the

mutual relationship for human interaction recognition in [19]. However, sim-
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ply projecting the skeleton trajectories to a histogram is not discriminative

enough to represent the dynamic trajectory features. This paper proposes

a novel kernel enhanced bag of semantic moving words (BSW) for both hu-

man action and interaction recognition. More specifically, a kernel function

which consists of the discriminative directions weighting and the discrimina-

tive frames weighting is constructed to augment the discriminative ability of

the original descriptor over non-linear skeleton representations by focusing

more on salient features. The directions in BSW are grouped into semantic

moving words, whose distribution over an activity sequence explicitly inter-

prets the moving trend of skeleton joints. Based on this feature, a structured

multi-feature representation is constructed for human action and interaction

recognition. Experimental results on several human action and interaction

datasets demonstrate the superior performance of the proposed features over

the state-of-the-art methods.

The contributions of this paper are summarized as follows:

1) A novel kernel enhanced bag of semantic moving words (BSW) is de-

signed to represent the dynamic property of skeleton trajectories. BSW aug-

ments the discriminative property of the feature via applying a dynamic

weighting strategy to the extracted semantic moving words.

2) A structured multi-feature representation is proposed for human action

and interaction recognition. In the proposed framework, a GBSW feature

which aggregates BSW with the geometric feature of skeleton data is con-

structed for human action recognition and a GBSWC feature which further

combines a correlation feature between body parts is built for human inter-

action recognition. Figure 1 shows the framework of the proposed structured
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multi-feature representation.

3) Experimental results on three public datasets validate the outstanding

performance of the proposed structured multi-feature representation for both

human action and interaction recognition.

Figure 1: The framework of the proposed structured multi-feature representation. The

Geometric feature ( G) is built by using the offset displacement between the current

frame and the initial frame. The Bag of Semantic moving Words (BSW) is calculated by

accumulating the frame moving direction over the whole sequence. The Correlation feature

(C) is described by computing the moving similarity between interactive pairs. GBSW

which combines the G and BSW feature from individuals is developed for human action

recognition, and GBSWC which further integrates the C feature between interaction pairs

with GBSW is proposed for human interaction recognition.

The remainder of this paper is organized as follows: Section 2 reviews re-

lated work of human action and interaction recognition. Section 3 describes

the structured multi-feature representation for human action and human in-

teraction recognition. Section 4 presents experimental results as well as the
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comparison with the state-of-the-art methods. Section 5 concludes the paper

and discusses the future work.

2. Related Work

This section reviews work related to human action recognition and human

interaction recognition using RGB-D data.

2.1. Human Action Recognition

A large number of approaches have been proposed for human action recog-

nition in recent years. Existing approaches can be grouped into depth-based

methods and skeleton-based methods.

The depth images can reduce the difficulty in subtracting 3D human mo-

tion information from the cluttered background by providing the distance in-

formation. Some scholars projected the 3D information onto three 2D orthog-

onal planes corresponding to the front, side, and top view, and then calcu-

lated features from these planes to describe actions [20, 21, 22, 23, 24, 25, 26].

For example, 3D discriminative points were selected from the body silhouette

on each plane to depict body postures in [20]. Similarly, the spatial relation-

ship among selected joints in depth sequences with discriminative shape and

movement was used to build the depth context descriptor for final action

recognition in [25]. The limitation of this approach is that detecting interest

regions through the whole depth sequence requires extra computational cost

and the spatial information may be lost. Bulbul et al. [22] modified DMMs

[21] by providing a multi-scale and multi-directional analysis via contourlet

transform. They improved the recognition accuracy by strengthening the

shape characteristic of DMMs. The shape of a human body was described
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delicately from various viewpoints in these DMMs, however, they did not

consider the relation of 3D point neighborhood which contains useful spatial

information. Liang et al. [26] divided each depth sequence into a set of subse-

quences whose shape information and motion features were extracted by the

DMMs-based gradient local auto-correlations. Instead of selecting features

from 2D planes, some methods captured features in a 4D space by adding the

depth and time domain. With the 4D space, body shapes and movements

were jointly explored from the surface normal in [27, 28, 29]. For example,

Oreifej et al. [27] built the histogram of oriented 4D (HON4D) with the sur-

face normal from spatiotemporal cells to capture the change of body shape

and motion. Similarly, Yang et al.[28] proposed to group local hypersurface

normals to create the super normal vector (SNV), which further preserved

the correlation among local normals in the polynormal and achieved a better

recognition rate compared to HON4D.

Feature representations in skeleton-based category mainly utilized differ-

ent joints’ information, such as joint trajectories or postures to represent

action sequences. The effectiveness of sequence relationship is beneficial in

identifying dynamic scences[30]. Characteristics of the spatiotemporal tra-

jectory of skeleton joints were explored to identify actions in [4, 5, 31]. For

instance, Qiao et al. [5] acquired trajectories in a short temporal range and

then proposed a trajectorylet based on local feature representation to express

both static and dynamic features. Ofli et al. [31] firstly captured few infor-

mative joints of each action within an instant time according to the mean

or variance of joint angles. The sequences of these selected joints were then

used to model human actions. Body postures are also advantageous repre-
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sentations of human actions as supported by [32, 6, 7, 33]. Xia et al.[32] used

histograms of 3D joint locations (HOJ3D) to represent key postures. Fur-

thermore, they learned a set of visual words based on the key postures and

obtained the temporal evolution of these visual words via a discrete hidden

markov model. Pazhoumand et al. [6] depicted body poses using the angles

between joints and simultaneously used the relative movement to describe

their relationships in the time domain. Similarly, the 3D geometric infor-

mation of a human skeleton was modeled using rotations and translations

among body parts, with which actions were translated as curves in the Lie

group in [33]. Instead of using the movement from all skeleton joints, only

relevant joints were encoded into postures to describe their recurrent pat-

tern, and then human activity was represented by a sequence of postures in

[7]. Motivated by the great achievement of convolutional neural networks in

image classification tasks [34, 35, 36], some researchers [14, 37] proposed to

code the spatial and temporal information of skeleton sequences into image

which were then fed into pre-trained convolutional neural network models for

classification. For example, Ke et al. [14] utilized the spatial structural fea-

ture between the skeleton joints and four reference joints to build gray images

which were then fed into a pre-trained VGGNet [38] for classification.

2.2. Human Interaction Recognition

Compared to human action recognition, human interaction has a larger

feature space due to the involvement of mutual relationship between people.

Some researchers decomposed human interaction into individual actions for

recognition. [39, 40, 41]. In [39], each player’s action was addressed sepa-

rately and the final classification was achieved by applying a decision level
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fusion strategy in a computer gaming scenario. Wang et al. [41] proposed a

two-stream recurrent neural network architecture to jointly model the spatial

and temporal dynamic of skeleton joints on each person, then averaged the

scores as the final recognition result. These methods rely on the successful

separation of subjects which is challenging due to occlusions between sub-

jects, and ignore the relationship of human interaction by conducting action

recognition on each person. Alternatively, some approaches utilized features

extracted from two subjects to exhibit the spatial and motion relation over

the time [15, 42, 16, 9, 43]. Yun et al. [15] used joint features, such as the

joint movement and velocity, to represent human interaction. Ji et al. [9]

learned both intra-frame and inter-frame features from active body part pairs

studied by the contrast mining. With these features, a contrastive feature

distribution model was then built to improve the recognition performance.

Compared to features extracted from all joints proposed in [15], these repre-

sentations are more discriminative and not computationally expensive. The

interdependent relation between interactive persons is mainly represented by

low-level features (e.g. the distance between body parts) in most existing

methods, which might not be effective enough to reflect the intrinsic inter-

action pattern.

3. Structured Multi-Feature Representation

This section firstly introduces the data pre-processing which makes the

extracted features invariant to different locations and orientations to the

sensor. Then the structured GBSW feature is introduced for human action

recognition. Finally, the correlation feature that characterizes the relation-
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ship between interactive persons is further combined with GBSW to build

the GBSWC feature for human interaction recognition.

Figure 2: Person-centric coordinate system.

3.1. Data Pre-processing

Figure 2 shows the proposed person-centric coordinate system. It is de-

fined as follows: the z′ axis can be calculated using the vector from the hip

center to the spine joint, and its unit vector is denoted as (a7, a8, a9); the

x′ axis is the normal vector of a plane constructed by the spine point, left

hip point and right hip point, and its unit normal vector is represented by

(a1, a2, a3); finally, the y′ axis can be determined by the dot product of above

two unit vectors, and the value of its unit y′ is (a3, a4, a5). Consequently, the

transformation of coordinates is calculated using the following equation:

P = R ∗ P ′ + T (1)

where P and P ′ denote the original coordinate and the transformed coordi-

nate, respectively, and T is the coordinate of the hip center [xh, yh, zh]−1. R
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is the rotation matrix:

R =


a1 a2 a3

a4 a5 a6

a7 a8 a9


−1

This coordinate transformation makes features invariant to various locations

and orientations by extracting them in the relative position rather than the

absolute position.

3.2. GBSW for Action Recognition

Given a human action skeleton sequence, the geometric feature (G) and

the kernel enhanced bag of semantic moving words (BSW) are extracted to

represent the spatial and temporal information. Then the GBSW is con-

structed by aggregating the G and BSW feature for human action recogni-

tion.

3.2.1. Geometric Feature

Aiming to describe the temporal evolution of each joint, the geometric

feature is represented by the offset displacement between the current frame

and the initial frame. The coordinates of each joint are first transformed to

the person-centric coordinate system by using Eq. 2:

(pit)
′
= R−1 ∗ (pit − T ) (2)

where pit and (pit)
′

represent the original position and the relative position of

the i − th joint at time t, respectively. We define the offset displacement of
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(pit)
′

as 4dit : (4xit,4yit,4zit) which can be calculated as follows:
4xit = (xit)

′ − (xi1)
′
,

4yit = (yit)
′ − (yi1)

′
,

4zit = (zit)
′ − (zi1)

′
,

(3)

where ((xi1)
′
, (yi1)

′
, (zi1)

′
) and ((xit)

′
, (yit)

′
, (zit)

′
) are three transformed coordi-

nates with respect to the first and t − th person-centric coordinate system,

respectively. The frame geometric feature is defined as follows:

g(t) = {4d1
t , ...,4dnt } (4)

Consequently, the sequence G(k) = {g(1), ..., g(f)} denotes the geometric

property of an action k, which can represent the temporal evolution of each

joint. The cubic spline interpolation [33] is utilized to rescale the feature

to cope with the different duration problem. Furthermore, the extracted

geometric feature is normalized to make it scale-invariant by:

Gn(k) = G(k)/ ‖ G(k) ‖ (5)

3.2.2. Kernel Enhanced Bag of Semantic Moving Words

To augment the discriminative information of skeleton joints, the kernel

enhanced bag of semantic moving words (BSW) is proposed, where features

Figure 3: Samples of semantic moving words (taking m = 26 for example). The inclination

angle θ and azimuth angle ϕ in this modified coordinate system are used to represent

directions in the space.
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in both spatial and temporal domain are jointly weighted based on their

contribution to an activity. The directions in 3D space are divided into

several semantic moving words Vw (as shown in Figure 3), and a distribution

of movements over these semantic moving words is captured to interpret the

moving trend of an activity sequence. As shown in Figure 4, the moving trend

of the active joint is more apparent than that of the inactive joint, while the

moving trend of the same joint in different classes is also diverse. Thus, it is

reasonable to use the moving trend of skeleton joints to discriminate different

action categories.

(a) (b)

Figure 4: The comparison of moving trends of skeleton joints. The moving trend of joints

is captured from the front, side and top view. The moving characteristic for the joints in

the left hand (11) and leg (17) captured from the action waving and kicking are shown

in (a) and (b) respectively. Joint 11 with apparent moving property is regarded as the

active one in the action waving, where joint 17 with few move is inactive. While joint 11 is

inactive in the action kicking where joint 17 is opposite. To conclude, the same joint could

have a different moving trend in different actions and different joints could have various

moving trends in the same action.
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Given a joint sequence:

P = {p1, ..., pt, ..., pf} (6)

where f is the frame number of the sequence, and pt denotes three trans-

formed coordinates x′, y′, z′ using Eq. 2. The 3D direction vt is captured

from pt and pt−1:

vt = {x′pt − x
′
pt−1

, y′pt − y
′
pt−1

, z′pt − z
′
pt−1
} (7)

So the frame moving direction sequence could be defined as:

V = {v1,v2, ...,vf} (8)

To quantitatively describe the moving degree of joints in each direction,

the cosine similarity which is an effective technique to measure the similar-

ity between two vectors is utilized to encode the frame moving direction to

predefined directions. Different from this work, this paper improves the dis-

criminative ability of the extracted features by building a Gaussian kernel

function to dynamically enhance the informative moving directions. On top

of this, the BSW feature is constructed by encoding skeleton movements V

to semantic words Vw. The cos〈vt,v
i
w〉 is computed by:

cos〈vt,v
i
w〉 =

vt · vi
w

‖vt‖‖vi
w‖
, i ∈ [1,m] (9)

where vt is the frame direction and vi
w is the i− th semantic moving word.

m is the number of semantic moving words.

The Gaussian kernel function using the cosine similarity as variable is

defined as follows:

K(cos(vt,v
i
w)) =

1√
2πδ

exp(−(cos(vt,v
i
w))− µ)2

2δ2
) (10)
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where µ and δ are the mean and standard deviation of cosine values, respec-

tively. Here, the mean of the Gaussian function is 1 due to the trait of cosine

values.

A soft-assignment strategy where a frame direction is distributed to mul-

tiple most relevant word candidates is achieved using a 1× f vector S. The

soft voting degree is controlled by using a parameter k to determine the el-

ements in S. For example, if k = 3, the frame direction is encoded to the 3

words with the top 3 similarities. Thus, the elements of S satisfy:

St =


1 if the value cos(vt,v

i
w) belongs to

k biggest similarities

0 otherwise

(11)

To weight the frames which make bigger contributions to the whole se-

quence, the frame displacement Dis(t) = ‖vt‖ is added during a quantization

process. Therefore, the frame weight function can be achieved as follows:

w(t) = Dis(t) ∗K(cos(vt,v
i
w)) (12)

The final representation of each word is built by accumulating the move-

ment through the action sequence:

BSW (vi
w) =

f∑
t=1

St ∗ w(t) (13)

Compared to our previous work [18], the discriminative directions weight-

ing and discriminative frames weighting are proposed in the semantic moving

words encoding. These two improvements can make the proposed method

focus more on salient features of different action classes, thus improve the

recognition performance.

15



3.3. GBSWC for Human Interaction Recognition

Apart from features from individuals, the mutual relationship between

people needs to be considered for human interaction recognition. Inspired by

the histogram intersection proposed in [44], this paper calculates the correla-

tion feature between body parts from the same subject and from two subjects

(referred to as intra-similarity and inter-similarity, respectively) based on the

BSW.

Assuming each body part includes n joints, its moving trend feature could

be summarized by traversing n joints:

{BSW p
1 , BSW

p
2 , ..., BSW

p
n}, (14)

where p denotes the body part.

The correlation feature between the corresponding word w from BSWi

(joint i) and from BSWj (joint j) is denoted as follows:

SoW
(
BSW (vi

w), BSW (vj
w)
)

= min
(
|BSW (vi

w)|, |BSW (vj
w)|
) (15)

The histogram of semantic moving words is interpolated into the same

number of frames (N). By doing this, each bin in BSW having the same

dimension. Thus, the revised BSW with an N ×n-dimensional vector could

be defined as follows:

B̂SW = (

BSW (v1)︷ ︸︸ ︷
1, ..., 1 , 0, ..., 0︸ ︷︷ ︸

N−BSW (v1)

, ...,

BSW (vw)︷ ︸︸ ︷
1, ..., 1 , 0, ..., 0︸ ︷︷ ︸

N−BSW (vw)

) (16)

With Eq. 15 and Eq. 16, the intersection between two BSMs is equal to

the inner product between their corresponding B̂SW :
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SoJ(BSWi, BSWj) = B̂SW i · B̂SW j (17)

Following Eq.17, the similarity between body parts is denoted as follows:

SoPtype =
8∑

p=1

8∑
q=1

n∑
i=1

n∑
j=1

SoJ
(
BSW p

i , BSW
q
j

)
=

8∑
p=1

8∑
q=1

B̂SW
p
· B̂SW

q

(18)

where p and q are body parts, i and j are joints, and SoPtype could be

SoPintra or SoPinter, which means intra-similarity or inter-similarity, respec-

tively. B̂SW
p

and B̂SW
q

are the histogram concatenation of joints from the

body part p and q, respectively. The final correlation feature (C) of body

parts for each sequence is the concatenation of all body part pairs:

C = {SoPintra1, SoPinter1, ...} (19)

Finally, a GBSWC representation is constructed by combining the indi-

vidual GBSW feature with this correlation feature between interactive sub-

jects for human interaction recognition.

4. Experiment Results

4.1. Datasets and Settings

This subsection introduces three adopted RGB-D datasets which are com-

monly used to compare the performance of human action or interaction recog-

nition algorithms and their relative evaluation criteria. A linear SVM [45]

algorithm with default parameters is applied to achieve all the recognition

results of the proposed features.
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4.1.1. MSR-Action3D Dataset[20]

This dataset has 20 action categories and each action is performed by

10 subjects for 2 or 3 times. The actions are grouped into three sets AS1,

AS2 and AS3, as shown in Table 1. Actions in AS1 and AS2 are similar,

while actions in AS3 are complex. Each action set has three tests: Test One

(1/3 of the samples for training), Test Two (2/3 of the samples for training)

and Cross Subject Test (samples from half of the subjects for training).To

carry out a fair comparison, we follow two different protocols from [20] and

[11] in Cross Subject Test. Compared to the Cross Subject Test, the Test

One and the Test Two are less challenging since the training set contains all

variations of individuals’ performing styles. Many state-of-the-art methods

only adopted the challenging Cross Subject Test. To systematically evaluate

the proposed method, this paper conducts all the three evaluations.

Table 1: Three action sets of MSR-Action3D dataset.
AS1 AS2 AS3

Horizontal Wave High Wave High Throw

Hammer Hand Catch Forward Kick

Forward Punch Draw X Side Kick

High Throw Draw Tick Jogging

Hand Clap Draw Circle Tennis Swing

Bend Hands Wave Tennis Serve

Tennis Serve Forward Kick Golf Swing

Pickup & Throw Side Boxing Pickup & Throw

4.1.2. Florence3D-Action Dataset[46]

This dataset has 9 actions: wave, drink from a bottle, answer phone,

clap, tight lace, sit down, stand up, read watch and bow, performed by 10

subjects for 2 or 3 times. Most of the actions, such as answer phone and
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drink a bottle, have a great similarity. For this dataset, we follow the test

setting from [33] for Cross Subject Test, where actions performed by half of

the subjects (1,3,5,7,9) are used for training and actions performed by the

remaining subjects (2,4,6,8,10) are used for testing.

4.1.3. SBU Interaction Dataset [15]

This dataset contains examples of eight different interaction classes: ap-

proaching, departing, kicking, punching, pushing, hugging, shaking hands,

exchanging something. All the videos were collected in the same laboratory

environment from a third-person perspective. The majority of the interac-

tions involve acting-reacting relation. 21 sets consist of 7 subjects perform

each category 1 or 2 times. The evaluation on this dataset contains Test One

(1/3 of the samples for training), Test Two (2/3 of the samples for training)

and Cross Subject Test (samples from half of the subjects for training).

4.2. Evaluation of the Structured Multi-feature Representation

To show the superior performance of the structured multi-feature rep-

resentation, the comparison between its recognition result and that of the

monotonous features on three datasets is listed in Table 2. It can be seen

Table 2: Recognition accuracy (%) of different features on MSR-Action3D dataset,

Florence3D-Action, and SBU Interaction dataset

Feature type MSR-Action3D Florence3D-Action SBU Interaction

AS1 AS2 AS3 Cross subject Test one Test two Cross subject

G 50 79.5 92.4 85.9 87.68 83.33 87.67

BSW 92.4 85.7 93.3 88.0 52.17 61.11 56.16

Structured feature 93.4 94.9 98.4 93.6 92.75 91.67 93.84
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that the structured feature could improve the performance in each exper-

imental setting, which proves that the specific information from different

types of features can complement each other. For example, the geometric

feature seems to be complementary in term of spatial information to the

motion feature in BSW, which enables the hybrid representation to be more

discriminative among different activity categories.

Figure 5: The average recognition accuracy of the proposed feature representation versus

the size of semantic moving words on MSR-Action3D and Florence3D-Action dataset.

In addition, to evaluate the effect of the number of semantic moving

words (ns), we test the recognition performance of the proposed method with

ns = 6, 14, 26, 42, 62, 86, 114. The selection criterion is based on whether

the constructed moving words can equally divide the 3D space and they

are representative for the moving direction. Figure 5 shows the recognition

accuracy when using different sizes of moving words. The accuracy increases

till ns = 26, while it decreases when ns is over 26. This is because the

rising number of semantic moving words augments the ambiguous moving

trend between actions, which influences the discriminating capacity of the

feature. Based on this finding, this paper utilizes ns = 26 to get the following
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performance.

Table 3: Recognition Accuracy (%) of Test One and Test Two on MSR-Action3D. Nota-

tion: S-skeleton; D-depth.

Test One Test Two

Method Feature AS1 AS2 AS3 Average AS1 AS2 AS3 Average

Bag of 3D Points [20] D 89.5 89.0 96.3 91.6 93.4 92.9 96.3 94.2

DMM-HOG[47] D 97.3 92.2 98.0 95.8 98.7 94.7 98.7 97.4

STOP[48] S+D 98.2 94.8 97.4 96.8 99.1 97.0 98.7 98.3

Jalal et al. [49] S+D 96.9 98.3 98.7 97.9 97.1 98.6 98.9 98.2

HOJ3D[32] S 98.5 96.7 93.5 96.2 98.6 97.9 94.9 97.2

EigenJoints[50] S 94.7 95.4 97.3 95.8 97.3 98.7 97.3 97.8

3GMTG[18] S 94.7 95.0 96.8 95.5 98.5 97.8 99.1 98.5

GBSW S 97.9 98.2 98.5 98.2 98.2 98.7 99.1 98.7

4.3. Comparison with State-of-the-art Methods

Evaluations have been conducted for both human action and interaction

recognition. The following subsections present a comparison of the proposed

method with the state-of-the-art methods in terms of recognition accuracy.

4.3.1. Action Recognition Results

The experiment on MSR-Action3D dataset and Florence3D-Action dataset

aims to demonstrate the comparative results of the proposed GBSW on hu-

man action recognition.

Table 3 reports the results of Test One and Test two on the MSR-

Action3D dataset. It can be seen that our structured representation obtains

the highest average recognition rates in both cases and could achieve over

98% accuracies in most individual sets. The proposed method outperforms

3DMTG owing to the use of the kernel-based dynamic weighting algorithm.

Although the best performance of the AS2 and AS3 in Test One is achieved
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Table 4: Average accuracy (%) of Cross Subject Test on MSR-Action3D dataset.

Protocol from [20] (1,3,5,7,9 subjects as training)

Method Feature Type Classifier AS1 AS2 AS3 Average(%)

Bag of 3D Points (2010)[20] Depth - 72.9 71.9 79.2 74.7

DMM-HOG (2012)[47] Depth structural SVM 96.2 84.1 94.6 91.6

SNV (2014)[28] Depth SVM - - - 93.1

STOP (2014)[48] Depth SVM 91.7 72.2 98.6 87.5

ROP (2012)[51] Depth SVM - - - 86.5

DSTIP (2013)[52] Depth SVM - - - 89.3

Liu et al. (2016)[25] Depth SVM - - - 94.28

LASC (2017)[26] Depth CRC - - - 94.6

Jalal et al. (2017)[49] Skeleton+Depth HMM 90.8 93.4 95.7 93.3

HOJ3D (2012)[32] Skeleton HMM 72.9 85.5 63.5 79.0

EigenJoints (2012)[50] Skeleton Bayes 74.5 76.1 96.4 82.3

Actionlets Ensemble (2012)[53] Skeleton SVM - - - 88.2

Vemulapalli et al. (2014)[33] Skeleton SVM 95.3 83.8 98.2 92.5

Devanne et al. (2015)[54] Skeleton kNN - - - 92.1

LM3TL (2017)[55] Skeleton MTL - - - 90.53

MIMTL (2017)[10] Skeleton MTL - - - 93.6

3DMTG (2016)[18] Skeleton SVM 92.4 93.8 97.1 94.4

Lillo et al. (2017)[8] Skeleton LSSVM 94.3 92.9 99.1 95.4

DSRF (2018)[56] Skeleton SVM - - - 95.24

GBSW Skeleton SVM 93.4 94.9 98.4 95.6

Procotol from [11] (1,2,3,4,5 subjects as training)

Pose set (2013)[57] Skeleton SVM - - - 90.2

Moving Pose (2013)[11] Skeleton kNN - - - 91.3

3DMTG (2016)[18] Skeleton SVM 87.50 95.8 94.7 92.7

Lillo et al. (2017)[8] Skeleton LSSVM - - - 93.0

GBSW Skeleton SVM 88.9 96.2 95.5 93.5

by Jalal et al. [49] (98.3% and 98.7% respectively), the difference of the per-

formance is tiny since our method also achieves an accuracy of 98.2% and

98.5% respectively. The highest accuracy of AS1 in Test Two achieved by

STOP [48], which jointly utilizes the skeleton and depth information, indi-

cates that the recognition performance of similar actions might be improved
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Table 5: Average accuracy(%) of Cross Subject Test on Florence3D-Action. dataset

Methods Feature type Classifier Accuracy

Multi-Part Bag-of-Poses (2013) [46] Skeleton Nearest-neighbor 82.0

Full skeleton (2015)[54] Skeleton kNN 85.9

Body part (2015)[54] Skeleton kNN 87.0

Vemulapalli et al. (2014)[33] Skeleton SVM 90.9

3DMTG (2016)[18] Skeleton SVM 91.3

GBSW Skeleton SVM 93.6

by an effective fusion of the depth information.

In Table 4, we list the performance of leading methods on the MSR-

Action3D dataset in terms of Cross Subject Test. To conduct a fair com-

parison, the considered methods are grouped according to the protocol from

[20] and [11]. The table shows that the highest average recognition accura-

cies (95.6% and 93.5%) using both procotols are achieved by the proposed

GBSW method. Specifically, GBSW obtains recognition rates over 90% on

AS1, AS2 and AS3 with the procotol from [20] and the rates are over 95%

on AS2 and AS3 with the procotol from [11].

In addition, Table 5 records the Cross Subject Test performance of differ-

ent methods on Florence3D-Action dataset. Some actions in this dataset are

quite confused with each other, for example, the body movement in answer

phone and drink a bottle is similar. The table shows that our feature descrip-

tor performed 93.6% recognition accuracy, which improved the performance

of [46] and [33] by 11.6% and 2.7%, respectively.

By combining data from Table 3 to Table 5, it can be seen that the

proposed method achieves better recognition performance than our previ-

ous work (3DMTG) on both MSR-Action3D dataset and Florence3D-Action

dataset, which indicates that the discriminative information weighted using
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the kernel function can help the proposed method improve the ability to

distinguish different activity classes.

4.3.2. Interaction Recognition Results

(a) Test One (b) Test Two (c) Cross Subjects Test

Figure 6: Confusion Matrices on SBU Interaction dataset

To test the recognition ability of the proposed GBSWC on human inter-

action recognition, the confusion matrices that indicate the confusion among

activity categories and the comparison to the state of the art are conducted

on the SBU Interaction dataset. In Figure 6, it can be seen that our method

is able to successfully classify approaching and departing under various set-

tings. The most common confusion is between pushing and punching in all

tests due to their similar poses.

Table 6 compares the recognition accuracy of the proposed GBSWC with

state-of-the-art methods. There are three types of methods involved in this

table, namely, skeleton based, skeleton+depth based, and skeleton+RGB

based. Although higher accuracies (93.08% and 94.1%) are achieved in [63]

and [62], the requirement of combining the skeleton information with the

depth / RGB information introduces extra computational complexity. It can
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Table 6: Recognition Accuracy (%) on SBU Interaction dataset.

State-of-the-art

Methods Feature type Classifier Accuracy(%)

Velocity features (2012)[15] Skeleton SVM 48.4

Plane features (2012)[15] Skeleton SVM 73.8

Joint features (2012)[15] Skeleton SVM 80.3

Ji et al. (2014)[16] Skeleton SVM 86.9

CFDM (2015)[9] Skeleton SVM 89.4

CHARM (2015)[58] Skeleton MCP 83.9

HBRNN (2015)[59] Skeleton RNN 80.35

Co-occurrence LSTM (2016)[60] Skeleton LSTM 90.4

STA-LSTM (2017)[61] Skeleton LSTM 91.51

Baradel et al. (2017)[62] Skeleton LSTM 90.5

RHI (2015)[63] Skeleton+Depth SVM 93.08

Baradel et al. (2017)[62] Skeleton+RGB LSTM 94.1

GBSWC

Test One

Skeleton SVM

92.75

Test Two 91.67

Cross Subjects Test 93.84

Average 92.75

be seen that the GBSWC method achieves an average rate of 92.75%, which

outperforms the best performance (91.51%) [61] of the listed skeleton-based

methods. This indicates that the correlation feature explored in our method

could extract high-level information from the movement of skeleton joints,

thus helps to reinforce the performance of discriminating complex human

interactions.

5. Conclusion

In this paper, a structured multi-feature representation for human ac-

tion and interaction recognition was proposed. The proposed BSW, which

highlighted the discriminative moving trend of each activity category via

a kernel-based dynamic encoding algorithm, was aggregated with the ge-
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ometric feature in GBSW for human action recognition. The correlation

feature between body parts which can represent the intrinsic relationship

between interactive subjects was further combined in GBSWC for human

interaction recognition. Experimental results on three public datasets have

provided compelling recognition results of our approach (e.g., 95.6% on MSR-

Action3D, 93.6% on Florence3D-Action, and 92.75% on SBU Interaction).

This outperforming performance is owed to the semantic representation and

the complementary effect of the aggregation of different types of features.

Although the structured feature descriptor was only evaluated in human

action and interaction recognition, it can be easily extended to group activity

where multiple persons are involved. The limitation of the proposed method

is that its performance will decrease if the skeleton joints are not accurate

or missing. Future work will therefore focus on fusing the information from

depth or RGB modality for better recognition performance.
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