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Abstract—This paper proposes a hand motion capture system
for recognizing dynamic in-hand manipulation of the subjects
based on the famous sensing techniques, then transferring the
manipulation skills into different bionic hand applications, such
as prosthetic hand, animation hand, human computer interaction.
By recoding the ten defined in-hand manipulations demonstrated
by different subjects, the hand motion information is captured
with hybrid SEMG and Kinect. Through the data prepro-
cessing including motion segmentation and feature extraction,
recognizing ten different types of hand motions based on the
rich feature information are investigated by using Marquardt-
Levenberg algorithm based artificial neural network, and the
experimental results show the effectiveness and feasibility of this
method.

Keywords—in-hand manipulation; SEMG; kinect; artificial
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I. INTRODUCTION

Robots, as the novel and practical advanced executive tool,
have been playing an increasingly significant role in our
lives. Various of robots, such as service robots, underwater
robots, industrial robots and so on, have been developed
and used in different application fields [1]. Based on dif-
ferent task characteristics and requirements, the autonomous
dexterous robots are required to work in unstructured dy-
namic environments, and perform increasingly human-like in-
hand manipulation tasks like regrasping, complex rotation and
translation. Robot end-effector mainly consists of three parts:
gripper, motion mechanism and control system. Because of
the lack of appropriate multifingered control system structure,
the immature synchronous cooperation between sensor-motor
systems, biomimetic materials issues, etc., traditional manipu-
lator has great limitations when confronted with complicated
operational problems, such as complex in-hand manipulation
[2]. Inspired by the dexterous human hand, researchers began
to design a multifingered dexterous robotic hand with similar
structure and function to replace traditional manipulators, and
then realize the dexterous grasp, manipulate and accuracy
control in different complex application environments [3].
Hence, as the most primitive and significant research issue,
human hand motion analysis is important to enhance the
dexterity of robotic hand, and strengthen its role in the fields
of motion planning, biomedical engineering, robot control,
human computer interaction (HCI), etc [4]–[6].

Realizing hand dexterity is a complex process. One of fa-
mous bio-signals is surface electromyography (SEMG), which
can exclusively depict human muscle activities for hand mo-
tion recognition. As a key technique of medical rechbilitation
and prosthetic hands, SEMG has become a hotspot worthy
of research, and a number of research outputs about feature
extraction, motion recognition and bionic hand application,
have been published in the science journals and international
conferences [7]–[9]. Kinect sensor as a recent development
has been widely used in robot control, motion capture and
recognition [10]. It can provide synchronized color and depth
images for skeletal tracking. Each joint is represented by its 3D
coordinates. By using Kinect sensor, [11] proposed a robust
part-based hand gesture recognition system to distinguish the
hand gestures based on finger-earth movers distance.

Considering the specificity and complexity of the in-hand
manipulation, multimodal sensing information fusion tech-
nique is one of the most classic methods for human hand
recognition [12]. To the best of our knowledge, there is
no human hand motion recognition method that has been
presented for dynamic in-hand manipulation (DIM) based on
hybrid SEMG and Kinect. Extending our past work [13],
this paper presents a recognition framework for discriminating
different DIMs, based on two different sensory information.
The structure of this paper is as follows. Firstly, the proposed
motion capture system architecture are introduced in Section
II. Section III presents the related preprocessing module and
recognition algorithm. Then, Section IV shows the detailed
comparative experiments and results analysis. The final Sec-
tion briefly concludes the paper and further direction.

II. SYSTEM ARCHITECTURE

A DIM capture device which consists of a high SEMG
capture system with Trigno Wireless Sensors and a skeleton
information capture system with Kinect sensor, is proposed to
obtain SEMG signal, depth and color information simultane-
ously. The following is the detailed introduction of the overall
system configuration and some of the technology behind the
benchmark result.

The SEMG capture device weights about 400g, and includes
a EMG master appliance, a main electrode sleeve, a bluetooth
adapter and some connecting wires. The main electrode sleeve



has 16 EMG channels, and collects the EMG signal by using
double-ended mode. The main functional elements of the
EMG master appliance include a 1000-mAh lithium battery, a
charging circuit, a power circuit and two bluetooth modules.
These nested modules guarantee the integrity and availability
of electronic health information and transmit. are embedded
on the master appliance. The dry electrode attached to the
user’s forearm, is connected to the EMG master appliance by
wires to realize the battery and the controller sharing. Then,
master appliance sends the data collected to the PC through
two bluetooth modules. The signal resolution is 16 bits and
the sample frequency is 1KHz.

Compared to the conventional cameras (e.g. ordinary camera
and stereo camera), Kinect designed by Microsoft provides
synchronized color and depth images. It has been widely
used in computer graphics, video games, HCI and image
recognition. It’s a special camera which consists of RGB color
camera, an infrared transmitter and an infrared CMOS camera.
The valid range of Kinect is about 0.7-6m. By using structured
light imaging, Kinect can project a known light pattern into
the 3D scene, which is viewed by the light detector integrated
in the Kinect. The distortion of the light pattern, caused by the
projection on the surface of objects in the scene, is applied to
compute the 3D structure computing of the point cloud.

III. RECOGNITION METHODS

Learning from human hand motions is preferred for human-
robot skill transfer in that, unlike teleoperation-related meth-
ods, it provides non-contact skill transfer from human motions
to robot motions by a paradigm and lifelong adaptation without
detailed programming [14]. The algorithms presented here are
implemented to identify the DIM skills. The learning process
of DIM mainly includes four fundamental modules: collection
module, data processing module, classification module, and
biomimetic applications, as shown in Fig.1. Because SEMG
signal and Kinect based image information have their own
advantages and disadvantages, data processing module are
separated and processed using different schemes. The SEMG
features and image information are combined to improve the
recognition accuracy.

A. Motion Capturing

To assure the authenticity and objectivity of DIMS com-
pleted by different subjects, ten healthy right-handed subjects
including eight men and two women were invited to take
part in the experiments, and none of them had any history
of neuromuscular diseases. Their average age is 24 years. All
subjects signed the informed consent agreement prior to the
experiments, and were trained to manipulate different objects.
Ten defined DIMs demos are shown in Fig.2, and their detailed
motion description are presented in TABLE I.

B. Motion Segmentation

Based on the human motion analysis, a novel segmentation
algorithm that calculates a threshold depending of the maxi-
mum value and the mean absolute value of the whole SEMG

Fig. 2: Ten defined dynamic in-hand manipulations

TABLE I
TEN TYPES OF DYNAMIC IN-HAND MANIPULATIONS

ID Description of DIMs

1 Transfer coins as fast as you can

2 Open a box using five fingers

3 Continuous turning pages in a book

4 Open a fan and fan it in the hand

5 Pick up a pen to position it for write

6 Twist open a lid using five fingers

7 Screw off the screw on the circuit board

8 Grasp a pingpang using five fingers and rotate it

9 Pick up a phone and input the PUK with one hand

10 Pick up a pingpang by using chopsticks

signal is proposed. Peaks over the calculated threshold is used
for candidate segment. The threshold T is defined in Equation
(1).

T =

{
3
L

∑L
i=1 |xi| max

i
{xi} > 30

L

∑L
i=1 |xi|

max
i
{xi} /3 else

(1)

Where xi means the discrete input values and L is the number
of samples in the 3 seconds SEMG signal, in addition we use
a 30µV threshold.

Fp (t, l) =
1

l

t∑
i=t−l+1

 16∑
j=1

fj (i)

2

(2)

In formula (2), fj (i) means the value of the ith sampling point
in the jth channel of selected SEMG signal. An active segment
starts at the pth point if Fp (p+ s, l) at its sth consecutive
point is larger than T . l is chosen as 200 for SEMG signal,
and s is selected as 50 by experiments. The setting of these
parameters provides sufficient guarantee for the extraction of
valid features of SEMG signal. Kinect will be continuous
tracking of DIMs during the useful SEMG signal collection.
The 3D scene information from the continuously-projected
infrared structured light is selected, as the Kinect data from
the DIMs based the selected SEMG signals.

C. Feature Extraction

In order to make better effect of pattern classification, it
is essential to select significant features from complex signal
pattern of SEMG signals. Dennis Tkach et al. presented eleven



Fig. 1: Framework of the dynamic in-hand manipulation recognition algorithm

frequently suggested time-domain features with high computa-
tional efficiency, and investigated the stability of them during
changes in the SEMG signal [15]. Based on the enormous
contributions of previous literatures and the low computational
complexity of stable time-frequency features analysis, this
method is widely used to acquire the shift of SEMG electrode
location, variation in muscle contraction effort, and muscle
fatigue and so on. The feature vector of each SEMG signal
we selected includes six types of single feature: mean absolute
value, waveform length, root mean square, average amplitude
change, zero crossing and slop sign change. The related
mathematical equations are presented in TABLE II, and the
extracted features are collected into FSEMG.

TABLE II
MATHEMATICAL EQUATIONS OF SIX FEATURES

Classified features Equation

Mean absolute value MAV = 1
N

∑N
i=1 |xi|

Waveform length WL =
∑N−1

i=1 |xi+1 − xi|
Root mean square RMS =

√
1
N

∑N
i=1 x

2
i

Average amplitude change AAC = 1
N−1

∑N−1
i=1 |xi+1 − xi|

Zero crossing ZC =
∑N−1

i=1 [f (xi × xi+1)
∩ |xi − xi+1| > ε]

Slop sign change SSC =
∑N−1

i=2 f [(xi − xi−1)
× (xi − xi+1)]

N : the length of the segment
xi: the ith sample
ε: a threshold

f (x) =

{
1, if x > ε
0, otherwise

FSEMG = {MAV,WL,RMS,AAC,ZC,AR} (3)

There are mainly two parts in the feature extraction of
Kinect data in this paper. The first step is to extract the hand
region from the acquired depth and color image, and then
calculate two different types of features from the 3D points
that correspond to the hand. For the extraction of hand shape,
we use the method of [16]. which proposed an practical and
effective algorithm to reliably segment the hand samples from
the scene objects and from the other closer objects. The hand
detection procedure will start after a search for the sample
with the minimum depth value on the thresholded depth map
is executed, and the distance in the 3D space is applied to
extract the hand region.

Distance features means a series of different features, which
represent the distance of the finger edge samples from the hand
center. The corresponding formulas are described as follows:

H (θq) = max
xi∈A(θq)

dxi (4)

fhgj =

max
A(θgj)

Hg (θ)

Lmax
(5)

Where H (θq) is the reference histogram, A (θq) is the angular
sector of the hand corresponding to the direction θq , and dxi
is the distance between finger point xi and the hand center.
We assume that the dataset has M different motions to be
recognized, the feature set Fh includes a value of each finger
j ∈ {1, · · · , 5} in each motion g ∈ {1, · · · ,M}. Lmax means
the length of the middle finger and is used to scale all the
features within range [0, 1].

Another feature set is based on the curvature of the hand
shape edges. The detailed description of descriptor based on



multi-scale integral operator is shown in [26]. The multi-scale
descriptor consists of B × S entries, ordered by increasing
values of indexes b = 1, 2, · · · , B and s = 1, 2, · · · , S, where
B is the number of bins and S means the number of employed
scale levels. After the normalization, the curvature features
take values in [0, 1], and are collected into feature vector F c.
The final features are included in FKinect.

FKinect =
{
Fh, F c

}
(6)

The combination of SEMG signals and Kinect data, can
obtain more characteristics of DIMs, as well as greatly
improve the accuracy of motion classification. Hence, the
complete feature set is acquired by combining the two sets,
as shown in formula (7). The MATLAB 2017a (MathWorks,
Massachusetts, USA) software was used for the numerical
processing.

F = {FSEMG, FKinect} (7)

D. Artificial Neural Networks

Artificial neural networks (ANNs) are an information pro-
cessing system for time-varying data analysis. They can handle
very complex interactions compared with other methods, like
the inferential statistics or programming logic, and play a
very extensive position in the field of artificial intelligence in
recent years [17]. Similar to the human brain, ANNs use the
artificial neurons called perceptrons as its fundamental unit,
the links as its associated weight, activation function such as
identity function, binary step function, binary sigmoid, sign
as the transfer function. In this work a Marquardt-Levenberg
(ML) algorithm based three-layer feedforward neural network
is used to recognize different DIMs [18]. The feedforward
ANNs are a three-layer directly association network, and
realize one-way transmission mode from the input layer to
the output layer. The first layer includes perceptrons that are
responsible for inputting a DIM sample into the network. The
second layer is a hidden layer in which the desired outputs
from all perceptrons go to following. The final layer is the
out layer with one node per class. The network consists of
three layers, input layer with 8 nodes, hidden layer with 12
nodes, and output layer with 10 nodes, which corresponds to
10 recognized motions. Identity function for the NN activation
functions has been employed to convert the net input to an
output unit that is a binary signal.

Because of the high accuracy and efficiency, the computa-
tional cost may be higher for each iteration. Fig.3 shows the
three-layer feedforward network structure for in-hand motions
recognition. The figure demonstrates the steps of classification
process.

IV. RESULTS

Fig.4 gives the recognition rates across ten subjects with
all ten DIMs based on the hybrid sensors, and shows a high
average recognition rate of 95.10%, indicating the capability
of ML algorithm. This experiment elucidates the different
recognition rates for each motion. Of note is that, the ML

Fig. 3: The structure of feedforward network

algorithm presented a perfect performance when identifying
motion 9. For motion 1, 3, 5, 7 and 8, all of the accuracies
are up to 95%. And, more remarkable, although motion 2 and
motion 6 have recognition rate of 94 percent, the margins of
error for those motions are greater than 5 percent. Additionally,
it can been seen that motion 4 and motion 10 have the lowest
recognition rate, only 93%. But on the whole, the algorithm
reveals an excellent performance.

Fig. 4: Confusion matrix for the ten motions using ML

The effectiveness of the proposed neural network and it’s
ML algorithm are verified through the recognition result of
different motions. It is generally known that different subjects
exhibit significant individual variation in the same motion,
such as the differences of the applied acceleration, the hand
size and the force etc. Fig.5 describes the identification results
of the same motion based on different subjects from the
hybrid sensors. In this experiment, it can be seen that the
huge diversities in the manipulation of different subjects is
the major reason for different recognition rates. For different
subjects performing all DIMs, it can be observed that all
of them can get the average recognition rate of up to 92%,
mainly caused by relatively less training sample size and
correct manipulation following the demonstration. Of note
is that during the experimental analysis of subject 1 and
subject 4, both of them had a recognition rate of over 98%.
For subject 3, the fluctuating range of motion classification
is higher, and the maximum error rate is as high as 16%.



The recognition rates of subject 6, subject 8 and subject 9
are about 93 percent, while others are all greater than it.

Fig. 5: Recognition rates with different subjects

V. CONCLUSION

This paper presented a study of the use of SEMG and
Kinect to recognize complex dynamic in-hand manipulations
for dexterous prosthetic control. From the experimental results,
it has achieved higher accuracies with 95.10% for ten trained
subjects in the classification of ten independent of in-hand
manipulations, and shown the feasibility and validity of this
method. Overall, this paper analyzed the proposed system
in terms of data processing, performance and usability of
classification method, showing positive results. In future work,
we will integrate the in-hand manipulation capture system with
bionic robots to serve as a friendly and natural human-machine
interaction and prosthetic hand control.
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