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Abstract. This paper presents a new way to teach a robot certain motions re-
motely from human demonstrator. The human and robot interface is built using
a Kinect sensor which is connected directly to a remote computer that runs on
processing software. The Cartesian coordinates is extracted, converted into joint
angles and sent to the workstation for the control of the Sawyer robot. Kines-
thetic teaching was used to correct the reproduced demonstrations while only
valid resolved joint angles are recorded to ensure consistence in the sent data.
The recorded dataset is encoded using GMM while GMR was employed to ex-
tract and reproduce generalised trajectory with respect to the associated time-step.
To evaluate the proposed approach, an experiment for a robot to follow a human
arm motion was performed. This proposed approach could help non-expert users
to teach a robot how to perform assembling task in more human like ways.

Keywords: Programming by Demonstration, Learning from Demonstration, Learn-
ing by Imitation.

1 Introduction

Since the introduction of collaborative robots, humans can currently work in the same
workspace with robots and the application of robot in human endeavour has continued
to increase. However, the applicability of robot will be much diversified if it is much
easier to teach a robot how to perform a task. The most viable technique that is currently
used to teach a robot how to perform a task is Programming by Demonstration (PbD)
which is also known as Learning from Demonstration (LfD) or Learning by Imitation.
This technique enables a robot to learn from human teacher or other robots. The goal is
to let users program a robot by simply giving it instructions on what to do in the form
of demonstrations or by using other interactive means [9], [4]. This method, of course
reduces the cost of employing professionals to program the robot as it consequently
allows the robot to learn from the users regardless of the users knowledge of robotics
or robot programming.

In robotics, many researchers have employed various PbD techniques in order to
transfer human skills to a robot. This includes the use of optical marker to track the
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motion of the human demonstrator [3]. This process involves fixing a tracking sensor
on the human body to measure the skeletal movement of the part of the body of interest.
However, the equipment causes inconvenience to the human user and sometimes results
to data drift. Similar but more convenient technology was employed in [11] to control
a robot via teleoperation. In the paper, the authors employed the use of a vision sensor
(Kinect) to capture human joint information and then directly mapped it to the robot
manipulator in order to control the robot in real time. By using this approach, human
is free from the inconveniences that arise in the former. Another interesting approach
is kinesthetic teaching which involves guiding the robot by the operator by moving the
robot arm through the task to be implemented [5]. Kinesthetic teaching holds some
advantages over other aforementioned approaches. Firstly, Kinesthetic approach does
not resolve to singularity and external hardware devices that may cause inconveniences
to human demonstrator are not required. Secondly, data recording more complete and
accurate as a human physically guides the robot through the desired path or task. Some
other approaches have been used and some have involved combining two approaches
in other to utilize the advantages that both could offer. In [6], both kinesthetic teaching
and the use of motion sensor were employed in the proposed human to robot gesture
skill transfer.

In this paper we proposed a method that employed similar approach with [6] but
with a different strategy. Unlike in [6] were both Kinesthetic teaching and motion sen-
sor that could cause data drift and inconvenience to users were employed, in this paper,
both kinesthetic teaching and vision based sensor which does not require users to wear
any additional interface and permits for better orientation of the human arm were em-
ployed. During the demonstration of task, the Kinect sensor allows the user to record
the human arm movement which is mapped directly to the robot controller to allow the
robot reproduce the demonstrated gesture. On the other hand, Kinesthetic teaching is
then applied to help the robot arm move correctly to the desired posture. During the
process, valid trajectories from the demonstrations were extracted and thereafter Gaus-
sian Mixture Model (GMM) and Gaussian Mixture Regression (GMR) were employed
to encode and retrieve the generalized version of the trajectories respectively.

2 System Description

The framework comprises of two computer systems where one (remote) is connected
directly to a Kinect sensor and the second (workstation) is connected to the Sawyer
robot. Teaching the robot starts when the demonstrator stands in front of the Kinect
sensor and maintains a certain distance and line of sight with the Kinect sensor. The
human demonstrator moves his right arm to demonstrate sequences of steps to follow
for the workings of the task to be taught. Then the Kinect sensor tracks the motion
of the human arm and allows for human joint positions to be extracted. Employing
vector approach [12], joint angles of the robot arm was calculated and passed to the
workstation connected to Sawyer robot via User Datagram Protocol (UDP). By this
means, human joint position is mapped to the robot arm and the robot arm is made to
move by mimicking the human arm.
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2.1 Hardware Setup

The platform for this research is centered on Sawyer robot. Sawyer is a single-arm
robot with a total of eight degrees of freedom (8DOF) consisting of joint0 to joint6
(j0-j6) on the arm and one more joint on the head (see Fig. 1). Apart from j6 which has
540-degree of rotation that enables smooth positioning of the end-effector in different
angles and also increase smooth maneuvering around obstacles; the rest of the joints
have 350-degree of rotation. Sawyer is embedded with several sensors and actuators
that are essential for research. Sawyer is provided with a motor encoder for every DOF,
except for the head actuator. This makes it possible for joint angles to be extracted from
each joint. Also embedded are force/torque sensor on each of its joints which accounts
for collision detection and a Cognex camera attached to the wrist close to the end-
effector which could be used to ensure a better view of the objected it interacts with.
The Robotiq [1], recorded that the high precision of Sawyer is because the harmonic
drive motors comes with zero backlash gear boxes.

(a) (b)
Fig. 1: The figures shows Sawyer robot joints and link lenghts: (a) Show the Pitch joints
while (b) Shows all the joints and their corresponding link lengths

The Kinect sensor can provide both RGB and depth information of a human teacher.
The teacher performs demonstrations which is teleoperated to the robot via a Kinect
sensor. During this process, human arm joint positions are mapped to the robot arm and
the joint angle trajectories are recorded while robot arm is being moved by mimicking
human motion.

2.2 Software Components

Processing software :Processing software is an open source software that was built for
teaching fundamentals of programming language. Processing comes with very simple
syntax and a lot of graphical visual feedback to make programming easier for non-
programmers. Processing is compatible with Windows and Linux and comes with a lot
of libraries and functions that enables integration with various devices such as Kinect
sensor.

Robot Operating System and ROSPY : Sawyer robot runs on Robot Operating Sys-
tem (ROS) platform. ROS has a lot of software libraries and tools that allows for de-
velopment of robotic projects. Various research-oriented robots including Sawyer use
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this platform for the development of various kinds of robotic projects. With rospy, pro-
grammer can rapidly interface python with the ROS tools and parameters. Rospy pays
a great interest on the developers’ time over runtime which in turn creates enabling
environment for speedy prototyping and testing of algorithm within ROS [2].

Transmission Protocol : The traditional Transmission Control Protocol (TCP) ensures
no packet lost during data transmission but does this at the merit of slower transmis-
sion speed [10]. User Datagram Protocol (UDP) became a better candidate since fast
speed of data transmission is of paramount importance in this system. In this paper, the
UDP was used to transmit data from the remote computer to the workstation which is
connected directly to the sawyer robot.

3 Probabilistic Model Selection

Several statistical models have been used to successfully model human motion and re-
trieve generalised version of the motion in the past. However, Gaussian Mixture Model
(GMM)/Gaussian Mixture Regression (GMR) is less sensitive to noisy data and com-
putationally inexpensive as it has a fast convergence rate. In this paper, the encoding,
generalisation and reproduction of the trajectories will be performed using GMM/GMR.

3.1 Gaussian Mixture Model

Considering a dataset of N data points with a dimensionality of D collected when a
human demonstrator performed a task. Each sensory data gathered during the demon-
strations contain joint angles and corresponding time-step. Therefore, the joint angle
trajectories collected are χ = {χ}N

j=1. Each datapoint consist of temporal and spatial
variables which are donated by as t and s as in χ = {χt ,χs}N

j=1 and has χt and χs, for
the temporal and spatial vectors respectively.

The dataset was used to encode the GMM of K components as defined by the prob-
ability density function:

p(χ j) =
K

∑
k=1

p(k)p(χ j|k) (1)

where p(k) is the prior and p(χ j|k) is a functional probability density function. For a
mixture of K Gaussian distributions of dimensionality D, the parameters in equation (1)
are defined as:

p(k) = πk

p(χ j|k) = N(χ j; µk,Σk) =

1√
(2π)D|Σk|

`
((χ j−µk)

T Σ
−1
k (χ j−µk))
2 (2)

where N(χ j; µk,Σk) represents the probability of a datapoint χ with respect to the nor-
mal distribution N(µ,Σ) and the Gaussian distributions defined by the prior probability
πk, mean vectors µk and covariance matrices Σk.



robot learning from human demonstrations via teleoperation 5

3.2 Gaussian Mixture Regression

After encoding the trajectories, GMR was employed to retrieve a smooth generalized
version of the trajectories. Using GMR retrieval process is more advantageous over
other stochastic methods as it can provide a more reliable way of reconstructing the
Gaussian model [7]. The observed data χ = {χt ,χs} is first modelled by the joint prob-
ability distribution P {χt ,χs}. A generalized trajectory is then computed by estimating
E [p(χs|χt)] and cov [p(χs|χt)] which is used to extract the constraints of the performed
task. Just like in a regression problem, where a set of input variable X ∈ Rp and re-
sponse variable Y ∈ Rq are given, where p and q are the dimensionality of the model
input and output respectively. The aim of the regression, is to estimate the conditional
expectation of Y given X from a set of observations {X ,Y}. In the case of this paper,
the regression aims at estimating the conditional probability of χs given χt where χs
is a vector of positions at a given time χt . Therefore, by computing the conditional
expectation of χs at each time step, the generalized trajectories are obtained.

µk = {µk,k ,µs,k } ,Σk =

(
Σtt,k Σts,k
Σst,k Σss,k

)
For each component of k, the expected distribution of χs,k given temporal value χt is

p(χs,k|χt,k) = N(χs,k; χ̂s,k, Σ̂ss,k)

χ̂s,k = µs,k−Σst,k(Σtt,k)
−1(χt −µt,k)

Σ̂ss,k = Σss,k−Σst,k(Σtt,k)
−1

Σts,k,

The mixture of K component distributions N(χ̂s,k, Σ̂ss,k) is done according to the prior
βk , where βk = p(k|χt) is determined by the probability of the component k.

p(χs|χt) =
K

∑
k=1

βkN(χs; χ̂s,k, Σ̂ss,k) (3)

βk =
p(k)p(χt |k)

∑
K
i=1 p(i)p(χt |i)

=
πkN(χt ; χt,k,Σtt,k)

∑
K
i=1 πkN(χt ; χt,i,Σtt,i)

Using equation (3) an estimation of the conditional expectation χs given χt is com-
puted for a mixture of K components as show in equation (4). A generalized form of
the trajectory and associated covariance matrix as used to reproduce the movement by
evaluating the (χ̂s, Σ̂ss) at different time steps χt .

χ̂s =
K

∑
k=1

βkχs,k, Σ̂ss =
K

∑
k=1

β
2
k Σ̂ss,k. (4)
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3.3 Learning Parameter

Expectation Maximization algorithm as proposed in [8] was adopted and used to com-
pute the parameter of the Gaussian mixture model. Given that pk, j is defined as the

posterior probability p(k|χ j) computed using Bayes theorem p(k|χ j) =
p(k)p(χ j)

∑
K
i=1 p(i)p(χ j |i)

.

Using a rough estimation by k-means segmentation, the parameter θ = πk,µk,∑k,Ek
are iteratively computed until convergence.

E− step

p(r+1)
k, j =

π
(r)
k N(ς j; µ

(r)
k ,∑

(r)
k )

∑
K
i=1 π

(r)
k N(ς j; µ

(r)
i ,∑

(r)
i )

E(r+1)
k =

N

∑
j=1

p(r+1)
k, j

M− step

π
(r+1)
k =

E(r+1)
k
N

µ
(r+1)
k =

∑
N
j=1 p(r+1)

k, j χ j

E(r+1)
k

∑
(r+1)
k =

∑
N
j=1 p(r+1)

k, j (χ j−µ
(r+1)
k )(χ j−µ

(r+1)
k )T

E(r+1)
k

4 Experimental Results

For each given gesture, 3 demonstrations involving the use of the vision sensor and 3
demonstrations using Kinesthetic teaching are provided. Thereafter, the original dataset
of 7DOFs was reduced to 2-demension but the important variance is retained. With
this, the GMM parameter is estimated using the EM algorithm. From Fig.2b, it could
be observed that 3-5 GMM components could fit the encoded gestures. Using GMR a
generalized trajectory among the demonstrated trajectories could be retrieved as pre-
sented in Fig.2c.

(a) (b) (c)
Fig. 2: (a) A set of sample demonstrations performed by a human. (b) The computed
GMM for the demonstrated task (c) The GMR reproduced trajectory of the tasked
demonstrated.
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Reproduction of the 3 demonstrated gestures by the Sawyer robot was evaluated as
shown in Fig.3. The resulting trajectories of the robot correspond to the motion per-
formed by the demonstrator. The trajectories of the robot represent the joint angles gen-
erated during task reproduction. Due to technical limitations, the reproduced demon-
stration by the robot is not exactly the posture of the demonstrator (see Fig.3).

(a) (b) (c)
Fig. 3: The robot mimics the resulting trajectory of the human arm motion: (a) A gesture
towards the right (b) A gesture towards the robot (c) A gesture pointing upward

Another proof of consent conducted was asking some group of people to collaborate
with the robot in a box stacking task. The experiment involved 10 persons with each
allowed to stack 4 blocks together in not more than five trials. Five of them practiced
how to perform the block stacking task while the other half were only instructed on how
to perform the task and were never given a change to practice it before performing the
task. It is expected that those who practiced before performing the task should finish
much earlier than those who did not, but it turns out that the time difference is not as
much as anticipated. The outcome of the experiment shows that the average completion
time for trained persons is 13.86 min while that for untrained persons is 26.3 min as
presented in Table 1. This result is an indication that with little practice, users can
perfect on the use of the proposed system. Figure 4 shows the snapshot of the stacking
task performed by one of the users.

(a) (b) (c)
Fig. 4: The task was to stack the boxes in the order of 1-4. Figures (a), (b) and (c) are
snapshots of a user performing the stacking task.

Table 1: Block stacking result
Test Category Trained Person Untrained Person
Stack completion time 13.86 ±2.729 26.3 ±3.976
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5 Conclusion

This paper shows a new way to teach a robot how to perform a task via Programming by
Demonstration. The approach proposed how to teach a robot to follow human arm mo-
tion based on GMM/GMR. The process commenced by acquiring the robot joint angles
when it mimics human demonstrated gesture captured via a Kinect sensor. The acquired
dataset is complemented using kinesthetic teaching aimed to correctly move the robot
arm towards achieving a more accurate demonstration. Encoding of the recorded valid
joint angles was performed using GMM while a smooth generalised trajectory of the
demonstrated motion was achieved using GMR. The experiment shows that this dual
means of data acquisition could be employed in training a robot via PbD.
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