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ABSTRACT
We perform for the first time N-body simulations of Interacting Dark Energy assuming non-Gaussian
initial conditions, with the aim of investigating possible degeneracies of these two theoretically inde-
pendent phenomena in different observational probes. We focus on the large-scale matter distribu-
tion, as well as on the statistical and structural properties of collapsed halos and cosmic voids. On
very large scales, we show that it is possible to choose the Interaction and non-Gaussian parameters
such that their effects on the halo power spectrum cancel, and the power spectrum is indistinguish-
able from a ΛCDM model. On small scales, measurements of the non-linear matter power spectrum,
halo-matter bias, halo and subhalo mass function and cosmic void number function validate the
degeneracy determined on large scales. However, the internal structural properties of halos and cos-
mic voids, namely halo concentration-mass relation and void density profile, are very different from
those measured in the ΛCDM model, thereby breaking the degeneracy. In practice, the values of
fNL required to cancel the effect of interaction are already ruled by observations. Our results show
in principle that the combination of large- and small-scale probes is needed to constrain Interacting
Dark Energy and Primordial non-Gaussianity separately.

Key words: dark matter – dark energy – cosmology: theory, large-scale structure –
galaxies: formation

1 INTRODUCTION

According to the most recent measurements of cosmic
microwave background (CMB) anisotropies performed by
the Planck satellite mission (Ade et al. 2016a), the stan-
dard ΛCDM cosmological model is still extremely success-
ful in reproducing different observational datasets. This
in turn favours the more economic cosmological con-
stant Λ as an explanation of the late-time cosmic ac-
celeration over alternative and more complex Dark En-
ergy (DE) or Modified Gravity (MG) models. Nonethe-
less, theoretical problems in understanding the energy
scale and the time evolution of Λ (known as the fine-
tuning and coincidence problems, respectively, see e.g.

? E-mail: mahmoudyousif.hashim@unibo.it

Weinberg 1989; Padilla 2015) as well as recent observa-
tional tensions between CMB cosmological constraints and
those inferred from independent probes in the local Uni-
verse (see e.g. Heymans et al. 2013; Hildebrandt et al. 2017;
Simpson et al. 2016; Vikhlinin et al. 2009; Ade et al. 2016e)
motivate the investigation of such alternative and more com-
plex scenarios.

In particular, various possible realisations of Interact-
ing Dark Energy models (hereafter IDE, see e.g. Wetterich
1995; Amendola 2000; Pettorino & Baccigalupi 2008;
Amendola et al. 2008; Baldi 2011a, 2012c; Pourtsidou et al.
2013) based on a direct energy-momentum exchange be-
tween a DE scalar field and the CDM particle sector, have
attracted significant interest and for small values of the
interaction strength appear still consistent with current
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CMB constraints (Salvatelli et al. 2013; Costa et al. 2014;
Salvatelli et al. 2014; Ade et al. 2016b).

Similarly, measurements of higher-order statistics of the
CMB anisotropies are consistent with a nearly Gaussian
distribution of the primordial curvature perturbations by
providing very tight constraints on the Primordial Non-
Gaussianity (hereafter PNG) parameters: f loc

NL = 0.5 ± 5.0
and f eq

NL = −4.0 ± 43.0 for the local and equilateral con-
figurations, respectively (Ade et al. 2016c). As some level
of non-Gaussianity in the primordial density distribution is
a common and clean prediction of basically all models of
inflation (see e.g. Maldacena 2003) – i.e. the hypothetical
mechanism driving the early exponential expansion of the
Universe – measurements of PNG are considered as a smok-
ing gun to discriminate between various inflationary models
(Bartolo et al. 2004; Giannantonio et al. 2014).

Despite the tight constraints on the PNG amplitude
from Planck data, Large-Scale Structure (LSS) observations
in the late universe coming from the next generation of wide-
field galaxy redshift surveys could outperform these con-
straints. More specifically, recent measurements of galaxy
clustering and of the integrated Sachs-Wolfe (ISW) effect al-
ready provide constraints of σ( f loc

NL) ∼ 30 (Ross et al. 2013;
Giannantonio et al. 2014; Leistedt et al. 2014), while future
redshift galaxy surveys like Euclid (Laureijs et al. 2011) and
SKA (Maartens et al. 2015; Camera et al. 2015) are fore-
cast to outperform the CMB in constraining PNG, espe-
cially via the multi-tracer method (Alonso & Ferreira 2015;
Fonseca et al. 2015).

This is possible due to the various observational sig-
natures that PNG imprints on LSS at late times, namely
on the abundance of massive objects (which can be ei-
ther enhanced or suppressed for positive and negative val-
ues of the PNG amplitude, respectively), on the bias be-
tween galaxies and the underlying matter distribution (that
becomes scale-dependent on large scales in the presence
of some PNG) and on the 3-point correlation function of
galaxies that encodes the shape of PNG (for more de-
tails, see e.g. Desjacques & Seljak 2010; Liguori et al. 2010;
Desjacques et al. 2018).

Recent studies on the effects of IDE models on
structure formation (Baldi et al. 2010; Moresco et al. 2014;
Hashim et al. 2014; Duniya et al. 2015; Cui et al. 2012) have
shown that similar features may arise also in these mod-
els. In particular, Hashim et al. (2014) showed that the
observational signatures of IDE and PNG on the large-
scale galaxy power spectrum can mimic each other. This
is due to the fact that some models of IDE introduce a
k−2 scale dependence in the matter density contrast on
very large scales, mimicking PNG scale-dependent halo bias.
Also on non-linear scales, numerical simulations of IDE
(see e.g. Baldi & Pettorino 2011; Baldi 2012b,a; Cui et al.
2012) and of PNG (Grossi et al. 2007; Pillepich et al.
2010; Wagner et al. 2010; LoVerde & Smith 2011) scenarios
showed that IDE enhances the abundance of massive halos
in a similar way to PNG with a positive amplitude.

This degenerate behaviour between PNG and IDE in-
dicates that separate observational constraints on the PNG
amplitude and the IDE interaction rate could be misinter-
preted or possibly that their joint effects could become in-
distinguishable from the standard ΛCDM reference model.
This represents the main motivation for the present work,

where we will present for the first time a joint numerical
analysis of non-linear structures forming from PNG initial
conditions through an IDE cosmological evolution. Our main
goal is to test whether such degeneracy holds for all observ-
ables at all scales and if not to identify specific statistics
that clearly disentangle the two phenomena. To this end
we will consider – as a proof of concept – very large val-
ues of the PNG amplitude fNL ≈ O(100) which are already
ruled out by CMB observations for the simple case of scale-
independent non-Gaussianity. This allows us to obtain larger
effects on structure formation and to identify more clearly
the degeneracy with Dark Energy interactions. Although not
directly applicable to realistic PNG scenarios for the case of
a scale-independent fNL, our results will provide a guideline
for scale-dependent PNG models (see e.g. Sefusatti et al.
2009; Oppizzi et al. 2018) having fNL ≈ O(100) or larger at
the scales relevant for non-linear structure formation while
remaining consistent with CMB constraints at the Planck
pivot scale.

This paper is organized as follows: in Sec. 2 we intro-
duce IDE and PNG extensions to the standard ΛCDM sce-
nario. In Sec. 3 we use the linear halo power spectrum as
an observational probe to test the IDE–PNG degeneracy
on large scales. In Sec. 4 we test the IDE–PNG degener-
acy on non-linear scales by running a set of N-Body sim-
ulations for all models under consideration. In Sec. 5 we
present all results for the non-linear matter power spectrum,
halo-matter bias, halo mass function, subhalo mass function,
halo concentration-mass relation, void number density and
void density profiles. Finally, conclusions are summarised in
Sec. 6.

2 NON-STANDARD COSMOLOGICAL
MODELS

In this section, we present the two non-standard extensions
to the fiducial ΛCDM model that we will consider in this
work. The first extension is based on the assumption of a
non-Gravitational interaction between CDM particles and a
dynamical DE scalar field. The other extension relays on a
non-Gaussian distribution of the primordial density field as
generically predicted by inflationary models.

2.1 Interacting Dark Energy

Various models of IDE have been proposed in the literature
over the past two decades (see e.g. Amendola 2000, 2004;
Koyama et al. 2009; Baldi 2011a; Clemson et al. 2012). In
this paper we consider the most widely studied example of
such models based on a quintessence dynamical scalar field
φ playing the role of the DE, subject to a self-interaction
potential V (φ) and to a direct interaction with the CDM
fluid via energy-momentum exchange (Bertolami & Martins
2000; Amendola 2000). The background evolution of such
cosmological scenarios is governed by the Klein-Gordon
equation for the scalar field:

φ̈ + 3H φ̇ +
dV
dφ

=

√
2
3
κ βρc , (1)
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and by the continuity equations of the different components
that contribute to the total energy density of the universe:

ρ̇c + 3H ρc = −

√
2
3
κ βρc φ̇, (2)

ρ̇b + 3H ρb = 0, (3)

ρ̇r + 4H ρr = 0, (4)

as well as by the Friedmann constraint

3H2 = κ2
(
ρφ + ρc + ρb + ρr

)
, (5)

where ρc , ρb and ρr are the energy density of CDM, baryons
and radiation, respectively. An overdot represents a deriva-
tive with respect to the cosmological time t. The Hubble
function is defined as H ≡ ȧ/a where a is the scale fac-
tor and κ2 = 8πG. The parameter ρφ represents the energy

density of the DE fluid defined as ρφ = φ̇2/2 + V (φ). The
right-hand side source terms in Eqs. (1) and (2) represent
the interaction parameter between CDM particles and DE
that is proportional to the CDM energy density ρc through
the dimensionless constant β that sets the strength of the
coupling. The sign of the βφ̇ term determines the direction
of the energy-momentum exchange between the two inter-
acting components. In order to fulfil Bianchi identities and
not violate total energy-momentum conservation, the source
terms in Eqs. (1) and (2) should be equal and have opposite
sign.

By integrating the CDM conservation equation (2) one
gets the time evolution of the CDM density as:

ρc
ρc0

= a−3 exp


−

√
2
3
κ βφ


 , (6)

which shows a basic property of IDE models: matter density
is not separately conserved as the energy exchange results in
a time-dependent CDM particle mass. In this work, we con-
sider the exponential form for the self-interaction potential
(Wetterich 1988; Lucchin & Matarrese 1985),

V (φ) = A exp


−

√
2
3
κλφ


 , (7)

where A and λ are constants.
In the Newtonian gauge, the perturbed metric (assum-

ing flatness and vanishing anisotropic stress) is given by

ds2 =
[
−(1 + 2Φ)dt2 + (1 − 2Φ)a2dxxx2

]
, (8)

where Φ is the gravitational potential. The Poisson equation
is1 (Hashim et al. 2014):

∇2
Φ =

κ2

2

ρc∆c + ρφ∆φ −

√
2
3
κ βφ̇

ρc
(ρc + ρφ )

(vφ − vc )
 ,
(9)

where ∆c,φ are the comoving density contrasts and vc,φ are
the velocity potentials, defined by vc,φ = ∇vc,φ , so that

θc,φ = −k2vc,φ , where θ is the velocity divergence. The

velocity potentials include a k−2 scale-dependence due to
the potential Φ in the Euler equation – see Eq. (10) below.
Therefore the coupling term in the Poisson equation (9) in-
troduces a k−2 scale-dependence to the matter growth factor

1 We also ignore baryons for simplicity.

on large scales. Since ∆c,φ are gauge-invariant, the resulting

k−2 signal is an explicit coupling effect and not a false gauge
effect.

The perturbed conservation equations are then given by
(Hashim et al. 2014)

v̇i + Hvi +
c2
si

(1 + wi )
∆i + Φ =

1
(1 + wi )ρi

[
Qi (v − vi ) ρc + f i

]
, (10)

∆̇i − 3wiH∆i − k2(1 + wi )vi −
9
2

H2(1 + wi )(1 + wt )(vi − v) =
Q∆i

H
,

(11)

where Qφ =
√

2/3κ βρc φ̇ = −Qc and i indicates CDM and
scalar field φ respectively, csi is the sound-speed of the
i-th species (which is vanishing for CDM while for DE
perturbations csφ = 1), wt is the total equation of state,
v = 1/(1 + wt )

∑
i (1 + wi )Ωivi is the total peculiar velocity

potential and f i is the momentum transfer potential given
by (Koyama et al. 2009)

f i = Qi (vφ − v) . (12)

The source term on the right hand side of Eq. (11) is given
by

Q∆i =
Qi

ρi

[
Q̇i

Qi
−
ρ̇i
ρi

]
vi −

Qi

ρi

[
3 +

Qi

(1 + wi )ρiH

]
(v − vi )

−
1
ρi

[
3 +

Qi

(1 + wi )ρiH

]
f i +

Qi

ρi

[
3(1 + wi ) +

Qi

ρiH

]
vi

+
1
ρiH

δQi −
Qi

ρiH


c2
si

(1 + wi )
+ 1

 ∆i + 2
Qi

ρiH
Φ. (13)

These equations fully specify the evolution of the linear
gauge-invariant perturbations of the coupled system, we re-
fer the interested reader to Hashim et al. (2014) for a more
complete derivation of these equations.

As we will be interested in the evolution of the system
at small scales and beyond the linear regime (see Sec. 4.1
for details), we also recall (see e.g. Amendola 2004) that in
the Newtonian limit, used for the N-Body implementations,
the evolution equation for CDM density perturbations, Eqs.
(10) and (11) imply:

δ̈c + 2H
(
1 − β

φ̇

H
√

6

)
δ̇c −

κ2

2
ρc

(
1 +

4
3
β2

)
δc = 0, (14)

since comoving and Newtonian density contrasts are equal,
i.e. ∆c ≈ δc , and we ignore derivatives of scalar field per-
turbations. The coupling terms in Eq. (14) are: βφ̇, which
represents an extra friction arising as a consequence of mo-
mentum conservation, and 4β2/3, which is responsible for
the fifth force acting on CDM perturbations.

2.2 Primordial Non-Gaussianity

Local type non-Gaussianity in the primordial curvature per-
turbations, that maximizes the bispectrum in the squeezed
shape, is parametrized by

Φ = ΦG + f loc
NL

(
Φ

2
G − 〈Φ

2
G〉

)
, (15)

where ΦG is the Gaussian gravitational field and f loc
NL is the

PNG parameter. Single-field inflation models predict a very
small value of f loc

NL (Maldacena 2003), but multifield models
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Parameter Value

h 0.703
Ωb 0.0451

Ωm 0.2711

ΩDE 0.729

As 2.42 ×10−9

ns 0.966

Table 1. The cosmological parameters used in this paper, consis-

tent with the WMAP7 CMB data best fit (Komatsu et al. 2011).

can generate large non-Gaussianity in squeezed configura-
tions (Moroi & Takahashi 2001; Lyth & Wands 2002).

On large scales, PNG enhances the large peaks of mat-
ter perturbations (Matarrese & Verde 2008; LoVerde et al.
2008; Matarrese et al. 2000). This introduces a scale-
dependent signal in the bias between the virial collapsed
objects at high peaks and the underlying traced matter. By
measuring the cross halo-matter power spectrum Pmh in N-
Body simulations with local-type non-Gaussian initial condi-
tions, many authors have confirmed that the large-scale bias
is scale-dependent (see e.g. Dalal et al. 2008; Pillepich et al.
2010):

Phm (k, z) =
[
bG (z) + ∆b(k, z)

]
Pmm (k, z), (16)

where Pmm is the matter auto-power spectrum, bG is the
Gaussian bias and

∆b(k, z) = 3 fNL
[
bG (z) − 1

] δcrit Ωm

Dc (z)T (k)

H2
0

k2 , (17)

with δcrit being the critical overdensity for halo collapse, T (k)
the transfer function and Dc the linear dark matter growth
factor which is normalised to a in the matter dominated era.
On very large scales, T → 1 and so ∆b ∝ fNLk−2. Since we
only consider local type PNG in the current analysis, for
simplicity we drop the loc superscript from our notation.

Since IDE introduces a scale dependence in the matter
growth factor and non-negligible DE perturbations in the
Poisson equation (9), the scale-dependent PNG bias for IDE
models becomes

∆b(k, z) = 3 fNL
[
bG (z) − 1

] δcrit Ωm

Dc (k, z)
[
1 + µ(k, z)

]
T (k)

H2
0

k2 ,

(18)

where the effect of IDE appears in the scale dependence of
Dc and in the factor

µ =
ρ̇φ

ρ̇c

[
1 −

(
ρ̇φ

ρ̇c

)]−1 1
Dφ

, (19)

where Dφ ≡ ∆φ/∆φ (z = ∞) is the DE growth factor and
µ depends on the coupling parameter β though the back-
ground equations (1) and (2). We can notice that on very
large scales, Dc (k, z) behaves as ∼ k−2.

3 LINEAR HALO POWER SPECTRUM

In this section, we will illustrate the degeneracy between
IDE and PNG by computing the halo power spectrum on
linear scales for both models and for their combination.

β fNL DE

I 0.05 0.0 ∆φ , 0
II 0.05 0.0 ∆φ = 0
III 0.0 -151.51 ∆φ , 0
IV 0.0 -166.66 ∆φ = 0
V 0.05 -151.51 ∆φ , 0
VI 0.05 -166.66 ∆φ = 0

Table 2. Different values of β and fNL parameters used in this
paper.

The halo power spectrum is given in general by

Ph (k, z) =
[
bG (z) + ∆b(k, z)

]2 Pm (k, z). (20)

In order to compute this we first numerically solve Eqs. (10)
and (11) for the growth factors Di , and then calculate the
matter power spectrum Pm (k, z) using (Ade et al. 2016d):

Pm (k, z) = A2
s

(
k

kp

)ns

T2(k)
[

Dc (k, z)
Dc (k,0)

]2
, (21)

where ns is the spectral index, As is the spectral amplitude
and kp is the pivot scale. We use CAMB (Lewis et al. 2000)
to compute the transfer function T (k). We then apply the
bias relation, Eq. (18), to the matter power spectrum as
given in Eq. (20)2. We adopt the cosmological parameters
given in Table 1.

In computing the growth rate of CDM density perturba-
tions we consider both the case where large-scale perturba-
tions in the DE scalar field are properly taken into account
(∆φ , 0) and the the case where such perturbations are ar-
tificially set to zero (∆φ = 0). The latter case, while being
not fully consistent, allows us to match the approximations
adopted in the numerical treatment that we will discuss be-
low and to obtain a more direct correspondence between
the PNG and IDE parameters that are expected to provide
a strong degeneracy in the non-linear regime under such ap-
proximations. In Fig. 1, we show the ratio of the linear halo
power spectrum to the fiducial ΛCDM model at z = 0 for
the cases given in Table 2. These values of fNL are obtained
by minimizing the residual 1 − Ph/PΛCDM

h
for the combined

model, i.e. they correspond to the values of maximum de-
generacy for a DE-CDM coupling parameter β = 0.05 for
the cases ∆φ , 0 and ∆φ = 0. Clearly, the k−2 signal, as-
suming ∆φ = 0, is larger and therefore the amount of PNG
to be degenerate with it is bigger. Therefore, for these com-
binations of parameters, as clearly seen in Fig. 1, IDE and
PNG are strongly degenerate with each other, in the sense
that their combination is indistinguishable from the fiducial
ΛCDM case3.

Although these derived values of fNL are at least one
order of magnitude larger than currently allowed by obser-
vational constraints, we will continue to use these values
as a toy example of the IDE-PNG degeneracy. Realistic

2 For the Gaussian bias, we use the ansatz bG =
√

1 + z.
3 We chose β > 0 and fNL < 0 because the same degeneracy does
not apply for negative β in the Newtonian approximation, since

the coupling enters also as a β2 term in Eq. (14). This means
that for β < 0 and fNL > 0, we do not expect a degeneracy in the

non-linear regime.
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Figure 1. The ratio of the linear halo power spectrum to the standard ΛCDM case for the models (I–VI) given in Table 2 at z = 0,

assuming perturbed DE (left panel) and non-perturbed DE (right panel).

Figure 2. The β– fNL mimicking degeneracy relation at redshift
z = 0, over-plotted with the fitting function defined in Eq. (22),

for the fitted values of γ.

values for | fNL | with the standard assumption of a scale-
independent amplitude of PNG would have too weak effects
on non-linear structure formation to significantly influence
the observational features for any non-negligible coupling
parameter β. On the other hand, scale-dependent PNG (see
e.g. Liguori et al. 2010; Renaux-Petel 2015), where fNL(k)
evolves with wavenumber k, may still provide an effective
fNL = O(102) at scales relevant for non-linear structure
formation, while remaining consistent with current bounds
around the Planck pivot scale k = 0.05h−1Mpc.

In order to model the mimicking degeneracy relation
between β and fNL that is illustrated in Fig. 1, we repeat
the procedure of minimizing the residual 1−Ph/PΛCDM

h
for a

wide range of the parameters β and fNL, for both perturbed
and non-perturbed DE cases. We find that relation

fNL = ζ β−γ , (22)

where ζ and γ are constants, provides a good fit, with expo-
nent γ ≈ 1.8. This is shown in Fig. 2, where the numerical
results are over-plotted with the fitting function Eq. (22) for
perturbed and non-perturbed DE cases. Note that the de-
generacy slope γ increases if we assume non-perturbed Dark
Energy.

4 DEGENERACY ON NON-LINEAR SCALES

It is well known that IDE and PNG separately imprint char-
acteristic features in the non-linear regime of structure for-
mation, which can be tested through different observational
probes. For example, IDE affects the high-mass tail of the
halo mass function (HMF) by enhancing the abundance of
halos (Cui et al. 2012), while PNG impacts the number of
massive CDM halos, suppressing (increasing) it for nega-
tive (positive) fNL (see e.g. Grossi et al. 2009; Wagner et al.
2010). It is therefore plausible that some form of degeneracy
may appear also at these non-linear scales, and in particular
that the combination of IDE with a negative value of fNL
for PNG may result in a HMF hardly distinguishable from
the reference ΛCDM case at all masses.

IDE also shows distinctive features on other observa-
tional probes, including higher-order correlation functions
and non-linear bias, in a similar way to PNG (Moresco et al.
2014; Desjacques et al. 2009; Wagner & Verde 2012). IDE
further affects the structural properties of CDM halos and
voids (Pollina et al. 2017, 2016; Giocoli et al. 2013; Baldi
2014, 2011b), and PNG is also expected to show significant
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6 M. Hashim et al.

effects on these probes (Neyrinck & Yang 2013; Abel et al.
2012; Sutter et al. 2014).

This implies that the mimicking degeneracy which we
have found at linear scales for the halo power spectrum may
persist (fully or partly) in some small-scale non-linear ob-
servables, while it may be broken by others. In the follow-
ing, we test the linear degeneracy relation, defined in Eq.
(22), on non-linear scales by analysing a suite of cosmolog-
ical N-body simulations that include IDE and PNG, both
separately and in a combined way. To this end, we will con-
sider various non-linear probes, starting from the non-linear
matter power spectrum and the halo-matter bias to the sta-
tistical and structural properties of CDM halos and voids.

4.1 N-Body Simulations

In order to consistently account for the effects of IDE in
the non-linear regime, we made use of a modified version of
the parallel TreePM N-Body code GADGET (Springel 2005)
that incorporates all the specific features of the coupling be-
tween DE and CDM, i.e. modified background expansion,
CDM particle mass time variation, the extra friction and
the fifth force acting on CDM particles (see Baldi et al. 2010,
for a detailed description of the modified N-body algorithm).
The simulations follow the evolution of 10243 CDM parti-
cles within a periodic cosmological box of 1 h−1Gpc per side,
for all the cosmological parameters given in Table 1, with a
mass resolution at z = 0 of 5.84 × 1010 M�/h and softening
length ε = 24.42 h−1kpc. Our numerical implementation of
IDE assumes that DE perturbations are negligible in rela-
tion to structure formation processes compared to the domi-
nant effects of background evolution, extra friction and fifth
force. This is a valid approximation on sub-horizon scales;
it becomes less accurate at scales comparable with the cos-
mic horizon, but this is beyond the fundamental mode of
our 1h−1Gpc boxes. For this reason, we have chosen to con-
sider the same approximation (i.e. ∆φ = 0) to select our
combination of values for the parameters β and fNL, so as
to ensure consistency between the degeneracy relation dis-
played in Fig. 2 and the outcomes of our N-body simulations
at small scales.

In order to generate the initial conditions for N-
Body simulation of all models considered in this paper,
we slightly modified the publicly available code 2LPTic
(Scoccimarro et al. 2012). The algorithm implements non-
Gaussian initial conditions with external Hubble and growth
functions consistent with IDE modifications.

The non-Gaussian initial conditions are generated for
local-type PNG with an extra non-Gaussian term according
to Eq. (15), where ΦG is a random realization of a Gaus-
sian field with the primordial power spectrum P(k) ∝ kns−1.
Then, the linear density field δc is obtained from the non-
Gaussian potential Φ through the Poisson equation:

δc =
2
3

k2

H2
0

Dc (z)
Ωc

T (k)Φ, (23)

where the transfer function T (k) is computed using CAMB
(Lewis et al. 2000) for the fiducial ΛCDM cosmology. We as-
sume the transfer function is not affected by the late-time in-
teraction (Baldi et al. 2010; Baldi 2012b). The growth func-
tion Dc for all models is normalized at zCMB ≈ 1100 to di-
rectly compare the impact of IDE on the structure growth

in the period between zCMB and the present time. For PNG,
we set fNL = −165.0 as the value corresponding to the in-
teraction rate β = 0.05 on linear scales (with ∆φ = 0), as
determined by Eq. (22).

Particle positions are then displaced from a homo-
geneous glass distribution (Baugh et al. 1995) using the
Zel’dovich approximation (Zeldovich 1970) according to the
displacement field δc at the initial redshift zi = 49. In or-
der to compute particle initial velocities, we used the re-
lation v(k, z) ∝ f (z)δ(k, z), where the growth rate function
f (z) ≡ −d ln Dc/d ln(1 + z) is derived for each model by solv-
ing Eqs. (14) for the growth function. For the IDE–PNG
combined model, we apply the growth function of IDE af-
ter transforming the initial Gaussian potential to the non-
Gaussian form according to Eq. (15). In order to minimize
the sampling variance, we used the same initial random seed
for all the simulations.

5 RESULTS

In this section, we present the main results of our numerical
simulations of IDE, PNG and the combined IDE–PNG ex-
tensions rescaled with respect to the fiducial ΛCDM model.
We focus mainly on the non-linear matter power spectrum,
the halo-matter bias and the statistical and structural prop-
erties of CDM halos and voids.

5.1 The non-linear matter power spectrum

We computed the non-linear matter power spectrum for each
simulation by calculating the density field using a Cloud-in-
Cell mass assignment on a cubic grid with the same reso-
lution as the Particle Mesh grid used for the integration of
the N-body system (i.e. 10243). According to this procedure,
the non-linear matter power spectrum is determined up to
the Nyquist scale, kNy = πN/L ∼ 3.2h/Mpc. We truncate
the resulting power spectrum at the k−mode where the shot
noise is below 20% of the measured power. From the sim-
ulated power spectra, we can estimate the effects of IDE,
PNG and, for the first time, the joint effects of IDE and
PNG, on linear and non-linear scales at different redshifts.

In Fig. 3 we display the ratio of the non-linear matter
power spectrum for IDE, PNG and their combination, to
that of the standard cosmological model, at z = 0 and z = 1.
The plots show the following features.

IDE with Gaussian initial conditions (dashed green
curve with solid diamonds) – shows the expected scale-
dependent power enhancement at non-linear ranges due to
the combined effects of the fifth force and of the extra fric-
tion associated with the DE-CDM interaction. Also, since
we normalize the power spectrum at the redshift of the
CMB, the normalization at linear scales (σΛCDM

8 = 0.809)
is increased by about 5% relative to the standard model
(i.e. σIDE

8 = 0.825), due to the higher linear growth rate in
the IDE case (Baldi 2011a); this is consistent with previous
works (see e.g. Baldi 2011b). At higher redshift (right panel)
the non-linear power spectrum enhancement due to the IDE
fifth force is slightly reduced, with the peak ratio shifted
towards smaller scales.

Non-Gaussian initial conditions in ΛCDM (dashed blue
curve with solid squares) – shows the expected suppression
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Interacting Dark Energy with Non-Gaussian Initial Conditions 7

Figure 3. The non-linear matter power spectrum with IDE, PNG and their combination, relative to the reference ΛCDM spectrum, at

z = 0 (left panel) and z = 1 (right panel). The dotted black curve shows the superposition spectra (IDE-only + PNG-only). The black

dashed vertical lines show the Nyqvist frequency and half of it.

of power at small scales, relative to the standard ΛCDM
case. The deviation is larger at higher redshifts and the mini-
mum shifts towards smaller scales, in agreement with predic-
tions from the halo model presented in Fedeli & Moscardini
(2010).

IDE and PNG combined (dashed red curve with solid
triangles) – the ratio no longer shows any significant scale
dependence down to ranges corresponding to the location of
the peak/minimum in the ratio for the two separate models.
The difference in the power normalization at linear scales
associated with the enhanced growth rate in IDE remains
unchanged. This seems to indicate a mimicking degener-
acy between IDE and PNG in the matter power spectrum
on non-linear scales while there is no degeneracy on linear
scales. Remarkably, the figure shows that there is a non-
linear mimicking degeneracy for the same combination of
parameters that produce mimicking degeneracy in the halo
power spectrum at much larger scales, as described by Eq.
(22) and Fig. 2.

In the figures we have also over-plotted, for comparison,
a black dotted curve representing a simple superposition of
the two effects, i.e. the PNG-only (blue squares) deviation
times the IDE-only (green diamonds) deviation. The very
good agreement of this simple prediction with the actual
power measured from the combined IDE-PNG simulation
seems to indicate that the two effects acting on structure
formation are decoupled – which suggests that full combined
N-body simulations may be unnecessary in order to compute
the combined power spectrum for other combinations of β
and fNL.

5.2 Halo-Matter Bias

Following the standard hierarchical clustering scenario of
structure formation, halos and galaxies are biased tracers
of the underlying matter distribution. In this section, we
compute the linear bias between halos and the underlying
dark matter density field, as the ratio between the halo-
CDM cross power spectrum and the auto power spectrum
in Fourier space:

bhm (k) =
Phm (k)
Pmm (k)

. (24)

(We suppress the z-dependence for simplicity.) This bias
estimator is used to avoid shot-noise (Hamaus et al. 2010;
Smith et al. 2007; Baldauf et al. 2010, 2013), and we fol-
low the approach of Villaescusa-Navarro et al. (2014) for the
computation of the two power spectra.

In Fig. 4, we show the ratio of the halo-matter bias for
the IDE, PNG and IDE–PNG models, relative to the fiducial
ΛCDM model. As expected, PNG introduces a clear scale-
dependence at large scales. On the contrary, the bias in the
IDE model appears to have a slightly lower normalization
than ΛCDM though retaining the same evolution with scale
as the standard scenario. This different behaviour is most
visible at higher redshifts, as shown in the right panel of
Fig. 4, where the scale-dependence of the PNG simulation
is stronger. On non-linear scales, both PNG and IDE show
a maximum deviation relative to the reference model but in
opposite directions, with the amplitudes of the peak/ mini-
mum increasing and their position moving towards smaller
scales at higher redshifts. These outcomes are all consis-
tent with the previous literature (Matarrese & Verde 2008;
Desjacques et al. 2009; Moresco et al. 2014; Marulli et al.
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8 M. Hashim et al.

Figure 4. As in Fig. 3, for the halo-matter bias. Clearly, IDE shows no sign of scale-dependence on large scales.

2012) and qualitatively show how the halo bias is affected
at similar scales for both IDE and PNG.

For the combined IDE–PNG scenario, we find that
at z = 0 the halo bias retains some scale-dependence on
large scales, i.e k < 0.05 h/Mpc, while it is nearly scale-
independent on scales 0.05 h/Mpc < k < 0.5 h/Mpc. Fur-
thermore, it retains the lower normalization that charac-
terizes the IDE model at all scales. This combination of
the two effects is more clear at higher redshift, where we
can clearly identify two distinct regions for scale-dependent
(k < 0.1 h/Mpc) and scale-independent (k > 0.1 h/Mpc)
deviations from the reference model. Also in this case, the
simple superposition of the two separate effects, very accu-
rately reproduces the behaviour of the combined IDE–PNG
simulation, thereby suggesting that the two phenomena act
on the biasing of collapsed structures independently.

Similar to the non-linear matter power spectrum, the
halo-matter bias satisfies the β– fNL degeneracy relation,
Eq. (22), on non-linear scales, while this is broken at larger
scales. We argue that this may be due to the fact that
our N-Body implementation of IDE as discussed above (see
also Baldi 2011b), does not account for the scale-dependent
growth function on large scales due to CDM–DE coupling
and the contribution of large-scale DE perturbations (i.e.
it assumes the approximations Dc (k, z) ' Dc (z) and ∆φ =

0). Therefore, including the effects of large-scale CDM–DE
coupling and DE perturbations should boost in a scale-
dependent way the IDE linear power spectrum and con-
sequently the halo-matter bias on large scales. This would
recover the result of a mimicking degeneracy at all scales
that was obtained from linear perturbation theory (Sec. 3).
A proper verification of this conjecture would require ma-
jor modifications to our N-body codes, that go beyond the
scope of the present paper, and we defer an extensive study
on this subject to future works.

5.3 Statistical and structural properties of CDM
halos

In this section we test the β– fNL degeneracy relation in the
statistical and structural properties of CDM halos.

5.3.1 The Halo Mass Function

We identified collapsed halos in our simulations following
a standard procedure, amounting to a first identification of
particle groups by means of a Friends-of-Friends (FoF) al-
gorithm with linking length l = 0.2d̄, where d̄ indicates the
mean inter-particle separation. On top of these FoF halos
we run the SUBFIND algorithm (Springel et al. 2001) in or-
der to identify gravitationally bound sub-structures present
within each group. The latter procedure allows to assign to
each FoF group the virial mass M200 of its primary sub-
structures, defined as the mass of a spherical region with
its centre on the particle with the halo’s minimum potential
enclosing a mean overdensity equal to 200 times the critical
density of the universe.

Given these halo catalogues, we computed the halo mass
function for IDE, PNG and the combined IDE–PNG models
by binning the halo masses into 13 logarithmically equally-
spaced mass bins over the mass range 2.0× 1012 M�/h−5.0×
1014 M�/h. The lower mass bound is set by the minimum
halo mass resolved in the fiducial ΛCDM model, composed
of at least 20 particles.

In Fig. 5 we show the ratio of the cumulative HMF to
the ΛCDM model for IDE, PNG and the combined IDE–
PNG models. As expected, IDE enhances the abundance of
large mass halos with respect to the standard ΛCDM case,
while PNG shows on the contrary a suppression of the abun-
dance of halos in the high-mass tail, consistent with previous
results (Cui et al. 2012; Wagner et al. 2010).

The combined IDE–PNG model shows some level of de-
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Interacting Dark Energy with Non-Gaussian Initial Conditions 9

Figure 5. As in Fig. 3, for the halo mass function. The grey region represents the propagated Poissonian error of the number counts of

halos in each bin.

generacy with the standard ΛCDM cosmology at z = 0, with
the combined mass function being slightly lower than in the
pure IDE case. The degeneracy becomes more clear, given
the larger amplitude of the individual effects, at higher red-
shifts (z = 1), where the IDE and PNG deviations from the
reference model reach about 25 − 30% at the largest masses
with abundance suppression by only 5% in the combined
case. Furthermore, the exponential dependence on halo mass
of the deviation with respect to ΛCDM is also significantly
weakened in the combined model. Nonetheless, as a mimick-
ing degeneracy is never fully attained, the halo mass func-
tion seems not to follow the degeneracy relation of Eq. 22,
thereby providing a possible way to disentangle these phe-
nomena.

The simple superposition of IDE and PNG models rea-
sonably agrees with the combined IDE–PNG simulation ex-
cept in the low mass end of the halo mass function at z = 0
(see left panel of Fig. 5) where some disagreement appears.
This presumably could be related to the poor resolution of
small mass halos thereby arising due to numerical artefacts
associated with the specific halo finder that we employed.

5.3.2 The subhalo mass function

As a further statistic of structure properties at small scales,
we computed – for all our simulated cosmologies – the sub-
halo mass function, defined as the number of subhalos of
mass Msub within a main halo of virial mass M200. In Fig.
6, we display the ratio of the subhalo mass function with
respect to the measurements in the ΛCDM simulation, as a
function of the mass ratio Msub/M200. In order to avoid res-
olution effects, we consider only subhalos hosted by cluster-
size halos, i.e. systems with M200 > 1014M�/h. We under-
line to the reader that the measured subhalo counts in the

Figure 6. The subhalo mass function for the cosmologies under
investigation at z = 0. The grey region represents the propagated

Poissonian error of the number counts of subhalos in each bin
and the dotted black line represents the superposition of IDE

and PNG models.

ΛCDM model are characterized by the typical slope of ap-
proximately −1 consistent with different previous findings
Gao et al. (2004); Giocoli et al. (2010); Despali & Vegetti
(2017).

As can be seen from the figure, IDE suppresses the
abundance of sub-structures over the whole range of sub-
halo fractional mass, even though the effect is small (about
3-5%). On the contrary, PNG enhances the abundance of
subhalos up to about 4% (for the highest values of the sub-
halo fractional mass) over the same mass range. The com-
bined IDE–PNG case shows again a quite clear degeneracy,
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10 M. Hashim et al.

Figure 7. As in Fig. 3, for the concentration-mass relation.

with a suppression never exceeding ≈ 1%, marginally con-
sistent with the Poissonian error range of the ΛCDM model.
The simple superposition of IDE and PNG models is in rea-
sonable agreement with the combined IDE–PNG simulation.
These results underline that the β– fNL degeneracy relation
seems to remain valid also at the level of CDM halo sub-
structures.

5.3.3 Halo Concentration

Finally, we conclude our investigation of the combined effects
of IDE and PNG on structural properties of collapsed halos
by computing the average halo concentration as a function
of halo mass, which is usually known as the concentration-
mass relation (Zhao et al. 2009; Giocoli et al. 2012). In or-
der to compute the concentrations for the halos identified
in our simulations, we adopt the NFW formula used in
Springel et al. (2008):

δcon =
200
3

c3

ln(1 + c) − c/(1 + c)
= 14.426

(
Vmax

H0rmax

)2
,

(25)

where δcon is the characteristic overdensity, c is the halo
concentration, Vmax is the maximum circular velocity of the
halo attained at radius rmax. In Fig. 7, the ratio of the
concentration-mass relation of IDE, PNG and the combined
IDE–PNG models relative to ΛCDM is presented at z = 0
(left panel) and z = 1 (right panel).

As expected, IDE halos are found to be less concen-
trated with respect to the fiducial ΛCDM case, in agree-
ment with results given in (Baldi 2011b). Similarly, PNG
with fNL < 0 also suppresses halo concentrations (the op-
posite would occur for a positive fNL). Therefore, for the
first time we encounter an observational probe showing de-

viations from ΛCDM pointing in the same direction for IDE
and our negative fNL PNG scenarios.

The combined IDE–PNG simulation, accordingly, shows
an even stronger suppression of the concentration-mass re-
lation relative to the ΛCDM model than the two individual
models separately. The effects are less pronounced at higher
redshifts, while the trends and the relative ordering of the
various models is preserved. Superposition of the individual
effects of IDE and PNG seems to agree well with the com-
bined simulation. This however indicates that the β– fNL
degeneracy is broken for the CDM halo concentration-mass
relation, which might then represent another direct way to
disentangle the models, when combined with another more
degenerate probe. It is also reasonable to emphasize that
this effect is relatively small; only future wide field obser-
vational campaigns – like the future ESA-mission Euclid
(Laureijs et al. 2011) – will be able to collect the large num-
ber of galaxy groups and clusters (Sartoris et al. 2016) nec-
essary for these tests.

5.4 Statistical and structural properties of cosmic
voids

In this section, we move our focus to under-dense regions of
the universe by testing whether cosmic voids also follow the
β– fNL degeneracy relation. In order to identify cosmic voids
in our set of simulations, we employ the publicly available
void finder VIDE (Sutter et al. 2015), which is based on the
ZOBOV algorithm (Neyrinck 2008). The cosmic void iden-
tification is mainly done by means of a Voronoi tessellation
scheme that associates a polyhedrical cell to each particle
tracing the CDM density field. Subsequently, cell volumes
are compared in order to identify local density minima, i.e.
cells with a larger Voronoi volume than all their surround-
ing cells. A hierarchy of identified voids is then obtained via

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/sty2450/5092613 by U

niversity of Portsm
outh Library user on 13 Septem

ber 2018



Interacting Dark Energy with Non-Gaussian Initial Conditions 11

Figure 8. As in Fig. 6, for the void number function.

the watershed transform algorithm (Platen et al. 2007), by
joining Voronoi cells around a local density minimum. In
our analysis, we consider only voids with a central density
that is below the density of the universe by 20% and a lower
density contrast limit 1.57, corresponding to a probability of
voids arising from Poisson noise below ∼ 5%, i.e only voids
at 2σ confidence level are considered (Neyrinck 2008).

5.4.1 Void number function

As a first statistics for cosmic voids, we study their abun-
dance as a function of the void effective radius Reff , defined
as the radius of a sphere centred on the most underdense par-
ticle of a void and having the same volume as the Voronoi
volume of the void:

Vvoid ≡

N∑
i=1

V p
i

=
4
3
πR3

eff
. (26)

In Fig. 8 we show the ratio of the void number functions
relative to the ones in the ΛCDM cosmology for all mod-
els under consideration, as a function of the effective radius
Reff at z = 0. From the figure we see that IDE suppresses
the number of cosmic voids with effective radius Reff <

25h−1 Mpc by about 5% relative to the ΛCDM case, and
correspondingly enhances the abundance of larger voids by
up to 40%. The trend is qualitatively similar, though quan-
titatively weaker (up to ranges Reff ≈ 30 Mpc/h), for PNG,
in agreement with previous results of Kamionkowski et al.
(2009). However PNG strongly suppresses void number func-
tion at Reff ≈ 40 Mpc/h, while IDE enhances it by 40% at
the same scales.

The combined IDE–PNG simulation shows suppression
of the void number function for radii Reff < 25h−1 Mpc, sim-
ilar to the IDE case and barely enhances the void abundance
at Reff > 25h−1 Mpc relative to the ΛCDM case, so that it is
indistinguishable within the ΛCDM Poisson error range at
these radii. As we did for all previous observables, we also
compute the simple superposition of the two effects, by tak-
ing the product of the two separate deviations with respect
to the reference case. For the first time in our analysis, we
see that such a superposition fails to reproduce the results
of the combined simulation at large void effective radii: this

follows from comparing the black dotted curve, representing
the analytical superposition, with the blue squares, showing
the combined simulation in Fig. 8. In this case we notice
that the simple superposition of the two fields tends to be
mainly dominated by the IDE not leaving much contribution
to the PNG. This suggest that in the full simulation, in void
regions, a cross-talk term between the two non-standard ex-
tensions emerges moving down the void number counts with
respect to the simple superposition.

This suggests that the two phenomena interplay in some
way in shaping the growth of large cosmic voids, and cannot
be considered as fully independent in this regime. In any
case, we notice that the β– fNL degeneracy is fulfilled by the
abundance of cosmic voids with large effective radii (Reff >

25h−1 Mpc), while it does not seem to apply at smaller void
radii.

5.4.2 Void density profiles

To further check the β– fNL degeneracy on cosmic void
structural properties, we computed the average void den-
sity profiles for two different bins of void radius, namely
0 < Reff < 20h−1 Mpc and 20 < Reff < 40h−1 Mpc. We do
this by stacking individual density profiles of 100 randomly
selected voids, for each radius bin, corresponding among the
different cosmological simulations. We display the ratio of
the resulting void mean density profiles in Fig. 9 for all con-
sidered models, relative to ΛCDM at z = 0. The grey area
represents the 2σ confidence limit, computed by means of a
bootstrap re-sampling technique.

Again, we compare the observational signature of the
individual IDE and PNG models with their combination.
As can be seen from the plot, cosmic voids in the IDE
case tend to have a lower inner density than their ΛCDM
counterparts. This indicates that cosmic voids are emptier
in the IDE case, fully consistent with previous results (see
e.g. Pollina et al. 2016). Correspondingly, the compensating
over-density around the effective radius Reff is found to be
more prominent than in ΛCDM. On the other hand, PNG
shows a negligible effect on cosmic void density profiles. It
is then not surprising that the combined IDE–PNG model
also shows lower density profiles in the central regions of the
voids. This result also shows that cosmic voids do not seem
to follow the same degeneracy relation that applies for most
of the observables related to properties of the over-dense
regions of the universe.

6 DISCUSSION AND CONCLUSIONS

The concept of observational degeneracy in cosmology
arises in several different forms: (1) Parameter Degener-
acy represents the existence of large error correlations be-
tween different model parameters for specific measurements
(Efstathiou & Bond 1999; Crooks et al. 2003; Tereno et al.
2005; Howlett et al. 2012); (2) Dark Degeneracy reflects the
fact that gravitational experiments measure the energy-
momentum tensor of the total dark sector and splitting
into Dark Energy and Dark Matter is arbitrary (Kunz
2009; Aviles & Cervantes-Cota 2011); (3) Mimicking Degen-
eracy occurs when cosmological models different from the
standard ΛCDM mimic some of its specific features, like
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12 M. Hashim et al.

Figure 9. The ratio of the stacked void density profiles in two different ranges of effective radius Reff = 0−20 (left panel) and Reff = 20−40
(right panel) to the standard model at z = 0. The grey region represents the 2σ bootstrap standard deviation of 1000 re-sampled profiles.

background expansion and the growth of matter perturba-
tions (Fay et al. 2007; Setare & Mohammadipour 2013; Fay
2016).

Cosmic degeneracy of IDE has been investigated in the
literature (Clemson et al. 2012; Väliviita & Palmgren 2015),
including the partial mimicking degeneracy of IDE and MG
(Wei & Zhang 2008; Koyama et al. 2009; Wei et al. 2013). A
mimicking degeneracy between PNG in the power spectrum
in the Newtionian approximation, and the correct general
relativistic power spectrum with Gaussian initial conditions,
has been shown by Bruni et al. (2012); Jeong et al. (2012).
Also, parameter degeneracy has been investigated in the
non-Gaussian halo bias by Carbone et al. (2010). Moreover,
Abramo & Bertacca (2017) investigated the degeneracy of
large-scale velocity effects on galaxy clustering with the (lo-
cal) non-Gaussianity parameter fNL, by simulating galaxy
surveys and combining the clustering of different types of
tracers of large-scale structure. They studied how large-scale
velocity contributions could be mistaken for the signatures of
primordial non-Gaussianity (see also Raccanelli et al. 2014,
2018).

In this paper – as part of a Cosmic Degeneracies paper
series (Baldi et al. 2014; Baldi & Villaescusa-Navarro 2018)
– we have considered the mimicking degeneracy between
IDE and PNG that was first shown in linear perturbation
theory by Hashim et al. (2014). Since IDE can mimic PNG,
the possibility exists that we can choose IDE and PNG pa-
rameters such that the two effects cancel, i.e., produce stan-
dard ΛCDM behaviour. We confirmed this mimicking degen-
eracy in the halo power spectrum on very large scales, i.e.
k . keq, based on purely analytical calculations in the linear
regime. We then fitted the degeneracy relation with a power
law, fNL ∝ β−γ (depicted in Fig. 2), by minimizing the resid-

ual of the halo power spectrum for the combined IDE–PNG
model with respect to the mimicked ΛCDM model.

To further investigate and validate the β– fNL degener-
acy, Eq. (22), at non-linear scales, we employed a suite of
specifically designed N-Body simulations including the ef-
fects of IDE and PNG, both separately and combined with
each other. In order to increase the effects under investiga-
tion and more easily detect their signatures we chose very
large values of the PNG parameter fNL, which are already
ruled out by the most recent CMB observations. Still, such
values could be achieved at the scales tested by our simula-
tions for simple extensions of the PNG model such as e.g.
a scale-dependent fNL. We extracted from our simulations
a set of standard statistics, and we studied their deviations
from the reference Gaussian ΛCDM model. In particular, we
did investigate:

– The non-linear matter power spectrum, for which we ob-
served that the mimicking degeneracy persists, remarkably,
on non-linear scales in the sense that the scale-dependent de-
viation with respect the reference ΛCDM scenario character-
ising the two separate models at non-linear scales disappears
in the combined simulation even though the difference in the
linear power normalisation due to the enhanced growth rate
in IDE is not removed;

– The halo matter bias, for which we find similarly to
the non-linear power spectrum, that the scale-dependence
imprinted by the two different models at non-linear scales is
also strongly suppressed in the combined simulation while
on linear scales such scale-dependent feature is retained and
so breaks the observed degeneracy;

– The halo mass function, which also shows some level of
degeneracy though not satisfying Eq. (22) for the degenerate
β– fNL values thus allowing us to disentangle the observed
degeneracy;
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– The subhalo mass function, also showing mimicking de-
generacy over the whole subhalo mass range availabe in our
simulations;

– The halo concentration-mass relation, which we found
to be the first observable to explicitly break the degeneracy
as both PNG and IDE have qualitatively the same impact on
halo concentrations, namely to suppress concentrations at a
given mass with respect to the reference ΛCDM scenario;

– The void number function showing mimicking degener-
acy for large voids (Reff > 25 − 30h−1Mpc) while the degen-
eracy is broken for smaller void radii;

– and The void density profiles for which, similarly to the
case of the concentration-mass relation, the mimicking de-
generacy is also not observed at all as both individual mod-
els predict a lower inner density of cosmic voids compared
to ΛCDM.

Therefore, we conclude that measurements of CDM halo
and cosmic void internal structural properties, namely halo
concentration-mass relation and void density profile would
allow us basically to break the degeneracy when combined
to any of the other probes that we investigated in this work.

In principle, this degeneracy creates difficulties in iden-
tifying the simultaneous presence of IDE and PNG, and in
accurately constraining them separately. However, in prac-
tice, the degeneracy only arises for values of | fNL | that are
ruled out by current constraints. Nevertheless, our investiga-
tion has shown which non-linear probes could be most useful
for improving constraints on IDE and PNG.
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