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Abstract—In this paper, a mind controlled multi-task manip-
ulator based on motor imagery electroencephalogram (EEG) is
proposed. Describe the system function first: In the case of only
two types of control signal, the implementation of multi-task
Manipulator relies on a toggle-confirmation mode of operation:
the task is switched when imagining the left-hand movement,
and the task is confirmed when the right-hand movement is
imagined. In the BCI system, common spatial pattern (CSP)
is used for feature extraction, mutual information for feature
selection, and linear discriminant analysis (LDA) for pattern
classification. The EEG signal is processed and classified into two
categories, imagery of left-hand and right-hand movement. In this
way, we can achieve the multi-task control of the manipulator
under the premise of ensuring the accuracy of EEG recognition.

I. INTRODUCTION

Brain computer interface (BCI) is technology that enables
their users to communicate and control external robotic sys-
tems using mental activity. [1] . It is an important means for
people to understand and improve the function of the brain.
Recently, technology of BCI developed rapidly. It had a wide
range of applications in the field of control [2], rehabilitation
of the disabled [3], entertainment [4], brain cognition and so
on. At present, the application of EEG is mainly focused on
two types of signals: evoked potential(EP) and spontaneous
signal modulation. Evoked potential, including visual evoked
potential [5], P300 event-related potential [6], is the electrical
activity of the nervous system, which is stimulated by internal
and external stimuli. But, spontaneous signal modulation,
including the event related synchronization(ERS) and event
related desynchronization(ERD) [7], spontaneous g and [
rhythms [8], as well as slow cortical potential(SCP) [9], do not
need any stimulation, simply by imagination, such as motor
imagery.

In China, there are numerous patients with functional dis-
ability due to diseases or disorders such as spinal cord injury or
amyotrophic lateral sclerosis (ALS). In recent years, there has
been a lot of devices based on EEG that are designed for these
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people, such as mind controlled wheelchairs [10], artificial
limbs [11], and manipulator [12]. However, non-invasive EEG
devices collect the electrical signals generated by tens of
thousands of neurons in the cerebral cortex [13], which have
prominent non-linearity and non-stationary characteristics, so
the brain-computer interface technology universally has two
major problems: few recognition types and low recognition ac-
curacy. These limitations make it difficult for EEG wheelchair,
prostheses, and EEG robots to perform a variety of complex
tasks. Therefore, these devices are difficult to be promoted
and used for people with disabilities or in patients with motor
disorders.

In this paper, we design a multi-task manipulator based
on motor imagery because the EEG signal is only generated
by imagination, does not depend on any sensory stimulation,
which belongs to the true BCI system. In order not to affect
the accuracy of EEG recognition, we use EEG algorithm of
two-category classification, EEG signal after preprocessing,
feature extraction, selection, and classification are divided into
two categories: imaging left-hand movement or right-hand
movement. In order to achieve multitask, we adopt a toggle-
confirmation mode of operation: the task is switched when
imagining the left-hand movement, and the task is confirmed
when imagining the right-hand movement. For example, there
are three tasks the disabled can select, including Taking
medicine, drinking and first aid. If he/she want to drink,
he/she images left-hand movement to switch the task to the
“drinking”, and then confirms this task by imaging right-
hand movement, after that the manipulator will take the cup
to him/her. In this way, manipulator in accordance with the
established mode of operation seem to lack the freedom of
control, but it can solve a lot of problems when the manipulator
is controlled directly by the EEG, such as difficult to control,
lack of accuracy, error prone, etc.

The structure of this mind controlled Manipulator system
is illustrated in Fig. 1. Neuroscan device is used for EEG
signal collect with its attached software SCAN4.5. The EEG
processing algorithm is implemented with Python for its conci-
sion to use, high efficiency of code execution and rich libraries
especially the machine learning libraries. As a Communicator,
MATLARB is responsible for the communication between the
SCAN4.5, Python, and the simulation manipulator. So, the
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Fig. 1. System Framework

whole process is that: EEG signals are collected by Neuroscan
and sent to SCAN4.5 by a cable. MATLAB communicates
with SCAN4.5 by TCP client to get EEG data in real time.
And then MATLAB calls Python program to process the raw
EEG data and classify them into two categories. According to
classified results, the multitasking simulation manipulator will
run with the toggle-confirmation mechanism.

II. THE MOTOR IMAGERY BCI
A. ERS/ERD Phenomenon in Motor Imagery

When a certain area of cerebral cortex is activated,
metabolism and information processing in this region will
increase, leading to the amplitude reduction or block of
the brain waves, especially in the alpha and beta rhythm.
This electrophysiological phenomenon is called event related
desynchronization (ERD) .On the contrary, when this region is
at rest, the brain wave will show an obvious increase in ampli-
tude, which is called the event related synchronization(ERS).
Studies have shown that unilateral limb movement or motor
imagery, the contralateral side of the brain produces ERD
while the ipsilateral side of the brain produces ERS. It means
that if we image right hand movement, the power of the EEG
signals will reduce on the left side of the brain but increase
on the right side of the brain, and vice versa. According to
the ERS/ERD phenomenon, we can classify EEG signal into
two categories, imaging left and right hand movement

B. Better Data Preprocess with Optimal Feature Selection

ERS/ERD phenomenons are usually more obvious in alpha
(8-12Hz) and beta (18-26Hz) rhythm. But for different sub-
jects, the most effective frequency bands are different. In order
to optimize classification results of EEG data, it is important
to obtain effective frequency bands for data processing. The
method used for effective band selection in this paper are
shown the Fig. 2. Firstly, there are 9 bandpass filters with 4 Hz
bandwidth in turn from 4 Hz to 40 Hz for data preprocessing.
Secondly, the filtered data will be put into feature extraction
model. Finally, a method of mutual information can be used to
select some feature which has a better distinction in ERS/ERD.

C. Common Spatial Pattern Analysis for Feature Extraction

In CSP, the objective is to find a desired spatial filters
which are constructed as projection matrices [14]. Through
the projection, the prominent ERD/ERS can be extracted by

Mutual
information | Optimal feature
for feature

selection

Fig. 2. Frequency band selection

maximizing the variance of one kind of EEG signal and
minimizing the other one so that these two signals can be
distinguished in the projected space.

Suppose that the one-dimensional filter is w € R™<*1, and
then the object function of CSP could be expressed as:

w = argmaxw! E[R|ci|w
s.it. WL (E[R|ci] + E[R|ca])w =1 (1)

where E[R|c;] is the covariance matrix of EEG signals for
class ¢;, and ¢ = 1,2 representing different motor imagery
classes. (1) could also be expressed in the following Rayleigh
quotient forms:

wlE[R|ci]w
wTE[R|co|w

Singular value decomposition could be used to obtain the
spatial filters w

W = argmax 2

E[R|ci]w = A\E[R|ca]w 3)

where )\ is the eigenvalue of E[R|c;] " E[R|cz], and they are
sorted in a descending order, s = 1,2,3,--- ,£. According to
how many feature to be extracted, { pairs of w corresponding
to {As,s =1,---,[,E—1+1,---,&} would be selected to
form the projection matrices W € R™<*2", Thus, the features
could be extracted as:

f = diag(W* RW) 4)

D. Linear Discriminant Analysis for Classification

Linear discriminant analysis (LDA) is a conventional pattern
recognition algorithm. The main idea of LDA is to project
the high-dimensional pattern samples into the optimal dis-
criminant vector space. After projection, the samples in the
new space have maximum inter-class distance and minimum
intra-class distance, meaning that the pattern has the best
separability in the new space. The object function of LDA
could be expressed as:

vT Sy
wT S,v
where v is the projection matrices of LDA, S, and S, are
the within-class scatter and between-class scatter of the two

features extracted from the two type of EEG signals. (5) could
be solved by solving a generalized eigenvalue problem

Spv = AS,v (6)

v = arg max

&)
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Fig. 4. Arm limb models of the KUKA manipulator

After that, a classification criterion is constructed, and the
new feature from the newly collected EEG signal could be
classified according to this criterion. This criterion can be
expressed as:

y(f) = oIt + v @)

where f is the new feature and vy is an offset value. The
calculation result of y(f) > 0 means that the feature f belongs
to one class and y(f) < 0 means another class.

III. THE CONTROL SCHEME FOR THE MULTITASKING
SIMULATION MANIPULATOR

A. Simulation Manipulator

The simulation manipulator we used is the KUKA robot
built on the Simulink, Matlab, with seven degrees of freedom,
as the Fig.3 shown. Seven degrees of freedom provides the
manipulator more flexibility and allow multi-task design. To
construct the manipulator, the models of the arm limb are
designed in Simulink, including the definition the model shape
and their mechanical properties. All the models of the arm
limb are illustrated in Fig.4. Connect them with the joint model
provided by the Simulink and set the world coordinates and
other parameters, the whole manipulator model is constructed.

As discussed earlier, the dynamic control of the manipulator
is not the focus of our paper. Therefore, this manipulator only
needs us to provide the joint trajectory in the Simulink model
of “signal builder”, it will move as desired. According to
the requirements of our task, we design a set of motions by
directly giving the joint trajectories, which is shown in Fig.5.
According to these trajectories, the KUKA manipulator will
move to finish a task, as shown in Fig.6

B. Toggle-Confirmation Mechanism

Because EEG control has the characteristics of few recog-
nition types and low recognition accuracy, there are a lot
of limitations when EEG directly control the manipulator,
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Fig. 5. The trajectories of seven joints in a task

Fig. 6. The movement of the KUKA manipulator in a task

such as few control actions and high error rate. So, in this
case, it is difficult for the manipulator to finish a series
of actions. In addition, if we increase the EEG recognition
types, the recognition accuracy will be reduced, which means
that two-category recognition can get the highest accuracy in
most cases. However, two-category recognition is not enough
for the manipulator control. Therefore, a toggle-confirmation
mechanism is proposed here to improve the application of the
mind controlled manipulator.

As the Fig.7 shown, it is the interface of the toggle-confirm
mechanism, which is controlled by the two classified result
of the EEG signal, motor imaginary of left and right-hand
movement. First of all, we assume that the motor imagery of
left-hand movement is to switch the tasks menu, and the right-
hand movement is to confirm this task. There is a menu with
four main tasks, and each main task corresponds to the three
sub-tasks and a cancel option. For example, if we want to
select the task3=- subtask2 to let the manipulator turn on the
light, we should switch the main tasks menu to the “Task3”.
Every time we image left-hand movement for about 2s, this
Imagination will be detected and classified as a command sent
to the toggle-confirm mechanism, and the tasks menu will be
switch one step. The current task we switch to will be lit up
to cue the user. When we switch the main task to the ‘“Task3”,
image right-hand movement to confirm it, then the tasks menu
will enter into its subtask. In the same way, we can switch the
subtasks menu to the “Subtask2”. After confirming this subtask
by imaging right-hand movement, the manipulator will turn on
the light. Before the task is completed, the manipulator will not
receive any control commands and the tasks menu will return
to “Task 17 after the task is finished. With this mechanism,
two input signals can perform 12 tasks, or even more.
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Fig. 7. The interface of the toggle-confirm mechanism
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Fig. 8. The flow chart of the control system

C. The Realization of Toggle - Confirmation Mechanism

The interface of the toggle-confirm mechanism is designed
as an app by the MATLAB plug-in, App Designer, which
was launched in MATLAB R2016a as the GUIDE alternative
products. As the Fig.7 shown, a task corresponds to a pilot
lamp unit. First of all, we drag these pilot lamp unit into the
design view, set up their initial state, such as the label, position,
color, light-off state etc. After that, the rudiments of this app
are already formed. An app is like a C++ class, so we can
apply for an object of this class in the MATLAB workspace.
Then, to realize the connection between this toggle-confirm
mechanism and the control of the KUKA manipulator, we
create two public functions, the “Toggle” function and the
“Confirm” function. As their names, ‘“Toggle” function is
used to switch the tasks menu and the ‘Confirm function
is used to confirm the task. Switching the tasks menu only
need to change the on-off state of the pilot lamp but when
the task is confirmed, we need to finish two works. Firstly,
specify the joint trajectories for the manipulator according to
which task we confirmed by calling the MATLAB function of
“signalbuilder()”. Secondly, run the simulation manipulator by
the MATLAB function of “sim()”. Then, the manipulator will
do the task as we want. The flow chart of the whole control
system is shown in Fig.8

IV. EXPERIMENT AND RESULT

A. Experimental setup of the On-Line BCI

EEG raw data were collected by Neuroscan device with 27
electrodes channels, which can be seen in Fig.9. The EEG

Fig. 9. Scalp map of the 27 channel
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Fig. 11. BCI flow chart

sampling rate was set to 250 Hz and there is a bandpass filter
of 0.5-40 Hz used in the SCAN4.5. As shown in Fig.10, the
length of each trial was 10s, including 2s for preparation, 3s
for motor imagery and 5s for resting.

All the procedures of the data processing are shown in
Fig.11. Before controlling the manipulator, we must test and
verify the accuracy of EEG classification. First of all, we con-
ducted 180 sets of trials according to the above experimental
setup, 100 sets for BCI training and the other 80 sets for
testing. In BCI training, training data with labels would be
preprocessed, feature extracted and classified. Feature extrac-
tion is aimed at obtaining the desired spatial filters W and the
purpose of classification is to obtain the optimal projection
matrix v as well as an offset vy. Once these three parameters
were defined, models of feature extraction and classification
were established, which would be used in next step of testing
or on-line EEG data processing.

B. The result of experiment

There were three male participants for this study, all of
whom are from the South China University of Technology. Our
procedures were carried out with the adequate understanding
and consent of them.

As mentioned earlier, when people image unilateral limb
movements, there would be an ERP/ERS phenomenon in their
brain. To obtain this phenomenon, We firstly carried out band-
pass filtering for the EEG raw data and then processed it with
Fourier transform. After that, the phenomenon was presented
as shown in Fig.12, where the C3, C4 is the electrode located
in the left and right brain respectively.
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Fig. 13. Classification result

According to the data processing methods mentioned in
section II and the experimental setup in the last subsection,
we preprocessed, feather extracted, and classified the EEG raw
data and got the train and test data accuracy. Fig.13 Show the
classification result of one subject. We can see that the train
and test data can be well separated, although the test data is
relatively poor. The classification accuracy of the three subject
is shown in table I. The average test accuracy of them is close
to 70%, which is a guarantee for the manipulator control.

After that, the subjects just needed to switch the task menu
by imaging left-hand movement and confirm their selection
by imaging right-hand movement. And then, the simulation
manipulator would do series of actions to fulfill the task, as
the Fig.14 shown

TABLE I
CLASSIFICATION ACCURACY

Subjects  Train accuracy  Test accuracy
S1 89% 70.00%
S2 88% 68.75%
S3 91% 66.25%

Average 89.33% 68.33%

C. The efficiency of the multi-task manipulator system

The efficiency of this multi-task manipulator system is an
important index to evaluate its application. Firstly, experiments
were carried out to test the running time of the EEG data
processing program. After testing, the time to acquire the CSP
space transformation matrix W for the 100 sets of training data
is 12.53ms and the time of obtaining the LDA transformation

Fig. 14. The scene of manipulator control

matrix v and offset v0 is 1.91ms. Next, the newly collected
EEG raw data were processed. For each trial, there were
64.67ms taken for multi-band bandpass filtering and 12.75ms
taken for CSP feature extraction. Two features were selected
by mutual information feature selection and it cost 6.69ms.
Finally, LDA linear classification took 0.0083ms. It can be
seen that after training CSP and LDA model, the processing
time of each set of EEG data is less than 100ms. Since each
set of EEG data needs 2s for motor imagery, the whole system
generates a control instruction about 2.1s, which can meet the
requirement of real-time control because of the low real-time
requirement in toggle-confirm mechanism.

In addition, we tested the efficiency of the overall system
in task selection. In the experiment, we first assume that each
task has a completion time of 10s, and we do experiments on
four representative tasks: taskl=-subtask2, task2=-subtask2,
task3=-subtask2, task4=-subtask2. The experiment records the
time from the beginning to the end of task selection, and the
results shown in table II are obtained from participants S1 for
ten trails.

TABLE I
TIME SPEND ON TWELVE TASKS SELECTION

Number  Taskl=- Task2=- Task3=- Taskd4=-
Subtask2 Subtask2 Subtask2 Subtask2

1 23.17s 159.09s 69.80s 19.86s

2 70.42s 124.73s 213.31s 170.13s

3 50.55s 10.49s 27.18s 120.67s

4 9.43s 120.70s 18.32s 54.31s

5 88.34s 22.94s 54.61s 134.38s

6 56.68s 26.83s 52.91s 116.59s

7 21.42s 50.28s 227.45s 51.65s

8 78.61s 13.10s 42.20s 146.19s

9 9.33s 126.30s 141.33s 77.20s
10 54.42s 25.07s 17.55s 170.29s
Average 46.24s 67.95s 77.47s 106.13s

The average time of task selection was 74.48s. It means that
the multi-task manipulator system is relatively inefficient, on
the one hand, because the classification accuracy of EEG is
not high enough, on the other hand, there are so many tasks
that when in the task switching process, once the error occurs,
it will spend extra time. Therefore, we reduce the number of



tasks from 12 to 4, we also carry out ten sets of experiments,
and get the following results as the table III shown.

TABLE III
TIME SPEND ON FOUR TASKS SELECTION

Number Task1 Task2 Task3 Task4
1 3.43s 6.71s 54.02s 25.07s
2 33.62s 40.31s 68.45s 14.01s
3 4.11s 6.67s 9.03s 38.73s
4 26.12s 27.79s 8.89s 49.44s
5 3.93s 6.24s 46.59s 12.86s
6 3.36s 51.60s 19.97s 42.34s
7 4.47s 38.73s 80.48s 51.71s
8 73.29s 6.54s 32.17s 38.63s
9 3.77s 5.92s 34.55s 43.07s
10 4.04s 72.47s 17.33s 57.81s
Average 16.01s 26.30s 37.15s 37.37s

The average selection time is about 29.21s. Obviously, the
time spent on task selection has been greatly reduced, basically
within the acceptable range.

V. DI1SCUSSION AND CONCLUSION

To address the issue of limited control actions and low
accuracy in the EEG controlled manipulator, a multi-task ma-
nipulator based on the combination of the motor imagery EEG
algorithm and the toggle-confirm mechanism is developed. In
the design of BCI, a two-category classification algorithm is
used, including multi-band bandpass filtering, CSP for feature
extraction, mutual information for feature selection and LDA
for classification. As a result, the EEG signals was classified
into two categories, left- and right-hand motor imageries, and
the test accuracy is around 70%, which ensure that we can
control the manipulator with low error rate. As the core of
the multi-task manipulator, the toggle-confirm mechanism is
facilitated by the classification results of the motor imagery
EEG. With EEG translated to commands of the toggle-confirm
operation, two types of control signals can be used to switch
and select to different tasks, and subsequently, the manipulator
will do the corresponding tasks. In the efficiency test, we found
that the multi-task manipulator system with toggle-confirm
mechanism has a low real-time requirement, and the time spent
in task selection is acceptable when the number of tasks is
not too many. So, there is no doubt that it has two important
advantages:

1) Because current technology can only distinguish a few
types of EEG signals, the manipulator is unable to obtain
enough control signals to accomplish complex tasks. To
address this problem, toggle-confirm mechanism can be
used to select more tasks only by two type of EEG
signals.

2) The improvement of the recognition type will lead to the
reduction of the EEG recognition accuracy. Therefore,
the multitasking manipulator with direct EEG control
will face the problem of high error rate, which makes
the manipulator can not complete a series of actions. In
practical applications, the error of the manipulator will
likely cause a lot of trouble. But the movement of the

manipulator, which is controlled with the toggle-confirm
mechanism, is predetermined, so it will not occur action
errors in theory.

In this paper, the multitasking manipulator we propose is a
manipulator indirectly controlled through the toggle-confirm
mechanism. Inevitably it suffers from the shortcomings of
inflexibility, lack freedom, and long response time. Thus,
the direct control of EEG signal is still the focus of the
BCI research. But the control with toggle-confirm mechanism
presents a new idea for our application exactly. This will im-
prove the application prospects of EEG controlled manipulator.
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