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About this work

This document is the result of a year-long work at the end of a mathematics undergraduate
program. It deals with the classification of rank 1 and 2 affine homogeneous distributions
on 3-manifolds under a point-affine equivalence. Most of the results come from [1] and [2]
as well as the overall idea.

The classification is done using Cartan’s reduction method, which basically consists on the
reduction of ‘geometric objects’ into normal forms under some notion of equivalence. In the
words of Robert B. Gardner [3] The goal of the method of equivalence is to find necessary and
sufficient conditions in order that ‘geometric objects’ be ‘equivalent’. The word ‘equivalent’
usually ends up meaning that the geometric objects are mapped onto each other by a class of
diffeomorphisms characterized as the set of solutions of a system of differential equations.

In this case these geometric objects are affine distributions and the notion of equivalence
is point-affine equivalence. During the realization of this work [3] was the main reference
regarding this technique, as well as [4].

This work is organized as follows: first, the basic notions, definitions and tools are ad-
dressed in Chapter 1. Next, the main results are presented in Chapter 2 in the form of four
theorems. Finally two examples are given in Chapter 3. Appendix A shows the alternative
method followed in the original articles for computing the normal forms of the first theorem.
Basic knowledge of manifolds is assumed, in particular vector bundles, vector and covector
fields, and also tensor products as well as some background on group theory, specially Lie
groups. Most of the definitions were taken from [5] and [6].

The intended audience of this work are mathematic students with some interest in ge-
ometry of manifolds that wish to acquire a feeling of Cartan’s reduction method or have
detailed working examples of the method. Also everyone interested in the actual classifica-
tion theorems. The objective of this work is twofold:

1. To summarize the results obtained in [1] about the classification of rank 1 and 2
affine homogeneous distributions on 3-manifolds. Also, to provide the background
necessary to understand the proofs and overall context of the work, yielding a mostly
self-contained document.

2. To proof of the classification theorems exhibiting the maximum amount of detail of
the reduction method, particularly following the steps presented in [3].

The main theoretical contribution is Theorem 2.2.2 which is an extension of the work done
in [1] or [2]. There are two motivations for the realization of this work: a purely theoretical
one and a more broader one regarding the connection between geometry of manifolds and
nonlinear control theory.



From a theoretical point of view, the point affine distributions can be directly associated
with input-affine control system [1]s. The notion of point-affine equivalence preserves the
optimal solutions given by the optimal control problem associated with the input-affine
control system. As a result, the classification theorems enable the solution of optimal control
problems subject to equivalent dynamical systems solving only the normal form case. This
result can be further enhanced by designing control laws for the normal case that can later be
applied to any equivalent dynamical system using the appropriate coordinate transformation.

On the other hand, a global motivation is the following: many of the tools and ideas
available in geometry of manifolds can be used to some extension in nonlinear control theory.
Both theories deal largely with the same problems but from different point of views and
with different objectives. Nonetheless, this connection implies that results of geometry of
manifolds can be applied to nonlinear control theory problems after some adjustments [7].
Conversely, nonlinear control theory is a very rich and exiting field in which the geometry
of manifolds can find many interesting applications [8].

This connection has not been exploited to the maximum because both branches have de-
veloped independently, consequently the notions and way of thinking about them is different.
This implies that in order to apply results of geometry to nonlinear control theory a good
level of understanding of both fields is required, and that is not very common. On the other
hand the different points of view and objectives about the same topics yield results that are
not compatible without some previous work. The classification theorems of this work are
a good example. At first glance they are useless for a control engineer, not only because
it is theoretically demanding to understand the hypothesis but also because they do not
contribute directly to the synthesis of a controller. However, after some work it is possible
to relate concepts such as bracket-generating distribution with controllable dynamaical system
from geometry to control theory and apply the theorem to real physical systems.

Furthermore, if some properties useful from a control theory point of view such as stability
are proven to be invariant under the defined equivalence suddenly the classification theorem
implies that, for a wide range of dynamical system, a single controller in normal form can
be applied and like that, the previously abstract and seemingly not very useful theorem
transforms into a very powerful tool for the design of control laws.

This is only a very simple and limited example of what I belief to be a much larger bridge
between both fields.
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Chapter 1

Preliminaries

1.1 Notation and Basic Notions

The following definitions and examples will be used through the text (for details see [5], [6]):

Definition 1.1.1. A fiber bundle (E, 7, M,S) consists of manifolds £, M and S, and
a smooth surjective submersion m : E — M satisfying that each x € M has an open
neighborhood U such that E|y := 7~ *(U) is diffeomorphic to U x S.

The manifold E is called the total space, M the base space and S the standard fiber. The
map 7 is a called projection. If ¢ is the diffeomorphism between E|y and U x S, then the
pair (U, ¢) is known as a fiber chart.

Definition 1.1.2. Let (E,m, M,S) be a fiber bundle and (U,) an open cover of M, then a
collection of compatible fiber charts (U,, ¢,) is called a fiber bundle atlas. Given a fiber
bundle atlas it is possible to consider of two fiber charts (U,, ¢o) and (Ug, ¢p) and the map

$ao s 1 UsNUs x S — UsNUy x S
($, S) — (x,¢ﬁa($,8)),

where the function ¢g, : Ug N U, x S — S is a smooth function and ¢g.(x,-) : S — S is
a diffeomorphism of S for each x € U, := Ug N U,. The mappings ¢z, are known as the
transition functions of the bundle (or bundle transition functions).

This transition functions satisfy a cocycle condition, namely:
® $ap(r) 0 dpy(1) = doqy(x) for x € Uagpy,
e Ounl(z) =z for x € U,.
In the special case where S is a vector space we obtain the following definition:

Definition 1.1.3. A vector bundle is a fiber bundle where the fiber S is an n-dimensional
vector space V. In this case the reference to the vector space is omitted and the vector
bundle is denoted simply as the triple (E, 7, M).



Definition 1.1.4. If the triple (F, 7, M) is a vector bundle, then the set E, := 7~ '({z}) is
a fiber over x € M and is an n-dimensional vector spaces. The smooth function o : M — E
is called a section of the bundle if 7 o o(x) = x, for all z € M.

There are two very important examples:

Example 1.1.1. The tangent bundle: Let
E=TM={(z,v) |z €M, veT,M},

element (x,v) € TM is identified with v for convenience. The fiber at z is the space
E, =7 '({z}) = T, M, and the sections:

X:M — TM
r — X,eT,M,

are called vector fields.
Example 1.1.2. The cotangent bundle: Let
E=TM={(z,n)|veM, neT;M},

element (z,nm) € T*M is identified with 7 for convenience. The fiber at x is the space
E, :=7n"'{z}) = T M and the sections:

Q- M — T'M
x — m, €ToM,

are called covector fields or 1-forms.

Definition 1.1.5. Let (E, 7, M) be a vector bundle, then a subbundle of E is a vector
bundle (D, wp, M) in which D is a topological subspace of £ and 7p is the restriction of 7
to D such that for each x € M, the subset D, = D N E, is a linear subspace of E, and the
vector structure of D, is the one inherited from FE,.

Definition 1.1.6. Given a vector bundle (£, 7, M), a frame at a point x € M is an ordered
basis for the vector space E, = 7~!({z}). Define,

F,(F) :=set of all frames at x € M.
Example 1.1.3. For (T'M, M, ) we have:
Fy = F,(TM) = {(v)){-y | v € TM, span{v;(z)} = T, M }.
Example 1.1.4. For (T*M, M, ) we have:

Fr=F,(T*M) = {("), | v' € T*M, spanf{v'(z)} = Ty M }.



The space F,(F) has a natural left action by the general linear group GL,,:
GL,x F, — F,
(9,p) — g-p.
Definition 1.1.7. The frame bundle is the triple (F(E), M, ) where
|_|F {(z,p) |z € M,p e F,(E)},
zeM
with projection

T:F(F) — M
(x,p) — =

Again there are two important examples:

Example 1.1.5. The tangent frame bundle (or frame bundle): (F(TM), M, n) where

F(TM):= | | Fo(TM) = {(2,p) | z € M, p € F,(TM)}.

zeM

Example 1.1.6. The cotangent frame bundle (or coframe bundle): (F(T*M), M, )
where:
= | | Fo(T*M) = {(z,p) | v € M, p € F,(T"M)}.

zeM

Definition 1.1.8. Let G be a Lie group and (F,m, M,S) be a fiber bundle. A G-bundle
structure on the fiber bundle consists of:

1. aleft action p: G x S — S of the Lie group GG on the standard fiber S,

2. a fiber bundle atlas (U,, ¢,) whose transition functions ¢,s act on S via the G-action.
That is, there is a family of smooth mappings ¢.s : Uys — G which satisfy that:

(a) Pas(®)Ppy(T) = pay(z) for © € Usp,,
(b) ¢aa(x) = € the identity of G,
(c) ¢as(®,s) = p(s, Pap(T)) = SPag-
A fiber bundle with a G-bundle structure is called a G-bundle.

Definition 1.1.9. A principal fiber bundle (P, 7, M, G) is a G-bundle where the fiber is
a Lie group G and the left action of G on G is just the left translation.

Example 1.1.7. The frame bundle and coframe bundle are principal fiber bundles with Lie
group GL,.



1.2 Method of Equivalence

First denote the coframe bundle by B(M) := F(T*M). Let £ € B(M), i.e. £ = (x,(£)™,)
is a coframe of M, neglecting the reference to the point z € M we have £ = {£'}" |, where
& eTrM and z = 7(§).

Definition 1.2.1. The tautological forms are 1-forms on B(M) denoted 0%, 1 < a <n
defined by:

0*: B(M) — T7(B(M))
§& — b,
where
0 : Te(B(M)) — R
Xe — £(dem(Xe)).

Let U be a neighborhood of x € M. Take the coframe field n = {n'}", (n* € QYU)).
Define the function:

a:mH(U) — UxGL,
(#,) =& — (2,9),

where £ = ginb, [g¢] = g~*. Now consider the pullbacks of these 1-forms, using the map

Al e TrM  — T(’;@)(W*l(U))

ny = dml,e(ng) = M5
We have the definition:
0(ee) = Ob 77?1;,5) = Gydm(, 6 (n2).
Or in vector form:
O(z,6) = gfldﬂzix,g) (1) (1.1)

Definition 1.2.2. A G-structure P — M is a principal subbundle of 7 : B(M) — M with
the group structure G C GL,, that is: (P, x|p, M, Q) is itself a principal bundle where

P=|]U.,
zeM

and the U, are vector subspaces of the fibers B(M), = F,.(T*M).

Given a coframe of tautological forms 6 = (6)"_, we define the structure equations
as:

do* = wi A0+ TE0° A 6°.
where wy are the Maurer-Cartan forms. The functions Tj. : P — R are called the torsion
functions, and the map

T:P = ANR"®@R", & TA(E)e? A e ® e,

where {e;} is the canonical base form R is called the torsion.
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Definition 1.2.3. The Spencer operator § in an operator defined on TZ(R") by:
§:T*R") — A*(R")®R"
a a 1 a a
tbc — t[bc] = é(tbc - tcb)'

Using the Spencer operator, we define the space:
A (R") @R
(g @ (R")*)’
where g is the Lie algebra of GG. Using this space we define the structure function:
C:P — T
§ — [T5(9)]

The structure equations are said to be homogeneous if all the structure functions T} are
equal to constants. On the other hand the group G acts on T by:

plg): T — T
Ty +— ngpnggc

T =

The orbits of this action relate with the torsion functions in the following form: Consider
two sets of structure equations

Ao = Wi A0+ TP NG, dO* = o A G+ TR0 A 6°,
corresponding to the same G—structure. Then the torsion functions are related by the orbits
of the GG action by
p(9)(Tieq @€ Aef) = 9T gp9%ea @ ene = T = 99592 (1.2)

Given a G—structure P — M, let T =| | T, be the partition of 7 into orbits by the action
of G. Assume that the structure function C takes values only on one orbit 7,. Then fix
To € To and define: R
P={¢eP|C()=m}, (1.3)
G={9€G|plg)ro =0} (1.4)
Here, P is the total space of a principal G-subundle of P (which is itself a subbundle of

B(M) with the group structure GL,). This procedure of obtaining G-structure P — M
from the G—structure P — M is known as the Cartan Reduction.

1.3 Distributions

Definition 1.3.1. Let M be an n-dimensional manifold, then a distribution of rank k on
M, is a rank-k subbundle D of TM, D, C T,,M is a linear subspace of dimension k for each
x € M and the distribution D can be thought of as

D= UDx.

reM
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Being a subbundle, each point z of M has a neighborhood U on which there are smooth
vector fields Xy, Xy, ..., Xy : U — T'M such that X;|,, Xs|s, ... Xk|. are a basis for D, for
every x € U.

Definition 1.3.2. Let D be a smooth distribution. A nonempty immersed submanifold
N C M is called an integral manifold of D if T,N = D, at each point z € N. A
smooth distribution D on M is said to be integrable if each point of M is contained in
an integral manifold of D. Furthermore, the distribution D is completely integrable if
for each x € M there exists a neighborhood U such that the first k£ coordinate vector fields
0/0x',0/0z%,...,0/0z" span Dy. A completely integrable distribution is also known as a
Frobenius distribution.

1.4 Point-Affine Equivalence

Definition 1.4.1. A dynamical system is a triple (X,U,I') where X is an open subset
of R" called the state space, U is an open subset of R™ and I' is a smooth function that
satisfies

:xXxuU—R"
(x,u) — T'(z,u) = 7.

Such a dynamical system is said to have n states, m inputs and represent the dynamics given
by & = I'(z,u) where x € R" are the states and u € R™ are the controls.

Definition 1.4.2. An input-affine system is a dynamical system where the function I'
has the form
['(z,u) = F(z) + G(x)u.

Representing the dynamics
&= F(z) + G(x)u, (1.5)

where F' : X — X is a smooth vector function known as the drift vector and G : X — R™*™
is smooth matrix function.

Definition 1.4.3. A rank-s affine distribution F on an n-dimensional manifold X is a
smoothly-varying family of s-dimensional, affine linear subspaces F, C T, X. The distribu-
tion F is strictly affine if none of the subspaces F, C T, X are linear subspaces. Each
affine distribution F has a corresponding direction distribution:

L]::{Xl—XQ‘Xl,XQE.F}

Let F be an affine distribution on a manifold X'. Let F also denote the sheaf of smooth
vector fields on X which are local sections of F. The flag of subsheaves

F=F'cFc--CcTxX
May be defined in the recursive way: Let F' = F and then for i > 1
FHl =F +[F,F]

6



Given a point z in the manifold X', the flag of subsheaves gives a flag of affine subspaces of
T, X:
FlcFic.--CT,X.

Definition 1.4.4. Denote F* = U;s; F* C T X. Then the smallest integer r» = 7(z) such
that F7 = F2° is called the step of the distribution at . Let n;(z) = dim(F"). The growth
vector of F at x is the list of integers (ni(z),n2(x),...,n,(x)), where r is the step of F
at x. The distribution F is bracket-generating if 7>° = T'X. On the other hand F is
almost bracket-generating is rank(F>°) = n — 1 and for each z € X and any v € F,,
span(v(z), (Lg~),) = T, X. Furthermore the distribution F has constant type if:

e The growth vector of F is constant on X
e For any section v of F, dim(span(v(x), (Lxi),)) is constant on X" for all i.

Definition 1.4.5. A point affine distribution F on a manifold X is an affine distribution
F on X, together with a distinguished vector field vy, € F.

Any input affine dynamical system
T =wp(x) + ivi(x)ui,
i=1

has a canonical identification with the affine distribution F those fibers are

Fi= {vo(x) + Z/\ivi(x) | A1 eR fori=1,2,.. .,s}.
Definition 1.4.6. Given two input affine systems

& = ag(z) + zs: a;(z)u’, = bo(y) + zs:bj(y)ﬂj,

i—1 j=1

defined on the manifolds X and ), with local coordinate representation of the vector fields:

. 9 - d
al(x):Zaf(x)@, by(z) :be(x)a—yk, [1=0,1,....n
k=1

k=1

They are locally point-affine equivalent if there exist a diffeomorphism ¢ : X — Y that
satisfies

belao(@)) = bo(¥(x)),  Pulai(x)) = ZAf(ﬂf)bj(?b(w)) =12,

The condition of being locally point-affine equivalent translates in local coordinates to:

n k s ' n k
) =3 @), S N@HwE) = Y S @),

q=1 q=1



Chapter 2

Classification Theorems

2.1 Rank-1 Distributions in 3-Manifolds

Theorem 2.1.1 (Local classification of rank-1 strictly affine distributions on 3-manifolds).
Let F be a rank 1 strictly affine point-affine distribution of constant type on a manifold M
of dimension 3. Then:

1. If F is almost bracket-generating, then in a sufficiently small neighborhood of any
point z € M, there exist local coordinates (x!, 22, x3) such that

o L0 9 9
7= (8:51 T eE T s ) +Spa“<a 3)

where J is an arbitrary function on M.

2. If F is bracket-generating and L is Frobenius, then in a Sufﬁciently small neighbor-
hood of any point x € M, there exist local coordinates (z',z? ) such that

0 0 0 0
_ 2_ - . _
F = (x E)x1+ 8x2+J8 )—Fspan(aﬁ)

where J is an arbitrary function on M.

3. If F is bracket-generating and L 2 is not Frobenius, then in a sufficiently small neigh-
borhood of any point x € M, there exist local coordinates (z!, 2, 2%) such that

0 0 0 0 0 0
7= <(1 T J) ozl J8x2 + JH8x3) +span (az Ozt + Oz + H8x3)

where J and H are arbitrary functions on M satisfying 2 5T B £ 0.

Proof. Let M be a 3-manifold and F be a rank 1 point-affine distribution on M. The
problem is to classify the possible point affine distributions that are of constant type and
strictly affine.



Start with a local framing (v, ve,v3) on M, the distinguished vector field will be v; and
vo Will generate the distributions, that is:

F = vy + span(vs).

In order for another local framing (o;, 75, 03) to be equivalent it must generate the same
distribution, which implies that

V1 = Uy, Uy = byvo, U3 = agvy + bsva + c3vs,

where by # 0 and c3 # 0.
These conditions extend to the coframings (n*,n? 1) and (7', 7%, 73) in M by:

0t 1 0 a3\ ' /ot
772 =10 b2 b3 7]2 . (2 ].)
7’ 0 0 ¢ Uk

The problem of classifying equivalent coframings in M can be solved using the Cartan reduc-
tion method in the lifted space B(M) via the map g~ 'dr as in (1.1) with the corresponding
principal bundle By with structure group Gy defined by:

By = {(z,&) € BM) |z € R®, & € F,(T*R?), ie., & = (6;,67,6)"},

1 0 as
G():{ 0 bg b3

0 0 C3

bgCg 7& 0}

Step 0: G(-Structure B, — R?
Let us consider the principal subbundle

By ={(z,&) € B(M) |z € R® & € F,(T*R?), ie. & = (61,0%,6°)T}, (2.2)

and the corresponding Lie group and corresponding Lie algebra:
1 0 as 0 0 a3
GO = { 0 bQ b3 bQC3 7& 0} < o = { 0 52 63 } (23)

0 O C3
With this Lie algebra the structure equations are

| =0 8 B |ale2|+ |12 12 T2 |0t ne®]. (2.4)

In order to reduce the subbundle we need to compute the orbits of the Gg-action:

1. A basis for g, is:
go={ea®e’ er®ed ey @e’ e3 ® e’}



2. Thus a basis for g, ® R? is:
B OR ={e,0e?@c,e10e’®e,ea®e’ e, 3R ®e' it

3. The action of the Spencer operator ¢ in each element of the basis is given by:

§:go @R — A*R®) ®R3

61®63®61 — 61®63/\€1
€1®€3®62 — €1®€3/\62
eeReled — 0
62®62®61 — 62®62/\61
eaReERe? — 0
eaRelRe’ — eaerAed
€2®62®61 — 62®62/\€1
e2®e3®el — e2®e3/\e1
€2®€3®62 — 62®€3/\62
@’ ®e® — 0
63®€3®61 — 63®63/\e1
63®€3®62 — 63®€3/\62
esRel®ed — 0,

hence

5(go @R = (ey@e' At er@e? Aedea@el Ne? ea@el A,
a2 Ned es@et Aedles@e? Ae?).
4. This implies that
AR @ R
 6(g. ®RY)
and the structure function is:

C . BO —>7-0
E—Th( e @e' Ae* + Th(E)es @ e A€,

To =(e;@e' ANe? ez ®@et Ne?),

5. In order to compute the orbits of T calculate the Gy-action in the generators: Let
g € Gy, then

p(g)(e1 @ e' Ae*) = bye; @e' Ae?,
- b
p(g)(es @e' Ae?) = ﬂbgel Qe N’ + Zey el A€
€3 €3
According to (1.2) the torsion functions transform as

~ b
3 3 _ Y23
—17, 17, = —=1T7%.
C3 C3

~ b
Tty = boTiy — e

10



Step 1: G;-Structure B, — R?
Take 7o = e3 ® ¢! A e?. Using (1.3) results in the G-Structure B; — R* with principal
subbundle:

By = {(z,&) € By | T15(€) = 0, Tiy(€) = 1}. (2.5)
Replacing in (1.4), the corresponding Lie structure group G and its Lie algebra g, are:

1 0 0 0 0 O
Glz{ 0 c3 b3 03750} < gl:{ 0 Y3 Bg } (26)

0 0 C3 0 0 Y3
With this Lie algebra and principal subbundle the structure equations are
dot 0 0 O o1 T213 T113 0 RN
d92 =10 Y3 53 AN '92 -+ T223 T123 T122 61 VAN 93 . (27)
de3 0 0 3 03 TQ?’3 Tf’3 1 01 A 62

In order to reduce the subbundle we need to compute the orbits of the Gi-action:

1. A basis for g, is:
g={e2®c+e3®c’ e ®e’}.

2. Thus a basis for g, ® R? is:
R ={ec+tesRe®@e, e e’ ®e s
3. The action of the Spencer operator ¢ in each element of the basis is:

5 g, R — AR ®@R?

€2®€2®61+63®63®61 — —eg®el/\62—eg®el/\63
62®62®62—|—63®63®62 — —€3®62/\€3
Rl te;RePRe’ — e Ae?

62®63®€1 — —€2®61/\63

62®63®62 — —€2®62/\€3

erRe* e’ — 0,

hence

(3. R =(ea@e' N2 +es@e ANePles@e? Ned ea @e? Ned ey ®@el Aed).

4. This implies that

A2(R?) @ R?
T1= AR) R ®3 = (ea®e' Ne*—ez@e' Ae?, ey @e! Ae?, e e Ne? ey @e’ Ae? | es@e! Ae?)
6(g. ® R?)
and the structure function is:
C: Bl — Tl

E—Th(E) (2 ®@e' Ne® —es@e' Ne) + Th(E)er ®e' A e+
Th(€)er @ e Ae® + Tog(E)er @ e A e® + Tin(E)es @ e' A€
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5. In order to compute the orbits of 7 calculate the Gj-action in the generators, let

g € Gy.
p(9)(ea®@e Ne? —es@e' Ne?) =ea@e Ne? —ez3@el Ae?,
plg)(e1 @e' Ae?) =cze; @e! Ae? + bgey @ e A€,
p(g)(er @e' Ae?) = cze; @e! Ae?,
plg)le;®e /\e):cgel®eg/\e
plg)(es® e’ /\e): (62®6 Net—ez3@e Aed) +es el Ael

According to (1.2) the torsion functlons transform as

~ ~ b3
1 1 1 271 =3 3
T3 = 3T, Ty = 515, Ty =15+ o

Step 2: G,-Structure B, — R® Take 7, = e3 ® e' A €2 Using (1.3) results in the Go-
Structure B, — R® with principal subbundle

B, = {(z.&) € By | Ti5(€) = 0} (2.8)
Replacing in (1.4), the corresponding Lie structure group Go and its Lie algebra g, are:
1 0 0 0 0 O
Gy = { 0 c3 O C3 # O} g g, = { 0 V3 0 } (29)
0 0 C3 0 0 Y3

With this Lie algebra and principal subbundle the structure equations are

d6* 00 0 o! TL, TL 0\ [02A6°
do? | =0 v O | A2+ |TE TE T |0 N63]. (2.10)
de? 0 0 0° T3 0 1 0" A 6

In order to reduce the subbundle we need to compute the orbits of the Gy-action:

1. A basis for g, is:
9, = {ea ®e® +e3® e’}

2. Thus a basis for g, ® R? is:
5.0R ={e®eRc +tez30e*® 'Yic123:
3. The action of the Spencer operator § in each element of the basis is given by:

§:3, R — A*R?)®@R?

el el +esed@el — —ea@etNe? —es el Ae?
62®62®62+63®63®62 — —€3®62/\63
62®62®€3+63®63®63 — eg®e2/\63,

hence:

5, R = (ea@e* N Fes@e Aedles®@e? Aed ey ®e* Aed).
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4. This implies that

B A2(R3) ® ]R?)

To:
’ 5(92®R3)

=(ea®@e' Ne* —es@e NeP ey e NeP e ®e Ae?,
er@e*Ned ea@el Nedes@el Ae?).

and the structure function is:

C: B —>T2
Er—aTh(E)(ea@er Ne? —es@et Ne®) + ThL(Eer @e Ae? +Th(Eey @e! Ae?
Tys(€)er @ €2 N e’ Th(E)ea @ €' A e’ Th(E)es @ ' A e,

5. In order to compute the orbits of T calculate the Gs-action in the generators: Let

g € Gs.
p(9)(ea@e Ne? —es@e' ANe?) =ea@e' Ae? —ez3@e! Ae?,
p(g)(e1 @e' Ae?) =e; @et Ae?,
p(g)(e1 @ e' Ae®) = cze; @ el A€,
p(9)(e1 ®@e* Ae?) = cie; ®e* A e,
p(g)ea@e' Ae?) = ey @et Ne?,
p(g)(ez@e' ANe?) =e3 el Ae?

According to (1.2) the torsion functions transform as
Tll?; = o311, T213 = 3T, T123 =Tt

Before performing the last reduction we need to consider three cases:
1. T}, = T); = 0 in this case it is not necessary to reduce further.

2. Ty; = 0 and T3 # 0 in this case it is necessary to reduce one more time to get a
G—structure where G' = {e} (also noted e—structure).

3. Ty # 0 in this case one more reduction is required but the resulting G—Structure is
not trivial.

The idea now is to use the resulting structure equations to find normal forms for the
coframes and frames in M. Recalling that the structure equations df® = wf A 0° + T20° A 6°
are defined for coframes in the principal subbundles given by each reduction it is necessary
to express them in terms of coframes in M using the pullback of the section 7.

Since the system of equations is highly underdetermined there are many frames and
coframes that satisfy the corresponding structure equations in M (all equivalent), if a simple
solution is not clear then a general form is assumed and conditions over the coordinate
functions are deduced from the structure equations, finally the simplest functions that satisfy
this conditions are chosen.

Case 1: T}y, =Ty, =0

13



Since the torsion functions Ty, T and Ty do not appear in the orbits of the action they
are not affected by the reduction so they are free to take any value, thus for simplicity we
can make them vanish. Hence the structure equations are

e’ 00 0 g1 0 0 0\ [/6>2A63
2] =10 ~ o a2 +{0o 7% o] [62n63]. (2.11)
463 00 & 0 0 1) \otnre?

These forms are defined on the lifted space By, thus in order to find the corresponding forms
in M consider their pullbacks via the section o : M — Bs:

d?71 = O,
dns =33 A+ Thn' AP,
dns =33 + Tion' A

Since 1! is exact we can chose a coordinate 2! on M such that n' = dz!'. From the structure
equations dn? = 0 mod {n? dz'} so it is not exact and must be a combination of 1* and
dz!. Taking the two remaining coordinates the simplest form that satisfies these conditions

is
n® = da® — 23da’.

Finally the third structure equation implies that
n* = da® + Bdz' + O(da? — 2*da?).
For some functions B and C' on M, from the structure equations it follows that
Fy = Cda* + D(d2? — 23dz?),
where D is another function in M and

1 1
C - 5833, D = §8§BB

In summary the coframing is given by the one-forms:

n' = da',

1
n* = da® + Bda' + iagB(de — z?dz?),
n® = da? — 23dat.

Now, it is easy to calculate the corresponding vector fields of the dual framing:

0 5 0 0
o= ox! T 02 _Bﬁx?”
_ 0
P27 o
0 1 0

u =g 2% P

14



Setting J = — B, the distribution is given by:

F = v + span(vq) = (% + x?’% — J%) + SpaH(T)-

Finally, from the structure equations
1 1
TYy = 0pJ — S (0] + 00 ] + JO3T) + 2 (0])°.

Case 2: T); =0 and T}; # 0
In this case since 175 # 0 it is possible to continue the reduction, recall that we had the
orbit
plg)(er @ e' Ae?) = cze; @e' AcP

Thus let 75 = e; ® e* A e®. Using (1.3) results in the G3-Structure By — R* with principal
subbundle

By = {(x,&) € By | Ti5(€) = 1}. (2.12)
Replacing in (1.4), the corresponding Lie structure group Gs and its Lie algebra g, are:
1 00 000
Gs = { 010 } — g; = { 000 } (2.13)
001 000

With this Lie algebra and principal subbundle the structure equations are

do? 000 o1 0 1 0 0% A 63
d? | =0 0 O)A ||+ |T% T3 TE) [0PNG?]. (2.14)
dg? 000 63 5 0 1 01 A 02

As it was done before use the section m : M — Bs to pullback this forms to obtain the
structure equations in M:

dn' =n' A,
dn” =Togn' An” +Tign' A’ + Toan® An?,
dn3 = 771 A 772 + ngnl A 773. (2.15)

Now, note that ' is a closed one-form, i.e. dp' =0 mod n' but is not exact, so in principle
we can take 7' in only one coordinate and make the function not defined in 22 = 0 so that
it is not exact. Thus, take the coordinates ! and z? and define

1
1 1
= —dz".
n 22
Then the first structure function implies that

dn1 =

1
1 2 _ 1 2 1,3
(a:Q)de A dz =" ANdz® =n" An°,

15



hence )
n® = —2dx2 mod dz'.
x
Also note that dn? # 0 mod 73, the easiest way to guarantee this is to make the function in
the 2! coordinate depend on z* so that dn® has components in the three coordinates while
n3 not. And the simplest function is the linear one, so we make

1 x3
3 _ 2 1
=3 (dx — dex )

With ! and 1® we can use the structure equations to arrive at

1 1 1 3
2 _ 3 1 2 1
"= (dx +x2de —l—xQC(dx —xzdx )),

for some functions B and C' on M.
The structure equations also imply that C' = %(a:2833 — 23). In summary the coframe is

1
1 _ 1
=l
1 1 11 3
2 __ 3 1 2 3 2 1
1 z?
3 _ 2 1
= g5 (e - '),

The dual framing is

0 0 0
— 2 3
T g i Ox? _Bf)x3’
vy = x2i
2 — ax37
0 1 0
2 2 3
Vg3 =& ﬁ—i(l‘ agB—ZL' )@
Let J = —B. Then the distribution is given by
2 0 30

0 0
F = v + span(vy) = <x 9l +x 97 + J@x?)) + span<%).

Finally from the structure equations

1
T2, :—2(I233J — 32°),

2x
1 .
2 2\2 2 2\2 2.3 2\3 92
Th =1y (3(95 )2 — 622 + 4(22)20 + 2022305 — 2(2?)202,T
= 22?2008, + (%) (D)) — 2(a?)2I 03T )
1
T3 25(1 — 2%033]).
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Case 3: Ty, # 0
Since Ty; # 0 it is possible to continue the reduction, in this case the corresponding orbit

of interest is
p(g9)(er ®e* Ne?) = cie; @e? A

Thus let 7 = e; ® €% A €. Using (1.3) results in the Gs-Structure Bs — R® with principal
subbundle
By = {(2,&) € By | Ty3(€) = 1}.

Replacing in (1.4), the corresponding Lie structure group G and its Lie algebra g, are:
1 0 O 0 00
G’gz{ 0 £1 0 det(g):l} — gaz{ 000 }
0 00

0 0 =1
With this Lie algebra and principal subbundle the structure equations are

do? 00 0 o1 1 T, 0\ /[02A63
> | =(o o o|alex|+ |12 13 ] |60 n6%]. (2.16)
63 00 0 63 75 0 1) \0'Ae?

As before use the section 7 : M — Bs to pullback this forms to obtain the structure equations
in M:

dn' = Tign' An* +0° AP,

dn® = Tin' An® + Tisn' A’ + Togn® Avp?,

dn® =t AP+ Thn' A + Ty AP
Since dn' # 0 mod n' as in case 2 we make

nt = dat — 23da®.
Now set T}5 = B, then the first structure equation implies that
(Bn* +n?) An® = da? A da®.

Consequently,

(-B(da' — 2*°dz®)A"'da® + O(Hd2® — dz?)),
M Hd2? — da?).

n2
773

For functions A, C'and H on M (X # 0).
The third structure equation implies —\?0,H = 1 so 0;H < 0 and

1

A= :
V-0 H




In summary the coframing is
n' = da' — 23da?,
n® = —\/—0,Hdz* — B(dz' — 2*da2?) — C(Hda?) — da?,
1
0 = ————(Hd2? — da®).
-0 H

The dual framing is

) B /,0 0 )
T m(x ort T 022 +H%>’
V2 = @(“”3@?1 * aiQ - Ha(;)’
U= —\/ﬂ% +C<$3£;1 - 8?52 +Hai?>>'
Let J = % the distribution is
7= (ail - \/_Baﬁ@gail + 8?:2 +H%)> +Spa“(‘”3% + % +H%>

Finally replacing in the structure equations we get the following relations:

C :281H\/—81H ((81H83H ~ HO%H — a§2H> J
— (1 -+ xSJ)ale — (32J -+ :c3(91J —+ H@gJ)81H>,
1
T2, 25(82J + 230, + HOsJ + JOsH),

T2 =C20,H — 8, HdyJ + J2O,H + (20 (alHaQJ L H + A H

1
SNEDN:
42030 HO T + 23 TP H + 2H JO%H — 2J81H83H>

— 2$3J81081H — 281081[‘[ — 2HJ(93081H — 2J62061H> s

T2, = — (0,C + 2°0,C + HOsC + CO3H) — (0%H + 2J0,H),

1
2v/—01H

> (2?0}, H — 200 HOsH + 03, H + HO?H).

1
) N —

B 90, H/—0 H
u

Theorem 2.1.2 (Normal form classification of rank-1 strictly affine distributions on 3-man-
ifolds). Let F be a rank-1, strictly-affine, bracket-generating or almost bracket-generating
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point-affine distribution of constant type on a 3-dimensional manifold M. If the structure
functions corresponding to the distribution F are homogeneous, then F is locally point-affine
equivalent to

F = vy + span(vy), (2.17)

where the vectors v; and vy are one of the following;:

e If F is almost bracket-generating, then there are two options:

— Case 1:
0 0
Ul($> = @ + x3@ + (Cgl'z + 033}3)%,
0
’UQ(CIZ') = @
— Case 2:
_ d 3 3
nlr) =gt ega ter s
0
’UQ(CC) = @

o If F is bracket-generating and L 2 is Frobenius, then there is one case:

— Case 3:

o If F is bracket-generating and L 2 is not Frobenius, then there are three cases:

— Case 4:
0 0 0 0
vi(z) = gy +c (x?’@ + 92 +e(xt + Cﬂ%@) .
0 0 0
_ 3 1 3
ve(z) = e(x Ey + 92 +e(x” + o >8x3>'
— Case 5:

0 ¢ cos(czrt) 5 0 %) 0
= H
vi(x) Bt + NI e + 52 + 923 |

9 9 9
va() = 6(”’383:1 to T Hax?»)'

Where H = <(03(x3)2 + ¢4) tan(czzt) + Foo(2?)/c3(x3)? + c4> .
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— Case 6:

Vees(ea(z3)? —cy) \ Ozt 02 3

0 0 0
va() = 6<x38x1 + 0x? + H&L‘?’).

1
Ul(l'):ail-i- 1 cos(est) <:c3 0 0 . x2 )

Where H = ((—03($3)2 + ¢4) tan(czx!) + Fhg(2?)/c3(23)2 — c4> :

Proof. Start with the three cases of Theorem 2.1.1:

e First Case: the distribution F is

o L0 B 0
7= (8301 T 0x? +J@x3) —|—span<%>,

where J is an arbitrary function on M. The corresponding coframe is

(14 2%05.J)da! — 95Jdz? 4 da®,

= dzt,
= —23dz! + da?

771
7,]2
773

The corresponding structure equations are not homogeneous, hence a modification
needs to be made, take

-1/o a
Vg = G /<l’>$
Then the frame becomes

0 5 0 0
v ozt T 0x? + J@aﬁ’

-1/o 8
n=G"g5

-1/p 0 -1/2 -1/2 9
U3:G /@_CUI(G /)—G /83J)@

With corresponding coframe

= dl’l,

1 = (FG(G 05T — v (G) = JGE ) x4+ G ((GF) = G0 ) da + G,
Ny = —2*GPdat + G

Now determine the coordinate transformations that preserve this coframe, let (7!, 7%, 73)

be new coordinates related to the old ones by:
ol =g (2, 7,7%), 2P =g(3,7%,7%), 2P = ga(3', 77, 3°).

20



The first covector gives
n'=da' =i =di' = 2' =3 +a
The third covector
Ny = —2*G2dat + G2da?
= — oG 2AT 4 G (0102dT" 4 Dapodd? + D5¢0d73)
= 3G PAF + G,

Hence O3y = 0 = 22 = ¢o(i!,7?), also G2 = G"0y¢5. Finally in a similar way
making 7% = 77> and using the previous results gives

¢z = 012 + 209,

O3 = 93J = (020) " H(202,097° + 20%,¢2). (2.18)
Rename ¢9 = ¢. The third structure equation gives
035G
dn® = N mod n'.
Ui 53 n-An Ui
Hence 28(3;—2 must be a constant —c¢;. There are two cases depending on whether ¢; is
2

Z€ro or nonzero.

1. If ¢; = 0 then 093G = 0 thus G(z!, 22, 23) = Go(2', 2%). The allowed local change
of coordinates imply that

82¢(‘%17‘%2) !

T Go(F + a, 9(F, 72))

It is possible to normalize G(#',Z?) = 1. In order for this relation to hold under
coordinate transformation G2 = G %82¢ implies that ;¢ = 1 hence

o(&',7%) = 7 + ¢o(3").

If G(z!, 2% x3) = 1 then the third structure equations becomes

dn® =n' An? + 0sJnt AP
Hence 93J = c3 and so J(a',2?,2%) = 2% + Jo(x',2%). The second structure
equation for dn? gives
dn? = 0y Jon* A2
Hence 0y Jy = ¢y and Jo(z!, 2?) = 2% + Ji(x'). Replacing in (2.18) gives
Ji(@h) = i@+ a) = (¢(31) — cady(T') — cago(@)).

The normalization .J; (') = 0 is preserved for functions ¢o(Z') that satisfy

0= ¢(2") — c305(Z") — cago(T). (2.19)
In the end the coordinate transformations that preserve the structure equations
are
v =i ta, 2= +0(F), 2’ =5+ (@)

Where ¢y satisfies (2.19).
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2. If ¢; # 0 then
1

(cr2® + Go(at, 22))?

The allowed change of coordinates must satisfy

G(z', 2* 2°) =

o', i%) = éGo(il +a, d(3', 7?)).

Normalizing Gy = 0 this condition is preserved if ¢(z', %) = ¢o(z'). This implies
that G(x!', 2%, 2%) = (c12®)7? and the third structure equation becomes

dn® =0t An? — (2*) 12T — 22050t AP — e AP
Hence (2%)71(2J — 2303J) = c3, which translates into
J(z' 2% 2%) = c32® + Jo(2!, 2%) (2%)%
For a function Jy(z', 2?). The second structure equation becomes
dn? = —2*01Jon* A .

If —230, Jy equals a constant then 9 Jy = 0 hence J(x!, 22, 23) = c323+J; (2?)(23)?
for a function .J;(2?). Replacing in (2.18) yields

. _ o Pp(@?)
J1(7) = Ji(po(82) 05 (52) — <=5t
1(Z7) = Ji(¢o(7)) 5 (27) o (72)
Hence the local coordinates can be chosen so that
=3 +a, 22 =bi? +c, 3 = b +c.

e Second Case: the distribution F is

0 0 0 0
.29 3 0 o o
F = (x gy + 52 +J8x3> +Span<6x3>,

where J is an arbitrary function on M.

This case follows the same steps as the previous one, but this time it is possible to take
the structure equations directly from the frame given by the distribution.

The canonical frame is:

0 0 0
2 Y 3_~ 27 7
T Il +x 92 +x J8x3’
0
0
172@ + (($2)283J — 133) —_—.
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The corresponding canonical coframe is:

1
0= —dat,
1 J z3 z3
2 3 1 2 1
= e’ = et = (0] - ) (40 - J5dat),
1 x3
3 _ 2 1

The corresponding structure equations are
dnt =n' A1,
dn? = Tign' A + Tn® A,
d’> =n' A+ Tisn' A,

The allowed transformations are

where ¢/(z1) # 0.

These transformations imply that

1
¢'(1)

J(@, 2% 7%) = J(a', 2?, 2®) —

(6@ @) + 30"

The last structure equation gives

Q'JS

2 _ 2
Making T%, = a for homogeneity translates into

3 ra?\2 3
J(z', 2% 2?%) = 5(;) tag+ Jo(z, 2%),

for some function. Similarly the second structure equation implies that

x3

TE = 2205 Jy — 2Jy — a5
In order for T% to be a constant we make a = 0, resulting in
2200 Jy — 2Jy = —2¢1,
for some constant ¢;. Thus,

Jo(zt, 2?) = ¢ + Jy (2 (2?)?
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for some function J;(z'), and
J(zt 2% 2%) = §(x_‘3>2 + ¢ + Ji(xh)(2?)2
2 \z?
At last, replacing in the allowed transformation gives
GO
¢'(z')  2(¢'(21))?

Ji(@') = ¢/ (2" 1 (g(3"))

Thus, normalizing J; (#') = 0 results in the following differential equation,

¢///(i'1) B 3 ¢//(3~§'1)

Jan 2eErE
whose solution is,
=1
1, ar +b
o) = ctt+d’
So finally the allowed transformations are
=1
L ar +b o ad—bc _, 5 ad—bc 5 2c(ad—bc), 5.5
il +d’ t (cat —I—d)QI ’ T (czt —i—d)Qx (czt 4 d)3 (&)

Third Case: the distribution F is
0 0 0 0 0 0
_ 3 3 v o v
F = ((1 +x J)a%1 + ‘]ax2 + JHax3> +span<x Bl + 522 +Hax3>

where J and H are arbitrary functions on M satisfying % # 0. This case follows the
same procedure as before but is much more longer, for details see [2].

]
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2.2 Rank-2 Distributions in 3-Manifolds

Theorem 2.2.1 (Local classification of rank-2 strictly affine distributions on 3-manifolds).
Let F be a rank 2 strictly affine point-affine distribution of constant type on a manifold M
of dimension 3. Then:

1. If F is almost bracket-generating, then in a sufficiently small neighborhood of any
point x € M, there exist local coordinates (x!, 22, 2%) such that

(22 D
ozt Spa 0x2’ 0x3 |’

2. If F is bracket-generating and L is completely integrable, then in a sufficiently small
neighborhood of any point x € M, there exist local coordinates (z!, 22, 23) such that

0 0 o 0
_ 2 - 7 -
7= (x oxt J18x2> +Span<8x27 8953)’

where J; is an arbitrary function on M.

3. If F is bracket-generating and L 2 is not completely integrable, then in a sufficiently
small neighborhood of any point z € M, there exist local coordinates (z!, 22, %) such
that

0 0 0 0 o 0
_ 3 3
F= <(1 L Jg)@xl * J38x2 a J28x3> * Span<x Ox! * 02’ 8x3)’
where Jo and J3 are arbitrary functions on M.

Proof. The proof follows the same steps as Theorem 2.1.1, namely start with a local framing
(v1,v9,v3) on M, the distinguished vector field will be v; and the vectors vy, v3 will generate
the distributions, that is:

F = vy + span(va, v3).

In order for another local framing (o;, 72, 03) to be equivalent it must generate the same
distribution, which implies that
Uy = vy, Uy = bavy + Cou3, U3 = b3 + c3v3,
where bycs # cobs.
These conditions extend to the coframings (n',n? 1) and (7', 7%, 73) in M by:

-1

0t 1 0 0 nt
77}2 = 0 b2 bg 7]2 . (2 . 20)
773 0 ¢ c3 773
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The problem of classifying equivalent coframings in M can be solved using the Cartan reduc-
tion method in the lifted space B(M) via the map ¢~ 'd7 as in (1.1) with the corresponding
principal bundle By with structure group G, defined by:

By ={(z,&) € BIM) |z € R®, & € F,(T*R?), ie., & = (62,602,057},

1 0 0
GOI{ Ob2 b3

OC2 C3

bQCg % Cgbg } .

Next, follow the same steps as Theorem 2.1.1 (see section 1.2):
1. Set 1 =0
2. Find a basis for g;, the Lie algebra of G;.
3. Extend to a basis of g; ® R®.
4. Using the Spencer operator § find a base for §(g; ® R?).
5. Write a base for 7; and the structure function C.
6. Compute the orbits of T.
7. There are two options:

(a) If the Gj-action on T is trivial the reduction is finished, and the resulting structure
equations give the normal frame and coframe.

(b) If the G;-action on T is not trivial, then compute the transformations of the struc-
ture functions that preserve a normal form and the G, ;-Structure B;1 1 — RS,
set 1 =174 1 and go to step 2.

A different proof is given in [1].
[l

Theorem 2.2.2 (Normal form classification of rank-2 strictly affine distributions on 3-man-
ifolds). Let F be a rank-2, strictly-affine, bracket-generating or almost bracket-generating
point-affine distribution of constant type on a 3-dimensional manifold M. If the structure
equations of F are homogeneous, then F is locally point-affine equivalent to

F = vy + span(va, vs3). (2.21)

Where the vectors vy, v and v3 are one of the following:

e Case I: 5 5 ;
nD=gn  w0=gp  wl@)=ga
Case 2:
o Case o 9 i )
wo=rgat i wE=Tem v =g



o Case 3:

v(z) = (1 + 03x3)ai1 + 832 + 833’ vy() = :173% + %, vs(x) = %
Proof. Start analyzing each one of the three cases in Theorem 2.2.1:
e Case 1: the canonical frame corresponding to the associate distribution is
0 0 0
V=g V=g V3= oo
The corresponding coframe is
m=da', n=dz? 03 =dad
The corresponding structure equations are trivial
dp, =0, dne=0, dn3=0. (2.22)

Equations (2.22) imply that the distribution F is homogeneous with structure func-
tions T]’k = 0. If (71,72, 73) are the one-forms associated with the coordinate system
(', 7% 73) then the structure equations (2.22) are preserved by transformations of the
form

=3+, P*=F4c, 2°=3"+4cs

e Case 2: In this case proceeding as before and starting with the canonical frame

v, = 0 _ 0
P agt Yox2
0
Vg = —
2 axQ 7
0
U3 = —=
3 8])3 7
will result in the following coframe
1
m = ﬁdxla
J
Ny = x—;dxl + da?,
n3 = da?.
Computing the wedge products 1y A ng, m1 Ans and 15 A 13 the first structure equation
becomes .
dnt = Pnl A2
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It is clear that the structure functions cannot be constant, hence it is necessary to
consider other frames. The simplest case is

N
! ox! Lox2’
0 0

2 3
v =Py 5 B
0 0
vz = 55@ + 55@- (2.23)

Where in principle 33, 32, 33 and 33 are functions of z!, 2% and z* such that v, and
vy remain linearly independent. The corresponding coframe is

1

n' = —da’,

J 53 ﬁ3 52

2 J1P3 41 3 1.2 P33

T=2ap® T AgY T Agt
J133 3 3

3 SPy o1 Py o Py g

=A™ T A T agt

where A3 = (355 — B233. Now, since Bf are functions of !, 2% and 23, calculating
directly the differentials of the coframe one-forms is too long. Instead, first calculate
the wedge products

o B3 B3

1 _ 1 2 1 3
n AN = xQAﬂdx A dx® — xQABd:B A dz?,
Lo B 2 B3 1 3
AN = xQA/de A dx —l—mdx A dx”,
J 1
20,3 Y1 1 3 2 3
n°An = :EQAﬁdx A dz +A—Bdm A dax®.
Consider a general structure equation
dn’ = yiyda! A da? 4+ ~j,dat A da® + qhada® A da?, (2.24)

=Tin' An” + Tign' A + Taen® A

Replacing the wedge products nt A n?, nt An? and n? A n? the following equations are
obtained by comparing the coefficients:

Tty = 2 (83712 + Baviz) — J1B575s,

Ty = 2* (8372 + Biis) — J1657%,

T35 = 153A0.

Fori=1

—1
1 _
W=y



Hence

1 1
1 2 52 1 2 92 1
T12 =T /82 (x2)27 T13 =7 63 (12)27 T23 = 0. (225)
In order for the structure to be homogeneous the structure functions must be constant.
Let T}, = 7}, and T}; = 75, where 7}, and {5 are constants, then

/32 = 2 712, 53 =z 7'13 (2.26)

Although the functions 57 and 3% are known, the direct calculation of dn? and dn? is
still very long given that 35 and 33 are arbitrary functions of z!, 2% and 2. In order
to simplify the calculation assume that 85 and (33 are constants 85 = b3 and 33 = b3.
In this case

AB = a*(7iyb; — Tizb3) = @%b

Hence the one-forms n? and 7% become

Jo b3 b3 7l
2 1Y3 3 2 13 3
= 215 qpt 4 Bde? - 139
T Tt Ty
—Jib3 b3 7l
3 _ — 2d 1 2 d 12d
Tt Tt Ty
and
—b3 b3
2 3 3 1 3
dn? = 02(< 7 ; )dat A da? = e Ot A da,
b3 Ji b3
dn? = 20 dat A dz? OsJ1)dzt A d2?
n b 2<(l’) ) X +( ) ( 3 1) x X
Thus from (2.24)
-3 J —p3
2 3 1 2 3 2
2T a2<(:v )2>’ s = ($2)2b(63jl)’ 723 = 0,

W b
Vi = p 82<W)7 Vi3 = m(aﬂl)a Va3 = 0.

Replacing in the structure functions

J b3
T122 = (1127‘112 562((1‘21)2) + bQ (l’ ) (83J1)> (227)
J1 b3
T123 = —272 (l’ 7'13 362((1‘2) > + bg ($2§2b(031]1)>, (228)
T2 =0, (2.29)
bs Ji b3
T132 = 1‘2 (l‘27'112 b282 (W) + bg($2—§2b(a3(]1)> 3 (230)
Ji b3
TS = 2° (xzﬁlg b232<( )2) + b3 ($2§26(63J1)>, (2.31)
T3, = 0. (2.32)
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Thanks to the symmetry of the equations, the structure functions T3, T, T}, and T},
will be equal to constants if

Ji Xt
22 _
(SL’ ) mfb (W) + ?(93% = Cy, (233)
where k;, x; and ¢; are constants that satisfy:
1. For l =1, ky = —1Lb5(b71), x1 = b3b3(b™"), hence replacing (2.33) into (2.27)
implies T2, = c;.
2. For | = 2, kg = —75b3(b71), x2 = b3b3(b™!), hence replacing (2.33) into (2.28)
implies TE = cy.
3. For I = 3, k3 = 7,b3(b71), x3 = b3b3(b™"), hence replacing (2.33) into (2.30)
implies T}, = c3.
4. For | = 4, kg = 7565(b71), x4 = b303(b1), hence replacing (2.33) into (2.31)
implies T = ¢y.
Equation (2.33) can be written as

2J OzJ
- 1/€l+Xz 3 1:Cl

2 2

Since it is a sum of three terms if each one is constant then the sum will be constant.
If the second term of the left hand side is constant then

J=3%), = OJ = jh 031 =0,

and the resulting structure equations become homogeneous, as desired.

In summary if J; = 22J; then (2.33) is satisfied and the structure functions (2.27),
(2.28), (2.30) and (2.31) become constants. On the other hand (2.26) imply that the
structure functions on (2.25) are constants and since the structure functions (2.29) and
(2.32) are already constants the structure equations (2.24) become homogeneous.

Now, normalize the constants J; = —1, 7, = 1, 7i5, = 0, 78 = 0 and 73 = 1 the final
frame is
0 0
2 2
V] = + =,
! Ozt 0x?
0
2
vy = 1" —,
? 0z?
0
V3= —.
5T 04

The corresponding coframe is

nl—édxl,
2__—1d1+ d2
77—$2 € 2 -,
773:dx3,



the associated structure functions are

Th=1 Th=0, Ty=0,
T =-1, Th=0, T5=0,
T8 =0, TL=0, Ty =0,

hence the structure equations are homogeneous as desired. Finally in order to calculate
the coordinate transformations that preserve the coframe, let (z', 72, %) be another
coordinate system related to (z!, 22, z3) by

Making n' = 7! results in
rt = ¢1(f1)7 z? = f231¢1(51)'
Replacing in n? and using n? = 7? it is obtained
g1 =0, D23 = 0, O3¢5 = 1,
which imply that d;¢; = K; # 0. Finally 0 = 7® gives
(01¢3)(01¢1) = 0
and at last the allowed transformations are of the form

Jfl :Klfl, $2:K1{Z‘2, l’ngg—f—Kg.

Case 3: Start with the canonical frame

) B) )
=50 T g — P
27 9 T B
_ 0

Ug—ax:s.

The corresponding coframe is

m = dz' — 2*da?,

M = —Jgdl'l +(1+ ngg)de,
N3 = Jodzt — 23 Joda? + dad.
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Computing the structure equations yield the following structure functions:

T112 = Ja,
T113 = Js,
T213 = ].7

T2 = ((02J3) + 23(01J5)) — Jo((05J3) (1 + 2%) 4 J3),
TPy = —J5((055) (1 4 2°)) — J3,

T3 = —((85J5)(1 4 2%) + J3),

TP = J5 + 22 Jo(0302) — ((Oad2) + 2°(01 1)),

T2 = JoJs — 2°(03.J5) J5 — (03.J3),

T3 = Jo + 2°(05.J5).

The first two equations simplify the analysis, since they imply that J, = ¢y and J3 = c3,
which consequently results in the following structure equations

dn' = ean' AP+ esn' AP P A

dn? = —caean’ An? — 30" AP — can® Ap’,

dn® = c&an' A+ creant AP+ eon® AP
Thus the structure is homogeneous and the normal form is obtained with ¢; = —1 and
C3 — 1.

The next step is to determine the coordinate transformations that preserve the coframe.
If (#',2% 7°) is another coordinate system related with (z', 2% 23) by the following
equations

ol =g (2, 7,7, 2P =g(3,7%,7%), 2 = ga(3', 77, 3°).
Then each one-form gives three equations that must be satisfied:

(81¢1 = ¢30102 + 1,

771 = 771 = D1 = P30acp2 — T2, (2.34)
(0301 = ¢30302,

( (1+ c3¢3)012 = c3011 — ¢,

0t =10 = (1+c303)0002 = (1 + c32%) + 30201, (2.35)
(1 + c3¢3)03¢2 = 30301,

(0101 = G301 + (D193)(c2) ™,

0 =1 = Doy = —T° + ¢p30202 — (Oap3)(c2) 7, (2.36)
(031 = (C2) ™" + P30502 — (D3hs)(c2) ™"

Comparing equations 2.34 and 2.36 results in the following equations:
61¢3 = C2, 82¢3 = 0, 83¢3 =1.
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Hence
2 = (3t 7%, 7%) = 3 4 72

Replacing this result into (2.34) and (2.35) yield the following equations
01 =1, D1 = 27, 03¢1 =0,
61¢2 = 07 82¢2 = 17 a3¢2 = 07
which in turn imply that the complete allowed transformations are:

1

ot =3t 4 3

~2\2 2 A2 ~3 ~2
2 (Z7)° + ay, 0 =T° + as, r° = T° + coT”.

N | —

Normalize ¢; = 1 and ¢3 = 1 to obtain the normal frame

0 o 0
oxl  0x2 0x3’

2 oxl  Ox?’
y 0
5T ox3
The allowed transformations are
1
m1:£1+§(£2)2+a1, 22 = 3%+ ay, v =7 4 72

33



Chapter 3

Examples

3.1 Three States, One Control

Consider the following dynamical system:
7 = cosf + zsinb,

0 = 1(zcos&—sin@),

,
Z = corsint + c3z + u.

Where the state vector z = (r, 6, z) takes values in the state space M = [0, 00) x [0,27) X R.
We would like to know if this dynamic system corresponds to one of the cases of theorem
2.1.2. First of all it is necessary to check that the associated affine distribution

0

F = ((cos@%—zsin&)%+%(zcos@—sin9)%+ (czrsinﬁ—i-c;;z)%) —i—span(&)?

satisfies all the hypothesis of the theorem:

1. The distribution F is strictly affine: Suppose it is not, then there exists a state T =
(7,0, z) such that v1(Z) = 0 this would imply

cosf + zsinf = 0, (3.1)
1 _ _
= (zcosf — sinf) =0, (3.2)
T
cofsinf + c3z = 0. (3.3)
From (3.2)
Zcosf = sinf, (3.4)

replacing in (3.1) it is obtained
cos(1+ z%) =0,

which can only be satisfied if cos = 0. Replacing in (3.4) also implies that sinf = 0,
but there is no # that can satisfy both equations, hence the distribution is strictly
affine.
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2. The distribution F is bracket-generating or almost bracket-generating of constant type:
We start with the original distribution F and from then construct the flag of subsheaves

F=F' cFc---CTM,
using the definition 7' = F' +[F, F].

(a) F' = v + span(vy).
(b) F? = F' +[F, F'], where

[F, F'] = [v1 + Agva, v1 + Bava] = [v1, v1] +(B2 — A2) [v1, va] +B2A2 [v2, 0],
N—— —— ——

0 v3 0
thus the only new vector is v = [vq, va):

0 0
vg =sinf— + —cos— + c3—,

or r 00 0z

and F? = v; + span(vy, v3).
(c) F* = F*+[F, F?, where

[F, ~7:2] = [U1 + AgVa, U1 + Bava + [3vs)
= [v1, v1] +(B2 — A2) [v1, V2] +B5 [v1, V3] +52 g [Va, V2] Ao B3 [v2, V3],
—— —— —— —— ——

0 v3 V4 0 U5
hence the new vectors are vy = [v1,v3] and vs = [vg, v3]:

0 : 0
vy = c3sinf— + S osh= (co+c3)

or r 00 0z’

’U5:0.

Note that vy = c3v3 + cove, hence F>*° = U;>; F' = F? since taking further
iterations will not yield new linearly independent vector fields:

Vg = [v1,04] = c3lv1, vs] + calvr, V2] = crug + covs,
V7 = [U2, V4] = c3[v2, V3] + c2[va, Vo] = 0,

vg = [v3,v4] = c3lvs, v3] + cavz, v2] = 0,
From the above calculations it follows that the step of the distribution F is 2 and the

growth vector is (1,2).

Since dim(F>) = 2 and dim(7'M) = 3 the distribution is not bracket-generating, but
it may be almost bracket-generating. For this it is necessary to check that for each
x € M and any &(x) € F,, span(&(z), (Lr=),) = ToM = R,

First compute the direction distribution of F>°:

Ly~ ={& =& | 6,8 € F7L
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Taking into account that F°° = v + Agvy + Agv3 it follows
Lyoo = {v1 + Pova + P3vs | Ba, B3 € R} U {agvs + agvs | ag, a3 € R},

Now, for each = € M, vector field £(z) € F, can be written as &(x) = v1(x) + Ava(x)
and since the vector field vy is linearly independent from vy and v3 which are contained
in Lz it follows that dim(span(é(x), (Lz~))) = 3, implying that the distribution F
is almost bracket generating.

Finally since the growth vector is constant for any x € M, and dim(span(§(x), (Lr~=).))
is also constant for all x € M the distribution F is of constant type.

. The distribution F is homogeneous. As usual, first consider the frame

. o 1 ) 0 ) 0
v = (cos@—l—zsme)g + ;(zcos& —sm@)% + (CQ?“SHIG"‘C?)Z)%,
9
0z’

Vg =

_,62+COS9£+ 2
U S T T 90 T By

which yields the coframe

n' = cos@dr — rsin Ad6,
0= — (02r sin @ cos 0 + c¢3 sin 9) dr + 7“(027" sin?(0) — c3 cos 0) df + dz,
n® = (sin@ — zcos@)dr + r(cos@ + zsiné’)d@.

Next compute the derivatives:

dn' =0,
dn? = cyrdr A d6,
dn® = cos@dr A dz — rsin6df A dz,

then we compute the wedge products

nt An? = —csrdr A df + cos 0dr A dz — rsin0dd A dz
nt An® =rdrAdé,
> An® = —1r(cs3z + corsin@)dr A df + (2 cos § — sin§)dr A dz — 7(cos @ + zsin 6)dd A dz.

Finally the structure equations become

TL=0, TL=0 Th=0,

hence the structure equations are homogenenous.
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Given that the distribution F satisfies the hypothesis of Theorem 2.1.2 it must be point-
affine equivalent to one of the normal forms. In order to find the point affine equivalence it
is convenient first to rename the variables.

The original variables (r,6,2) will be renamed (y',3?,4?), the state space manifold ),
the distribution Fy and the vector fields wy, wq, ws. On the other hand the normal variables
will be noted as usual (z', 2% z*), the normal manifold X, the normal distribution Fx and
the corresponding vector ﬁelds vy, V9, v3. With the preceding notation the distributions Fx

and JFy are point affine equivalent if there exists a diffeomorphism ¢ : X — ) such that

¢:(v1(2)) = wi(d(2)),  Pu(va(w)) = Ay(2)wa(¢(2)). (3.5)
Let 1.9 2 0 3.0
f18x1+f18x2+f18:c3’ wl:gla_yl_{—gla_?ﬂ_‘_gl@’
f23x1 +f22%+f23x37 w2:g%aiyl+g%a;z2+gg%7
vs = figer + fige + g ws=gizh + gizm + G
Be the frames in X and Y, then (3.5) become
o6 . .
0P @A) = o), =123
i-1 97
folod y 2/ N :
-1

Given that the distribution is almost bracket-generating Theorem 2.1.2 implies that the
dynamical system is point-affine equivalent to case 1 or case 2. Start with case 1, using the
new notation for the distribution Fy the vector fields become:

0 0
=gt z? s (cox® + ch?’)%,
-
7 or¥
wy = (cos(yz) +° Sln(y2))a—y1 + E(y3 cos(y?) — sm(y2)) 8_y2 + (Czyl sin(y?) + 0393)3—y3,
wr = 2
2= 50
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Replacing in (3.5) results in the following system of partial differential equations

96l et . 9o
ail + ai ’ af?’
PYCIT YCRR ¥E 1 ,
ail + (9?22 2’ + afg (cot® 4 c32”) = ﬁ(ﬁbg cos(¢?) — Sln(¢2))7
o¢° 04 4 0¢°

ozl + 8x2$ T ox3 (Czl‘Q + 0353) = C2¢1 Sin(¢2) + C3¢37

(cax?® + c32®) = cos(¢?) + ® sin(¢?),

9!

a5~
92

a5
o¢?
=)

Luckily, years of mathematical education and training allow us to see through this seem-
ingly difficult system of partial differential equations the obvious truth; which is that the
coordinate transformation

p: X —Y
(z1)2 + (22)2
(zt, 2%, 2°) —s tan ! (;”—f) )

1’3

will solve the system of partial differential equations. Implying that the dynamical system

7 =cosf + zsin @,

A |

0= —(zcos@—sin@),
r

Z = corsinf + c3z + u.

It is point-affine equivalent to the system

il =1,
i? = 2°,

i3 = eox? + 32 + u.

3.2 Magnetic Levitator

A magnetic levitator is a system that uses the magnetic force to suspend a metallic ball.
A current i.(t) is passed though an electromagnet generating a magnetic field B that acts
on the steel ball generating a magnetic force F,.. This magnetic force acts on the steel ball
opposing the weight. The net force moves the ball in the vertical position [9].
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The system can be divided into two parts, the first one is the electromagnet that can be
modeled as a first order LR circuit

ve(t) = (Ro + Ry)io(t) + LC%ic(t), (3.7)

where v.(t) is the input voltaje, R. is the coil resistance, R, is the series resistance and L. is
the coil inductance. The magnetic force acting on the ball is

Konic(t)?

Fc: )
217

where K, is a positive constant and x;, is the distance from the ball to the electromagnet.
The total vertical force acting on the ball is

Konic(t)?

Fo=-FotFy=-—45

+9Mb7

and by Newton’s second law it is equal to the mass of the ball M, times the acceleration ,

thus
Koie(t)?

B 2Mb$b<t)2
Combining (3.7) and (3.8) and making &, = v, the following system is obtained:

& = (z) ()

Fy(t) = +g. (3.8)

dvb o Kmlg

% n _2Mb$§ 9
dZEb o

dar Up,

with state variables i.(¢) the current in the coil, v,(f) the vertical velocity of the ball and
xp(t) the vertical position of the ball. The input of the system is the voltage of the coil
ve(t), and the parameters are R = R. + R;, the sum of the coil resistance R, and the series
resistance Ry, L. the coil inductance, M, is the mass of the ball, and ¢ the gravity.

The state variables i.(t), v,(t) and z(t) form the state vector x(t). Notice that there is
a singularity if z;, = 0, this happens because the magnetic force is inverse proportional to
the square of the distance between the ball and the coil, in order to avoid this problem the
state variable x is restricted to me positive, to ensure this the coil current 7. cannot be zero.
Hence the state space corresponds to the open subset of R?® given by:

M = (0,00) x R x(0,00). (3.9)

Now, write the dynamical system in an explicitly affine form

ie(t) na' gz
() | = [ @) (@) 2+g |+ 0 | v(t) (3.10)
xb(t) 1’2 0 \u\(;)/

~ — S N~

(t) vo () v1(z)
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Thus the associated distribution JF on the manifold M has fibers F, given by:
Fo=A{vo(z) + Mvi(z) | Ay € R} (3.11)
As before check the three hypothesis of the theorem:

1. The distribution F is strictly affine: Suppose that there exists a Z such that vo(z) =0

It is clear that the first equation implies ; = 0 which is contradictory with the second
equation given that g # 0, hence the distribution is strictly affine.

2. The distribution F is bracket-generating or almost bracket-generating of constant type:
We start with the original distribution F and from then construct the flag of subsheaves

F=FcFc.--cTM,
using the definition F'*' = F' +[F, F'].
(a) F' = v + span(vy).
(b) F? = F' +[F, F'], where
[F, ]:1] = [v1 + Avg, U1 + Sovs] = [v1, v1] +(B2 — A2) [1, V2] +B2A2 [V2, V2],
0 v 0

thus the only new vector is v3 = [vy, vo):

0 _
V3 = 7172% + 27372951@3) 2@7

and F? = v; + span(vy, v3).

(c) F* = F*+[F, F?, where

[F, F2] = [v1 + Aava, v1 + Bava + B303]
= [v1, 1] +(B2 — A2) [v1, V2] +B5 [v1, V3] +52 s [V, V2] Ao B3 [v2, V3],
N—— —— —— —— N——

0 v3 V4 0 Vs

hence the new vectors are vy = [v1,v3] and vs = [vg, v3]:

0 . 0 _
vy = 71272@ + 42 yoysz’ (27) 3@ + 273701 (2°) 2%,

vs = —2Y373 (x?’)_Z@.

From the above calculations it follows that the step of the distribution F is 3, the
growth vector is (1,2,3) and F is bracket generating.
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3. The distribution F is homogeneous:

Start with the frame:

1\ 2
ozt 3 ox? ox3

0
UQ - 72 ax27

9] G
=N251 +27273( 32 g’

whose corresponding coframe is:

1 3
n :deu

1 3)\2 1 3\2 1
2 _ =gl — 7 (@ )1dx2+ < 71=T2 i 971(901) - 71902)dx3’
V2 27273 200 2ypysa7xt Y
3 (z°)? de? — < x! I g(z®)? ) 3

27973t 2791%  2ypyzala .

After taking the derivatives and the wedge products the resulting structure equations
are

dnl—T?ﬂ? /\777
dn? = Tisn' An® + Ton® AP,
dn® = THn' An* + Tin' An® + Toyn' An?,

where the structure functions are:

Tl 27273$1
13 — <I3)2LE2 )
T2 2 @ L2 ()
13 =N 3 x2(x3)2 ’
7172
T223 .’131 )
T132 - ]_,
s 200 p@E@) g
13 3 22(x3)2 22’
Y2
T233 = _;

It is clear from the structure functions that the distribution is not homogeneous.

Since the final hypothesis is not satisfied the theorem can not be applied and the magnetic
levitator dynamical system is not point affine equivalent to any of the normal forms of
Theorem 2.1.2.
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Appendix A

Transformation of the torsions

This a more direct and long way to calculate the reduction in each step, this is the method
used in [1]. Tt is added for completion but since it is not part of any proof only the first step
is calculated:

We have the following coframe transformation: If (', 62,6*)” and (6*, 62, 6%)" are coframes
for the principal subbundle By then they are related by the Lie group as

g1 10 a5\ * /6 01 =0+ as0?,
QQ =10 by b3 0| = (6 = bQéQ + b39~3,
63 0 0 ¢ 0° 03 = 0353.

On the other hand we have two sets of structure equations:

de? 0 0 as oL TL TYL TL\ /(6263
a2 | =10 B B |ale|+ (13 T4 5|0 0063], (A1)
d46° 0 0 63 TS, T3 T3, \6' A6

and ~ ~ ~ ~ ~ L
a6 0 0 as oL TL TYL TL\ /6263
A0 | =10 Bo B | AP+ |73 T3 T3] |00 n6°]. (A.2)
46° 0 0 A 63 T3, T3 T3,) \@'A 62

Now, df® can be expressed in terms of the coframe {éa}a:17273 in two forms: first replace 6°
in terms of {éa}azl’lg and then calculate the differential or use the corresponding structure
equation and replace the {#°},-1 23 with {é“}azl,m.

Take for instance df'. Replace ' by 6! + a36% and then operate the differential:

dot = d(6" + ash®)
= dél + da3 A 53 + CL3dé3.
Using the structure equations for {éa}azl’zg
0" =(—as + das — as¥s) A 6 + (T3 + asT5)0% A 6°+
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For the second form first use the structure equations for {6} a = 1,2, 3
do' = —az A0 + Tosn® An® + Thn' An® +Thn' AP
Now transform the one-forms according to the Lie Group
A6t = —csa A B3 + (Thybocs — Thashy)0® A G + (Thyes + Thbs)0' A 63 + TLb.0" A 6%, (A.4)
Hence from equations A.3 and A.4 we have
(—és + das — ag¥s) A O° + (T + asTs)0% A6 + (T + asT3)0 A 6° + (T}, + asT)0" A 62
= —csa A O® 4 (T bycs — Thashs)0? A 6% + (Thes + Tihbs)0t A 6% + Thby0" A 62
Finally we can take the wedge product with 6, 62 and 6° to get
(=3 + dag — ags) A 6° N7 + (T + agT3)0% N 6P A 77!

= —C3(x A 0~3 A ’f]l + (ngbgCg — T112a3b2>9~2 AN ég A 77]1

(_&3 + da3 - a35/3> A ég A ﬁz + (T113 + G3T133)§1 N §3 A\ 772
= —c3a AP A+ (Thaes + Thbs)0t A 63 A 7
(T + asT3)0" A 6> AP = Tba0' A 6% A 7

The last equation implies that Tihby = T}y + asT?,.
Repeating this process with df? we obtain:

(dby — bafBa) A 0% + (dbs — b5y — bsFs) A 0% + (b T2 + bs T )6 A 63
+ (boT% 4 bsT3) 0 A 0% + (b T2 + bsT2)6* A 62
= —bgﬁg A éz - (bSBQ + 0373) N 63 + (T132Z7203 — T32a3b2)8~2 VAN ég
+ (Thes 4+ Tobs)0 A 0% + T3,b,0" A 62 (A.5)

Now taking the wedge product with ', 62 and 63:

(dby — byf3s) A O A B + (dbs — byfBs — bsFs) A B A B + (b T2 + bsT5,)0% A 6
= _b2/82 A 9~2 A él + (bgﬂQ -+ 0373) A é3 A él + (T132b203 — T132(L3b2)9~2 VAN ég,

(dbs — byfBs — bsFs) A G A 0% + (b T% + bsT)0 A 6% A 6§
== (b352 + C3’}/3) A 53 A 92 + (T13363 + T132b3)8~1 A QNS N 92,
(dby — bafBs) A O A G + (b T2 + bsT2)0" A G2 = —byfBy A G? A O° + T2,bs0" A 62
In this instance no information can be obtained from these equations.
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Now for d@?
(ng - 03’?3) AN 63 + 03T2339~2 N 9~3—|—
esTH0N N 0P + 3T A 6
= —C373 A 53 + <T132b203 - T132a3b2>§2 VAN é3+
(TPes + Tbs)0t A 6° + TEb,0" A 62

(dC3 — Cg’?g) N 53 A é163T2339~2 AN 9~3 AN él = —C373 AN éB VAN él <T132b2C3 — T132a3(?2>9~2 A é?, N él,
des — e395) AP A PPesT2OY AP A G> = —c3y3 AOP A O (TPc5 + T2,b3)0" A 6P A 62,
13 13 12
esTE0N N O* N G° = T2 b0 A O* A6
The last equation implies ¢3T2, = T3by. Hence we have two equations
12 12

Which can be written as

by

C3

CL3b2

T112 = bQTllz - T132> T132 - T132- (A-6)

e3
These equations express the transformation of the torsion functions due to the group action
on the coframe (from the coframe {6*},_1 2.3 to the coframe {#%},—123).

Some torsion functions do not appear in these equations, this is because the action of the
group does not transform them into other torsion functions and as such cannot be reduced
yet.

Equations (A.6) imply that we can take any coframe in {#*},—1 23 and using the group
action transform it into a coframe where T}, = 0 and T3, = 1. Thus we can use these
particular torsion functions to continue the analysis. In order to guarantee this condition
we need to make sure of to preserve these torsion functions, which can only be done making
az = 0 and by = c3. This is the Cartan reduction step, and in the following steps we can fix
T, =0and T%, =1 as long as az = 0 and by = c3.

This changes the structure equations and then the process repeats.
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