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Abstract

The Rapid eye movement sleep Behaviour Disorder (RBD) is a promising parasomnia for early dia-
gnosis of synucleinopathies, as Parkinson’s disease (PD), however, little is known about its molecular
pathogenesis. The meagre attempts to investigate it used a fragmentary single-gene centred ap-
proach, disregarding key molecular entities and processes in the RBD aetiology. Under the systemic
paradigm of network medicine, RBD arises from the disruption of a sub-network, or module, in the
complete set of a cell’ interactions, or Human Interactome (HI). This research aimed to character-
ise, for the first time, the RBD-module in the most up-to-date high-quality brain-specific HI. The
RBD-module and the HI were validated functionally, employing a novel Network Enrichment Ana-
lysis Test (NEAT), and topologically, utilising Exponential Random Graph Models (ERGM) fitting and
comparisons against random expectation. The HI exhibit the network hallmarks of the duplication-
acquisition evolutionary model recently proposed, and the RBD-module suggest a wider pathogenic
view than previously considered in the RBD aetiology, by including the limbic system. Immune and
signalling process regarding cytokine and serotonin metabolism in the sleep regulatory system are
overenriched in the RBD-module. This research paves the way for further studies guided to disclose
the RBD relevance as a biomarker of synucleinopathies, especially PD.
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Glossary

Average Path Length (< d >) It is a measure of connectivity, calculated by averaging the minimum
number of edges between two given nodes, a.k.a. geodesic distance, as follows:

i.J=1Nsi#j

Where d, ; is the distance between the nodes i and j and N is the number of nodes in the
network (Kolaczyk & Csardi, 2014). 16

Biomarker “A characteristic that is objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacologic responses to a therapeutic inter-
vention.” (Biomarkers Definitions Working Group., 2001). They are valuable tools to identify
at-risk population of a certain disease, track the disease prognosis, aid in the process of dis-
ease’s staging and to predict clinical responses. 10

Degree Given a network GG with vertices n € N and edges m € M, then the degree k; denote the
number of edges of the i** node, which in turn enable the definition of the total number of
edges in the network (M)

N
M=1/2) "k
=1

The average degree of the network < k > is defined as

N
<k>=1/EY ki =2M/E

i=1
(Kolaczyk & Csardi, 2014; ‘Network Science by Albert-Lasz|6é Barabasi’, n.d.). 16, 19

Diameter In the network context, the diameter is a topological feature measured as the longest
geodesic distance between the farthest nodes in the network (Kolaczyk & Csardi, 2014). 19

Diseasome A comprehensive network where the disease phenome, representing all genetic dis-
orders, and the disease genome, representing all disease genes associated to these pheno-
types, are linked into two main networks, as Goh et al. (2007) proposed it: 1. The Human
Disease Network, whose nodes are diseases and edges are shared genes among them, and
2. The Disease Gene Network, whose nodes are genes and edges are drown if two genes are
implicated in the same disease. 12

Emergent property A system’s feature only perceivable when the system is seen as an indissoluble
complex whole (Moriello, 2013). Contrarily, while some properties emerge in the system, oth-
ers submerge into it and are no longer discernible (Moriello, 2013). Exampli gratia Only when
all cellular elements and its interactions at different organisational levels are perceived holist-
ically, the emergent property of life arises, whereas individual properties of these elements or
their interactions, such as quaternary structures of proteins or allosteric regulations between
enzymes. 12



Exponential Random Graph Models (p*) Statistichal model which employs a logistic regression for
parameter estimation of the form:

k
P(Y;;|Yi,0) = logistic Z 0,677 (V)

h=1

Where Y;; is a binary random variable indicating if there is an edge between a pair of vertices
i, 7, Yijris a binary random variable for the other vertices and ¢ is the coefficient of the statistic
0 (Kolaczyk & Csardi, 2014).. 2, 7, 16, 21

Human Interactome “complete repertoire of genetic interactions potentially encoded by an organ-
ism’s genome” (Sanchez et al., 1999). Therefore, it includes not only the proteome, protein-
protein interaction network, but also the transcriptome, regulome, metabolome, transient
and long-lasting interactions among all cellular entities, both intra and extracellular, such as
proteins, DNA, RNA, lipids and carbohydrates. 2, 9, 14, 24

Hypergeometric distribution Distribution that models the number of successful cases in a random
sample without replacement. In the network context such distribution is very useful when
performing set enrichment analysis, where the successful cases are those links between the
query set (e.g. the genes of interest) and the target set (e.g. set of functional terms). It is
defined as:

Nap ~ hypergeom(n = da, K = dg, N = dy)

Where d 4, dp and dy represents the degree of the query set, the degree of the functional
terms set and the total degree between them, respectively (Signorelli, Vinciotti, & Wit, 2016).
18

Network Theoretical set of concepts for representing systems in the form of nodes and links among
them (Moriello, 2013). Graph theory is inextricably intertwined with networks, as a graph is
the underlying mathematical object of every network, enabling the application of formal quant-
itative analyses on them. 9, 10

Pathophenotype Hallmark phenotype of a disease. 10

Prodrome Period preceding the main symptomatology of a given disease. E.g. PD, as a progressive
pathology, exhibit non-motor symptoms, such as constipation, RBD, olfactory loss, inter alia,
which precede the cardinal motor symptoms emergence for a decade (Postuma & Berg, 2016).
10, 11

Rapid eye movement sleep Behaviour Disorder Parasomnia where the patient have vivid dreams
during the REM sleep phase associated to a loss of atonia (Boeve, 2010). 2, 9, 14, 24

Synucleinopathy Neurodegenerative disease which exhibit an atypical aggregation of the a-Synuclein
protein. Grouping Parkinson’s disease, Dementia with Lewi Bodies and Multiple System At-
rophy, inter alia. 9, 14



Transitivity a.k.a. Clustering Coefficient (cl) convey information regarding the frequency with which
the triplets in the network form triangles, thus informing about the closeness among nodes
(Kolaczyk & Csardi, 2014).

c(GQ) = 37A(G)/13(G)

Where 74 (G) is the number of triangles in the graph G and 73 is the number of connected
triplets of the form A. 16



1 Introduction

With the advent of high-throughput technologies in molecular biology, a bulk of genomic information
is being generated at an unprecedented rate (Stephens et al., 2015), empowering the devising of a
completely contemporary, despite its antiqueness, approach to understanding biological systems, as
such, systems (Kitano, 2002). Contrarily to a fragmentary host of simply and, to a certain extent, in-
genuously interacting elements, as is inherently encoded in the analysis as the sine qua non enquiry
method, characteristic of the reductionism paradigm. A paradigm shift is, therefore, taking place
(Chan & Loscalzo, 2012). Medicine is being penetrated by such shift, going from a reactive medi-
cine guided to treat symptoms, to a predictive, preventive, personalised and participatory medicine,
guided to cure the disease (Wang, Maron, & Loscalzo, 2015; Flores, Glusman, Brogaard, Price, &
Hood, 2013; Silverman & Loscalzo, 2012). As Thomas Rau stated, “to treat differently, you have to
think differently” (Biological Medicine Network, 2015). In such brand new way of thinking, network
as the pinnacle representation of systems, play a critical role, offering the mathematical formalism
and a practical tool to understand phenotypes of complex systems, such as disease and healthy in
human’ cells (Barabasi, Gulbahce, & Loscalzo, 2011). The birth of network medicine was imminent,
a brand new marriage between the systemic paradigm and medicine, towards a revolutionary health
system. In network medicine, a disease arises from the disruption of a sub-network or module in the
Human Interactome (HI), and where the pathogenic entities responsible for such disease are located
(Goh et al., 2007; Feldman, Rzhetsky, & Vitkup, 2008).

Rapid eye movement sleep Behaviour Disorder (RBD) is a parasomnia where patients have, often vi-
olent, oneiric behaviours while in REM sleep, causing serious harm to themselves and their spouses
(Boeve, 2010; Arnulf, 2012). Due to its high conversion rate to synucleinopathies (80 %) and its large
lead period to neurodegeneration (3 - 34 years), RBD stands out as one of the most promising pro-
dromal biomarkers of Parkinson’s disease (PD), an incurable neurodegenerative synucleinopathy with
a high social and economical burden worldwide (Kowal, Dall, Chakrabarti, Storm, & Jain, 2013; Hirsch,
Jette, Frolkis, Steeves, & Pringsheim, 2016). Therefore, RBD not only present itself as an early dia-
gnostic tool, but also offers an invaluable window to anticipatedly treat and study the progression of
PD (Postuma, 2014). Notwithstanding the anatomical knowledge regarding the aetiology of RBD, pin-
pointing the pontomedullar region in the brainsteam as the pathogenic source, little is known about
the molecular mechanisms implicated in the RBD pathogenesis, with the meagre attempts employing
a reductionistic single-gene centred approach (Gan-Or, Mirelman, et al., 2015; Gan-Or, Girard, et al.,
2015; Gan-Or et al., 2016; Gan-Or et al., 2017; Fernandez-Santiago et al., 2016), thus, hampering our
RBD understanding and its applications as biomarker.

This pioneer research aimed to obtain insight concerning the RBD aetiology, employing the power
of the disease module hypothesis under the network medicine paradigm. The most up-to-date high-
guality brain-specific HI was constructed, exhibiting evolutionary network hallmarks, upon which the
identification of RBD-causing and non-direct RBD-causing molecular entities (i.e. genes, proteins,
biological processes) were identified, supporting an alternative hypothesis for RBD aetiology with a
strong limbic involvement, thereby, widening the perception of RBD pathogenesis. ldentification of
RBD module and its molecular mechanisms is the first step towards a holistic understanding of RBD
and its relationships with other synucleinopathies, paving the way for further studies transgressing
the merely reductionistic approaches and imposing network medicine.



2 Research problem statement

RBD is a multifactorial parasomnia characterised by an, usually violent, enacting of dreams during
the Rapid Eye Movement (REM) sleep phase (Schenck, Bundlie, Ettinger, & Mahowald, 1986; Arnulf,
2012), generating injuries and sleep disruptions to the patients and their spouses (Olson, Boeve, &
Silber, 2000). RBD is one of the most promising prodromal biomarkers of several synucleinopathies,
including PD and Dementia with Lewi Bodies (DLB), as it has the highest specificity (Postuma, Lang,
Gagnon, Pelletier, & Montplaisir, 2012), conversion rate (Iranzo et al., 2014; Postuma, Gagnon, Ber-
trand, Génier Marchand, & Montplaisir, 2015; Schenck, Boeve, & Mahowald, 2013) and diagnostic
strength (Postuma & Berg, 2016) of the proposed biomarkers up to date. Additionally, RBD exhibit
a median lead period to neurodegeneration of around 11 years (Postuma et al., 2009), ranging from
3 (Olson et al., 2000) up to 34 years (Claassen et al., 2010), period in which its progression has been
linked with the progression of cognitive impairment in PD patients (Sixel-Déring, Zimmermann, We-
gener, Mollenhauer, & Trenkwalder, 2016). Therefore, RBD not only provides an exceptional tool
to identify at-risk population, which in turn enables early diagnose, stratification, testing on, and
treatment of PD, DLB and Multiple System Atrophy (MSA) patients, but also as a potential clinical
progression marker of these pathologies, offering and unprecedented window to study the evolu-
tion of such diseases (Postuma, 2014). Despite its relevance as prodromal biomarker, to the author’s
knowledge, little is known about the molecular aetiology governing RBD in humans, with the meagre
attempts employing a reductionistic single-gene centred approach, (Gan-Or, Mirelman, et al., 2015;
Gan-Or, Girard, et al., 2015; Gan-Or et al., 2016; Gan-Or et al., 2017; Fernandez-Santiago et al., 2016;
W. J. Zhang, Shang, Peng, Zhou, & Sun, 2017) thus, restricting our disease understanding and its
applications.

Network is a pragmatical operable representation of complex systems (e.g. the cell), in the form of
nodes connected by edges, enabling its study and better understanding at different organisational
levels (i.e. molecular entity, metabolic pathway, network module, cellular compartment, inter alia)
from a holistic standpoint (Moriello, 2013; Nurse & Hayles, 2011; Kitano, 2002). For instance, the HlI
is the network representing the cellular interactions in a given condition and cell type (Sanchez et al.,
1999), whose nodes are molecular entities (e.g. DNA, RNA, protein, inter alia) and its edges represent
physical or functional interactions among them (Vidal, Cusick, & Barabasi, 2011). Under the network
medicine paradigm, a disease arises from the perturbation of several Hl components (Goh et al., 2007,
Feldman et al., 2008) and thus can be mapped into a disease module, a tissue-specific and highly
interconnected set of functionally related nodes whose perturbation generates the pathophenotype,
in the HI (Barabasi et al., 2011; Barabasi, 2007; Kitsak et al., 2016). Disease module identification is
the first step towards a holistic understanding of the pathology in question, as it moves our disease
knowledge beyond the merely reductionistic disease-causing nodes, allowing the identification at
different organisational levels of novel disease-causing and non-direct disease-causing entities and
key interactions among them (Sharma et al., 2015; Ghiassian et al., 2016), thereby, enhancing our
pathophenotype’s understanding.

Inasmuch as RBD is a multifactorial disease (Arnulf, 2012), a network approach, well-fitted to cope
with such complex interactions through the disease module concept, is suitable to unravel the RBD
aetiology and to discover, from a holistic standpoint, novel molecular entities at different organisa-
tional levels related to its pathogenesis (Silverman & Loscalzo, 2012). Providing a holistic outlook of
the structural and functional organisation governing the RBD disease module not only would shed
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light on novel RBD related molecular mechanisms, but also would pave the way for further studies
guided to disclose its relevance as a prodromal biomarker for PD, DLB and MSA at the molecular level.
See figure S1 for problem tree.

2.1 Research question

What are the molecular entities at different organisational levels composing the Rapid eye movement
sleep Behaviour Disorder disease module?

3 Theoretical framework

3.1 Rapid eye movement sleep Behaviour Disorder

RBD is a multifactorial (Arnulf, 2012) parasomnia where patients enact their dreams due to a loss of
atonia whilst in REM sleep phase (Boeve, 2010). Such dreams are significantly loaded with aggres-
sion and vigorous motor behaviours related to threatening (Fantini, Corona, Clerici, & Ferini-Strambi,
2005), consequently, serious harm can be inflicted to the patients and their spouses, even verging on
lethality (Schenck, Lee, Bornemann, & Mahowald, 2009). Worldwide RBD population prevalence is
unknown, but Ohayon and Schenck (2010) estimated it, through telephone questionnaires, to be 0.5
% in a representative sample from the United Kingdom, however it is likely a sub-estimation loaded
with false positives and false negatives (Arnulf, 2012). Regarding the local scope, so far, the only art-
icle referring to RBD in Colombia is a clinical report of a patient treated with trazodone (Chica-Urzola,
2015), making it evident that, besides the molecular aetiological aspects that this research attempts
to enrich, more research is needed concerning the demographic and epidemiologic dimensions of
RBD both at the global and regional scope.

Recently, forasmuch as RBD has a conversion rate to synucleinopathies of up to 80 % (Schenck et al.,
2013), it has been under scrutiny for its potential as prodromal biomarker of these pathologies, from
which PD stands out as one of the most prominent due its elevated socio-economic burden (Kowal et
al., 2013), its high prevalence (Pringsheim, Jette, Frolkis, & Steeves, 2014) and high incidence (Hirsch
et al., 2016) worldwide. For instance, roughly half of PD patients suffer RBD (weighted prevalence of
42.3 %) (X. Zhang, Sun, Wang, Tang, & Xie, 2017) though prospective studies have reported a preval-
ence of up to 70 % (Neikrug et al., 2014), with a conversion rate from RBD to PD of up to 50 % (Schenck
et al., 2013). Similarly, 73 % (Muntean, Sixel-Déring, & Trenkwalder, 2013) - 100 % (Vetrugno et al.,
2004) of DLB patients suffer RBD and Boeve et al. reported that 92 % of RBD patients with symptoms
of degenerative dementia suffer DLB (1998). These findings encourage the RBD research as a crucial
step towards its use as a prodromal biomarker for the most important synucleinopathies, which in
turn yields, as Postuma (2014) pointed out, a valuable opportunity for: 1. Early therapeutic inter-
vention, 2. Testing of potential biomarkers, 3. Anticipatory study of synucleinopathies’ epidemiology
and 4. Investigate the progression of synucleinopathies.

Since its first diagnosis by Schenck et al. (1986), little has been assessed about the RBD anatomical
pathogenesis in humans, instead, the traditional cat and rat models, although contradictory regarding
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some findings obeying species-specific mechanisms, have revealed that disruption of the sleep-wake
regulatory circuit in the ponto-medullary axis, specifically, degeneration of the sublaterodorsal teg-
mental nucleus, might induce RBD (Luppi et al., 2011). Other nuclei in the brain stem have been
implicated in the non-human animal models, such as the ventral gigantocellular reticular nucleus
(Luppi et al., 2011) and the ventral mesencephalic reticular formation (Lai, Hsieh, Nguyen, Peever,
& Siegel, 2008), nevertheless, certainty regarding the appositeness of these structures in humans is
still to come (Boeve, 2010). Neuroimaging approaches employing single photon emission computed
tomography, magnetic resonance imaging and positron emission tomography, not only have con-
firmed metabolic and neurostructural changes in areas previously implicated with RBD such as the
hippocampus and pontomesencephalic tegmentum, but also have steered toward cortical and sub-
cortical areas as novel regions potentially implicated in the RBD aetiology at the tissue organisational
level (Boucetta et al., 2016; Holtbernd et al., 2014; Wu et al., 2014). Notwithstanding the efforts to
decipher the complex anatomical circuit responsible for RBD in humans employing non-human an-
imal models, the potential aetiological mechanisms befalling at a slender organisational level have
been widely overlooked, therefore, and taking into account that translation from models to humans
do not holds always (Burns, Li, Mehta, Awad, & Morgan, 2015), it is required a novel approach to dig
deeper into the molecular basis of RBD in humans.

3.2 Network science and the systemic paradigm

Reductionism employs the analysis as the enquiry method, which fragment the studied system into
its minimal components in order to, caeteris paribus, look for linear interactions among them, thus,
de-contextualising these components. Although its relevance during the XIX century, the reduction-
ism have probed to be insufficient to explain a plethora of dimensions of the cell as a biological system,
and the different states of life as its emergent property, such as disease networks (Goh et al., 2007),
neural networks (Watts & Strogatz, 1998), protein-protein interaction (PPI) networks (Vazquez, Flam-
mini, Maritan, & Vespignani, 2003) and signalling networks (Ma’ayan et al., 2005), among others.
Network constitutes the pinnacle operable representation of a system as nodes connected through
edges, which, in conjunction with the advent of high-throughput technologies to generate biological
data, reinforced systems biology as the de facto paradigm to approach biomedical research (Wang
et al., 2015). Hence, aside from being insufficient to explain biological systems, the reductionism
paradigm is inappropriate insofar as a system is more than the sum of its parts, demanding, thus, a
synthetic enquiry to fully understand a complex system, such as the cell, and its different states, such
as disease and healthy (Barabasi & Oltvai, 2004; Kitano, 2002).

Network medicine is an attempt to explain diseases under the systemic paradigm on the empirical
premise that disease is a state of the biological system, arising from the disruption of complex in-
teractions among several cellular components (Barabdsi et al., 2011). It is the case even for previ-
ously believed monogenic diseases, such as phenylketonuria and cystic fibrosis, which have been
proved to be oligogenic instead (Badano & Katsanis, 2002). Network medicine had its iconic start
with the seminal paper by Goh et al. (2007), in which all known genotype-phenotype associations to
date were studied systematically in its inherent complexity, rather than the traditional fragmentary
single gene-single disease approach, revealing that most human diseases shared a genetic origin il-
lustrated in the human diseasome. The utility of such approach goes beyond the solely depiction of
the common pathogenic basis and interconnectedness among several human diseases, it constitutes

12



an outstanding instrument to mathematically frame and explain complex diseases at different organ-
isational levels (i.e. molecular entity, metabolic pathway, network module, cellular compartment,
inter alia) (Silverman & Loscalzo, 2012), enhancing our disease understanding markedly (Loscalzo &
Barabasi, 2011).

The Hl is the “complete repertoire of genetic interactions potentially encoded by an organism’s gen-
ome” (Sanchezetal., 1999) of a given human cell type in a specific time, and it constitutes the baseline
foundation behind network medicine analyses (Zanzoni, Soler-Lépez, & Aloy, 2009). Derived from
network medicine, the disease module hypothesis stands that disease-related (i.e. disease-causing
and non-direct disease-causing) nodes are functionally organised in a densely connected sub-network
in the HI, rather than randomly scattered throughout it, from whose perturbation arises the disease
(Goh et al., 2007; Feldman et al., 2008) and which is tissue-specific (Kitsak et al., 2016). Disease mod-
ule identification lie at the core of network medicine analyses and constitutes the first step towards a
systemic pathophenotype’s understanding, as it lays the foundation for holistic aetiological examina-
tion, through prediction of novel disease-related nodes and pathways (Oti, Snel, Huynen, & Brunner,
2006; Kohler, Bauer, Horn, & Robinson, 2008; Navlakha & Kingsford, 2010; Sharma et al., 2015), ef-
fective drug development, through enhanced pharmacological target selection (Pawson & Linding,
2008; Stern, Schurdak, Bahar, Berg, & Taylor, 2016; Hart & Xie, 2016), better inter-disease linkage,
through comorbidity studies (Ko, Cho, Lee, & Kim, 2016), and improved diagnosis accuracy, through
systemic nosology (Loscalzo, Kohane, & Barabasi, 2007) and biomarkers identification (Potashkin,
Santiago, Ravina, Watts, & Leontovich, 2012).

Invariably, the completeness of the HI will determine not only the integrity of the disease modules,
as missing links will exclude disease-related nodes, but also their relationship at higher organisational
levels (e.g. at pathways or module level) (Menche et al., 2015; Zanzoni et al., 2009). Unfortunately,
due to historical technological constrains, both the HI and the majority of disease modules remain
highly incomplete and biased towards the most studied nodes, and the inherited bias of the most
employed techniques (i.e. yeast-2-hybrids assays, GWAS and co-expression) (Menche et al., 2015;
Rolland et al., 2014). For instance, as Menche et al. (2015) showed, many disease modules include
less than 20 % of the potential disease-related nodes. Despite its inherited issues, a carefully curated
HI can be constructed and the corresponding disease module identified, if the disease in question
possesses enough disease-causing genes recognised (Menche et al., 2015).

3.3 Towards the future medicine in the present

Systemic approaches, and particularly network medicine, are fundamental players in the transition
from a reactive medicine, focused on fighting diseases, to the so called P4 medicine, for predict-
ive, preventive, personalised and participatory, whose focus is health preserving (Hood & Auffray,
2013). In such framework, network medicine lay the groundwork for expand the personalised under-
standing of a given pathophenotype, as 1. it allows the identification of biomarkers, enabling early
diagnose, stratification, intervention and prevention of disease; 2. the characterisation of unascer-
tained disease-modifying mechanisms, which in turn shed light on novel aetiological and pathogen-
esis insights required to develop predictive models for disease presentation; 3. the better designing
of therapeutic interventions by means of systemic exploration of potential drug-target interactions;
and 4. for participatory and multidisciplinary patient-healthcare system interactions, going beyond
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the doctor’s office and penetrating other spheres such as the family and friend relationships of the pa-
tient (Flores et al., 2013; Hood & Auffray, 2013; Galas & Hood, 2009). These insights not only would
have repercussions in the healthcare systems, which per se would have a big improvement, but also
would reduce the temporal, social and economic burden of current medical organisations. Inducing,
thus, profound changes in the perception of medicine (Flores et al., 2013). The 100k project is the
most palpable example that we are living in a P4 medicine era (Hood & Price, 2014).

4 Objectives

Characterise the Rapid eye movement sleep Behaviour Disorder (RBD) disease module at the node,
edge, biological process and cellular compartment organisational levels, in order to strengthen the
potential use of RBD as a prodromal biomarker of synucleinopathies.

1. Construct the Human Interactome (HI)

2. ldentify the putative RBD module

5 Methods

5.1 Human interactome assembly
5.1.1 Interactions data gathering

Considering the highly tissue and cell specific nature of the disease module (Kitsak et al., 2016) only
tissue-specific and cell-line specific data relative to brain and its cell types were incorporated into the
HI. In order to avoid multi-mapping when converting between gene or protein IDs, only those nodes
mapped to an Entrez Gene ID were used. As long as they were free, different sources of experiment-
ally validated physical interactions were employed, ensuring the completeness and quality of the Hl
(Barabasi et al., 2011). The contemplated sources are:

1. Binary Protein-Protein physical Interactions (PPI) represent pairwise physical interactions among
proteins. High-quality PPI (i.e. More than two events of curation, reported in at least two separ-
ate experiments or publications and with 3D structures from PDB where more than two distinct
proteins have been identified in a complex) were retrieved from the databases Intact, MINT,
HPRD, DIP, BioPlex and bioGRID, employing the web server APID on 02/02/2017. Moreover,
APID parse the data into the 2.5.4 version of the PSI-MI XML format adopted by the HUPO
Proteomics Standard Initiative for the expedite data comparison, exchange and verification
(Kerrien et al., 2007), thus easing its use. The proteome (a.k.a. map of PPI) generated has
~ 42 % of coverage of known human PPIs (Alonso-Lépez et al., 2016) and, by excluding binary
singleton relationships (interactions supported by a single piece of experimental evidence), it is
less likely to include false PPI, product of curation errors with a recovery rate similar to random
expectation (Rolland et al., 2014). The detailed workflow of APID is available here.
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A given protein was considered expressed in the brain if its health tissue reliability score from
the The Human Protein Atlas was “Supportive” or “Approved” and its expression level was
detected (Uhlén et al., 2015) (a detailed description of the reliability and expression score is
available here), thus ensuring the interactions’ quality. The Human Protein Atlas (HPA) is a
recent attempt to unravel the tissue-specific human proteome from a gene-centric approach,
in which RNAseq and immunofluorescence labelling were employed to determine the tissue-
specificity of a given transcript and in-house and commercial antibody labelling coupled with
immunohistochemistry imaging were employed to determine its subcellular localization at a
single-cell level (Uhlén et al., 2015).

2. Gene Regulatory Network (GRN), where regulatory elements (e.g. promoters, enhancers, in-
sulators, Transcription Factor (TF), RNA, inter alia) are linked through physical contacts, are
key components in understanding diseases, as they are enriched with disease causing genetic
variants (Lee & Young, 2013; Jimenez-Sanchez, Childs, & Valle, 2001) and play a critical role
in cell homeostasis (Ma’ayan et al., 2005). Recently, Marbach et al. (2016) created a tissue-
specific and cell-line specific compendium of high-quality inferred regulatory networks includ-
ing TF-enhancer, TF-promoter and enhancer-promoter relationships employing FANTOMS pro-
ject data. FANTOMS5 use Cap Analysis of Gene Expression (CAGE), a high-throughput quantit-
ative technology to map transcription starting sites and assess gene expression profiles simul-
taneously in a cell, tissue or condition specific way. Only adult data grouped into “Neurons &
fetal brain”, “Nervous system & adult hindbrain” and “Adult forebrain” clusters from (Marbach
et al., 2016) was used to generate the regulatory network.

3. Metabolic and signalling interactions, where two nodes (i.e. metabolites, metabolic-genes,
signalling-genes) are connected if they share the same pathway, was downloaded from KEGG
on 03/05/2017. In order to consider the inextricably intertwine between metabolic and sig-
nalling networks, they were merge into a single brain-specific MetaboSignal network, following
the guides in PPl section and using the R package by Rodriguez-Martinez et al. (2016). From
now on this type of interactions will be referred as metabosignal, for brevity.

Table 1 lists a set of common topological attributes (please refer to Glossary section for definitions)
assessed on the interactome and compared with previous human interactomes, proteomes and reg-
ulomes, to place in context the network here constructed. Refer to supplementary information S2
for the complete research workflow.

5.1.2 Validation

Poisson distribution is a signature of random processes governing a given network attribute (So-
lomonoff & Rapoport, 1951; Erdos & Rényi, 1959). Consequently, deviation from such distribution
can be interpreted as a non-random process taking place to generate the network property (Kolaczyk
& Csardi, 2014). By setting such premise as the foundation, one can compare observed interactome’
attributes to random ones, drawn from similar networks as the interactome, expecting a poor re-
semblance between them; supporting the idea that a relevant biological process is giving place to
the observed feature instead of pure randomness. However, it is computationally expensive to simu-
late the massiveness of the HI, therefore, for the next two attributes, a stratified random sample with
replacement of 6945 (roughly half of HI) vertices was taken from the HI, ensuring thus, the repres-
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entation of all interaction sources and reducing the sampling error. For comparisons, Z-scores were
computed for raw scores of 95 %. The compared attributes are:

1. The transitivity or Clustering Coefficient (cl) convey information regarding the frequency of
triplets in the network forming triangles, thus inform about the closeness of nodes. Observed
transitivity was compared against the average transitivity calculated from 1000 random graphs
rewired with degree preserving randomization (further detail in the Module validation section).

2. The average path length (< d >)is a measure of connectivity, calculated by averaging the min-
imum number of edges between two given nodes, a.k.a. geodesic distance. Observed APL was
compared against the average APL calculated from 1000 random graphs rewired with degree
preserving (further detail in the Module validation section).

For further validate the HI, instead of compare its properties against similar networks randomly
drawn, a random model was fitted to the HI, to see whether such model is able to explain the ob-
served degree distribution P(k) and the probability of any tie occurring in the HI. Exponential Ran-
dom Graph Models (ERGM) are statistical models intended to describe the probability of any tie in
the network as a function of linear predictors, very much like a generalised linear model of regression
(Kolaczyk & Csardi, 2014). The random Bernoulli model (a variation of the Erd&s-Rényi model) stands
that, for each pair of vertices 7, j, the probability to draw a link between them (Y;;) is independent of
the other nodes’ probability (Y ;/), forany ', ' # i, j (Kolaczyk & Csardi, 2014). Therefore, the prob-
ability of any tie is calculated as p = 1.?:1(,)6()9)' for any 6 value of an estimated network parameter (e.g.
degree distribution) thought to be ruling the apparition of edges. Commonly, model fitting is used
to found the parameters governing the network topology at a local level (i.e. edge level) (Goodreau,
Kitts, & Morris, 2009), thought not common, model fitting can be used to validate the HI by looking
for poor fit between an observed property in the network at the global level, such as the P(k), and
the modelled one. For this, a goodness-of-fit test was carried out comparing the observed HI P (k)
against 10 000 simulations and the log — odd to draw an edge in the HI was calculated.

Several real-world networks (Albert, Jeong, & Barabasi, 1999, 2000; Goh et al., 2007; MacArthur,
Sanchez-Garcla, & Ma’ayan, 2010; Faloutsos, Faloutsos, & Faloutsos, 1999), including previous pro-
teomes (Rolland et al., 2014), exhibit the scale-freeness property, in which the P(k) follows a power-
law, thus inheriting key features, such as the Achilles-heel property (Albert et al., 2000) and the pres-
ence of hubs (highly connected nodes) (Albert et al., 1999)), which in turn offer valuable information
regarding the interactome architecture and dynamics. Contrarily to tradition, the scale-freeness of
the interactome was assessed following the quantitative guidelines for accurate heavy-tailed distribu-
tions fitting by Clauset, Shalizi, and Newman (2009). The maximum likelihood, a method well fitted
for large datasets like the HI, estimators for the distribution parameters k,,,;,,, the minimum degree
for which the power-law fits the P(k)g; (HI's degree distribution), and «, the scaling parameter of
the distribution P(k) o k~%, were obtained by minimising the Kolmogorov-Smirnov distance (K-S)
between the observed probability distribution and the best power-law model (Clauset et al., 2009).
A goodness-of-fit test with a bootstrapping of 10 000 simulations was used to assess the uncertainty
of the estimators (Clauset et al., 2009). Finally, the observed P(k)y; was compared against the
discrete Poisson distribution, which represents random networks, and the exponential distribution,
presumed to fit the P(k) 7, employing the log-likelihood ratio (R) and the Vuong’s test for paue(R),
both, two-sided and one-sided (Clauset et al., 2009).
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5.2 Identification and validation of the RBD module in the HI
5.2.1 Seed nodes gathering

RBD nodes, to be used as seed for putative RBD-related nodes prediction, were obtained from the
OMIM, Comparative Toxicogenomics Database (CTD), DisGeNET and MalaCards databases, employ-
ing the keywords from the Disease Ontology, a correlational database for accurate disease terms,
“REM sleep behavior disorder”, “rapid eye movement sleep behavior disorder”, “REM sleep parasom-
nia” and “REM sleep behavior”. These databases have at least one step of manual curation events,
ensuring the interaction’s quality. Furthermore, a literature search was performed to complement
the database searches (Gan-Or, Mirelman, et al., 2015; Gan-Or et al., 2016; Gan-Or et al., 2017; Gan-

Or, Girard, et al., 2015; Fernandez-Santiago et al., 2016; W. J. Zhang et al., 2017).

5.2.2 Module identification

Broadly, three approaches to predict novel putative disease-modifying nodes can be distinguished: 1.
Neighbourhood-based, 2. Graph partitioning and 3. Diffusion-based (Barabasi et al., 2011; Navlakha
& Kingsford, 2010). The neighbourhood approach departs from the observation that gene products
related to the same disease are more likely to interact with each other (Goh et al., 2007), and there-
fore, new gene products can be associated with a disease if they lie in the same loci of the disease
and also interacts with known disease-related gene products (Oti et al., 2006). Graph partitioning
methods rely on the disease module hypothesis, thus linking gene products if they belong to the
same disease or functional module (Feldman et al., 2008). Lastly, diffusion-based procedures assigns
a score to each node regarding its distance to the seed nodes, based on a random-walk, and the
configuration of these nodes’ edges (Kohler et al., 2008).

Irrespective of the method, most of community (a synonym for network module) detection algorithms
employ the density of edges of each node to link putative nodes, however, inasmuch as disease nodes
usually are not very densely connected (i.e. they are in the periphery of the network) (Feldman et
al., 2008; Goh et al., 2007), such algorithms are not able to distinguish between the functional mod-
ule (i.e. neighbourhood exerting a common function) and the disease module, which can overlap
(Ghiassian, Menche, & Barabasi, 2015; Sharma et al., 2015). Therefore, the DIAMOND algorithm,
a graph partitioning method, (Ghiassian et al., 2015) was used to predict the RBD module, as it is
based on the connectivity significance of the seed nodes’ interactions instead of pure density, hence,
it prevents the inclusion of hub nodes merely by its large number of interactions, ensuring the patho-
biological relevance of the nodes included. However, inasmuch as DIAMOND ranks, according to the
connectivity significance, all nodes in the network, it is require a biological criterion to decide how
many predicted nodes should be included in the RBD module (the sum of the proto-module and the
predicted nodes). For this, a Network Enrichment Analysis Test (NEAT) for Gene Ontology (GO) bio-
logical processes terms was carried out employing the Signorelli et al. approach (see next section for
details).
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5.2.3 Module validation

NEAT is a method to disclose the functional relevance of a set of nodes taking advantage of the topo-
logical position of each node in the network (Signorelli et al., 2016). Such approach allows the reliable
identification of the biological processes in which the RBD seed nodes are involved. Unlike previous
methods (Alexeyenko et al., 2012), NEAT creates the null distribution, from which the enrichment
significance will be calculated, by modelling the observed number of links between the RBD nodes
and a set of GO biological processes terms as an hypergeometric distribution. Improving thus, not
only the computation time but also the statistical accuracy, as the null distribution is derived from
the observed dataset instead of forcing it to be normal (Signorelli et al., 2016), which is clearly not
the case for the networks here consolidated (figure S6). To ensure the quality of the enrichment, only
high quality experimental and computational GO evidence codes were included (i.e. EXP, IDA, IMP,
IGI, IEP, ISS, ISA and ISO). In addition to functionally validate the RBD module for overenriched biolo-
gical processes, the network enrichment analysis was also calculated every DIAMOND iteration (i.e.
every addition of a new ranked node), as a biological criterion to stop the addition of nodes to the
RBD module (Ghiassian et al., 2015). In order to control the type | error due to multiple testing, the
Puatue Of the enrichment was adjusted using the Benjamini and Hochberg (B-H) method, by reducing
the False Discovery rate (Bouaziz, Jeanmougin, & Guedj, 2012).

Furthermore, following the same premise as in the HIl validation section, the transitivity and average
path length of the putative RBD module were compared against the random expectation from 1000
degree-preserving randomisations of networks with the same number of nodes and degree per node
as the RBD-module. These random graphs, as defined by Erdos and Rényi (1959), were computed
as G(n,p), where n is the number of nodes and p is the edge probability calculated as p = d%l.
Comparisons were made employing Z-score for a raw score of 95 %. For further validate the biological
relevance of the RBD-module, a ERGM was fitted to it, comparing the geodesic distance distribution
and the degree distribution against 100 bootstrapping simulated networks (Kolaczyk & Csardi, 2014).
The probability to randomly draw an edge in the RBD-module and the GO enrichment for Cellular
Compartment, following the parameters aforementioned, were carried out.

5.3 Software and hardware

The statistical programming language R 3.4.0 (‘R: A Language and Environment for Statistical Com-
puting’, n.d.) was employed in most analyses, except for the implementation of DIAMOND in Python
2. Following the guidelines for reproducible computational research (Stodden et al., 2016), scripts,
workflows, raw and processed data is publicly available in GitHub, as well as the citation of all R pack-
ages used. Analyses were performed in the server of the Bioinformatics and Systems Biology Group
(GIBBS) located at the Instituto de Genética of the Universidad Nacional de Colombia.
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6 Results & discussion

6.1 Human interactome assembly
6.1.1 Interactions data gathering

The resulting brain-specific Hl is the most comprehensive and up-to-date simple (i.e. no multiedges
nor loops) undirected network, with 3 057 105 edges among 17 329 vertices (Figure S3). Table 1
place in context some topological properties of the HI (Interactome 1) compared against previous
interactomes, proteomes and regulomes. The elevated mean degree (< k > =355.2; k,,,,. = 14672)
of the HI compared with the other networks is remarkable, and obeys to the colossal number of un-
precedented interactions (20.8 times larger than the previous biggest one) here consolidated. Regu-
latory represent the vast majority of these interactions (97.4 %), letting metabosignal and PPI behind
with 2.2 % and 0.4 % of interactions, respectively (figure S4 A). Such overrepresentation of regulatory
interactions may obey to the combination of several causes: 1. The presence of very promiscuous
TFs, promoters and enhancers that, through duplication events along the evolutionary history, have
expanded the regulatory program exponentially (Pougach et al., 2014; Ferreira et al., 2013), thus
reflecting its inherent complexity; 2. There are many more tissues used for regulatory interactions
(33) than those used for either metabosignal or PPI (5), generating a bias toward regulatory interac-
tions; 3. The level of curation of regulatory interactions, due to their inferred nature, is lower than
metabosignal and PPI, which are manually curated and highly supported, respectively.

Table 1: Comparison of topological properties among recent HI, proteomes and a regulome. The
large number of edges in the Interactome 1 and Interactome 2, a subset of the Interactome 1, here
consolidated, which in turn lead to a high < k > of the brain-specific HI and a bimodal P(k), obeys
to the massive contribution of promiscuous TF, enhancers and promoters to regulatory interactions.
Topological network properties: M = Number of edges, N = Number of nodes, < k£ > = Mean
degree, < cl > = Global transitivity (a.k.a. Clustering coefficient), P(k) = Degree distribution, < d >
= Average path length and d,,,,,, = Diameter, NA = Not available or not apply

Citation Network type M N <k> <cd> Pk <d> dpe
(Sharma et al., 2015) HI 101032 11643 17.3 0.19 Scale-free 3.7 NA
(Menche et al., 2015) HI 141296 13460 21 0.17 Scale-free 3.6 12
(Rolland et al., 2014) Proteome 13944 4303 6.3 0.05 Scale-free 4.1 NA
(Mohammadi & Grama, 2016) Proteome 147444 14658 NA NA NA NA NA
(Jolma et al., 2013) Regulatory 3563 830 NA NA NA NA NA
(Kitsak et al., 2016) HI 141296 13460 21 0.17 Scale-free 3.6 12
Interactome 1 HI brain-specific 3077707 17329 355.2 0.06 Bimodal 2.1 8
Interactome 2 HI brain-specific 1234593 16628 148.4957 0.04 Bimodal 2.3 14

If the first assertion were true, then, the regulatory program must exhibit the hallmarks of these
duplication process. Indeed it does, through the P(k). Unlike many biological and human-made
networks, the Hl is not scale-free, as even when the power-law is significantly valid (p,qiue = 0.32,
10 000 bootstrapping; figure S5) it fits only the 0.8 % (7664< k <7787) of the k range and have
a particularly high scaling parameter o = 4.6 (2 < o < 3 for typical scale-free networks) indicating
more evenness in the degree than expected for a scale-free network, but also revealing a bimodal
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distribution (figure S6 A). The HI inherits such distribution from regulatory interactions, as PPl and
metabosignal are both unimodal (figure S6 C,D), hence supporting the first assertion.

Whereas the very pervasive scale-free networks evolve through a preferential-attachment, in which
new nodes bind preferentially to hubs, (de Solla Price, 1965; Barabasi & Albert, 1999) following the
duplication-divergence model (Vazquez et al., 2003; Pastor-Satorras, Smith, & Solé, 2003), where new
nodes arise from duplication and a subsequently loss of interactions lead to divergence of these para-
logs, there is a type of non-scale free networks with bimodal degree distribution that evolve trough
the preferential attachment following the duplication-acquisition model (Ferreira et al., 2013), where
new nodes arise from duplication events preferentially attaching hubs with high clustering coefficient
instead of hubs with low clustering coefficient, thus, generating two type of hubs: intramodular and
intermodular (Fraser, 2005; Li, Huang, Xia, & Sun, 2006). The former, also called “party hubs”, tend
to interact with most of their partners in a single spatio-temporal frame and belong to a functional
module (Han et al., 2004; Li et al., 2006), evolve slower than intermodular hubs and are physically
and functionally constrained (Fraser, 2005). Contrarily, intermodular hubs, a.k.a. “date hubs”, in-
teract with many partners in a variable spatio-temporal frame and tend to connect modules (Han
et al., 2004), are more prone to duplication than party hubs, do exhibit pleiotropy (Li et al., 2006)
and evolve faster (Fraser, 2005).

Clustering coefficient is successfully able to distinguish these two type of nodes in regulatory inter-
actions (figure S7), indicating that the preferential duplication-acquisition model is plausible for the
regulatory program. It is in strongly agreement with the empirical facts that gene-products with sub-
strate promiscuity, just as the TFs in regulatory interactions which headed the top-10 hubs in the
network (table S1), are more prone to duplication events (Conant & Wolfe, 2008) and roughly 90 %
of Eukaryotic genes are believed to evolved by duplication events (Teichmann & Babu, 2004; Ferreira
et al., 2013). Consequently, it is exiting and reasonable to imagine an evolutionary scenario where
the first assertion takes place.

In order to reduce the influence of the second assertion and also to diminish the dimensionality of
the HI, only whole-brain regulatory interactions were included in the HI (table 1, as Interactome 2)
at the expense of the 32 area and cell-specific brain files (Marbach et al., 2016). The third assertion
is somewhat inauspicious as, even though it is not manually curated as PPl or metabosignal, the
validation of Marbach et al. has a high standard, only drawing interactions supported by the best
predictive practices (Banf & Rhee, 2017). It is worth nothing that, even after filtering with expression
data, false-positive and false-negative interactions might be present in the three sources. Further
investigations must take care of them, either by adding an additional filter or by including another
type of regulatory data.

6.1.2 Validation

Inasmuch as it is significantly unlikely that a random process originates the observed P(k)y; when
compared against a power-law distribution (R = 5.165587, pyaiue(R) = 2.396 854 x 10~7; figure S5)
and an exponential distribution (R =-14.08696, pyu1u.(R) =4.568 209 x 10~*; figure S5), it is valid to
think that a biological process is taking place to generate the observed degree distribution. Moreover,
the observed transitivity is significantly higher than the random expectation (Z-score = 116.793, 95%
confidence; figure 1 A) and the average path length is significantly smaller than the random expect-
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ation (Z-score = -2.224, 95% confidence; 1 B). i.e. , A random network, with the same number of
nodes and edges as the Hl, would not have neither the clustering level nor the short paths of the HI.
For further validation of the HI, the Bernoulli Exponential Random Graph Models (ERGM) was fitted
to it, founding a very low probability (log — odd = 0.0089) to randomly draw any link of the HI and
an overall poor fitting between the observed geodesic distance and the predicted by the Bernoulli
model (figure S8 C).
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Figure 1: Transitivity (A and C) and average path length (B and D) comparison between the observed
and the random expectation from 1 000 degree preserving randomisation for the RBD-module (bot-
tom) and a sample from the HI (upper). In G(n,d),d= 0.0024 for RBD-module and d = 0.0001 for
the HI (please refer to the RBD-module validation for further detail). The Z-score for A, B, Cand D
are 116.793, -2.224, 14.78 and -2.50 respectively. In brief, the observed HI and RBD clustering coef-
ficient and average path length are significantly greater and smaller, respectively, than one would
expect for a random network with similar features, thus confirming the biological validity of the HI
and RBD-module. Red dotted line is the mean. Note the close resemblance between the HI cl and
<d> values and the ones from the stratified random sample, endorsing its representativeness.
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6.2 Identification and validation of the RBD-module in the HI

After the exhaustive database and literature search for the RBD-related genes to be used as seed
nodes, a list of 26 genes were consolidated (Table S2).

According to the disease module hypothesis the seed nodes should form a distinguishable module
in the HI (a proto-module) (Feldman et al., 2008; Barabasi et al., 2011), however, RBD-seed nodes
do not, as there is no edges in the HI linking them (figure 2 A). This might obey to 1. The small
number of seed nodes present in the HI (24/26) reflecting the little molecular knowledge regarding
RBD, in which case, either there are truly no biological interactions among them, or the science simply
have not linked them yet; or 2. The inherent incompleteness of the HI, in which case is required a
more comprehensive and carefully constructed novel HIl. Notwithstanding the strongly influence of
the HI's completeness in the detection of the RBD module, it is more plausible that the number of
seed nodes used were not enough to distinguish the RBD proto-module, as it was demonstrated that,
even in an incomplete interactome, a thoroughly consolidated set of seed nodes is able to make the
proto-module pop up (Menche et al., 2015). This is further supported when including the 1% order
neighbours of the RBD-seed nodes, where the RBD proto-module not only is observable but connect
all seed nodes present in the HI (figure 2 B). Furthermore, considering that most diseases exhibit less
than 20 % of their nodes in the observable proto-module (Menche et al., 2015) it is not surprising
that the RBD proto-module is only observable when including the 1% neighbours.

After running the iterative network enrichment (figure S9), the first 400 most significantly connected
DIAMOND nodes were included in the high quality RBD-module, ever assembled (figure 2 C). As other
disease modules (Ghiassian et al., 2015), it is significantly more clustered than expected by chance (cl
=0.22, Z-score = 38.47; figure 1 C), even more than the HI (table 1), and its average paths length is sig-
nificantly smaller than the random expectation (< d > = 2.72, Z-score = -2.50; figure 1 D). Moreover,
as the geodesic distance distribution (figure S8 A) and the degree distribution (figure S8 B) shows, the
RDB-module represents a biological plausible representation of the molecular landscape governing
the disease, further supported by the low probability (log — odd = 0.069) to randomly draw any edge
of the module.

The majority of the ten most overenriched biological process in the RBD-module are immune-related
(table S3). This is surprising, as it is in strong agreement with an alternative and barely explored hy-
pothesis for RBD pathogenesis (Iranzo et al., 2005), in which is the limbic system, instead of the
traditional pontomedullar region, the area in which the aetiological causation of RBD lies. It de-
rives from the, previously believed coincidental, observations that autoimmune limbic encephalitis,
without pontomedullar lesions, concomitantly exhibit RBD (Vale, Fernandes do Prado, do Prado, Po-
voas Barsottini, & Pedroso, 2016; Lin, Liu, & Hsu, 2009; Compta, Iranzo, Santamaria, Casamitjana,
& Graus, 2007; Limousin et al., 2009; Iranzo et al., 2005; Adams, McKeon, Silber, & Kumar, 2011).
This is further supported by several immune response-related overenriched cellular components in
the RBD-module (table S3) and the widely accepted somnogenic effect of proinflammatory cytokines
(Venancio & Suchecki, 2015). Although the extensive anatomical crosstalk between the limbic system
and the pontomedullary system was already known, it had not been contemplated the possibility for
the RBD aetiology to lie in a different anatomical region than the traditional one. Thus, these results
reinforce the exiguously supported hypothesis for a strong limbic influence in the RBD pathogenesis,
illustrating the capacity of network approaches to depict a different disease landscape; further sup-
porting the usefulness of a holistic approach for aetyological analyses.
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Figure 2: Fractionated proto-module containing the RBD-seed nodes (A). Proto-module plus 1% order
neighbours (B) in which all seed nodes get connected, indicating that even though the exhaustive list
of seed nodes here consolidated is not enough to make the module pop up, only adding the part-
ners of these seed nodes, which | believe soon will be covered by science, is enough to show the
proto-module. The first ever constructed RBD-module (C), showing biological entities and interac-
tions previously unlinked to the aetiology of RBD (red nodes). As shown in figure S8 B, there are
some seed nodes that remain disconnected from the module. For the sake of aesthetics, the first 58
hubs were removed from C. Labelled nodes are Entrez gene ID.

The RBD-module recovers well-established characteristics of RBD, such as the strong influence of sero-
tonin signalling, illustrated in the fact that the 5™ and 7" best ranked DIAMOND nodes correspond to
its receptors HTR1D and HTR1F, respectively. HTR1, common in the REM-switch and hippocampus
regions, are G;-coupled receptors which, by repressing the adenylate cyclase, inhibit the cAMP meta-
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bolism, which in turn down-regulate the cAMP-response element binding protein (CREB) (Berumen,
Rodriguez, Miledi, & Garcia-Alcocer, 2012), a well-known TF responsible for sustained arousal in areas
involved in the REM-switch, such as the locus coeruleus (Graves, 2003). This may explain the overen-
riched biological processes, cellular compartments and best-ranked DIAMOND nodes (Neuropeptide
Y, HCAR-1, Somatostatin-28 and -14, Oxytocin, GHSR and endothelin-2) involved in cAMP signalling
and G-coupled signal transduction (table S3). HTR1 also modulate the conductance of K* channels
in the dorsal raphe nucleus, a member of the REM-switch, and the entorhinal cortex in the limbic
system (Deng, Poudel, Rojanathammanee, Porter, & Lei, 2007), which is in concordance with the
concomitant presence of RBD and K* channel antibody—associated limbic encephalitis (Iranzo et al.,
2005).

7 Conclusion

Currently, the disease module of Rapid eye movement sleep Behaviour Disorder (RBD) remains unas-
certained and little is known about the molecular entities, at different organisational levels, related to
its aetiology. This research has successfully assembled the most up-to-date high-quality brain-specific
Human Interactome (HI) and characterise, for the first time in science, the RBD-module, shedding
light on the molecular mechanisms implicated in a barely supported alternative hypothesis for RBD
pathogenesis. Both the HI and the RBD-module recover interesting biological features previously
reported in other biological networks, thus validating the innovative methodology employed, but
also, the former exhibits the hallmarks of a recently proposed evolutionary scenario and the latter
suggests a broader and more comprehensive molecular picture of RBD than previously considered.
Moreover, this research not only has settled a solid foundation for further studies guided to evalu-
ate the potential of RBD as biomarker of synucleinopathies, specially PD, but also has supported a
systemic approach for aetiological analyses under the network medicine paradigm.

The present investigation has limitations though, mainly regarding to the completeness of the Hl,
which in turn determines further conclusions in the disease module, as discussed in the RBD-module
section. To alleviate these limitations, is strongly advised to employ an unified framework to achieve
the tissue-specificity, one that takes advantage of non-hard cut-offs and the network topology, such
as the one proposed by Mohammadi and Grama (2016) including the frame discussed in Venkatesan
et al. (2009) and Rolland et al. (2014), thus, avoiding biases towards certain type of interaction. The
research would also benefit from a comparison of the DIAMOND results against other prediction
methodologies, such as the diffusion-based method previously discussed, in order to further valid-
ate the RBD-module. It is worth noting that this research is fully reproducible following the freely
available code mentioned early.

8 Funding

No funding source supported the present research.

24



References

Adams, C., McKeon, A, Silber, M. H., & Kumar, R. (2011). Narcolepsy, REM sleep behavior disorder,
and supranuclear gaze palsy associated with Mal and Ma2 antibodies and tonsillar carcinoma.
Archives of neurology.

Albert, R., Jeong, H., & Barabasi, A.-L. (1999). The diameter of the world wide web. Nature.

Albert, R., Jeong, H., & Barabasi, A.-L. (2000). Error and attack tolerance of complex networks. Nature.

Alexeyenko, A., Lee, W., Pernemalm, M., Guegan, J., Dessen, P., Lazar, V., ... Pawitan, Y. (2012). Net-
work enrichment analysis: extension of gene-set enrichment analysis to gene networks. BMC
bioinformatics.

Alonso-Lépez, D., Gutiérrez, M. A., Lopes, K. P., Prieto, C., Santamaria, R., & De Las Rivas, J. (2016).
APID interactomes: providing proteome-based interactomes with controlled quality for mul-
tiple species and derived networks. Nucleic Acids Research.

Arnulf, 1. (2012). REM sleep behavior disorder: Motor manifestations and pathophysiology. Move-
ment disorders : official journal of the Movement Disorder Society.

Badano, J. L. & Katsanis, N. (2002). Beyond Mendel: an evolving view of human genetic disease trans-
mission. Nature Reviews Genetics.

Banf, M. & Rhee, S. Y. (2017). Computational inference of gene regulatory networks: Approaches,
limitations and opportunities. BBA - Gene Regulatory Mechanisms.

Barabasi, A.-L. (2007). Network Medicine — From Obesity to the “Diseasome”. New England Journal
of Medicine.

Barabasi, A.-L. & Albert, R. (1999). Emergence of Scaling in Random Networks. Science.

Barabasi, A.-L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: a network-based approach to
human disease. Nature Reviews Genetics.

Barabasi, A.-L. & Oltvai, Z. N. (2004). Network biology: understanding the cell’s functional organiza-
tion. Nature Reviews Genetics.

Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the royal statistical society Series B ( ....

Berumen, L. C., Rodriguez, A., Miledi, R., & Garcla-Alcocer, G. (2012). Serotonin Receptors in Hippo-
campus. The Scientific World Journal.

Biological Medicine Network. (2015). Rethinking Medicine: The Biological Medicine Network.

Biomarkers Definitions Working Group. (2001). Biomarkers and surrogate endpoints: preferred defin-
itions and conceptual framework. Clin. Pharmacol. Ther.

Boeve, B. F. (2010). REM sleep behavior disorder. Annals of the New York Academy of Sciences.

Boeve, B. F, Silber, M. H., Ferman, T. J., Kokmen, E., Smith, G. E., lvnik, R. J., ... Petersen, R. C. (1998).
REM sleep behavior disorder and degenerative dementia: an association likely reflecting Lewy
body disease. Neurology.

Bouaziz, M., Jeanmougin, M., & Guedj, M. (2012). Multiple Testing in Large-Scale Genetic Studies. In
Data production and analysis in population genomics.

Boucetta, S., Salimi, A., Dadar, M., Jones, B. E., Collins, D. L., & Dang-Vu, T. T. (2016). Structural Brain
Alterations Associated with Rapid Eye Movement Sleep Behavior Disorder in Parkinson’s Dis-
ease. Scientific Reports.

Burns, T. C., Li, M. D., Mehta, S., Awad, A. J., & Morgan, A. A. (2015). Mouse models rarely mimic
the transcriptome of human neurodegenerative diseases: A systematic bioinformatics-based
critique of preclinical models. European journal of ....

25



Chan, S. Y. & Loscalzo, J. (2012). The emerging paradigm of network medicine in the study of human
disease. Circulation Research.

Chica-Urzola, H. L. (2015). Trazodona en el trastorno del comportamiento del suefio MOR. Revista
Colombiana de Psiquiatria.

Claassen, D. 0., Josephs, K. A., Ahlskog, J. E., Silber, M. H., Tippmann-Peikert, M., & Boeve, B. F. (2010).
REM sleep behavior disorder preceding other aspects of synucleinopathies by up to half a cen-
tury. Neurology.

Clauset, A, Shalizi, C. R., & Newman, M. E. J. (2009). Power-Law Distributions in Empirical Data. SIAM
Review.

Compta, Y., Iranzo, A., Santamaria, J., Casamitjana, R., & Graus, F. (2007). REM sleep behavior disorder
and narcoleptic features in anti-Ma2-associated encephalitis. SLEEP.

Conant, G. C. & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new func-
tions. Nature Reviews Genetics.

de Solla Price, D. J. (1965). Networks of Scientific Papers. Science.

Deng, P. Y., Poudel, S. K. S., Rojanathammanee, L., Porter, J. E., & Lei, S. (2007). Serotonin Inhib-
its Neuronal Excitability by Activating Two-Pore Domain K+ Channels in the Entorhinal Cortex.
Molecular Pharmacology.

Erdos, P. & Rényi, A. (1959). On random graphs |. Publ. Math. Debrecen.

Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships of the internet topo-
logy. ACM SIGCOMM computer communication review.

Fantini, M. L., Corona, A., Clerici, S., & Ferini-Strambi, L. (2005). Aggressive dream content without
daytime aggressiveness in REM sleep behavior disorder. Neurology.

Feldman, 1., Rzhetsky, A., & Vitkup, D. (2008). Network properties of genes harboring inherited dis-
ease mutations. Proceedings of the National Academy of Sciences of the United States of Amer-
ica.

Fernandez-Santiago, R., Iranzo, A., Gaig, C., Serradell, M., Fernandez, M., Tolosa, E., ... Ezquerra, M.
(2016). Absence of LRRK2 mutations in a cohort of patients with idiopathic REM sleep behavior
disorder. Neurology.

Ferreira, R. M., Rybarczyk-Filho, J. L., Dalmolin, R. J. S., Castro, M. A. A, Moreira, J. C. F.,, Brunnet,
L. G., & de Almeida, R. M. C. (2013). Preferential Duplication of Intermodular Hub Genes: An
Evolutionary Signature in Eukaryotes Genome Networks. PLoS ONE.

Flores, M., Glusman, G., Brogaard, K., Price, N. D., & Hood, L. (2013). P4 medicine: how systems medi-
cine will transform the healthcare sector and society. Per Med.

Fraser, H. B. (2005). Modularity and evolutionary constraint on proteins. Nature Genetics.

Galas, D.J. & Hood, L. (2009). Systems Biology and Emerging Technologies Will Catalyze the Transition
from Reactive Medicine to Predictive, Personalized, Preventive and Participatory (P4) Medicine.
Interdisciplinary Bio Central.

Gan-Or, Z., Girard, S. L., Noreau, A., Leblond, C. S., Gagnon, J.-F,, Arnulf, I, ... Rouleau, G. A. (2015).
Parkinson’s Disease Genetic Loci in Rapid Eye Movement Sleep Behavior Disorder. Journal of
Molecular Neuroscience.

Gan-Or, Z., Mirelman, A., Postuma, R. B., Arnulf, I., Bar-Shira, A., Dauvilliers, Y., ... Rouleau, G. A. (2015).
GBA mutations are associated with Rapid Eye Movement Sleep Behavior Disorder. Annals of
clinical and translational neurology.

Gan-Or, Z., Mohsin, N., Girard, S. L., Montplaisir, J. Y., Ambalavanan, A., Strong, S., ... Rouleau, G. A.
(2016). The role of the melanoma gene MCIR in Parkinson disease and REM sleep behavior
disorder. Neurobiol. Aging.

26



Gan-0Or, Z., Montplaisir, J. Y., Ross, J. P., Poirier, J., Warby, S. C., Arnulf, 1., ... Rouleau, G. A. (2017). The
dementia-associated APOE <4 allele is not associated with rapid eye movement sleep behavior
disorder. Neurobiol. Aging.

Ghiassian, S. D., Menche, J., & Barabasi, A.-L. (2015). A DiseAse MOdule Detection (DIAMOND) al-
gorithm derived from a systematic analysis of connectivity patterns of disease proteins in the
human interactome. PLoS Comput Biol.

Ghiassian, S. D., Menche, J., Chasman, D. |., Giulianini, F., Wang, R., Ricchiuto, P, ... Loscalzo, J. (2016).
Endophenotype Network Models: Common Core of Complex Diseases. Scientific Reports.

Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., & Barabasi, A.-L. (2007). The human disease
network. Proceedings of the National Academy of Sciences.

Goodreau, S. M,, Kitts, J. A., & Morris, M. (2009). Birds of a Feather, Or Friend of a Friend?: Using
Exponential Random Graph Models to Investigate Adolescent Social Networks. Demography.

Graves, L. A. (2003). Genetic Evidence for a Role of CREB in Sustained Cortical Arousal. Journal of
Neurophysiology.

Han, J.-D. J., Bertin, N., Hao, T., Goldberg, D. S., Berriz, G. F.,, Zhang, L. V., ... Vidal, M. (2004). Evidence
for dynamically organized modularity in the yeast protein-protein interaction network. Nature.

Hart, T. & Xie, L. (2016). Providing data science support for systems pharmacology and its implications
to drug discovery. Expert Opin Drug Discov.

Hirsch, L., Jette, N., Frolkis, A., Steeves, T., & Pringsheim, T. (2016). The Incidence of Parkinson’s Dis-
ease: A Systematic Review and Meta-Analysis. Neuroepidemiology.

Holtbernd, F., Gagnon, J.-F., Postuma, R. B., Ma, Y., Tang, C. C., Feigin, A., ... Montplaisir, J. (2014).
Abnormal metabolic network activity in REM sleep behavior disorder. Neurology.

Hood, L. & Auffray, C. (2013). Participatory medicine: a driving force for revolutionizing healthcare.
Genome Medicine.

Hood, L. & Price, N. D. (2014). Promoting Wellness & Demystifying Disease:The 100K Project. Clinical
OMICs.

Iranzo, A., Fernandez-Arcos, A., Tolosa, E., Serradell, M., Molinuevo, J. L., Valldeoriola, F.,, ... San-
tamaria, J. (2014). Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder:
study in 174 patients. PLoS ....

Iranzo, A., Graus, F.,, Clover, L., Morera, J., Bruna, J., Vilar, C., ... Santamaria, J. (2005). Rapid eye move-
ment sleep behavior disorder and potassium channel antibody-associated limbic encephalitis.
Annals of Neurology.

Jimenez-Sanchez, G., Childs, B., & Valle, D. (2001). Human disease genes. Nature.

Jolma, A,, Yan, J., Whitington, T., Toivonen, J., Nitta, K. R., Rastas, P,, ... Taipale, J. (2013). DNA-binding
specificities of human transcription factors. Cell.

Kerrien, S., Orchard, S., Montecchi-Palazzi, L., Aranda, B., Quinn, A. F,, Vinod, N., ... Hermjakob, H.
(2007). Broadening the horizon — level 2.5 of the HUPO-PSI format for molecular interactions.
BMC Biology.

Kitano, H. (2002). Systems Biology: A Brief Overview. Science.

Kitsak, M., Sharma, A., Menche, J., Guney, E., Ghiassian, S. D., Loscalzo, J., & Barabasi, A.-L. (2016).
Tissue Specificity of Human Disease Module. Scientific Reports.

Ko, Y., Cho, M., Lee, J.-S., & Kim, J. (2016). Identification of disease comorbidity through hidden mo-
lecular mechanisms. Scientific Reports.

Kohler, S., Bauer, S., Horn, D., & Robinson, P. N. (2008). Walking the Interactome for Prioritization of
Candidate Disease Genes. The American Journal of Human ....

Kolaczyk, E. D. & Csardi, G. (2014). Statistical Analysis of Network Data with R. Springer New York.

27



Kowal, S. L., Dall, T. M., Chakrabarti, R., Storm, M. V., & Jain, A. (2013). The current and projected
economic burden of Parkinson’s disease in the United States. Movement disorders : official
journal of the Movement Disorder Society.

Lai, Y. Y., Hsieh, K.-C., Nguyen, D., Peever, J., & Siegel, J. M. (2008). Neurotoxic lesions at the ventral
mesopontine junction change sleep time and muscle activity during sleep: an animal model of
motor disorders in sleep. Neuroscience.

Lee, T. I. & Young, R. A. (2013). Transcriptional regulation and its misregulation in disease. Cell.

Li, L., Huang, Y., Xia, X., & Sun, Z. (2006). Preferential Duplication in the Sparse Part of Yeast Protein
Interaction Network. Molecular Biology and Evolution.

Limousin, N., Dehais, C., Gout, O., Héran, F., Oudiette, D., & Arnulf, I. (2009). A brainstem inflammatory
lesion causing REM sleep behavior disorder and sleepwalking (parasomnia overlap disorder).
Sleep medicine.

Lin, F.-C., Liu, C.-K., & Hsu, C.-Y. (2009). Rapid-eye-movement sleep behavior disorder secondary to
acute aseptic limbic encephalitis. J. Neurol.

Loscalzo, J. & Barabasi, A.-L. (2011). Systems biology and the future of medicine. Wiley interdisciplin-
ary reviews. Systems biology and medicine.

Loscalzo, J., Kohane, I., & Barabasi, A.-L. (2007). Human disease classification in the postgenomic era:
a complex systems approach to human pathobiology. Molecular systems biology.

Luppi, P.-H., Clément, O., Sapin, E., Gervasoni, D., Peyron, C., Léger, L., ... Fort, P. (2011). The neuronal
network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid
eye movement (REM) behavior disorder. Sleep Medicine Reviews.

Ma’ayan, A, Jenkins, S. L., Neves, S., Hasseldine, A., Grace, E., Dubin-Thaler, B., ... lyengar, R. (2005).
Formation of regulatory patterns during signal propagation in a Mammalian cellular network.
Science.

MacArthur, B. D., Sdnchez-Garcla, R. J., & Ma’ayan, A. (2010). Microdynamics and Criticality of Adapt-
ive Regulatory Networks. Physical review letters.

Marbach, D., Lamparter, D., Quon, G., Kellis, M., Kutalik, Z. a. n., & Bergmann, S. (2016). Tissue-specific
regulatory circuits reveal variable modular perturbations across complex diseases. Nature Meth-
ods.

Menche, J., Sharma, A., Kitsak, M., Ghiassian, S. D., Vidal, M., Loscalzo, J., & Barabasi, A.-L. (2015).
Uncovering disease-disease relationships through the incomplete interactome. Science.
Mohammadi, S. & Grama, A. (2016). A convex optimization approach for identification of human

tissue-specific interactomes. Bioinformatics (Oxford, England).

Moriello, S. A. (2013). Ciencias de la Complejidad. Editorial Nueva Libreria.

Muntean, M.-L., Sixel-Déring, F., & Trenkwalder, C. (2013). No Difference in Sleep and RBD between
Different Types of Patients with Multiple System Atrophy: A Pilot Video-Polysomnographical
Study. Sleep Disorders.

Navlakha, S. & Kingsford, C. (2010). The power of protein interaction networks for associating genes
with diseases. Bioinformatics (Oxford, England).

Neikrug, A. B., Avanzino, J. A., Liu, L., Maglione, J. E., Natarajan, L., Corey-Bloom, J., ... Ancoli-Israel,
S. (2014). Parkinson’s disease and REM sleep behavior disorder result in increased non-motor
symptoms. Sleep medicine.

Nurse, P. & Hayles, J. (2011). The Cell in an Era of Systems Biology. Cell.

Ohayon, M. M. & Schenck, C. H. (2010). Violent behavior during sleep: prevalence, comorbidity and
consequences. Sleep medicine.

28



Olson, E. J., Boeve, B. F., & Silber, M. H. (2000). Rapid eye movement sleep behaviour disorder: demo-
graphic, clinical and laboratory findings in 93 cases. Brain.

Network Science by Albert-Laszl6 Barabasi. (n.d.).

R: A Language and Environment for Statistical Computing. (n.d.).

Oti, M., Snel, B., Huynen, M. A., & Brunner, H. G. (2006). Predicting disease genes using protein-
protein interactions. Journal of medical genetics.

Pastor-Satorras, R., Smith, E., & Solé, R. V. (2003). Evolving protein interaction networks through gene
duplication. Journal of Theoretical Biology.

Pawson, T. & Linding, R. (2008). Network medicine. FEBS letters.

Postuma, R. B.(2014). Prodromal Parkinson’s disease—using REM sleep behavior disorder as a window.
Parkinsonism & related disorders.

Postuma, R. B. & Berg, D. (2016). Advances in markers of prodromal Parkinson’s disease. Nature Re-
views Neurology.

Postuma, R. B., Gagnon, J.-F., Bertrand, J.-A., Génier Marchand, D., & Montplaisir, J. Y. (2015). Parkin-
son risk in idiopathic REM sleep behavior disorder: preparing for neuroprotective trials. Neur-
ology.

Postuma, R. B., Gagnon, J.-F., Vendette, M., Fantini, M. L., Massicotte-Marquez, J., & Montplaisir, J.
(2009). Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior
disorder. Neurology.

Postuma, R. B., Lang, A. E., Gagnon, J.-F.,, Pelletier, A., & Montplaisir, J. Y. (2012). How does parkinson-
ism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behaviour disorder.
Brain.

Potashkin, J. A., Santiago, J. A., Ravina, B. M., Watts, A., & Leontovich, A. A. (2012). Biosignatures for
Parkinson’s disease and atypical parkinsonian disorders patients. PLoS ....

Pougach, K., Voet, A., Kondrashov, F. A., Voordeckers, K., Christiaens, J. F., Baying, B., ... Verstrepen,
K. J. (2014). Duplication of a promiscuous transcription factor drives the emergence of a new
regulatory network. Nature Communications.

Pringsheim, T., Jette, N., Frolkis, A., & Steeves, T. D. L. (2014). The prevalence of Parkinson’s disease:
a systematic review and meta-analysis. Movement disorders : official journal of the Movement
Disorder Society.

Rodriguez-Martinez, A., Ayala, R., Posma, J. M., Neves, A. L., Gauguier, D., Nicholson, J. K., & Dumas,
M.-E. (2016). MetaboSignal: a network-based approach for topological analysis of metabotype
regulation viametabolic and signaling pathways. Bioinformatics.

Rolland, T., Tasan, M., Charloteaux, B., Pevzner, S. J., Zhong, Q., Sahni, N., ... Vidal, M. (2014). A
proteome-scale map of the human interactome network. Cell.

Sanchez, C., Lachaize, C., Janody, F.,, Bellon, B., Roder, L., Euzenat, J., ... Jacq, B. (1999). Grasping at
molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an In-
ternet database. Nucleic Acids Research.

Schenck, C. H., Boeve, B. F., & Mahowald, M. W. (2013). Delayed emergence of a parkinsonian disorder
or dementia in 81 of older men initially diagnosed with idiopathic rapid eye movement sleep
behavior disorder: a 16-year update on a previously reported series. Sleep medicine.

Schenck, C. H., Bundlie, S. R., Ettinger, M. G., & Mahowald, M. W. (1986). Chronic behavioral disorders
of human REM sleep: a new category of parasomnia. SLEEP.

Schenck, C. H., Lee, S. A., Bornemann, M. A. C., & Mahowald, M. W. (2009). Potentially Lethal Beha-
viors Associated With Rapid Eye Movement Sleep Behavior Disorder: Review of the Literature
and Forensic Implications. Journal of Forensic Sciences.

29



Sharma, A., Menche, J., Huang, C. C,, Ort, T,, Zhou, X., Kitsak, M., ... Barabasi, A.-L. (2015). A disease
module in the interactome explains disease heterogeneity, drug response and captures novel
pathways and genes in asthma. Human molecular genetics.

Signorelli, M., Vinciotti, V., & Wit, E. C. (2016). NEAT: an efficient network enrichment analysis test.
BMC bioinformatics.

Silverman, E. K. & Loscalzo, J. (2012). Network medicine approaches to the genetics of complex dis-
eases. Discov Med.

Sixel-Doring, F., Zimmermann, J., Wegener, A., Mollenhauer, B., & Trenkwalder, C. (2016). The Evolu-
tion of REM Sleep Behavior Disorder in Early Parkinson Disease. SLEEP.

Solomonoff, R. & Rapoport, A. (1951). Connectivity of random nets. The Bulletin of Mathematical
Biophysics.

Stephens, Z. D, Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., ... Robinson, G. E. (2015).
Big Data: Astronomical or Genomical? PLoS Biol.

Stern, A. M., Schurdak, M. E., Bahar, |., Berg, J. M., & Taylor, D. L. (2016). A Perspective on Implement-
ing a Quantitative Systems Pharmacology Platform for Drug Discovery and the Advancement
of Personalized Medicine. J Biomol Screen.

Stodden, V., McNutt, M., Bailey, D. H., Deelman, E., Gil, Y., Hanson, B., ... Taufer, M. (2016). Enhancing
reproducibility for computational methods. Science.

Teichmann, S. A. & Babu, M. M. (2004). Gene regulatory network growth by duplication. Nature Ge-
netics.

Uhlén, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., ... Pontén, F.
(2015). Tissue-based map of the human proteome. Science.

Vale, T. C., Fernandes do Prado, L. B., do Prado, G. F., Povoas Barsottini, O. G., & Pedroso, J. L. (2016).
Rapid Eye Movement Sleep Behavior Disorder in Paraneoplastic Cerebellar Degeneration: Im-
provement with Immunotherapy. SLEEP.

Vazquez, A., Flammini, A., Maritan, A., & Vespignani, A. (2003). Modeling of Protein Interaction Net-
works. Complexus.

Venancio, D. P. & Suchecki, D. (2015). Prolonged REM sleep restriction induces metabolic syndrome-
related changes: Mediation by pro-inflammatory cytokines. Brain, Behavior, and Immunity.

Venkatesan, K., Rual, J.-F., Vazquez, A., Stelzl, U., Lemmens, |., Hirozane-Kishikawa, T, ... Vidal, M.
(2009). An empirical framework for binary interactome mapping. Nature Methods.

Vetrugno, R., Provini, F., Cortelli, P., Plazzi, G., Lotti, E. M., Pierangeli, G., ... Montagna, P. (2004). Sleep
disorders in multiple system atrophy: a correlative video-polysomnographic study. Sleep medi-
cine.

Vidal, M., Cusick, M. E., & Barabasi, A.-L. (2011). Interactome networks and human disease. Cell.

Wang, R.-S., Maron, B. A., & Loscalzo, J. (2015). Systems medicine: evolution of systems biology from
bench to bedside. Wiley interdisciplinary reviews. Systems biology and medicine.

Watts, D. J. & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature.

Wu, P, Yu, H., Peng, S., Dauvilliers, Y., Wang, J., Ge, J,, ... Zuo, C. (2014). Consistent abnormalities in
metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder. Brain.

Zanzoni, A., Soler-Lépez, M., & Aloy, P. (2009). A network medicine approach to human disease. FEBS
letters.

Zhang, W. J,, Shang, X. L., Peng, J., Zhou, M. H., & Sun, W. J. (2017). Expression of prion protein in the
cerebrospinal fluid of patients with Parkinson’s disease complicated with rapid eye movement
sleep behavior disorder. Genet. Mol. Res.

30



Zhang, X., Sun, X., Wang, J., Tang, L., & Xie, A. (2017). Prevalence of rapid eye movement sleep beha-
vior disorder (RBD) in Parkinson’s disease: a meta and meta-regression analysis. Neurol. Sci.

31



9 Supplementary information

Progression of The true potential of RBD as a
sinucleinophaties is biomarker of synucleinopathies
understood fractionally has not been leveraged

Novel RBD-causing Structural and functional

Potential therapeutic targets for

molecular mechanisms organisation of RBD is RBD and synucleinophaties are
have not been assessed deeply disregarded S - -
RBD disease module is
unascertained
Knowledge gaps Previoys r_es_earch employs a
inherent to science reductionistic approach

Traditional bias towards the
anatomic organisational level
instead of the molecular one

Figure S1: Problem tree showing the causes (bottom squares), generating the research problem (cent-
ral square), which in turn produces some consequences (upper squares).



Figure S2: Schematic representation of the methodological workflow followed in the present re-
search.
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Figure S3: Random sample of 300 nodes and their respective edges from the Hl version 1, drew only
for the sake of aesthetics. Regulatory interactions dominate the nodes in the interactome and also

represent most of the hubs.
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Figure S4: Proportion of edges per source in the HI 1, including all regulatory interactions, (A) and
HI 2, including only whole-brain regulatory interactions, (B). Despite the regulatory overrepresent-
ation persist when employing only whole-brain regulatory interactions, the dimensionality of the
interactome reduces by a factor of 2.5, compared against HI 1 (table 1).
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Figure S5: Comparison of distributions to explain the P(k) ;. The power-law is significantly closer to
P(k) g1 than the Poisson distribution (one-sided pyqe = 1.198427e-07, two-sided pyqiye = 2.396854¢e-
07), as seen in the log-likelihood ratio(R), which goes towards positive values (blue line). Similarly,
when comparing exponential distribution against the Poisson, the former is significantly more plaus-
ible than the latter (two-sided p,qiue = 4.568209e-45), represented as a trend of R towards negative
values (red line) (Clauset, Shalizi, & Newman, 2009).
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Figure S6: Log-log plots for the cumulative degree distribution (P(k)) for the HI 2 (A), regulatory inter-
actions (B), metabosignal interactions (C) and PPI (D). The bimodal distribution of the Hl is inherited
from regulatory interactions, as both, PPl and metabosignal follows an unimodal distribution.
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Figure S7: Clustering coefficient (cl) is successfully able to separate the two type of hubs in regu-
latory interactions: intramodular or party hubs (red), with a high clustering coefficient keeping in-
tegrity of modules, and intermodular or date hubs (blue), with a lower clustering coefficient and
a tendency to connect modules. The analogy by (Fraser, 2005) with exon shuffling exemplify very
well the evolutionary scenario where intermodular hubs in regulatory interactions evolve through
the duplication-acquisition model (Ferreira et al., 2013) here supported, “In an abstract sense,... The
idea of evolutionary innovation occurring through exon shuffling, a process in which the swapping
between different genes of DNA segments encoding conserved protein domains allows new proteins
to evolve, by creating new domain combinations... Functional modules may be similar to protein do-
mains, which, once established, are usually best left intact; new combinations of and connections
between modules (or domains) may lead to advantageous changes more often than would changes
that disrupt modules (or domains)... In some sense, it is similar to the idea of evolution occurring
through the co-option of existing modules for new purposes”.
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Figure S8: Goodness-of-fit test for the RBD-module by fitting an ERGM and comparing the degree
distribution (A) and the geodesic distance (B). Additionally, B shows that most nodes in the RBD-
module are reachable (Non Reachable ~ 0). Goodness-of-fit test for the HI comparing the degree
distribution is shown in C. The bold black line is the observed value and the boxplots represent the
simulated values showing minimums and maximums, as well as the 10 and 90™ quantiles. In all
cases, the overall poor fitting between the simulated and the observed value is quite remarkable,
supporting the biological relevance of the RBD-module and the HI. For the sake of aesthetics, only
the first 60 values of d are shown.
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Figure S9: GO Biological process enrichment of DIAMOND nodes. Behaviour of the enrichment sig-
nificance for the ten most enriched Gene Ontology Biological processes in the RBD seed nodes as
DIAMOND nodes are added to the RBD module. The red dotted line represents the p,q.. = 0.05, thus,
by extrapolating to the abscissa, the first 400 predicted DIAMOND nodes were included to the RBD-
module as novel entities related to the RBD aetyology, matching the drop in the enrichment signific-
ance. The first ~ 400 iterations are anchored to 0 because they are very significant (e.g. 1 x 107179,
as seen in the inset of the first 100 nodes with a rescaled ordinate. The ordinates represent the B-H
adjusted p,q.e- A fully interactive version of the plot, for further inspection, is available here.


https://www.dropbox.com/s/k01rt77dh1vaqe9/diamond_validation_GOBP.html?dl=0

Table S1: The main function of the first ten intermodular and intramodular hubs in regulatory in-
teractions. Most of these nodes are TF, further supporting the evolutionary scenario of duplication-
acquisition (Ferreira et al., 2013) in the regulatory interactions of the HI.

Entrez gene ID Gene name Function
3725 Jun proto-oncogene, AP-1 transcription factor subunit TF
6667 Spl transcription factor TF
2313 Fli-1 proto-oncogene, ETS transcription factor TF
7020 Transcription factor AP-2 alpha TF
Intermodular 5078 Paired box 4 TF
5451 POU class 2 homeobox 1 TF

5669 Pregnancy specific beta-1-glycoprotein 1 Antibody

199699 DAN domain BMP antagonist family member 5 Morphogen
3172 Hepatocyte nuclear factor 4 alpha TF
6688 Spi-1 proto-oncogene TF
8266 Ubiquitin like 4A Ubiquitin like

26973 Cysteine and histidine rich domain containing 1 TF

1272 Contactin 1 Antibody

7010 TEK receptor tyrosine kinase Receptor

Intramodular 2776 G protein subunit alpha q Signal transduction
64412 GDNF inducible zinc finger protein 1 TF
3673 Integrin subunit alpha 2 MEC support

51119 SBDS, ribosome assembly guanine nucleotide exchange factor TF
7675 Zinc finger protein 121 TF

23657 Solute carrier family 7 member 11 Transport




Table S2: RBD seed genes collected from databases and literature. Inferred C = Inferred association
via a curated chemical interaction from the CTD database. When separated by a “/” then, several

sources or evidence are supporting the gene.

Gene Evidence Source

ACHE Inferred MalaCards humandisease
BDNF Inferred C CTD

CASP7 Inferred C CTD

SCARB2 linkage (Gan-Or, Girard, et al., 2015)
CYP2D6 Inferred C CTD

CYP3A4 Inferred C CTD

DRD2 Inferred C CTD

GBA linkage (Gan-Or, Mirelman, et al., 2015)
GCNT2 literature DisGeNET

HCRT literature/Inferred DisGeNET/MalaCards humandisease
HLA-DQB1 TextMining HuGE

HTR1A Inferred C CTD

HTR2A Inferred C CTD

HTR2C Inferred C CTD

MAPT linkage (Gan-Or, Girard, et al., 2015)
PARK?2 literature DisGeNET

PSG5 literature DisGeNET

RPS27A Inferred MalaCards humandisease
SLC6A3 literature/Inferred MalaCards humandisease
SLC6A4 Inferred C CTD

SNCA literature/Inferred MalaCards humandisease
TCOF1 Inferred MalaCards humandisease
NROB2 Inferred C CTD

REM1 literature DisGeNET

FNDC4 Inferred C CTD

LRRK2 Inferred MalaCards human disease
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Table S3: Ten most enriched GO terms in the RBD-module organised by ontology. Most Biological

processes (BP) and Cellular Compartments (CC) are immune and signalling related.

GOID Term Ontology
G0:0002232 leukocyte chemotaxis involved in inflammatory response BP
G0:0002673 regulation of acute inflammatory response BP
G0:0002720 positive regulation of cytokine production involved in immune response BP
G0:0002879 positive regulation of acute inflammatory response to non-antigenic stimulus BP
G0:0090276 regulation of peptide hormone secretion BP
G0:1904322 cellular response to forskolin BP
G0:0018105 peptidyl-serine phosphorylation BP
G0:0007189 adenylate cyclase-activating G-protein coupled receptor signaling pathway BP
G0:0006171 cAMP biosynthetic process BP
G0:0048009 insulin-like growth factor receptor signaling pathway BP
G0:0005891 voltage-gated calcium channel complex cC
G0:0005834 heterotrimeric G-protein complex CcC
G0:0005886 plasma membrane CC
G0:1990454 L-type voltage-gated calcium channel complex CC
G0:0005942 phosphatidylinositol 3-kinase complex CC
G0:0005943 phosphatidylinositol 3-kinase complex, class 1A CcC
G0:0000159 protein phosphatase type 2A complex cC
G0:0032281 AMPA glutamate receptor complex CcC
G0:1902494 catalytic complex CC
G0:0034704 calcium channel complex cc
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