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Abstract

The Rapid eye movement sleep Behaviour Disorder (RBD) is a promising parasomnia for early dia-
gnosis of synucleinopathies, as Parkinson’s disease (PD), however, li le is known about its molecular
pathogenesis. The meagre a empts to inves gate it used a fragmentary single-gene centred ap-
proach, disregarding key molecular en es and processes in the RBD ae ology. Under the systemic
paradigm of network medicine, RBD arises from the disrup on of a sub-network, or module, in the
complete set of a cell’ interac ons, or Human Interactome (HI). This research aimed to character-
ise, for the first me, the RBD-module in the most up-to-date high-quality brain-specific HI. The
RBD-module and the HI were validated func onally, employing a novel Network Enrichment Ana-
lysis Test (NEAT), and topologically, u lising Exponen al Random Graph Models (ERGM) fi ng and
comparisons against random expecta on. The HI exhibit the network hallmarks of the duplica on-
acquisi on evolu onary model recently proposed, and the RBD-module suggest a wider pathogenic
view than previously considered in the RBD ae ology, by including the limbic system. Immune and
signalling process regarding cytokine and serotonin metabolism in the sleep regulatory system are
overenriched in the RBD-module. This research paves the way for further studies guided to disclose
the RBD relevance as a biomarker of synucleinopathies, especially PD.



Contents

List of Figures 4

List of Tables 4

Acronyms 5

Glossary 6

1 Introduc on 9

2 Research problem statement 10
2.1 Research ques on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Theore cal framework 11
3.1 Rapid eye movement sleep Behaviour Disorder . . . . . . . . . . . . . . . . . . . . 11
3.2 Network science and the systemic paradigm . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Towards the future medicine in the present . . . . . . . . . . . . . . . . . . . . . . 13

4 Objec ves 14

5 Methods 14
5.1 Human interactome assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1.1 Interac ons data gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.2 Valida on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 Iden fica on and valida on of the RBD module in the HI . . . . . . . . . . . . . . . 17
5.2.1 Seed nodes gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Module iden fica on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.3 Module valida on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 So ware and hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Results & discussion 19
6.1 Human interactome assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1.1 Interac ons data gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1.2 Valida on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.2 Iden fica on and valida on of the RBD-module in the HI . . . . . . . . . . . . . . . 22

7 Conclusion 24

8 Funding 24

9 Supplementary informa on 0



List of Figures

1 Transi vity and Average Path Length of HI and RBD-module . . . . . . . . . . . . . . 21
2 RBD-module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
S1 Problem tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
S2 Methodological workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
S3 HI sample network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
S4 Propor on of edges per source in the HI . . . . . . . . . . . . . . . . . . . . . . . . 3
S5 Vuong’ tests for HI valida on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
S6 Cumula ve degree distribu ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
S7 Party and date hubs in regulatory interac ons . . . . . . . . . . . . . . . . . . . . . 6
S8 Goodness-of-fit for the HI and the RBD-module. . . . . . . . . . . . . . . . . . . . . 7
S9 GO Biological process enrichment of DIAMOnD . . . . . . . . . . . . . . . . . . . . 8

List of Tables

1 Topological proper es of interactome . . . . . . . . . . . . . . . . . . . . . . . . . 19
S1 Main func on of 10 party and date hubs . . . . . . . . . . . . . . . . . . . . . . . . 9
S2 RBD seed genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
S3 Ten most enriched GO terms in the RBD-module . . . . . . . . . . . . . . . . . . . . 11



Acronyms

CAGE Cap Analysis of Gene Expression. 15

DLB Demen a with Lewi Bodies. 10

GRN Gene Regulatory Network. 15

HPA Human Protein Atlas. 15

MSA Mul ple System Atrophy. 10

NEAT Network Enrichment Analysis Test. 2, 17, 18

PD Parkinson’s disease. 2, 9

PPI Protein-Protein physical Interac ons. 14

RBD Rapid eye movement sleep Behaviour Disorder. 2, 9, 14, 24, Glossary: Rapid eye movement
sleep Behaviour Disorder

REM Rapid Eye Movement. 10

TF Transcrip on Factor. 15

5



Glossary

Average Path Length (< d >) It is a measure of connec vity, calculated by averaging the minimum
number of edges between two given nodes, a.k.a. geodesic distance, as follows:

< d >= 1/N(N − 1) ∗
∑

i,j=1,N ;i ̸=j

di,j

Where di,j is the distance between the nodes i and j and N is the number of nodes in the
network (Kolaczyk & Csárdi, 2014). 16

Biomarker “A characteris c that is objec vely measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacologic responses to a therapeu c inter-
ven on.” (Biomarkers Defini ons Working Group., 2001). They are valuable tools to iden fy
at-risk popula on of a certain disease, track the disease prognosis, aid in the process of dis-
ease’s staging and to predict clinical responses. 10

Degree Given a network G with ver ces n ∈ N and edgesm ∈ M , then the degree ki denote the
number of edges of the ith node, which in turn enable the defini on of the total number of
edges in the network (M )

M = 1/2
N∑
i=1

ki

The average degree of the network< k > is defined as

< k >= 1/E
N∑
i=1

ki = 2M/E

(Kolaczyk & Csárdi, 2014; ‘Network Science by Albert-László Barabási’, n.d.). 16, 19

Diameter In the network context, the diameter is a topological feature measured as the longest
geodesic distance between the farthest nodes in the network (Kolaczyk & Csárdi, 2014). 19

Diseasome A comprehensive network where the disease phenome, represen ng all gene c dis-
orders, and the disease genome, represen ng all disease genes associated to these pheno-
types, are linked into two main networks, as Goh et al. (2007) proposed it: 1. The Human
Disease Network, whose nodes are diseases and edges are shared genes among them, and
2. The Disease Gene Network, whose nodes are genes and edges are drown if two genes are
implicated in the same disease. 12

Emergent property A system’s feature only perceivable when the system is seen as an indissoluble
complex whole (Moriello, 2013). Contrarily, while some proper es emerge in the system, oth-
ers submerge into it and are no longer discernible (Moriello, 2013). Exampli gra a Only when
all cellular elements and its interac ons at different organisa onal levels are perceived holist-
ically, the emergent property of life arises, whereas individual proper es of these elements or
their interac ons, such as quaternary structures of proteins or allosteric regula ons between
enzymes. 12
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Exponen al Random Graph Models (p∗) Sta s chal model which employs a logis c regression for
parameter es ma on of the form:

P (Yij|Yi′j′ , θ) = logistic

k∑
h=1

θhδ
ij
h (Y )

Where Yij is a binary random variable indica ng if there is an edge between a pair of ver ces
i, j, Yi′j′ is a binary random variable for the other ver ces and θ is the coefficient of the sta s c
δ (Kolaczyk & Csárdi, 2014).. 2, 7, 16, 21

Human Interactome “complete repertoire of gene c interac ons poten ally encoded by an organ-
ism’s genome” (Sanchez et al., 1999). Therefore, it includes not only the proteome, protein-
protein interac on network, but also the transcriptome, regulome, metabolome, transient
and long-las ng interac ons among all cellular en es, both intra and extracellular, such as
proteins, DNA, RNA, lipids and carbohydrates. 2, 9, 14, 24

Hypergeometric distribu on Distribu on that models the number of successful cases in a random
sample without replacement. In the network context such distribu on is very useful when
performing set enrichment analysis, where the successful cases are those links between the
query set (e.g. the genes of interest) and the target set (e.g. set of func onal terms). It is
defined as:

NAB ∼ hypergeom(n = dA, K = dB, N = dV )

Where dA, dB and dV represents the degree of the query set, the degree of the func onal
terms set and the total degree between them, respec vely (Signorelli, Vincio , & Wit, 2016).
18

Network Theore cal set of concepts for represen ng systems in the form of nodes and links among
them (Moriello, 2013). Graph theory is inextricably intertwined with networks, as a graph is
the underlyingmathema cal object of every network, enabling the applica on of formal quant-
ita ve analyses on them. 9, 10

Pathophenotype Hallmark phenotype of a disease. 10

Prodrome Period preceding the main symptomatology of a given disease. E.g. PD, as a progressive
pathology, exhibit non-motor symptoms, such as cons pa on, RBD, olfactory loss, inter alia,
which precede the cardinal motor symptoms emergence for a decade (Postuma & Berg, 2016).
10, 11

Rapid eye movement sleep Behaviour Disorder Parasomnia where the pa ent have vivid dreams
during the REM sleep phase associated to a loss of atonia (Boeve, 2010). 2, 9, 14, 24

Synucleinopathy Neurodegenera vediseasewhich exhibit an atypical aggrega onof theα-Synuclein
protein. Grouping Parkinson’s disease, Demen a with Lewi Bodies and Mul ple System At-
rophy, inter alia. 9, 14
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Transi vity a.k.a. Clustering Coefficient (cl) convey informa on regarding the frequency with which
the triplets in the network form triangles, thus informing about the closeness among nodes
(Kolaczyk & Csárdi, 2014).

cl(G) = 3τ△(G)/τ3(G)

Where τ△(G) is the number of triangles in the graph G and τ3 is the number of connected
triplets of the form ∧. 16
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1 Introduc on

With the advent of high-throughput technologies inmolecular biology, a bulk of genomic informa on
is being generated at an unprecedented rate (Stephens et al., 2015), empowering the devising of a
completely contemporary, despite its an queness, approach to understanding biological systems, as
such, systems (Kitano, 2002). Contrarily to a fragmentary host of simply and, to a certain extent, in-
genuously interac ng elements, as is inherently encoded in the analysis as the sine qua non enquiry
method, characteris c of the reduc onism paradigm. A paradigm shi is, therefore, taking place
(Chan & Loscalzo, 2012). Medicine is being penetrated by such shi , going from a reac ve medi-
cine guided to treat symptoms, to a predic ve, preven ve, personalised and par cipatory medicine,
guided to cure the disease (Wang, Maron, & Loscalzo, 2015; Flores, Glusman, Brogaard, Price, &
Hood, 2013; Silverman & Loscalzo, 2012). As Thomas Rau stated, “to treat differently, you have to
think differently” (Biological Medicine Network, 2015). In such brand new way of thinking, network
as the pinnacle representa on of systems, play a cri cal role, offering the mathema cal formalism
and a prac cal tool to understand phenotypes of complex systems, such as disease and healthy in
human’ cells (Barabási, Gulbahce, & Loscalzo, 2011). The birth of network medicine was imminent,
a brand newmarriage between the systemic paradigm andmedicine, towards a revolu onary health
system. In network medicine, a disease arises from the disrup on of a sub-network or module in the
Human Interactome (HI), and where the pathogenic en es responsible for such disease are located
(Goh et al., 2007; Feldman, Rzhetsky, & Vitkup, 2008).

Rapid eye movement sleep Behaviour Disorder (RBD) is a parasomnia where pa ents have, o en vi-
olent, oneiric behaviours while in REM sleep, causing serious harm to themselves and their spouses
(Boeve, 2010; Arnulf, 2012). Due to its high conversion rate to synucleinopathies (80 %) and its large
lead period to neurodegenera on (3 - 34 years), RBD stands out as one of the most promising pro-
dromal biomarkers of Parkinson’s disease (PD), an incurable neurodegenera ve synucleinopathywith
a high social and economical burdenworldwide (Kowal, Dall, Chakrabar , Storm, & Jain, 2013; Hirsch,
Je e, Frolkis, Steeves, & Pringsheim, 2016). Therefore, RBD not only present itself as an early dia-
gnos c tool, but also offers an invaluable window to an cipatedly treat and study the progression of
PD (Postuma, 2014). Notwithstanding the anatomical knowledge regarding the ae ology of RBD, pin-
poin ng the pontomedullar region in the brainsteam as the pathogenic source, li le is known about
themolecularmechanisms implicated in the RBD pathogenesis, with themeagre a empts employing
a reduc onis c single-gene centred approach (Gan-Or, Mirelman, et al., 2015; Gan-Or, Girard, et al.,
2015; Gan-Or et al., 2016; Gan-Or et al., 2017; Fernández-San ago et al., 2016), thus, hampering our
RBD understanding and its applica ons as biomarker.

This pioneer research aimed to obtain insight concerning the RBD ae ology, employing the power
of the disease module hypothesis under the network medicine paradigm. The most up-to-date high-
quality brain-specific HI was constructed, exhibi ng evolu onary network hallmarks, upon which the
iden fica on of RBD-causing and non-direct RBD-causing molecular en es (i.e. genes, proteins,
biological processes) were iden fied, suppor ng an alterna ve hypothesis for RBD ae ology with a
strong limbic involvement, thereby, widening the percep on of RBD pathogenesis. Iden fica on of
RBD module and its molecular mechanisms is the first step towards a holis c understanding of RBD
and its rela onships with other synucleinopathies, paving the way for further studies transgressing
the merely reduc onis c approaches and imposing network medicine.

9



2 Research problem statement

RBD is a mul factorial parasomnia characterised by an, usually violent, enac ng of dreams during
the Rapid Eye Movement (REM) sleep phase (Schenck, Bundlie, E nger, & Mahowald, 1986; Arnulf,
2012), genera ng injuries and sleep disrup ons to the pa ents and their spouses (Olson, Boeve, &
Silber, 2000). RBD is one of the most promising prodromal biomarkers of several synucleinopathies,
including PD and Demen a with Lewi Bodies (DLB), as it has the highest specificity (Postuma, Lang,
Gagnon, Pelle er, & Montplaisir, 2012), conversion rate (Iranzo et al., 2014; Postuma, Gagnon, Ber-
trand, Génier Marchand, & Montplaisir, 2015; Schenck, Boeve, & Mahowald, 2013) and diagnos c
strength (Postuma & Berg, 2016) of the proposed biomarkers up to date. Addi onally, RBD exhibit
a median lead period to neurodegenera on of around 11 years (Postuma et al., 2009), ranging from
3 (Olson et al., 2000) up to 34 years (Claassen et al., 2010), period in which its progression has been
linked with the progression of cogni ve impairment in PD pa ents (Sixel-Döring, Zimmermann, We-
gener, Mollenhauer, & Trenkwalder, 2016). Therefore, RBD not only provides an excep onal tool
to iden fy at-risk popula on, which in turn enables early diagnose, stra fica on, tes ng on, and
treatment of PD, DLB and Mul ple System Atrophy (MSA) pa ents, but also as a poten al clinical
progression marker of these pathologies, offering and unprecedented window to study the evolu-
on of such diseases (Postuma, 2014). Despite its relevance as prodromal biomarker, to the author’s

knowledge, li le is known about the molecular ae ology governing RBD in humans, with the meagre
a empts employing a reduc onis c single-gene centred approach, (Gan-Or, Mirelman, et al., 2015;
Gan-Or, Girard, et al., 2015; Gan-Or et al., 2016; Gan-Or et al., 2017; Fernández-San ago et al., 2016;
W. J. Zhang, Shang, Peng, Zhou, & Sun, 2017) thus, restric ng our disease understanding and its
applica ons.

Network is a pragma cal operable representa on of complex systems (e.g. the cell), in the form of
nodes connected by edges, enabling its study and be er understanding at different organisa onal
levels (i.e. molecular en ty, metabolic pathway, network module, cellular compartment, inter alia)
from a holis c standpoint (Moriello, 2013; Nurse & Hayles, 2011; Kitano, 2002). For instance, the HI
is the network represen ng the cellular interac ons in a given condi on and cell type (Sanchez et al.,
1999), whose nodes aremolecular en es (e.g. DNA, RNA, protein, inter alia) and its edges represent
physical or func onal interac ons among them (Vidal, Cusick, & Barabási, 2011). Under the network
medicine paradigm, a disease arises from the perturba onof several HI components (Goh et al., 2007;
Feldman et al., 2008) and thus can be mapped into a disease module, a ssue-specific and highly
interconnected set of func onally related nodes whose perturba on generates the pathophenotype,
in the HI (Barabási et al., 2011; Barabási, 2007; Kitsak et al., 2016). Disease module iden fica on is
the first step towards a holis c understanding of the pathology in ques on, as it moves our disease
knowledge beyond the merely reduc onis c disease-causing nodes, allowing the iden fica on at
different organisa onal levels of novel disease-causing and non-direct disease-causing en es and
key interac ons among them (Sharma et al., 2015; Ghiassian et al., 2016), thereby, enhancing our
pathophenotype’s understanding.

Inasmuch as RBD is a mul factorial disease (Arnulf, 2012), a network approach, well-fi ed to cope
with such complex interac ons through the disease module concept, is suitable to unravel the RBD
ae ology and to discover, from a holis c standpoint, novel molecular en es at different organisa-
onal levels related to its pathogenesis (Silverman & Loscalzo, 2012). Providing a holis c outlook of

the structural and func onal organisa on governing the RBD disease module not only would shed
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light on novel RBD related molecular mechanisms, but also would pave the way for further studies
guided to disclose its relevance as a prodromal biomarker for PD, DLB andMSA at themolecular level.
See figure S1 for problem tree.

2.1 Research ques on

What are themolecular en es at different organisa onal levels composing the Rapid eyemovement
sleep Behaviour Disorder disease module?

3 Theore cal framework

3.1 Rapid eye movement sleep Behaviour Disorder

RBD is a mul factorial (Arnulf, 2012) parasomnia where pa ents enact their dreams due to a loss of
atonia whilst in REM sleep phase (Boeve, 2010). Such dreams are significantly loaded with aggres-
sion and vigorous motor behaviours related to threatening (Fan ni, Corona, Clerici, & Ferini-Strambi,
2005), consequently, serious harm can be inflicted to the pa ents and their spouses, even verging on
lethality (Schenck, Lee, Bornemann, & Mahowald, 2009). Worldwide RBD popula on prevalence is
unknown, but Ohayon and Schenck (2010) es mated it, through telephone ques onnaires, to be 0.5
% in a representa ve sample from the United Kingdom, however it is likely a sub-es ma on loaded
with false posi ves and false nega ves (Arnulf, 2012). Regarding the local scope, so far, the only art-
icle referring to RBD in Colombia is a clinical report of a pa ent treated with trazodone (Chica-Urzola,
2015), making it evident that, besides the molecular ae ological aspects that this research a empts
to enrich, more research is needed concerning the demographic and epidemiologic dimensions of
RBD both at the global and regional scope.

Recently, forasmuch as RBD has a conversion rate to synucleinopathies of up to 80 % (Schenck et al.,
2013), it has been under scru ny for its poten al as prodromal biomarker of these pathologies, from
which PD stands out as one of the most prominent due its elevated socio-economic burden (Kowal et
al., 2013), its high prevalence (Pringsheim, Je e, Frolkis, & Steeves, 2014) and high incidence (Hirsch
et al., 2016) worldwide. For instance, roughly half of PD pa ents suffer RBD (weighted prevalence of
42.3 %) (X. Zhang, Sun, Wang, Tang, & Xie, 2017) though prospec ve studies have reported a preval-
ence of up to 70% (Neikrug et al., 2014), with a conversion rate fromRBD to PD of up to 50% (Schenck
et al., 2013). Similarly, 73 % (Muntean, Sixel-Döring, & Trenkwalder, 2013) - 100 % (Vetrugno et al.,
2004) of DLB pa ents suffer RBD and Boeve et al. reported that 92 % of RBD pa ents with symptoms
of degenera ve demen a suffer DLB (1998). These findings encourage the RBD research as a crucial
step towards its use as a prodromal biomarker for the most important synucleinopathies, which in
turn yields, as Postuma (2014) pointed out, a valuable opportunity for: 1. Early therapeu c inter-
ven on, 2. Tes ng of poten al biomarkers, 3. An cipatory study of synucleinopathies’ epidemiology
and 4. Inves gate the progression of synucleinopathies.

Since its first diagnosis by Schenck et al. (1986), li le has been assessed about the RBD anatomical
pathogenesis in humans, instead, the tradi onal cat and ratmodels, although contradictory regarding
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some findings obeying species-specific mechanisms, have revealed that disrup on of the sleep-wake
regulatory circuit in the ponto-medullary axis, specifically, degenera on of the sublaterodorsal teg-
mental nucleus, might induce RBD (Luppi et al., 2011). Other nuclei in the brain stem have been
implicated in the non-human animal models, such as the ventral gigantocellular re cular nucleus
(Luppi et al., 2011) and the ventral mesencephalic re cular forma on (Lai, Hsieh, Nguyen, Peever,
& Siegel, 2008), nevertheless, certainty regarding the appositeness of these structures in humans is
s ll to come (Boeve, 2010). Neuroimaging approaches employing single photon emission computed
tomography, magne c resonance imaging and positron emission tomography, not only have con-
firmed metabolic and neurostructural changes in areas previously implicated with RBD such as the
hippocampus and pontomesencephalic tegmentum, but also have steered toward cor cal and sub-
cor cal areas as novel regions poten ally implicated in the RBD ae ology at the ssue organisa onal
level (Bouce a et al., 2016; Holtbernd et al., 2014; Wu et al., 2014). Notwithstanding the efforts to
decipher the complex anatomical circuit responsible for RBD in humans employing non-human an-
imal models, the poten al ae ological mechanisms befalling at a slender organisa onal level have
been widely overlooked, therefore, and taking into account that transla on from models to humans
do not holds always (Burns, Li, Mehta, Awad, & Morgan, 2015), it is required a novel approach to dig
deeper into the molecular basis of RBD in humans.

3.2 Network science and the systemic paradigm

Reduc onism employs the analysis as the enquiry method, which fragment the studied system into
its minimal components in order to, caeteris paribus, look for linear interac ons among them, thus,
de-contextualising these components. Although its relevance during the XIX century, the reduc on-
ismhave probed to be insufficient to explain a plethora of dimensions of the cell as a biological system,
and the different states of life as its emergent property, such as disease networks (Goh et al., 2007),
neural networks (Wa s & Strogatz, 1998), protein-protein interac on (PPI) networks (Vázquez, Flam-
mini, Maritan, & Vespignani, 2003) and signalling networks (Ma’ayan et al., 2005), among others.
Network cons tutes the pinnacle operable representa on of a system as nodes connected through
edges, which, in conjunc on with the advent of high-throughput technologies to generate biological
data, reinforced systems biology as the de facto paradigm to approach biomedical research (Wang
et al., 2015). Hence, aside from being insufficient to explain biological systems, the reduc onism
paradigm is inappropriate insofar as a system is more than the sum of its parts, demanding, thus, a
synthe c enquiry to fully understand a complex system, such as the cell, and its different states, such
as disease and healthy (Barabási & Oltvai, 2004; Kitano, 2002).

Network medicine is an a empt to explain diseases under the systemic paradigm on the empirical
premise that disease is a state of the biological system, arising from the disrup on of complex in-
terac ons among several cellular components (Barabási et al., 2011). It is the case even for previ-
ously believed monogenic diseases, such as phenylketonuria and cys c fibrosis, which have been
proved to be oligogenic instead (Badano & Katsanis, 2002). Network medicine had its iconic start
with the seminal paper by Goh et al. (2007), in which all known genotype-phenotype associa ons to
date were studied systema cally in its inherent complexity, rather than the tradi onal fragmentary
single gene-single disease approach, revealing that most human diseases shared a gene c origin il-
lustrated in the human diseasome. The u lity of such approach goes beyond the solely depic on of
the common pathogenic basis and interconnectedness among several human diseases, it cons tutes
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an outstanding instrument to mathema cally frame and explain complex diseases at different organ-
isa onal levels (i.e. molecular en ty, metabolic pathway, network module, cellular compartment,
inter alia) (Silverman & Loscalzo, 2012), enhancing our disease understanding markedly (Loscalzo &
Barabási, 2011).

The HI is the “complete repertoire of gene c interac ons poten ally encoded by an organism’s gen-
ome” (Sanchez et al., 1999) of a given human cell type in a specific me, and it cons tutes the baseline
founda on behind network medicine analyses (Zanzoni, Soler-López, & Aloy, 2009). Derived from
network medicine, the disease module hypothesis stands that disease-related (i.e. disease-causing
andnon-direct disease-causing) nodes are func onally organised in a densely connected sub-network
in the HI, rather than randomly sca ered throughout it, from whose perturba on arises the disease
(Goh et al., 2007; Feldman et al., 2008) and which is ssue-specific (Kitsak et al., 2016). Disease mod-
ule iden fica on lie at the core of network medicine analyses and cons tutes the first step towards a
systemic pathophenotype’s understanding, as it lays the founda on for holis c ae ological examina-
on, through predic on of novel disease-related nodes and pathways (O , Snel, Huynen, & Brunner,

2006; Köhler, Bauer, Horn, & Robinson, 2008; Navlakha & Kingsford, 2010; Sharma et al., 2015), ef-
fec ve drug development, through enhanced pharmacological target selec on (Pawson & Linding,
2008; Stern, Schurdak, Bahar, Berg, & Taylor, 2016; Hart & Xie, 2016), be er inter-disease linkage,
through comorbidity studies (Ko, Cho, Lee, & Kim, 2016), and improved diagnosis accuracy, through
systemic nosology (Loscalzo, Kohane, & Barabási, 2007) and biomarkers iden fica on (Potashkin,
San ago, Ravina, Wa s, & Leontovich, 2012).

Invariably, the completeness of the HI will determine not only the integrity of the disease modules,
asmissing links will exclude disease-related nodes, but also their rela onship at higher organisa onal
levels (e.g. at pathways or module level) (Menche et al., 2015; Zanzoni et al., 2009). Unfortunately,
due to historical technological constrains, both the HI and the majority of disease modules remain
highly incomplete and biased towards the most studied nodes, and the inherited bias of the most
employed techniques (i.e. yeast-2-hybrids assays, GWAS and co-expression) (Menche et al., 2015;
Rolland et al., 2014). For instance, as Menche et al. (2015) showed, many disease modules include
less than 20 % of the poten al disease-related nodes. Despite its inherited issues, a carefully curated
HI can be constructed and the corresponding disease module iden fied, if the disease in ques on
possesses enough disease-causing genes recognised (Menche et al., 2015).

3.3 Towards the future medicine in the present

Systemic approaches, and par cularly network medicine, are fundamental players in the transi on
from a reac ve medicine, focused on figh ng diseases, to the so called P4 medicine, for predict-
ive, preven ve, personalised and par cipatory, whose focus is health preserving (Hood & Auffray,
2013). In such framework, network medicine lay the groundwork for expand the personalised under-
standing of a given pathophenotype, as 1. it allows the iden fica on of biomarkers, enabling early
diagnose, stra fica on, interven on and preven on of disease; 2. the characterisa on of unascer-
tained disease-modifying mechanisms, which in turn shed light on novel ae ological and pathogen-
esis insights required to develop predic ve models for disease presenta on; 3. the be er designing
of therapeu c interven ons by means of systemic explora on of poten al drug-target interac ons;
and 4. for par cipatory and mul disciplinary pa ent-healthcare system interac ons, going beyond
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the doctor’s office and penetra ng other spheres such as the family and friend rela onships of the pa-
ent (Flores et al., 2013; Hood & Auffray, 2013; Galas & Hood, 2009). These insights not only would

have repercussions in the healthcare systems, which per se would have a big improvement, but also
would reduce the temporal, social and economic burden of current medical organisa ons. Inducing,
thus, profound changes in the percep on of medicine (Flores et al., 2013). The 100k project is the
most palpable example that we are living in a P4 medicine era (Hood & Price, 2014).

4 Objec ves

Characterise the Rapid eye movement sleep Behaviour Disorder (RBD) disease module at the node,
edge, biological process and cellular compartment organisa onal levels, in order to strengthen the
poten al use of RBD as a prodromal biomarker of synucleinopathies.

1. Construct the Human Interactome (HI)

2. Iden fy the puta ve RBD module

5 Methods

5.1 Human interactome assembly

5.1.1 Interac ons data gathering

Considering the highly ssue and cell specific nature of the disease module (Kitsak et al., 2016) only
ssue-specific and cell-line specific data rela ve to brain and its cell types were incorporated into the

HI. In order to avoid mul -mapping when conver ng between gene or protein IDs, only those nodes
mapped to an Entrez Gene ID were used. As long as they were free, different sources of experiment-
ally validated physical interac ons were employed, ensuring the completeness and quality of the HI
(Barabási et al., 2011). The contemplated sources are:

1. Binary Protein-Protein physical Interac ons (PPI) represent pairwise physical interac ons among
proteins. High-quality PPI (i.e. More than two events of cura on, reported in at least two separ-
ate experiments or publica ons andwith 3D structures from PDBwheremore than two dis nct
proteins have been iden fied in a complex) were retrieved from the databases Intact, MINT,
HPRD, DIP, BioPlex and bioGRID, employing the web server APID on 02/02/2017. Moreover,
APID parse the data into the 2.5.4 version of the PSI-MI XML format adopted by the HUPO
Proteomics Standard Ini a ve for the expedite data comparison, exchange and verifica on
(Kerrien et al., 2007), thus easing its use. The proteome (a.k.a. map of PPI) generated has
∼ 42 % of coverage of known human PPIs (Alonso-López et al., 2016) and, by excluding binary
singleton rela onships (interac ons supported by a single piece of experimental evidence), it is
less likely to include false PPI, product of cura on errors with a recovery rate similar to random
expecta on (Rolland et al., 2014). The detailed workflow of APID is available here.
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A given protein was considered expressed in the brain if its health ssue reliability score from
the The Human Protein Atlas was “Suppor ve” or “Approved” and its expression level was
detected (Uhlén et al., 2015) (a detailed descrip on of the reliability and expression score is
available here), thus ensuring the interac ons’ quality. The Human Protein Atlas (HPA) is a
recent a empt to unravel the ssue-specific human proteome from a gene-centric approach,
in which RNAseq and immunofluorescence labelling were employed to determine the ssue-
specificity of a given transcript and in-house and commercial an body labelling coupled with
immunohistochemistry imaging were employed to determine its subcellular localiza on at a
single-cell level (Uhlén et al., 2015).

2. Gene Regulatory Network (GRN), where regulatory elements (e.g. promoters, enhancers, in-
sulators, Transcrip on Factor (TF), RNA, inter alia) are linked through physical contacts, are
key components in understanding diseases, as they are enriched with disease causing gene c
variants (Lee & Young, 2013; Jimenez-Sanchez, Childs, & Valle, 2001) and play a cri cal role
in cell homeostasis (Ma’ayan et al., 2005). Recently, Marbach et al. (2016) created a ssue-
specific and cell-line specific compendium of high-quality inferred regulatory networks includ-
ing TF-enhancer, TF-promoter and enhancer-promoter rela onships employing FANTOM5 pro-
ject data. FANTOM5 use Cap Analysis of Gene Expression (CAGE), a high-throughput quan t-
a ve technology to map transcrip on star ng sites and assess gene expression profiles simul-
taneously in a cell, ssue or condi on specific way. Only adult data grouped into “Neurons &
fetal brain”, “Nervous system & adult hindbrain” and “Adult forebrain” clusters from (Marbach
et al., 2016) was used to generate the regulatory network.

3. Metabolic and signalling interac ons, where two nodes (i.e. metabolites, metabolic-genes,
signalling-genes) are connected if they share the same pathway, was downloaded from KEGG
on 03/05/2017. In order to consider the inextricably intertwine between metabolic and sig-
nalling networks, theyweremerge into a single brain-specificMetaboSignal network, following
the guides in PPI sec on and using the R package by Rodriguez-Mar nez et al. (2016). From
now on this type of interac ons will be referred as metabosignal, for brevity.

Table 1 lists a set of common topological a ributes (please refer to Glossary sec on for defini ons)
assessed on the interactome and compared with previous human interactomes, proteomes and reg-
ulomes, to place in context the network here constructed. Refer to supplementary informa on S2
for the complete research workflow.

5.1.2 Valida on

Poisson distribu on is a signature of random processes governing a given network a ribute (So-
lomonoff & Rapoport, 1951; Erdos & Rényi, 1959). Consequently, devia on from such distribu on
can be interpreted as a non-random process taking place to generate the network property (Kolaczyk
& Csárdi, 2014). By se ng such premise as the founda on, one can compare observed interactome’
a ributes to random ones, drawn from similar networks as the interactome, expec ng a poor re-
semblance between them; suppor ng the idea that a relevant biological process is giving place to
the observed feature instead of pure randomness. However, it is computa onally expensive to simu-
late themassiveness of the HI, therefore, for the next two a ributes, a stra fied random sample with
replacement of 6945 (roughly half of HI) ver ces was taken from the HI, ensuring thus, the repres-
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enta on of all interac on sources and reducing the sampling error. For comparisons, Z-scores were
computed for raw scores of 95 %. The compared a ributes are:

1. The transi vity or Clustering Coefficient (cl) convey informa on regarding the frequency of
triplets in the network forming triangles, thus inform about the closeness of nodes. Observed
transi vity was compared against the average transi vity calculated from 1000 random graphs
rewiredwith degree preserving randomiza on (further detail in theModule valida on sec on).

2. The average path length (< d >)is a measure of connec vity, calculated by averaging the min-
imum number of edges between two given nodes, a.k.a. geodesic distance. Observed APL was
compared against the average APL calculated from 1000 random graphs rewired with degree
preserving (further detail in the Module valida on sec on).

For further validate the HI, instead of compare its proper es against similar networks randomly
drawn, a random model was fi ed to the HI, to see whether such model is able to explain the ob-
served degree distribu on P (k) and the probability of any e occurring in the HI. Exponen al Ran-
dom Graph Models (ERGM) are sta s cal models intended to describe the probability of any e in
the network as a func on of linear predictors, verymuch like a generalised linear model of regression
(Kolaczyk & Csárdi, 2014). The random Bernoulli model (a varia on of the Erdős-Rényi model) stands
that, for each pair of ver ces i, j, the probability to draw a link between them (Yij) is independent of
the other nodes’ probability (Yi′,j′), for any i′, j′ ̸= i, j (Kolaczyk & Csárdi, 2014). Therefore, the prob-
ability of any e is calculated as p = exp(θ)

1+exp(θ) , for any θ value of an es mated network parameter (e.g.
degree distribu on) thought to be ruling the appari on of edges. Commonly, model fi ng is used
to found the parameters governing the network topology at a local level (i.e. edge level) (Goodreau,
Ki s, & Morris, 2009), thought not common, model fi ng can be used to validate the HI by looking
for poor fit between an observed property in the network at the global level, such as the P (k), and
the modelled one. For this, a goodness-of-fit test was carried out comparing the observed HI P (k)
against 10 000 simula ons and the log − odd to draw an edge in the HI was calculated.

Several real-world networks (Albert, Jeong, & Barabási, 1999, 2000; Goh et al., 2007; MacArthur,
Sánchez-Garcı́a, & Ma’ayan, 2010; Faloutsos, Faloutsos, & Faloutsos, 1999), including previous pro-
teomes (Rolland et al., 2014), exhibit the scale-freeness property, in which the P (k) follows a power-
law, thus inheri ng key features, such as the Achilles-heel property (Albert et al., 2000) and the pres-
ence of hubs (highly connected nodes) (Albert et al., 1999)), which in turn offer valuable informa on
regarding the interactome architecture and dynamics. Contrarily to tradi on, the scale-freeness of
the interactomewas assessed following the quan ta ve guidelines for accurate heavy-tailed distribu-
ons fi ng by Clauset, Shalizi, and Newman (2009). The maximum likelihood, a method well fi ed

for large datasets like the HI, es mators for the distribu on parameters kmin, the minimum degree
for which the power-law fits the P (k)HI (HI’s degree distribu on), and α, the scaling parameter of
the distribu on P (k) ∝ k−α, were obtained by minimising the Kolmogorov-Smirnov distance (K-S)
between the observed probability distribu on and the best power-law model (Clauset et al., 2009).
A goodness-of-fit test with a bootstrapping of 10 000 simula ons was used to assess the uncertainty
of the es mators (Clauset et al., 2009). Finally, the observed P (k)HI was compared against the
discrete Poisson distribu on, which represents random networks, and the exponen al distribu on,
presumed to fit theP (k)HI , employing the log-likelihood ra o (R) and the Vuong’s test for pvalue(R),
both, two-sided and one-sided (Clauset et al., 2009).
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5.2 Iden fica on and valida on of the RBD module in the HI

5.2.1 Seed nodes gathering

RBD nodes, to be used as seed for puta ve RBD-related nodes predic on, were obtained from the
OMIM, Compara ve Toxicogenomics Database (CTD), DisGeNET and MalaCards databases, employ-
ing the keywords from the Disease Ontology, a correla onal database for accurate disease terms,
“REM sleep behavior disorder”, “rapid eyemovement sleep behavior disorder”, “REM sleep parasom-
nia” and “REM sleep behavior”. These databases have at least one step of manual cura on events,
ensuring the interac on’s quality. Furthermore, a literature search was performed to complement
the database searches (Gan-Or, Mirelman, et al., 2015; Gan-Or et al., 2016; Gan-Or et al., 2017; Gan-
Or, Girard, et al., 2015; Fernández-San ago et al., 2016; W. J. Zhang et al., 2017).

5.2.2 Module iden fica on

Broadly, three approaches to predict novel puta ve disease-modifying nodes can be dis nguished: 1.
Neighbourhood-based, 2. Graph par oning and 3. Diffusion-based (Barabási et al., 2011; Navlakha
& Kingsford, 2010). The neighbourhood approach departs from the observa on that gene products
related to the same disease are more likely to interact with each other (Goh et al., 2007), and there-
fore, new gene products can be associated with a disease if they lie in the same loci of the disease
and also interacts with known disease-related gene products (O et al., 2006). Graph par oning
methods rely on the disease module hypothesis, thus linking gene products if they belong to the
same disease or func onal module (Feldman et al., 2008). Lastly, diffusion-based procedures assigns
a score to each node regarding its distance to the seed nodes, based on a random-walk, and the
configura on of these nodes’ edges (Köhler et al., 2008).

Irrespec veof themethod,most of community (a synonym for networkmodule) detec on algorithms
employ the density of edges of each node to link puta ve nodes, however, inasmuch as disease nodes
usually are not very densely connected (i.e. they are in the periphery of the network) (Feldman et
al., 2008; Goh et al., 2007), such algorithms are not able to dis nguish between the func onal mod-
ule (i.e. neighbourhood exer ng a common func on) and the disease module, which can overlap
(Ghiassian, Menche, & Barabási, 2015; Sharma et al., 2015). Therefore, the DIAMOnD algorithm,
a graph par oning method, (Ghiassian et al., 2015) was used to predict the RBD module, as it is
based on the connec vity significance of the seed nodes’ interac ons instead of pure density, hence,
it prevents the inclusion of hub nodes merely by its large number of interac ons, ensuring the patho-
biological relevance of the nodes included. However, inasmuch as DIAMOnD ranks, according to the
connec vity significance, all nodes in the network, it is require a biological criterion to decide how
many predicted nodes should be included in the RBD module (the sum of the proto-module and the
predicted nodes). For this, a Network Enrichment Analysis Test (NEAT) for Gene Ontology (GO) bio-
logical processes terms was carried out employing the Signorelli et al. approach (see next sec on for
details).
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5.2.3 Module valida on

NEAT is a method to disclose the func onal relevance of a set of nodes taking advantage of the topo-
logical posi on of each node in the network (Signorelli et al., 2016). Such approach allows the reliable
iden fica on of the biological processes in which the RBD seed nodes are involved. Unlike previous
methods (Alexeyenko et al., 2012), NEAT creates the null distribu on, from which the enrichment
significance will be calculated, by modelling the observed number of links between the RBD nodes
and a set of GO biological processes terms as an hypergeometric distribu on. Improving thus, not
only the computa on me but also the sta s cal accuracy, as the null distribu on is derived from
the observed dataset instead of forcing it to be normal (Signorelli et al., 2016), which is clearly not
the case for the networks here consolidated (figure S6). To ensure the quality of the enrichment, only
high quality experimental and computa onal GO evidence codes were included (i.e. EXP, IDA, IMP,
IGI, IEP, ISS, ISA and ISO). In addi on to func onally validate the RBD module for overenriched biolo-
gical processes, the network enrichment analysis was also calculated every DIAMOnD itera on (i.e.
every addi on of a new ranked node), as a biological criterion to stop the addi on of nodes to the
RBD module (Ghiassian et al., 2015). In order to control the type I error due to mul ple tes ng, the
pvalue of the enrichment was adjusted using the Benjamini and Hochberg (B-H) method, by reducing
the False Discovery rate (Bouaziz, Jeanmougin, & Guedj, 2012).

Furthermore, following the same premise as in the HI valida on sec on, the transi vity and average
path length of the puta ve RBD module were compared against the random expecta on from 1000
degree-preserving randomisa ons of networks with the same number of nodes and degree per node
as the RBD-module. These random graphs, as defined by Erdos and Rényi (1959), were computed
as G(n, p), where n is the number of nodes and p is the edge probability calculated as p = d=1

n
.

Comparisonsweremade employing Z-score for a raw score of 95%. For further validate the biological
relevance of the RBD-module, a ERGM was fi ed to it, comparing the geodesic distance distribu on
and the degree distribu on against 100 bootstrapping simulated networks (Kolaczyk & Csárdi, 2014).
The probability to randomly draw an edge in the RBD-module and the GO enrichment for Cellular
Compartment, following the parameters aforemen oned, were carried out.

5.3 So ware and hardware

The sta s cal programming language R 3.4.0 (‘R: A Language and Environment for Sta s cal Com-
pu ng’, n.d.) was employed in most analyses, except for the implementa on of DIAMOnD in Python
2. Following the guidelines for reproducible computa onal research (Stodden et al., 2016), scripts,
workflows, raw and processed data is publicly available in GitHub, as well as the cita on of all R pack-
ages used. Analyses were performed in the server of the Bioinforma cs and Systems Biology Group
(GIBBS) located at the Ins tuto de Gené ca of the Universidad Nacional de Colombia.
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6 Results & discussion

6.1 Human interactome assembly

6.1.1 Interac ons data gathering

The resul ng brain-specific HI is the most comprehensive and up-to-date simple (i.e. no mul edges
nor loops) undirected network, with 3 057 105 edges among 17 329 ver ces (Figure S3). Table 1
place in context some topological proper es of the HI (Interactome 1) compared against previous
interactomes, proteomes and regulomes. The elevated mean degree (< k > = 355.2; kmax = 14672)
of the HI compared with the other networks is remarkable, and obeys to the colossal number of un-
precedented interac ons (20.8 mes larger than the previous biggest one) here consolidated. Regu-
latory represent the vast majority of these interac ons (97.4 %), le ng metabosignal and PPI behind
with 2.2 % and 0.4 % of interac ons, respec vely (figure S4 A). Such overrepresenta on of regulatory
interac ons may obey to the combina on of several causes: 1. The presence of very promiscuous
TFs, promoters and enhancers that, through duplica on events along the evolu onary history, have
expanded the regulatory program exponen ally (Pougach et al., 2014; Ferreira et al., 2013), thus
reflec ng its inherent complexity; 2. There are many more ssues used for regulatory interac ons
(33) than those used for either metabosignal or PPI (5), genera ng a bias toward regulatory interac-
ons; 3. The level of cura on of regulatory interac ons, due to their inferred nature, is lower than

metabosignal and PPI, which are manually curated and highly supported, respec vely.

Table 1: Comparison of topological proper es among recent HI, proteomes and a regulome. The
large number of edges in the Interactome 1 and Interactome 2, a subset of the Interactome 1, here
consolidated, which in turn lead to a high < k > of the brain-specific HI and a bimodal P (k), obeys
to the massive contribu on of promiscuous TF, enhancers and promoters to regulatory interac ons.
Topological network proper es: M = Number of edges, N = Number of nodes, < k > = Mean
degree,< cl > = Global transi vity (a.k.a. Clustering coefficient), P (k) = Degree distribu on,< d >
= Average path length and dmax = Diameter, NA = Not available or not apply

Cita on Network type M N < k > < cl > P (k) < d > dmax

(Sharma et al., 2015) HI 101032 11643 17.3 0.19 Scale-free 3.7 NA
(Menche et al., 2015) HI 141296 13460 21 0.17 Scale-free 3.6 12
(Rolland et al., 2014) Proteome 13944 4303 6.3 0.05 Scale-free 4.1 NA
(Mohammadi & Grama, 2016) Proteome 147444 14658 NA NA NA NA NA
(Jolma et al., 2013) Regulatory 3563 830 NA NA NA NA NA
(Kitsak et al., 2016) HI 141296 13460 21 0.17 Scale-free 3.6 12
Interactome 1 HI brain-specific 3077707 17329 355.2 0.06 Bimodal 2.1 8
Interactome 2 HI brain-specific 1234593 16628 148.4957 0.04 Bimodal 2.3 14

If the first asser on were true, then, the regulatory program must exhibit the hallmarks of these
duplica on process. Indeed it does, through the P (k). Unlike many biological and human-made
networks, the HI is not scale-free, as even when the power-law is significantly valid (pvalue = 0.32,
10 000 bootstrapping; figure S5) it fits only the 0.8 % (7664< k <7787) of the k range and have
a par cularly high scaling parameter α = 4.6 (2 < α < 3 for typical scale-free networks) indica ng
more evenness in the degree than expected for a scale-free network, but also revealing a bimodal
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distribu on (figure S6 A). The HI inherits such distribu on from regulatory interac ons, as PPI and
metabosignal are both unimodal (figure S6 C,D), hence suppor ng the first asser on.

Whereas the very pervasive scale-free networks evolve through a preferen al-a achment, in which
new nodes bind preferen ally to hubs, (de Solla Price, 1965; Barabási & Albert, 1999) following the
duplica on-divergencemodel (Vázquez et al., 2003; Pastor-Satorras, Smith, & Solé, 2003), where new
nodes arise from duplica on and a subsequently loss of interac ons lead to divergence of these para-
logs, there is a type of non-scale free networks with bimodal degree distribu on that evolve trough
the preferen al a achment following the duplica on-acquisi onmodel (Ferreira et al., 2013), where
new nodes arise from duplica on events preferen ally a aching hubs with high clustering coefficient
instead of hubs with low clustering coefficient, thus, genera ng two type of hubs: intramodular and
intermodular (Fraser, 2005; Li, Huang, Xia, & Sun, 2006). The former, also called “party hubs”, tend
to interact with most of their partners in a single spa o-temporal frame and belong to a func onal
module (Han et al., 2004; Li et al., 2006), evolve slower than intermodular hubs and are physically
and func onally constrained (Fraser, 2005). Contrarily, intermodular hubs, a.k.a. “date hubs”, in-
teract with many partners in a variable spa o-temporal frame and tend to connect modules (Han
et al., 2004), are more prone to duplica on than party hubs, do exhibit pleiotropy (Li et al., 2006)
and evolve faster (Fraser, 2005).

Clustering coefficient is successfully able to dis nguish these two type of nodes in regulatory inter-
ac ons (figure S7), indica ng that the preferen al duplica on-acquisi on model is plausible for the
regulatory program. It is in strongly agreement with the empirical facts that gene-products with sub-
strate promiscuity, just as the TFs in regulatory interac ons which headed the top-10 hubs in the
network (table S1), are more prone to duplica on events (Conant & Wolfe, 2008) and roughly 90 %
of Eukaryo c genes are believed to evolved by duplica on events (Teichmann & Babu, 2004; Ferreira
et al., 2013). Consequently, it is exi ng and reasonable to imagine an evolu onary scenario where
the first asser on takes place.

In order to reduce the influence of the second asser on and also to diminish the dimensionality of
the HI, only whole-brain regulatory interac ons were included in the HI (table 1, as Interactome 2)
at the expense of the 32 area and cell-specific brain files (Marbach et al., 2016). The third asser on
is somewhat inauspicious as, even though it is not manually curated as PPI or metabosignal, the
valida on of Marbach et al. has a high standard, only drawing interac ons supported by the best
predic ve prac ces (Banf & Rhee, 2017). It is worth nothing that, even a er filtering with expression
data, false-posi ve and false-nega ve interac ons might be present in the three sources. Further
inves ga ons must take care of them, either by adding an addi onal filter or by including another
type of regulatory data.

6.1.2 Valida on

Inasmuch as it is significantly unlikely that a random process originates the observed P (k)HI when
compared against a power-law distribu on (R = 5.165587, pvalue(R) = 2.396 854× 10−7; figure S5)
and an exponen al distribu on (R = -14.08696, pvalue(R) = 4.568 209× 10−45; figure S5), it is valid to
think that a biological process is taking place to generate the observed degree distribu on. Moreover,
the observed transi vity is significantly higher than the random expecta on (Z-score = 116.793, 95%
confidence; figure 1 A) and the average path length is significantly smaller than the random expect-
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a on (Z-score = -2.224, 95% confidence; 1 B). i.e. , A random network, with the same number of
nodes and edges as the HI, would not have neither the clustering level nor the short paths of the HI.
For further valida on of the HI, the Bernoulli Exponen al Random Graph Models (ERGM) was fi ed
to it, founding a very low probability (log − odd = 0.0089) to randomly draw any link of the HI and
an overall poor fi ng between the observed geodesic distance and the predicted by the Bernoulli
model (figure S8 C).

Observed

cl = 0.048

0

200

400

600

800

0.00 0.01 0.02 0.03 0.04 0.05

P
(c

l)

A

Observed

<d> = 2.29

0

10

20

30

40

10 20 30 40

P
(<

 d
 >

)

B

Observed

cl = 0.22

0

200

400

600

800

0.00 0.05 0.10 0.15 0.20

cl

P
(c

l)

C

Observed

<d> = 2.72

0

30

60

90

4 8 12 16

< d >

P
(<

 d
 >

)

D

Figure 1: Transi vity (A and C) and average path length (B and D) comparison between the observed
and the random expecta on from 1 000 degree preserving randomisa on for the RBD-module (bot-
tom) and a sample from the HI (upper). In G(n, d),d= 0.0024 for RBD-module and d = 0.0001 for
the HI (please refer to the RBD-module valida on for further detail). The Z-score for A, B, C and D
are 116.793, -2.224, 14.78 and -2.50 respec vely. In brief, the observed HI and RBD clustering coef-
ficient and average path length are significantly greater and smaller, respec vely, than one would
expect for a random network with similar features, thus confirming the biological validity of the HI
and RBD-module. Red do ed line is the mean. Note the close resemblance between the HI cl and
<d> values and the ones from the stra fied random sample, endorsing its representa veness.
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6.2 Iden fica on and valida on of the RBD-module in the HI

A er the exhaus ve database and literature search for the RBD-related genes to be used as seed
nodes, a list of 26 genes were consolidated (Table S2).

According to the disease module hypothesis the seed nodes should form a dis nguishable module
in the HI (a proto-module) (Feldman et al., 2008; Barabási et al., 2011), however, RBD-seed nodes
do not, as there is no edges in the HI linking them (figure 2 A). This might obey to 1. The small
number of seed nodes present in the HI (24/26) reflec ng the li le molecular knowledge regarding
RBD, inwhich case, either there are truly no biological interac ons among them, or the science simply
have not linked them yet; or 2. The inherent incompleteness of the HI, in which case is required a
more comprehensive and carefully constructed novel HI. Notwithstanding the strongly influence of
the HI’s completeness in the detec on of the RBD module, it is more plausible that the number of
seed nodes used were not enough to dis nguish the RBD proto-module, as it was demonstrated that,
even in an incomplete interactome, a thoroughly consolidated set of seed nodes is able to make the
proto-module pop up (Menche et al., 2015). This is further supported when including the 1st order
neighbours of the RBD-seed nodes, where the RBD proto-module not only is observable but connect
all seed nodes present in the HI (figure 2 B). Furthermore, considering that most diseases exhibit less
than 20 % of their nodes in the observable proto-module (Menche et al., 2015) it is not surprising
that the RBD proto-module is only observable when including the 1st neighbours.

A er running the itera ve network enrichment (figure S9), the first 400 most significantly connected
DIAMOnD nodes were included in the high quality RBD-module, ever assembled (figure 2 C). As other
diseasemodules (Ghiassian et al., 2015), it is significantly more clustered than expected by chance (cl
= 0.22, Z-score = 38.47; figure 1 C), evenmore than the HI (table 1), and its average paths length is sig-
nificantly smaller than the random expecta on (< d > = 2.72, Z-score = -2.50; figure 1 D). Moreover,
as the geodesic distance distribu on (figure S8 A) and the degree distribu on (figure S8 B) shows, the
RDB-module represents a biological plausible representa on of the molecular landscape governing
the disease, further supported by the low probability (log− odd = 0.069) to randomly draw any edge
of the module.

Themajority of the tenmost overenriched biological process in the RBD-module are immune-related
(table S3). This is surprising, as it is in strong agreement with an alterna ve and barely explored hy-
pothesis for RBD pathogenesis (Iranzo et al., 2005), in which is the limbic system, instead of the
tradi onal pontomedullar region, the area in which the ae ological causa on of RBD lies. It de-
rives from the, previously believed coincidental, observa ons that autoimmune limbic encephali s,
without pontomedullar lesions, concomitantly exhibit RBD (Vale, Fernandes do Prado, do Prado, Po-
voas Barso ni, & Pedroso, 2016; Lin, Liu, & Hsu, 2009; Compta, Iranzo, Santamarı́a, Casamitjana,
& Graus, 2007; Limousin et al., 2009; Iranzo et al., 2005; Adams, McKeon, Silber, & Kumar, 2011).
This is further supported by several immune response-related overenriched cellular components in
the RBD-module (table S3) and the widely accepted somnogenic effect of proinflammatory cytokines
(Venancio & Suchecki, 2015). Although the extensive anatomical crosstalk between the limbic system
and the pontomedullary system was already known, it had not been contemplated the possibility for
the RBD ae ology to lie in a different anatomical region than the tradi onal one. Thus, these results
reinforce the exiguously supported hypothesis for a strong limbic influence in the RBD pathogenesis,
illustra ng the capacity of network approaches to depict a different disease landscape; further sup-
por ng the usefulness of a holis c approach for aetyological analyses.
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Figure 2: Frac onated proto-module containing the RBD-seed nodes (A). Proto-module plus 1st order
neighbours (B) in which all seed nodes get connected, indica ng that even though the exhaus ve list
of seed nodes here consolidated is not enough to make the module pop up, only adding the part-
ners of these seed nodes, which I believe soon will be covered by science, is enough to show the
proto-module. The first ever constructed RBD-module (C), showing biological en es and interac-
ons previously unlinked to the ae ology of RBD (red nodes). As shown in figure S8 B, there are

some seed nodes that remain disconnected from the module. For the sake of aesthe cs, the first 58
hubs were removed from C. Labelled nodes are Entrez gene ID.

The RBD-module recoverswell-established characteris cs of RBD, such as the strong influence of sero-
tonin signalling, illustrated in the fact that the 5th and 7th best ranked DIAMOnD nodes correspond to
its receptors HTR1D and HTR1F, respec vely. HTR1, common in the REM-switch and hippocampus
regions, are Gi-coupled receptors which, by repressing the adenylate cyclase, inhibit the cAMPmeta-
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bolism, which in turn down-regulate the cAMP-response element binding protein (CREB) (Berumen,
Rodrı́guez,Miledi, &Garcı́a-Alcocer, 2012), awell-known TF responsible for sustained arousal in areas
involved in the REM-switch, such as the locus coeruleus (Graves, 2003). This may explain the overen-
riched biological processes, cellular compartments and best-ranked DIAMOnD nodes (Neuropep de
Y, HCAR-1, Somatosta n-28 and -14, Oxytocin, GHSR and endothelin-2) involved in cAMP signalling
and G-coupled signal transduc on (table S3). HTR1 also modulate the conductance of K+ channels
in the dorsal raphe nucleus, a member of the REM-switch, and the entorhinal cortex in the limbic
system (Deng, Poudel, Rojanathammanee, Porter, & Lei, 2007), which is in concordance with the
concomitant presence of RBD and K+ channel an body–associated limbic encephali s (Iranzo et al.,
2005).

7 Conclusion

Currently, the diseasemodule of Rapid eyemovement sleep Behaviour Disorder (RBD) remains unas-
certained and li le is known about themolecular en es, at different organisa onal levels, related to
its ae ology. This research has successfully assembled themost up-to-date high-quality brain-specific
Human Interactome (HI) and characterise, for the first me in science, the RBD-module, shedding
light on the molecular mechanisms implicated in a barely supported alterna ve hypothesis for RBD
pathogenesis. Both the HI and the RBD-module recover interes ng biological features previously
reported in other biological networks, thus valida ng the innova ve methodology employed, but
also, the former exhibits the hallmarks of a recently proposed evolu onary scenario and the la er
suggests a broader and more comprehensive molecular picture of RBD than previously considered.
Moreover, this research not only has se led a solid founda on for further studies guided to evalu-
ate the poten al of RBD as biomarker of synucleinopathies, specially PD, but also has supported a
systemic approach for ae ological analyses under the network medicine paradigm.

The present inves ga on has limita ons though, mainly regarding to the completeness of the HI,
which in turn determines further conclusions in the disease module, as discussed in the RBD-module
sec on. To alleviate these limita ons, is strongly advised to employ an unified framework to achieve
the ssue-specificity, one that takes advantage of non-hard cut-offs and the network topology, such
as the one proposed by Mohammadi and Grama (2016) including the frame discussed in Venkatesan
et al. (2009) and Rolland et al. (2014), thus, avoiding biases towards certain type of interac on. The
research would also benefit from a comparison of the DIAMOnD results against other predic on
methodologies, such as the diffusion-based method previously discussed, in order to further valid-
ate the RBD-module. It is worth no ng that this research is fully reproducible following the freely
available code men oned early.
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9 Supplementary informa on

Figure S1: Problem tree showing the causes (bo om squares), genera ng the research problem (cent-
ral square), which in turn produces some consequences (upper squares).
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Figure S8: Goodness-of-fit test for the RBD-module by fi ng an ERGM and comparing the degree
distribu on (A) and the geodesic distance (B). Addi onally, B shows that most nodes in the RBD-
module are reachable (Non Reachable ∼ 0). Goodness-of-fit test for the HI comparing the degree
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suppor ng the biological relevance of the RBD-module and the HI. For the sake of aesthe cs, only
the first 60 values of d are shown.
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Table S1: The main func on of the first ten intermodular and intramodular hubs in regulatory in-
terac ons. Most of these nodes are TF, further suppor ng the evolu onary scenario of duplica on-
acquisi on (Ferreira et al., 2013) in the regulatory interac ons of the HI.

Entrez gene ID Gene name Func on

3725 Jun proto-oncogene, AP-1 transcrip on factor subunit TF
6667 Sp1 transcrip on factor TF
2313 Fli-1 proto-oncogene, ETS transcrip on factor TF
7020 Transcrip on factor AP-2 alpha TF
5078 Paired box 4 TF
5451 POU class 2 homeobox 1 TF
5669 Pregnancy specific beta-1-glycoprotein 1 An body

199699 DAN domain BMP antagonist family member 5 Morphogen
3172 Hepatocyte nuclear factor 4 alpha TF

Intermodular

6688 Spi-1 proto-oncogene TF

8266 Ubiqui n like 4A Ubiqui n like
26973 Cysteine and his dine rich domain containing 1 TF
1272 Contac n 1 An body
7010 TEK receptor tyrosine kinase Receptor
2776 G protein subunit alpha q Signal transduc on

64412 GDNF inducible zinc finger protein 1 TF
3673 Integrin subunit alpha 2 MEC support

51119 SBDS, ribosome assembly guanine nucleo de exchange factor TF

Intramodular

7675 Zinc finger protein 121 TF
23657 Solute carrier family 7 member 11 Transport
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Table S2: RBD seed genes collected from databases and literature. Inferred C = Inferred associa on
via a curated chemical interac on from the CTD database. When separated by a “/” then, several
sources or evidence are suppor ng the gene.

Gene Evidence Source
ACHE Inferred MalaCards humandisease
BDNF Inferred C CTD
CASP7 Inferred C CTD
SCARB2 linkage (Gan-Or, Girard, et al., 2015)
CYP2D6 Inferred C CTD
CYP3A4 Inferred C CTD
DRD2 Inferred C CTD
GBA linkage (Gan-Or, Mirelman, et al., 2015)
GCNT2 literature DisGeNET
HCRT literature/Inferred DisGeNET/MalaCards humandisease
HLA-DQB1 TextMining HuGE
HTR1A Inferred C CTD
HTR2A Inferred C CTD
HTR2C Inferred C CTD
MAPT linkage (Gan-Or, Girard, et al., 2015)
PARK2 literature DisGeNET
PSG5 literature DisGeNET
RPS27A Inferred MalaCards humandisease
SLC6A3 literature/Inferred MalaCards humandisease
SLC6A4 Inferred C CTD
SNCA literature/Inferred MalaCards humandisease
TCOF1 Inferred MalaCards humandisease
NR0B2 Inferred C CTD
REM1 literature DisGeNET
FNDC4 Inferred C CTD
LRRK2 Inferred MalaCards human disease
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Table S3: Ten most enriched GO terms in the RBD-module organised by ontology. Most Biological
processes (BP) and Cellular Compartments (CC) are immune and signalling related.

GOID Term Ontology

GO:0002232 leukocyte chemotaxis involved in inflammatory response BP
GO:0002673 regula on of acute inflammatory response BP
GO:0002720 posi ve regula on of cytokine produc on involved in immune response BP
GO:0002879 posi ve regula on of acute inflammatory response to non-an genic s mulus BP
GO:0090276 regula on of pep de hormone secre on BP
GO:1904322 cellular response to forskolin BP
GO:0018105 pep dyl-serine phosphoryla on BP
GO:0007189 adenylate cyclase-ac va ng G-protein coupled receptor signaling pathway BP
GO:0006171 cAMP biosynthe c process BP
GO:0048009 insulin-like growth factor receptor signaling pathway BP
GO:0005891 voltage-gated calcium channel complex CC
GO:0005834 heterotrimeric G-protein complex CC
GO:0005886 plasma membrane CC
GO:1990454 L-type voltage-gated calcium channel complex CC
GO:0005942 phospha dylinositol 3-kinase complex CC
GO:0005943 phospha dylinositol 3-kinase complex, class IA CC
GO:0000159 protein phosphatase type 2A complex CC
GO:0032281 AMPA glutamate receptor complex CC
GO:1902494 cataly c complex CC
GO:0034704 calcium channel complex CC
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