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Abstract

The Rapid eye movement sleep Behaviour Disorder (RBD) is a promising parasomnia for early dia-
gnosis of synucleinopathies, as Parkinson’s disease (PD), however, liƩle is known about its molecular
pathogenesis. The meagre aƩempts to invesƟgate it used a fragmentary single-gene centred ap-
proach, disregarding key molecular enƟƟes and processes in the RBD aeƟology. Under the systemic
paradigm of network medicine, RBD arises from the disrupƟon of a sub-network, or module, in the
complete set of a cell’ interacƟons, or Human Interactome (HI). This research aimed to character-
ise, for the first Ɵme, the RBD-module in the most up-to-date high-quality brain-specific HI. The
RBD-module and the HI were validated funcƟonally, employing a novel Network Enrichment Ana-
lysis Test (NEAT), and topologically, uƟlising ExponenƟal Random Graph Models (ERGM) fiƫng and
comparisons against random expectaƟon. The HI exhibit the network hallmarks of the duplicaƟon-
acquisiƟon evoluƟonary model recently proposed, and the RBD-module suggest a wider pathogenic
view than previously considered in the RBD aeƟology, by including the limbic system. Immune and
signalling process regarding cytokine and serotonin metabolism in the sleep regulatory system are
overenriched in the RBD-module. This research paves the way for further studies guided to disclose
the RBD relevance as a biomarker of synucleinopathies, especially PD.
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Glossary

Average Path Length (< d >) It is a measure of connecƟvity, calculated by averaging the minimum
number of edges between two given nodes, a.k.a. geodesic distance, as follows:

< d >= 1/N(N − 1) ∗
∑

i,j=1,N ;i ̸=j

di,j

Where di,j is the distance between the nodes i and j and N is the number of nodes in the
network (Kolaczyk & Csárdi, 2014). 16

Biomarker “A characterisƟc that is objecƟvely measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacologic responses to a therapeuƟc inter-
venƟon.” (Biomarkers DefiniƟons Working Group., 2001). They are valuable tools to idenƟfy
at-risk populaƟon of a certain disease, track the disease prognosis, aid in the process of dis-
ease’s staging and to predict clinical responses. 10

Degree Given a network G with verƟces n ∈ N and edgesm ∈ M , then the degree ki denote the
number of edges of the ith node, which in turn enable the definiƟon of the total number of
edges in the network (M )

M = 1/2
N∑
i=1

ki

The average degree of the network< k > is defined as

< k >= 1/E
N∑
i=1

ki = 2M/E

(Kolaczyk & Csárdi, 2014; ‘Network Science by Albert-László Barabási’, n.d.). 16, 19

Diameter In the network context, the diameter is a topological feature measured as the longest
geodesic distance between the farthest nodes in the network (Kolaczyk & Csárdi, 2014). 19

Diseasome A comprehensive network where the disease phenome, represenƟng all geneƟc dis-
orders, and the disease genome, represenƟng all disease genes associated to these pheno-
types, are linked into two main networks, as Goh et al. (2007) proposed it: 1. The Human
Disease Network, whose nodes are diseases and edges are shared genes among them, and
2. The Disease Gene Network, whose nodes are genes and edges are drown if two genes are
implicated in the same disease. 12

Emergent property A system’s feature only perceivable when the system is seen as an indissoluble
complex whole (Moriello, 2013). Contrarily, while some properƟes emerge in the system, oth-
ers submerge into it and are no longer discernible (Moriello, 2013). Exampli graƟa Only when
all cellular elements and its interacƟons at different organisaƟonal levels are perceived holist-
ically, the emergent property of life arises, whereas individual properƟes of these elements or
their interacƟons, such as quaternary structures of proteins or allosteric regulaƟons between
enzymes. 12
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ExponenƟal Random Graph Models (p∗) StaƟsƟchal model which employs a logisƟc regression for
parameter esƟmaƟon of the form:

P (Yij|Yi′j′ , θ) = logistic

k∑
h=1

θhδ
ij
h (Y )

Where Yij is a binary random variable indicaƟng if there is an edge between a pair of verƟces
i, j, Yi′j′ is a binary random variable for the other verƟces and θ is the coefficient of the staƟsƟc
δ (Kolaczyk & Csárdi, 2014).. 2, 7, 16, 21

Human Interactome “complete repertoire of geneƟc interacƟons potenƟally encoded by an organ-
ism’s genome” (Sanchez et al., 1999). Therefore, it includes not only the proteome, protein-
protein interacƟon network, but also the transcriptome, regulome, metabolome, transient
and long-lasƟng interacƟons among all cellular enƟƟes, both intra and extracellular, such as
proteins, DNA, RNA, lipids and carbohydrates. 2, 9, 14, 24

Hypergeometric distribuƟon DistribuƟon that models the number of successful cases in a random
sample without replacement. In the network context such distribuƟon is very useful when
performing set enrichment analysis, where the successful cases are those links between the
query set (e.g. the genes of interest) and the target set (e.g. set of funcƟonal terms). It is
defined as:

NAB ∼ hypergeom(n = dA, K = dB, N = dV )

Where dA, dB and dV represents the degree of the query set, the degree of the funcƟonal
terms set and the total degree between them, respecƟvely (Signorelli, Vincioƫ, & Wit, 2016).
18

Network TheoreƟcal set of concepts for represenƟng systems in the form of nodes and links among
them (Moriello, 2013). Graph theory is inextricably intertwined with networks, as a graph is
the underlyingmathemaƟcal object of every network, enabling the applicaƟon of formal quant-
itaƟve analyses on them. 9, 10

Pathophenotype Hallmark phenotype of a disease. 10

Prodrome Period preceding the main symptomatology of a given disease. E.g. PD, as a progressive
pathology, exhibit non-motor symptoms, such as consƟpaƟon, RBD, olfactory loss, inter alia,
which precede the cardinal motor symptoms emergence for a decade (Postuma & Berg, 2016).
10, 11

Rapid eye movement sleep Behaviour Disorder Parasomnia where the paƟent have vivid dreams
during the REM sleep phase associated to a loss of atonia (Boeve, 2010). 2, 9, 14, 24

Synucleinopathy NeurodegeneraƟvediseasewhich exhibit an atypical aggregaƟonof theα-Synuclein
protein. Grouping Parkinson’s disease, DemenƟa with Lewi Bodies and MulƟple System At-
rophy, inter alia. 9, 14
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TransiƟvity a.k.a. Clustering Coefficient (cl) convey informaƟon regarding the frequency with which
the triplets in the network form triangles, thus informing about the closeness among nodes
(Kolaczyk & Csárdi, 2014).

cl(G) = 3τ△(G)/τ3(G)

Where τ△(G) is the number of triangles in the graph G and τ3 is the number of connected
triplets of the form ∧. 16
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1 IntroducƟon

With the advent of high-throughput technologies inmolecular biology, a bulk of genomic informaƟon
is being generated at an unprecedented rate (Stephens et al., 2015), empowering the devising of a
completely contemporary, despite its anƟqueness, approach to understanding biological systems, as
such, systems (Kitano, 2002). Contrarily to a fragmentary host of simply and, to a certain extent, in-
genuously interacƟng elements, as is inherently encoded in the analysis as the sine qua non enquiry
method, characterisƟc of the reducƟonism paradigm. A paradigm shiŌ is, therefore, taking place
(Chan & Loscalzo, 2012). Medicine is being penetrated by such shiŌ, going from a reacƟve medi-
cine guided to treat symptoms, to a predicƟve, prevenƟve, personalised and parƟcipatory medicine,
guided to cure the disease (Wang, Maron, & Loscalzo, 2015; Flores, Glusman, Brogaard, Price, &
Hood, 2013; Silverman & Loscalzo, 2012). As Thomas Rau stated, “to treat differently, you have to
think differently” (Biological Medicine Network, 2015). In such brand new way of thinking, network
as the pinnacle representaƟon of systems, play a criƟcal role, offering the mathemaƟcal formalism
and a pracƟcal tool to understand phenotypes of complex systems, such as disease and healthy in
human’ cells (Barabási, Gulbahce, & Loscalzo, 2011). The birth of network medicine was imminent,
a brand newmarriage between the systemic paradigm andmedicine, towards a revoluƟonary health
system. In network medicine, a disease arises from the disrupƟon of a sub-network or module in the
Human Interactome (HI), and where the pathogenic enƟƟes responsible for such disease are located
(Goh et al., 2007; Feldman, Rzhetsky, & Vitkup, 2008).

Rapid eye movement sleep Behaviour Disorder (RBD) is a parasomnia where paƟents have, oŌen vi-
olent, oneiric behaviours while in REM sleep, causing serious harm to themselves and their spouses
(Boeve, 2010; Arnulf, 2012). Due to its high conversion rate to synucleinopathies (80 %) and its large
lead period to neurodegeneraƟon (3 - 34 years), RBD stands out as one of the most promising pro-
dromal biomarkers of Parkinson’s disease (PD), an incurable neurodegeneraƟve synucleinopathywith
a high social and economical burdenworldwide (Kowal, Dall, ChakrabarƟ, Storm, & Jain, 2013; Hirsch,
JeƩe, Frolkis, Steeves, & Pringsheim, 2016). Therefore, RBD not only present itself as an early dia-
gnosƟc tool, but also offers an invaluable window to anƟcipatedly treat and study the progression of
PD (Postuma, 2014). Notwithstanding the anatomical knowledge regarding the aeƟology of RBD, pin-
poinƟng the pontomedullar region in the brainsteam as the pathogenic source, liƩle is known about
themolecularmechanisms implicated in the RBD pathogenesis, with themeagre aƩempts employing
a reducƟonisƟc single-gene centred approach (Gan-Or, Mirelman, et al., 2015; Gan-Or, Girard, et al.,
2015; Gan-Or et al., 2016; Gan-Or et al., 2017; Fernández-SanƟago et al., 2016), thus, hampering our
RBD understanding and its applicaƟons as biomarker.

This pioneer research aimed to obtain insight concerning the RBD aeƟology, employing the power
of the disease module hypothesis under the network medicine paradigm. The most up-to-date high-
quality brain-specific HI was constructed, exhibiƟng evoluƟonary network hallmarks, upon which the
idenƟficaƟon of RBD-causing and non-direct RBD-causing molecular enƟƟes (i.e. genes, proteins,
biological processes) were idenƟfied, supporƟng an alternaƟve hypothesis for RBD aeƟology with a
strong limbic involvement, thereby, widening the percepƟon of RBD pathogenesis. IdenƟficaƟon of
RBD module and its molecular mechanisms is the first step towards a holisƟc understanding of RBD
and its relaƟonships with other synucleinopathies, paving the way for further studies transgressing
the merely reducƟonisƟc approaches and imposing network medicine.
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2 Research problem statement

RBD is a mulƟfactorial parasomnia characterised by an, usually violent, enacƟng of dreams during
the Rapid Eye Movement (REM) sleep phase (Schenck, Bundlie, Eƫnger, & Mahowald, 1986; Arnulf,
2012), generaƟng injuries and sleep disrupƟons to the paƟents and their spouses (Olson, Boeve, &
Silber, 2000). RBD is one of the most promising prodromal biomarkers of several synucleinopathies,
including PD and DemenƟa with Lewi Bodies (DLB), as it has the highest specificity (Postuma, Lang,
Gagnon, PelleƟer, & Montplaisir, 2012), conversion rate (Iranzo et al., 2014; Postuma, Gagnon, Ber-
trand, Génier Marchand, & Montplaisir, 2015; Schenck, Boeve, & Mahowald, 2013) and diagnosƟc
strength (Postuma & Berg, 2016) of the proposed biomarkers up to date. AddiƟonally, RBD exhibit
a median lead period to neurodegeneraƟon of around 11 years (Postuma et al., 2009), ranging from
3 (Olson et al., 2000) up to 34 years (Claassen et al., 2010), period in which its progression has been
linked with the progression of cogniƟve impairment in PD paƟents (Sixel-Döring, Zimmermann, We-
gener, Mollenhauer, & Trenkwalder, 2016). Therefore, RBD not only provides an excepƟonal tool
to idenƟfy at-risk populaƟon, which in turn enables early diagnose, straƟficaƟon, tesƟng on, and
treatment of PD, DLB and MulƟple System Atrophy (MSA) paƟents, but also as a potenƟal clinical
progression marker of these pathologies, offering and unprecedented window to study the evolu-
Ɵon of such diseases (Postuma, 2014). Despite its relevance as prodromal biomarker, to the author’s
knowledge, liƩle is known about the molecular aeƟology governing RBD in humans, with the meagre
aƩempts employing a reducƟonisƟc single-gene centred approach, (Gan-Or, Mirelman, et al., 2015;
Gan-Or, Girard, et al., 2015; Gan-Or et al., 2016; Gan-Or et al., 2017; Fernández-SanƟago et al., 2016;
W. J. Zhang, Shang, Peng, Zhou, & Sun, 2017) thus, restricƟng our disease understanding and its
applicaƟons.

Network is a pragmaƟcal operable representaƟon of complex systems (e.g. the cell), in the form of
nodes connected by edges, enabling its study and beƩer understanding at different organisaƟonal
levels (i.e. molecular enƟty, metabolic pathway, network module, cellular compartment, inter alia)
from a holisƟc standpoint (Moriello, 2013; Nurse & Hayles, 2011; Kitano, 2002). For instance, the HI
is the network represenƟng the cellular interacƟons in a given condiƟon and cell type (Sanchez et al.,
1999), whose nodes aremolecular enƟƟes (e.g. DNA, RNA, protein, inter alia) and its edges represent
physical or funcƟonal interacƟons among them (Vidal, Cusick, & Barabási, 2011). Under the network
medicine paradigm, a disease arises from the perturbaƟonof several HI components (Goh et al., 2007;
Feldman et al., 2008) and thus can be mapped into a disease module, a Ɵssue-specific and highly
interconnected set of funcƟonally related nodes whose perturbaƟon generates the pathophenotype,
in the HI (Barabási et al., 2011; Barabási, 2007; Kitsak et al., 2016). Disease module idenƟficaƟon is
the first step towards a holisƟc understanding of the pathology in quesƟon, as it moves our disease
knowledge beyond the merely reducƟonisƟc disease-causing nodes, allowing the idenƟficaƟon at
different organisaƟonal levels of novel disease-causing and non-direct disease-causing enƟƟes and
key interacƟons among them (Sharma et al., 2015; Ghiassian et al., 2016), thereby, enhancing our
pathophenotype’s understanding.

Inasmuch as RBD is a mulƟfactorial disease (Arnulf, 2012), a network approach, well-fiƩed to cope
with such complex interacƟons through the disease module concept, is suitable to unravel the RBD
aeƟology and to discover, from a holisƟc standpoint, novel molecular enƟƟes at different organisa-
Ɵonal levels related to its pathogenesis (Silverman & Loscalzo, 2012). Providing a holisƟc outlook of
the structural and funcƟonal organisaƟon governing the RBD disease module not only would shed

10



light on novel RBD related molecular mechanisms, but also would pave the way for further studies
guided to disclose its relevance as a prodromal biomarker for PD, DLB andMSA at themolecular level.
See figure S1 for problem tree.

2.1 Research quesƟon

What are themolecular enƟƟes at different organisaƟonal levels composing the Rapid eyemovement
sleep Behaviour Disorder disease module?

3 TheoreƟcal framework

3.1 Rapid eye movement sleep Behaviour Disorder

RBD is a mulƟfactorial (Arnulf, 2012) parasomnia where paƟents enact their dreams due to a loss of
atonia whilst in REM sleep phase (Boeve, 2010). Such dreams are significantly loaded with aggres-
sion and vigorous motor behaviours related to threatening (FanƟni, Corona, Clerici, & Ferini-Strambi,
2005), consequently, serious harm can be inflicted to the paƟents and their spouses, even verging on
lethality (Schenck, Lee, Bornemann, & Mahowald, 2009). Worldwide RBD populaƟon prevalence is
unknown, but Ohayon and Schenck (2010) esƟmated it, through telephone quesƟonnaires, to be 0.5
% in a representaƟve sample from the United Kingdom, however it is likely a sub-esƟmaƟon loaded
with false posiƟves and false negaƟves (Arnulf, 2012). Regarding the local scope, so far, the only art-
icle referring to RBD in Colombia is a clinical report of a paƟent treated with trazodone (Chica-Urzola,
2015), making it evident that, besides the molecular aeƟological aspects that this research aƩempts
to enrich, more research is needed concerning the demographic and epidemiologic dimensions of
RBD both at the global and regional scope.

Recently, forasmuch as RBD has a conversion rate to synucleinopathies of up to 80 % (Schenck et al.,
2013), it has been under scruƟny for its potenƟal as prodromal biomarker of these pathologies, from
which PD stands out as one of the most prominent due its elevated socio-economic burden (Kowal et
al., 2013), its high prevalence (Pringsheim, JeƩe, Frolkis, & Steeves, 2014) and high incidence (Hirsch
et al., 2016) worldwide. For instance, roughly half of PD paƟents suffer RBD (weighted prevalence of
42.3 %) (X. Zhang, Sun, Wang, Tang, & Xie, 2017) though prospecƟve studies have reported a preval-
ence of up to 70% (Neikrug et al., 2014), with a conversion rate fromRBD to PD of up to 50% (Schenck
et al., 2013). Similarly, 73 % (Muntean, Sixel-Döring, & Trenkwalder, 2013) - 100 % (Vetrugno et al.,
2004) of DLB paƟents suffer RBD and Boeve et al. reported that 92 % of RBD paƟents with symptoms
of degeneraƟve demenƟa suffer DLB (1998). These findings encourage the RBD research as a crucial
step towards its use as a prodromal biomarker for the most important synucleinopathies, which in
turn yields, as Postuma (2014) pointed out, a valuable opportunity for: 1. Early therapeuƟc inter-
venƟon, 2. TesƟng of potenƟal biomarkers, 3. AnƟcipatory study of synucleinopathies’ epidemiology
and 4. InvesƟgate the progression of synucleinopathies.

Since its first diagnosis by Schenck et al. (1986), liƩle has been assessed about the RBD anatomical
pathogenesis in humans, instead, the tradiƟonal cat and ratmodels, although contradictory regarding
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some findings obeying species-specific mechanisms, have revealed that disrupƟon of the sleep-wake
regulatory circuit in the ponto-medullary axis, specifically, degeneraƟon of the sublaterodorsal teg-
mental nucleus, might induce RBD (Luppi et al., 2011). Other nuclei in the brain stem have been
implicated in the non-human animal models, such as the ventral gigantocellular reƟcular nucleus
(Luppi et al., 2011) and the ventral mesencephalic reƟcular formaƟon (Lai, Hsieh, Nguyen, Peever,
& Siegel, 2008), nevertheless, certainty regarding the appositeness of these structures in humans is
sƟll to come (Boeve, 2010). Neuroimaging approaches employing single photon emission computed
tomography, magneƟc resonance imaging and positron emission tomography, not only have con-
firmed metabolic and neurostructural changes in areas previously implicated with RBD such as the
hippocampus and pontomesencephalic tegmentum, but also have steered toward corƟcal and sub-
corƟcal areas as novel regions potenƟally implicated in the RBD aeƟology at the Ɵssue organisaƟonal
level (BouceƩa et al., 2016; Holtbernd et al., 2014; Wu et al., 2014). Notwithstanding the efforts to
decipher the complex anatomical circuit responsible for RBD in humans employing non-human an-
imal models, the potenƟal aeƟological mechanisms befalling at a slender organisaƟonal level have
been widely overlooked, therefore, and taking into account that translaƟon from models to humans
do not holds always (Burns, Li, Mehta, Awad, & Morgan, 2015), it is required a novel approach to dig
deeper into the molecular basis of RBD in humans.

3.2 Network science and the systemic paradigm

ReducƟonism employs the analysis as the enquiry method, which fragment the studied system into
its minimal components in order to, caeteris paribus, look for linear interacƟons among them, thus,
de-contextualising these components. Although its relevance during the XIX century, the reducƟon-
ismhave probed to be insufficient to explain a plethora of dimensions of the cell as a biological system,
and the different states of life as its emergent property, such as disease networks (Goh et al., 2007),
neural networks (WaƩs & Strogatz, 1998), protein-protein interacƟon (PPI) networks (Vázquez, Flam-
mini, Maritan, & Vespignani, 2003) and signalling networks (Ma’ayan et al., 2005), among others.
Network consƟtutes the pinnacle operable representaƟon of a system as nodes connected through
edges, which, in conjuncƟon with the advent of high-throughput technologies to generate biological
data, reinforced systems biology as the de facto paradigm to approach biomedical research (Wang
et al., 2015). Hence, aside from being insufficient to explain biological systems, the reducƟonism
paradigm is inappropriate insofar as a system is more than the sum of its parts, demanding, thus, a
syntheƟc enquiry to fully understand a complex system, such as the cell, and its different states, such
as disease and healthy (Barabási & Oltvai, 2004; Kitano, 2002).

Network medicine is an aƩempt to explain diseases under the systemic paradigm on the empirical
premise that disease is a state of the biological system, arising from the disrupƟon of complex in-
teracƟons among several cellular components (Barabási et al., 2011). It is the case even for previ-
ously believed monogenic diseases, such as phenylketonuria and cysƟc fibrosis, which have been
proved to be oligogenic instead (Badano & Katsanis, 2002). Network medicine had its iconic start
with the seminal paper by Goh et al. (2007), in which all known genotype-phenotype associaƟons to
date were studied systemaƟcally in its inherent complexity, rather than the tradiƟonal fragmentary
single gene-single disease approach, revealing that most human diseases shared a geneƟc origin il-
lustrated in the human diseasome. The uƟlity of such approach goes beyond the solely depicƟon of
the common pathogenic basis and interconnectedness among several human diseases, it consƟtutes
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an outstanding instrument to mathemaƟcally frame and explain complex diseases at different organ-
isaƟonal levels (i.e. molecular enƟty, metabolic pathway, network module, cellular compartment,
inter alia) (Silverman & Loscalzo, 2012), enhancing our disease understanding markedly (Loscalzo &
Barabási, 2011).

The HI is the “complete repertoire of geneƟc interacƟons potenƟally encoded by an organism’s gen-
ome” (Sanchez et al., 1999) of a given human cell type in a specific Ɵme, and it consƟtutes the baseline
foundaƟon behind network medicine analyses (Zanzoni, Soler-López, & Aloy, 2009). Derived from
network medicine, the disease module hypothesis stands that disease-related (i.e. disease-causing
andnon-direct disease-causing) nodes are funcƟonally organised in a densely connected sub-network
in the HI, rather than randomly scaƩered throughout it, from whose perturbaƟon arises the disease
(Goh et al., 2007; Feldman et al., 2008) and which is Ɵssue-specific (Kitsak et al., 2016). Disease mod-
ule idenƟficaƟon lie at the core of network medicine analyses and consƟtutes the first step towards a
systemic pathophenotype’s understanding, as it lays the foundaƟon for holisƟc aeƟological examina-
Ɵon, through predicƟon of novel disease-related nodes and pathways (OƟ, Snel, Huynen, & Brunner,
2006; Köhler, Bauer, Horn, & Robinson, 2008; Navlakha & Kingsford, 2010; Sharma et al., 2015), ef-
fecƟve drug development, through enhanced pharmacological target selecƟon (Pawson & Linding,
2008; Stern, Schurdak, Bahar, Berg, & Taylor, 2016; Hart & Xie, 2016), beƩer inter-disease linkage,
through comorbidity studies (Ko, Cho, Lee, & Kim, 2016), and improved diagnosis accuracy, through
systemic nosology (Loscalzo, Kohane, & Barabási, 2007) and biomarkers idenƟficaƟon (Potashkin,
SanƟago, Ravina, WaƩs, & Leontovich, 2012).

Invariably, the completeness of the HI will determine not only the integrity of the disease modules,
asmissing links will exclude disease-related nodes, but also their relaƟonship at higher organisaƟonal
levels (e.g. at pathways or module level) (Menche et al., 2015; Zanzoni et al., 2009). Unfortunately,
due to historical technological constrains, both the HI and the majority of disease modules remain
highly incomplete and biased towards the most studied nodes, and the inherited bias of the most
employed techniques (i.e. yeast-2-hybrids assays, GWAS and co-expression) (Menche et al., 2015;
Rolland et al., 2014). For instance, as Menche et al. (2015) showed, many disease modules include
less than 20 % of the potenƟal disease-related nodes. Despite its inherited issues, a carefully curated
HI can be constructed and the corresponding disease module idenƟfied, if the disease in quesƟon
possesses enough disease-causing genes recognised (Menche et al., 2015).

3.3 Towards the future medicine in the present

Systemic approaches, and parƟcularly network medicine, are fundamental players in the transiƟon
from a reacƟve medicine, focused on fighƟng diseases, to the so called P4 medicine, for predict-
ive, prevenƟve, personalised and parƟcipatory, whose focus is health preserving (Hood & Auffray,
2013). In such framework, network medicine lay the groundwork for expand the personalised under-
standing of a given pathophenotype, as 1. it allows the idenƟficaƟon of biomarkers, enabling early
diagnose, straƟficaƟon, intervenƟon and prevenƟon of disease; 2. the characterisaƟon of unascer-
tained disease-modifying mechanisms, which in turn shed light on novel aeƟological and pathogen-
esis insights required to develop predicƟve models for disease presentaƟon; 3. the beƩer designing
of therapeuƟc intervenƟons by means of systemic exploraƟon of potenƟal drug-target interacƟons;
and 4. for parƟcipatory and mulƟdisciplinary paƟent-healthcare system interacƟons, going beyond
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the doctor’s office and penetraƟng other spheres such as the family and friend relaƟonships of the pa-
Ɵent (Flores et al., 2013; Hood & Auffray, 2013; Galas & Hood, 2009). These insights not only would
have repercussions in the healthcare systems, which per se would have a big improvement, but also
would reduce the temporal, social and economic burden of current medical organisaƟons. Inducing,
thus, profound changes in the percepƟon of medicine (Flores et al., 2013). The 100k project is the
most palpable example that we are living in a P4 medicine era (Hood & Price, 2014).

4 ObjecƟves

Characterise the Rapid eye movement sleep Behaviour Disorder (RBD) disease module at the node,
edge, biological process and cellular compartment organisaƟonal levels, in order to strengthen the
potenƟal use of RBD as a prodromal biomarker of synucleinopathies.

1. Construct the Human Interactome (HI)

2. IdenƟfy the putaƟve RBD module

5 Methods

5.1 Human interactome assembly

5.1.1 InteracƟons data gathering

Considering the highly Ɵssue and cell specific nature of the disease module (Kitsak et al., 2016) only
Ɵssue-specific and cell-line specific data relaƟve to brain and its cell types were incorporated into the
HI. In order to avoid mulƟ-mapping when converƟng between gene or protein IDs, only those nodes
mapped to an Entrez Gene ID were used. As long as they were free, different sources of experiment-
ally validated physical interacƟons were employed, ensuring the completeness and quality of the HI
(Barabási et al., 2011). The contemplated sources are:

1. Binary Protein-Protein physical InteracƟons (PPI) represent pairwise physical interacƟons among
proteins. High-quality PPI (i.e. More than two events of curaƟon, reported in at least two separ-
ate experiments or publicaƟons andwith 3D structures from PDBwheremore than two disƟnct
proteins have been idenƟfied in a complex) were retrieved from the databases Intact, MINT,
HPRD, DIP, BioPlex and bioGRID, employing the web server APID on 02/02/2017. Moreover,
APID parse the data into the 2.5.4 version of the PSI-MI XML format adopted by the HUPO
Proteomics Standard IniƟaƟve for the expedite data comparison, exchange and verificaƟon
(Kerrien et al., 2007), thus easing its use. The proteome (a.k.a. map of PPI) generated has
∼ 42 % of coverage of known human PPIs (Alonso-López et al., 2016) and, by excluding binary
singleton relaƟonships (interacƟons supported by a single piece of experimental evidence), it is
less likely to include false PPI, product of curaƟon errors with a recovery rate similar to random
expectaƟon (Rolland et al., 2014). The detailed workflow of APID is available here.
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A given protein was considered expressed in the brain if its health Ɵssue reliability score from
the The Human Protein Atlas was “SupporƟve” or “Approved” and its expression level was
detected (Uhlén et al., 2015) (a detailed descripƟon of the reliability and expression score is
available here), thus ensuring the interacƟons’ quality. The Human Protein Atlas (HPA) is a
recent aƩempt to unravel the Ɵssue-specific human proteome from a gene-centric approach,
in which RNAseq and immunofluorescence labelling were employed to determine the Ɵssue-
specificity of a given transcript and in-house and commercial anƟbody labelling coupled with
immunohistochemistry imaging were employed to determine its subcellular localizaƟon at a
single-cell level (Uhlén et al., 2015).

2. Gene Regulatory Network (GRN), where regulatory elements (e.g. promoters, enhancers, in-
sulators, TranscripƟon Factor (TF), RNA, inter alia) are linked through physical contacts, are
key components in understanding diseases, as they are enriched with disease causing geneƟc
variants (Lee & Young, 2013; Jimenez-Sanchez, Childs, & Valle, 2001) and play a criƟcal role
in cell homeostasis (Ma’ayan et al., 2005). Recently, Marbach et al. (2016) created a Ɵssue-
specific and cell-line specific compendium of high-quality inferred regulatory networks includ-
ing TF-enhancer, TF-promoter and enhancer-promoter relaƟonships employing FANTOM5 pro-
ject data. FANTOM5 use Cap Analysis of Gene Expression (CAGE), a high-throughput quanƟt-
aƟve technology to map transcripƟon starƟng sites and assess gene expression profiles simul-
taneously in a cell, Ɵssue or condiƟon specific way. Only adult data grouped into “Neurons &
fetal brain”, “Nervous system & adult hindbrain” and “Adult forebrain” clusters from (Marbach
et al., 2016) was used to generate the regulatory network.

3. Metabolic and signalling interacƟons, where two nodes (i.e. metabolites, metabolic-genes,
signalling-genes) are connected if they share the same pathway, was downloaded from KEGG
on 03/05/2017. In order to consider the inextricably intertwine between metabolic and sig-
nalling networks, theyweremerge into a single brain-specificMetaboSignal network, following
the guides in PPI secƟon and using the R package by Rodriguez-MarƟnez et al. (2016). From
now on this type of interacƟons will be referred as metabosignal, for brevity.

Table 1 lists a set of common topological aƩributes (please refer to Glossary secƟon for definiƟons)
assessed on the interactome and compared with previous human interactomes, proteomes and reg-
ulomes, to place in context the network here constructed. Refer to supplementary informaƟon S2
for the complete research workflow.

5.1.2 ValidaƟon

Poisson distribuƟon is a signature of random processes governing a given network aƩribute (So-
lomonoff & Rapoport, 1951; Erdos & Rényi, 1959). Consequently, deviaƟon from such distribuƟon
can be interpreted as a non-random process taking place to generate the network property (Kolaczyk
& Csárdi, 2014). By seƫng such premise as the foundaƟon, one can compare observed interactome’
aƩributes to random ones, drawn from similar networks as the interactome, expecƟng a poor re-
semblance between them; supporƟng the idea that a relevant biological process is giving place to
the observed feature instead of pure randomness. However, it is computaƟonally expensive to simu-
late themassiveness of the HI, therefore, for the next two aƩributes, a straƟfied random sample with
replacement of 6945 (roughly half of HI) verƟces was taken from the HI, ensuring thus, the repres-
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entaƟon of all interacƟon sources and reducing the sampling error. For comparisons, Z-scores were
computed for raw scores of 95 %. The compared aƩributes are:

1. The transiƟvity or Clustering Coefficient (cl) convey informaƟon regarding the frequency of
triplets in the network forming triangles, thus inform about the closeness of nodes. Observed
transiƟvity was compared against the average transiƟvity calculated from 1000 random graphs
rewiredwith degree preserving randomizaƟon (further detail in theModule validaƟon secƟon).

2. The average path length (< d >)is a measure of connecƟvity, calculated by averaging the min-
imum number of edges between two given nodes, a.k.a. geodesic distance. Observed APL was
compared against the average APL calculated from 1000 random graphs rewired with degree
preserving (further detail in the Module validaƟon secƟon).

For further validate the HI, instead of compare its properƟes against similar networks randomly
drawn, a random model was fiƩed to the HI, to see whether such model is able to explain the ob-
served degree distribuƟon P (k) and the probability of any Ɵe occurring in the HI. ExponenƟal Ran-
dom Graph Models (ERGM) are staƟsƟcal models intended to describe the probability of any Ɵe in
the network as a funcƟon of linear predictors, verymuch like a generalised linear model of regression
(Kolaczyk & Csárdi, 2014). The random Bernoulli model (a variaƟon of the Erdős-Rényi model) stands
that, for each pair of verƟces i, j, the probability to draw a link between them (Yij) is independent of
the other nodes’ probability (Yi′,j′), for any i′, j′ ̸= i, j (Kolaczyk & Csárdi, 2014). Therefore, the prob-
ability of any Ɵe is calculated as p = exp(θ)

1+exp(θ) , for any θ value of an esƟmated network parameter (e.g.
degree distribuƟon) thought to be ruling the appariƟon of edges. Commonly, model fiƫng is used
to found the parameters governing the network topology at a local level (i.e. edge level) (Goodreau,
KiƩs, & Morris, 2009), thought not common, model fiƫng can be used to validate the HI by looking
for poor fit between an observed property in the network at the global level, such as the P (k), and
the modelled one. For this, a goodness-of-fit test was carried out comparing the observed HI P (k)
against 10 000 simulaƟons and the log − odd to draw an edge in the HI was calculated.

Several real-world networks (Albert, Jeong, & Barabási, 1999, 2000; Goh et al., 2007; MacArthur,
Sánchez-Garcı́a, & Ma’ayan, 2010; Faloutsos, Faloutsos, & Faloutsos, 1999), including previous pro-
teomes (Rolland et al., 2014), exhibit the scale-freeness property, in which the P (k) follows a power-
law, thus inheriƟng key features, such as the Achilles-heel property (Albert et al., 2000) and the pres-
ence of hubs (highly connected nodes) (Albert et al., 1999)), which in turn offer valuable informaƟon
regarding the interactome architecture and dynamics. Contrarily to tradiƟon, the scale-freeness of
the interactomewas assessed following the quanƟtaƟve guidelines for accurate heavy-tailed distribu-
Ɵons fiƫng by Clauset, Shalizi, and Newman (2009). The maximum likelihood, a method well fiƩed
for large datasets like the HI, esƟmators for the distribuƟon parameters kmin, the minimum degree
for which the power-law fits the P (k)HI (HI’s degree distribuƟon), and α, the scaling parameter of
the distribuƟon P (k) ∝ k−α, were obtained by minimising the Kolmogorov-Smirnov distance (K-S)
between the observed probability distribuƟon and the best power-law model (Clauset et al., 2009).
A goodness-of-fit test with a bootstrapping of 10 000 simulaƟons was used to assess the uncertainty
of the esƟmators (Clauset et al., 2009). Finally, the observed P (k)HI was compared against the
discrete Poisson distribuƟon, which represents random networks, and the exponenƟal distribuƟon,
presumed to fit theP (k)HI , employing the log-likelihood raƟo (R) and the Vuong’s test for pvalue(R),
both, two-sided and one-sided (Clauset et al., 2009).
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5.2 IdenƟficaƟon and validaƟon of the RBD module in the HI

5.2.1 Seed nodes gathering

RBD nodes, to be used as seed for putaƟve RBD-related nodes predicƟon, were obtained from the
OMIM, ComparaƟve Toxicogenomics Database (CTD), DisGeNET and MalaCards databases, employ-
ing the keywords from the Disease Ontology, a correlaƟonal database for accurate disease terms,
“REM sleep behavior disorder”, “rapid eyemovement sleep behavior disorder”, “REM sleep parasom-
nia” and “REM sleep behavior”. These databases have at least one step of manual curaƟon events,
ensuring the interacƟon’s quality. Furthermore, a literature search was performed to complement
the database searches (Gan-Or, Mirelman, et al., 2015; Gan-Or et al., 2016; Gan-Or et al., 2017; Gan-
Or, Girard, et al., 2015; Fernández-SanƟago et al., 2016; W. J. Zhang et al., 2017).

5.2.2 Module idenƟficaƟon

Broadly, three approaches to predict novel putaƟve disease-modifying nodes can be disƟnguished: 1.
Neighbourhood-based, 2. Graph parƟƟoning and 3. Diffusion-based (Barabási et al., 2011; Navlakha
& Kingsford, 2010). The neighbourhood approach departs from the observaƟon that gene products
related to the same disease are more likely to interact with each other (Goh et al., 2007), and there-
fore, new gene products can be associated with a disease if they lie in the same loci of the disease
and also interacts with known disease-related gene products (OƟ et al., 2006). Graph parƟƟoning
methods rely on the disease module hypothesis, thus linking gene products if they belong to the
same disease or funcƟonal module (Feldman et al., 2008). Lastly, diffusion-based procedures assigns
a score to each node regarding its distance to the seed nodes, based on a random-walk, and the
configuraƟon of these nodes’ edges (Köhler et al., 2008).

IrrespecƟveof themethod,most of community (a synonym for networkmodule) detecƟon algorithms
employ the density of edges of each node to link putaƟve nodes, however, inasmuch as disease nodes
usually are not very densely connected (i.e. they are in the periphery of the network) (Feldman et
al., 2008; Goh et al., 2007), such algorithms are not able to disƟnguish between the funcƟonal mod-
ule (i.e. neighbourhood exerƟng a common funcƟon) and the disease module, which can overlap
(Ghiassian, Menche, & Barabási, 2015; Sharma et al., 2015). Therefore, the DIAMOnD algorithm,
a graph parƟƟoning method, (Ghiassian et al., 2015) was used to predict the RBD module, as it is
based on the connecƟvity significance of the seed nodes’ interacƟons instead of pure density, hence,
it prevents the inclusion of hub nodes merely by its large number of interacƟons, ensuring the patho-
biological relevance of the nodes included. However, inasmuch as DIAMOnD ranks, according to the
connecƟvity significance, all nodes in the network, it is require a biological criterion to decide how
many predicted nodes should be included in the RBD module (the sum of the proto-module and the
predicted nodes). For this, a Network Enrichment Analysis Test (NEAT) for Gene Ontology (GO) bio-
logical processes terms was carried out employing the Signorelli et al. approach (see next secƟon for
details).
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5.2.3 Module validaƟon

NEAT is a method to disclose the funcƟonal relevance of a set of nodes taking advantage of the topo-
logical posiƟon of each node in the network (Signorelli et al., 2016). Such approach allows the reliable
idenƟficaƟon of the biological processes in which the RBD seed nodes are involved. Unlike previous
methods (Alexeyenko et al., 2012), NEAT creates the null distribuƟon, from which the enrichment
significance will be calculated, by modelling the observed number of links between the RBD nodes
and a set of GO biological processes terms as an hypergeometric distribuƟon. Improving thus, not
only the computaƟon Ɵme but also the staƟsƟcal accuracy, as the null distribuƟon is derived from
the observed dataset instead of forcing it to be normal (Signorelli et al., 2016), which is clearly not
the case for the networks here consolidated (figure S6). To ensure the quality of the enrichment, only
high quality experimental and computaƟonal GO evidence codes were included (i.e. EXP, IDA, IMP,
IGI, IEP, ISS, ISA and ISO). In addiƟon to funcƟonally validate the RBD module for overenriched biolo-
gical processes, the network enrichment analysis was also calculated every DIAMOnD iteraƟon (i.e.
every addiƟon of a new ranked node), as a biological criterion to stop the addiƟon of nodes to the
RBD module (Ghiassian et al., 2015). In order to control the type I error due to mulƟple tesƟng, the
pvalue of the enrichment was adjusted using the Benjamini and Hochberg (B-H) method, by reducing
the False Discovery rate (Bouaziz, Jeanmougin, & Guedj, 2012).

Furthermore, following the same premise as in the HI validaƟon secƟon, the transiƟvity and average
path length of the putaƟve RBD module were compared against the random expectaƟon from 1000
degree-preserving randomisaƟons of networks with the same number of nodes and degree per node
as the RBD-module. These random graphs, as defined by Erdos and Rényi (1959), were computed
as G(n, p), where n is the number of nodes and p is the edge probability calculated as p = d=1

n
.

Comparisonsweremade employing Z-score for a raw score of 95%. For further validate the biological
relevance of the RBD-module, a ERGM was fiƩed to it, comparing the geodesic distance distribuƟon
and the degree distribuƟon against 100 bootstrapping simulated networks (Kolaczyk & Csárdi, 2014).
The probability to randomly draw an edge in the RBD-module and the GO enrichment for Cellular
Compartment, following the parameters aforemenƟoned, were carried out.

5.3 SoŌware and hardware

The staƟsƟcal programming language R 3.4.0 (‘R: A Language and Environment for StaƟsƟcal Com-
puƟng’, n.d.) was employed in most analyses, except for the implementaƟon of DIAMOnD in Python
2. Following the guidelines for reproducible computaƟonal research (Stodden et al., 2016), scripts,
workflows, raw and processed data is publicly available in GitHub, as well as the citaƟon of all R pack-
ages used. Analyses were performed in the server of the BioinformaƟcs and Systems Biology Group
(GIBBS) located at the InsƟtuto de GenéƟca of the Universidad Nacional de Colombia.
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6 Results & discussion

6.1 Human interactome assembly

6.1.1 InteracƟons data gathering

The resulƟng brain-specific HI is the most comprehensive and up-to-date simple (i.e. no mulƟedges
nor loops) undirected network, with 3 057 105 edges among 17 329 verƟces (Figure S3). Table 1
place in context some topological properƟes of the HI (Interactome 1) compared against previous
interactomes, proteomes and regulomes. The elevated mean degree (< k > = 355.2; kmax = 14672)
of the HI compared with the other networks is remarkable, and obeys to the colossal number of un-
precedented interacƟons (20.8 Ɵmes larger than the previous biggest one) here consolidated. Regu-
latory represent the vast majority of these interacƟons (97.4 %), leƫngmetabosignal and PPI behind
with 2.2 % and 0.4 % of interacƟons, respecƟvely (figure S4 A). Such overrepresentaƟon of regulatory
interacƟons may obey to the combinaƟon of several causes: 1. The presence of very promiscuous
TFs, promoters and enhancers that, through duplicaƟon events along the evoluƟonary history, have
expanded the regulatory program exponenƟally (Pougach et al., 2014; Ferreira et al., 2013), thus
reflecƟng its inherent complexity; 2. There are many more Ɵssues used for regulatory interacƟons
(33) than those used for either metabosignal or PPI (5), generaƟng a bias toward regulatory interac-
Ɵons; 3. The level of curaƟon of regulatory interacƟons, due to their inferred nature, is lower than
metabosignal and PPI, which are manually curated and highly supported, respecƟvely.

Table 1: Comparison of topological properƟes among recent HI, proteomes and a regulome. The
large number of edges in the Interactome 1 and Interactome 2, a subset of the Interactome 1, here
consolidated, which in turn lead to a high < k > of the brain-specific HI and a bimodal P (k), obeys
to the massive contribuƟon of promiscuous TF, enhancers and promoters to regulatory interacƟons.
Topological network properƟes: M = Number of edges, N = Number of nodes, < k > = Mean
degree,< cl > = Global transiƟvity (a.k.a. Clustering coefficient), P (k) = Degree distribuƟon,< d >
= Average path length and dmax = Diameter, NA = Not available or not apply

CitaƟon Network type M N < k > < cl > P (k) < d > dmax

(Sharma et al., 2015) HI 101032 11643 17.3 0.19 Scale-free 3.7 NA
(Menche et al., 2015) HI 141296 13460 21 0.17 Scale-free 3.6 12
(Rolland et al., 2014) Proteome 13944 4303 6.3 0.05 Scale-free 4.1 NA
(Mohammadi & Grama, 2016) Proteome 147444 14658 NA NA NA NA NA
(Jolma et al., 2013) Regulatory 3563 830 NA NA NA NA NA
(Kitsak et al., 2016) HI 141296 13460 21 0.17 Scale-free 3.6 12
Interactome 1 HI brain-specific 3077707 17329 355.2 0.06 Bimodal 2.1 8
Interactome 2 HI brain-specific 1234593 16628 148.4957 0.04 Bimodal 2.3 14

If the first asserƟon were true, then, the regulatory program must exhibit the hallmarks of these
duplicaƟon process. Indeed it does, through the P (k). Unlike many biological and human-made
networks, the HI is not scale-free, as even when the power-law is significantly valid (pvalue = 0.32,
10 000 bootstrapping; figure S5) it fits only the 0.8 % (7664< k <7787) of the k range and have
a parƟcularly high scaling parameter α = 4.6 (2 < α < 3 for typical scale-free networks) indicaƟng
more evenness in the degree than expected for a scale-free network, but also revealing a bimodal
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distribuƟon (figure S6 A). The HI inherits such distribuƟon from regulatory interacƟons, as PPI and
metabosignal are both unimodal (figure S6 C,D), hence supporƟng the first asserƟon.

Whereas the very pervasive scale-free networks evolve through a preferenƟal-aƩachment, in which
new nodes bind preferenƟally to hubs, (de Solla Price, 1965; Barabási & Albert, 1999) following the
duplicaƟon-divergencemodel (Vázquez et al., 2003; Pastor-Satorras, Smith, & Solé, 2003), where new
nodes arise from duplicaƟon and a subsequently loss of interacƟons lead to divergence of these para-
logs, there is a type of non-scale free networks with bimodal degree distribuƟon that evolve trough
the preferenƟal aƩachment following the duplicaƟon-acquisiƟonmodel (Ferreira et al., 2013), where
new nodes arise from duplicaƟon events preferenƟally aƩaching hubs with high clustering coefficient
instead of hubs with low clustering coefficient, thus, generaƟng two type of hubs: intramodular and
intermodular (Fraser, 2005; Li, Huang, Xia, & Sun, 2006). The former, also called “party hubs”, tend
to interact with most of their partners in a single spaƟo-temporal frame and belong to a funcƟonal
module (Han et al., 2004; Li et al., 2006), evolve slower than intermodular hubs and are physically
and funcƟonally constrained (Fraser, 2005). Contrarily, intermodular hubs, a.k.a. “date hubs”, in-
teract with many partners in a variable spaƟo-temporal frame and tend to connect modules (Han
et al., 2004), are more prone to duplicaƟon than party hubs, do exhibit pleiotropy (Li et al., 2006)
and evolve faster (Fraser, 2005).

Clustering coefficient is successfully able to disƟnguish these two type of nodes in regulatory inter-
acƟons (figure S7), indicaƟng that the preferenƟal duplicaƟon-acquisiƟon model is plausible for the
regulatory program. It is in strongly agreement with the empirical facts that gene-products with sub-
strate promiscuity, just as the TFs in regulatory interacƟons which headed the top-10 hubs in the
network (table S1), are more prone to duplicaƟon events (Conant & Wolfe, 2008) and roughly 90 %
of EukaryoƟc genes are believed to evolved by duplicaƟon events (Teichmann & Babu, 2004; Ferreira
et al., 2013). Consequently, it is exiƟng and reasonable to imagine an evoluƟonary scenario where
the first asserƟon takes place.

In order to reduce the influence of the second asserƟon and also to diminish the dimensionality of
the HI, only whole-brain regulatory interacƟons were included in the HI (table 1, as Interactome 2)
at the expense of the 32 area and cell-specific brain files (Marbach et al., 2016). The third asserƟon
is somewhat inauspicious as, even though it is not manually curated as PPI or metabosignal, the
validaƟon of Marbach et al. has a high standard, only drawing interacƟons supported by the best
predicƟve pracƟces (Banf & Rhee, 2017). It is worth nothing that, even aŌer filtering with expression
data, false-posiƟve and false-negaƟve interacƟons might be present in the three sources. Further
invesƟgaƟons must take care of them, either by adding an addiƟonal filter or by including another
type of regulatory data.

6.1.2 ValidaƟon

Inasmuch as it is significantly unlikely that a random process originates the observed P (k)HI when
compared against a power-law distribuƟon (R = 5.165587, pvalue(R) = 2.396 854× 10−7; figure S5)
and an exponenƟal distribuƟon (R = -14.08696, pvalue(R) = 4.568 209× 10−45; figure S5), it is valid to
think that a biological process is taking place to generate the observed degree distribuƟon. Moreover,
the observed transiƟvity is significantly higher than the random expectaƟon (Z-score = 116.793, 95%
confidence; figure 1 A) and the average path length is significantly smaller than the random expect-
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aƟon (Z-score = -2.224, 95% confidence; 1 B). i.e. , A random network, with the same number of
nodes and edges as the HI, would not have neither the clustering level nor the short paths of the HI.
For further validaƟon of the HI, the Bernoulli ExponenƟal Random Graph Models (ERGM) was fiƩed
to it, founding a very low probability (log − odd = 0.0089) to randomly draw any link of the HI and
an overall poor fiƫng between the observed geodesic distance and the predicted by the Bernoulli
model (figure S8 C).
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Figure 1: TransiƟvity (A and C) and average path length (B and D) comparison between the observed
and the random expectaƟon from 1 000 degree preserving randomisaƟon for the RBD-module (bot-
tom) and a sample from the HI (upper). In G(n, d),d= 0.0024 for RBD-module and d = 0.0001 for
the HI (please refer to the RBD-module validaƟon for further detail). The Z-score for A, B, C and D
are 116.793, -2.224, 14.78 and -2.50 respecƟvely. In brief, the observed HI and RBD clustering coef-
ficient and average path length are significantly greater and smaller, respecƟvely, than one would
expect for a random network with similar features, thus confirming the biological validity of the HI
and RBD-module. Red doƩed line is the mean. Note the close resemblance between the HI cl and
<d> values and the ones from the straƟfied random sample, endorsing its representaƟveness.
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6.2 IdenƟficaƟon and validaƟon of the RBD-module in the HI

AŌer the exhausƟve database and literature search for the RBD-related genes to be used as seed
nodes, a list of 26 genes were consolidated (Table S2).

According to the disease module hypothesis the seed nodes should form a disƟnguishable module
in the HI (a proto-module) (Feldman et al., 2008; Barabási et al., 2011), however, RBD-seed nodes
do not, as there is no edges in the HI linking them (figure 2 A). This might obey to 1. The small
number of seed nodes present in the HI (24/26) reflecƟng the liƩle molecular knowledge regarding
RBD, inwhich case, either there are truly no biological interacƟons among them, or the science simply
have not linked them yet; or 2. The inherent incompleteness of the HI, in which case is required a
more comprehensive and carefully constructed novel HI. Notwithstanding the strongly influence of
the HI’s completeness in the detecƟon of the RBD module, it is more plausible that the number of
seed nodes used were not enough to disƟnguish the RBD proto-module, as it was demonstrated that,
even in an incomplete interactome, a thoroughly consolidated set of seed nodes is able to make the
proto-module pop up (Menche et al., 2015). This is further supported when including the 1st order
neighbours of the RBD-seed nodes, where the RBD proto-module not only is observable but connect
all seed nodes present in the HI (figure 2 B). Furthermore, considering that most diseases exhibit less
than 20 % of their nodes in the observable proto-module (Menche et al., 2015) it is not surprising
that the RBD proto-module is only observable when including the 1st neighbours.

AŌer running the iteraƟve network enrichment (figure S9), the first 400 most significantly connected
DIAMOnD nodes were included in the high quality RBD-module, ever assembled (figure 2 C). As other
diseasemodules (Ghiassian et al., 2015), it is significantly more clustered than expected by chance (cl
= 0.22, Z-score = 38.47; figure 1 C), evenmore than the HI (table 1), and its average paths length is sig-
nificantly smaller than the random expectaƟon (< d > = 2.72, Z-score = -2.50; figure 1 D). Moreover,
as the geodesic distance distribuƟon (figure S8 A) and the degree distribuƟon (figure S8 B) shows, the
RDB-module represents a biological plausible representaƟon of the molecular landscape governing
the disease, further supported by the low probability (log− odd = 0.069) to randomly draw any edge
of the module.

Themajority of the tenmost overenriched biological process in the RBD-module are immune-related
(table S3). This is surprising, as it is in strong agreement with an alternaƟve and barely explored hy-
pothesis for RBD pathogenesis (Iranzo et al., 2005), in which is the limbic system, instead of the
tradiƟonal pontomedullar region, the area in which the aeƟological causaƟon of RBD lies. It de-
rives from the, previously believed coincidental, observaƟons that autoimmune limbic encephaliƟs,
without pontomedullar lesions, concomitantly exhibit RBD (Vale, Fernandes do Prado, do Prado, Po-
voas Barsoƫni, & Pedroso, 2016; Lin, Liu, & Hsu, 2009; Compta, Iranzo, Santamarı́a, Casamitjana,
& Graus, 2007; Limousin et al., 2009; Iranzo et al., 2005; Adams, McKeon, Silber, & Kumar, 2011).
This is further supported by several immune response-related overenriched cellular components in
the RBD-module (table S3) and the widely accepted somnogenic effect of proinflammatory cytokines
(Venancio & Suchecki, 2015). Although the extensive anatomical crosstalk between the limbic system
and the pontomedullary system was already known, it had not been contemplated the possibility for
the RBD aeƟology to lie in a different anatomical region than the tradiƟonal one. Thus, these results
reinforce the exiguously supported hypothesis for a strong limbic influence in the RBD pathogenesis,
illustraƟng the capacity of network approaches to depict a different disease landscape; further sup-
porƟng the usefulness of a holisƟc approach for aetyological analyses.
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Figure 2: FracƟonated proto-module containing the RBD-seed nodes (A). Proto-module plus 1st order
neighbours (B) in which all seed nodes get connected, indicaƟng that even though the exhausƟve list
of seed nodes here consolidated is not enough to make the module pop up, only adding the part-
ners of these seed nodes, which I believe soon will be covered by science, is enough to show the
proto-module. The first ever constructed RBD-module (C), showing biological enƟƟes and interac-
Ɵons previously unlinked to the aeƟology of RBD (red nodes). As shown in figure S8 B, there are
some seed nodes that remain disconnected from the module. For the sake of aestheƟcs, the first 58
hubs were removed from C. Labelled nodes are Entrez gene ID.

The RBD-module recoverswell-established characterisƟcs of RBD, such as the strong influence of sero-
tonin signalling, illustrated in the fact that the 5th and 7th best ranked DIAMOnD nodes correspond to
its receptors HTR1D and HTR1F, respecƟvely. HTR1, common in the REM-switch and hippocampus
regions, are Gi-coupled receptors which, by repressing the adenylate cyclase, inhibit the cAMPmeta-
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bolism, which in turn down-regulate the cAMP-response element binding protein (CREB) (Berumen,
Rodrı́guez,Miledi, &Garcı́a-Alcocer, 2012), awell-known TF responsible for sustained arousal in areas
involved in the REM-switch, such as the locus coeruleus (Graves, 2003). This may explain the overen-
riched biological processes, cellular compartments and best-ranked DIAMOnD nodes (NeuropepƟde
Y, HCAR-1, SomatostaƟn-28 and -14, Oxytocin, GHSR and endothelin-2) involved in cAMP signalling
and G-coupled signal transducƟon (table S3). HTR1 also modulate the conductance of K+ channels
in the dorsal raphe nucleus, a member of the REM-switch, and the entorhinal cortex in the limbic
system (Deng, Poudel, Rojanathammanee, Porter, & Lei, 2007), which is in concordance with the
concomitant presence of RBD and K+ channel anƟbody–associated limbic encephaliƟs (Iranzo et al.,
2005).

7 Conclusion

Currently, the diseasemodule of Rapid eyemovement sleep Behaviour Disorder (RBD) remains unas-
certained and liƩle is known about themolecular enƟƟes, at different organisaƟonal levels, related to
its aeƟology. This research has successfully assembled themost up-to-date high-quality brain-specific
Human Interactome (HI) and characterise, for the first Ɵme in science, the RBD-module, shedding
light on the molecular mechanisms implicated in a barely supported alternaƟve hypothesis for RBD
pathogenesis. Both the HI and the RBD-module recover interesƟng biological features previously
reported in other biological networks, thus validaƟng the innovaƟve methodology employed, but
also, the former exhibits the hallmarks of a recently proposed evoluƟonary scenario and the laƩer
suggests a broader and more comprehensive molecular picture of RBD than previously considered.
Moreover, this research not only has seƩled a solid foundaƟon for further studies guided to evalu-
ate the potenƟal of RBD as biomarker of synucleinopathies, specially PD, but also has supported a
systemic approach for aeƟological analyses under the network medicine paradigm.

The present invesƟgaƟon has limitaƟons though, mainly regarding to the completeness of the HI,
which in turn determines further conclusions in the disease module, as discussed in the RBD-module
secƟon. To alleviate these limitaƟons, is strongly advised to employ an unified framework to achieve
the Ɵssue-specificity, one that takes advantage of non-hard cut-offs and the network topology, such
as the one proposed by Mohammadi and Grama (2016) including the frame discussed in Venkatesan
et al. (2009) and Rolland et al. (2014), thus, avoiding biases towards certain type of interacƟon. The
research would also benefit from a comparison of the DIAMOnD results against other predicƟon
methodologies, such as the diffusion-based method previously discussed, in order to further valid-
ate the RBD-module. It is worth noƟng that this research is fully reproducible following the freely
available code menƟoned early.
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9 Supplementary informaƟon

Figure S1: Problem tree showing the causes (boƩomsquares), generaƟng the research problem (cent-
ral square), which in turn produces some consequences (upper squares).
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Figure S4: ProporƟon of edges per source in the HI 1, including all regulatory interacƟons, (A) and
HI 2, including only whole-brain regulatory interacƟons, (B). Despite the regulatory overrepresent-
aƟon persist when employing only whole-brain regulatory interacƟons, the dimensionality of the
interactome reduces by a factor of 2.5, compared against HI 1 (table 1).
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when comparing exponenƟal distribuƟon against the Poisson, the former is significantly more plaus-
ible than the laƩer (two-sided pvalue = 4.568209e-45), represented as a trend ofR towards negaƟve
values (red line) (Clauset, Shalizi, & Newman, 2009).
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a tendency to connect modules. The analogy by (Fraser, 2005) with exon shuffling exemplify very
well the evoluƟonary scenario where intermodular hubs in regulatory interacƟons evolve through
the duplicaƟon-acquisiƟon model (Ferreira et al., 2013) here supported, “In an abstract sense,... The
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Figure S8: Goodness-of-fit test for the RBD-module by fiƫng an ERGM and comparing the degree
distribuƟon (A) and the geodesic distance (B). AddiƟonally, B shows that most nodes in the RBD-
module are reachable (Non Reachable ∼ 0). Goodness-of-fit test for the HI comparing the degree
distribuƟon is shown in C. The bold black line is the observed value and the boxplots represent the
simulated values showing minimums and maximums, as well as the 10th and 90th quanƟles. In all
cases, the overall poor fiƫng between the simulated and the observed value is quite remarkable,
supporƟng the biological relevance of the RBD-module and the HI. For the sake of aestheƟcs, only
the first 60 values of d are shown.
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Table S1: The main funcƟon of the first ten intermodular and intramodular hubs in regulatory in-
teracƟons. Most of these nodes are TF, further supporƟng the evoluƟonary scenario of duplicaƟon-
acquisiƟon (Ferreira et al., 2013) in the regulatory interacƟons of the HI.

Entrez gene ID Gene name FuncƟon

3725 Jun proto-oncogene, AP-1 transcripƟon factor subunit TF
6667 Sp1 transcripƟon factor TF
2313 Fli-1 proto-oncogene, ETS transcripƟon factor TF
7020 TranscripƟon factor AP-2 alpha TF
5078 Paired box 4 TF
5451 POU class 2 homeobox 1 TF
5669 Pregnancy specific beta-1-glycoprotein 1 AnƟbody

199699 DAN domain BMP antagonist family member 5 Morphogen
3172 Hepatocyte nuclear factor 4 alpha TF

Intermodular

6688 Spi-1 proto-oncogene TF

8266 UbiquiƟn like 4A UbiquiƟn like
26973 Cysteine and hisƟdine rich domain containing 1 TF
1272 ContacƟn 1 AnƟbody
7010 TEK receptor tyrosine kinase Receptor
2776 G protein subunit alpha q Signal transducƟon

64412 GDNF inducible zinc finger protein 1 TF
3673 Integrin subunit alpha 2 MEC support

51119 SBDS, ribosome assembly guanine nucleoƟde exchange factor TF

Intramodular

7675 Zinc finger protein 121 TF
23657 Solute carrier family 7 member 11 Transport
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Table S2: RBD seed genes collected from databases and literature. Inferred C = Inferred associaƟon
via a curated chemical interacƟon from the CTD database. When separated by a “/” then, several
sources or evidence are supporƟng the gene.

Gene Evidence Source
ACHE Inferred MalaCards humandisease
BDNF Inferred C CTD
CASP7 Inferred C CTD
SCARB2 linkage (Gan-Or, Girard, et al., 2015)
CYP2D6 Inferred C CTD
CYP3A4 Inferred C CTD
DRD2 Inferred C CTD
GBA linkage (Gan-Or, Mirelman, et al., 2015)
GCNT2 literature DisGeNET
HCRT literature/Inferred DisGeNET/MalaCards humandisease
HLA-DQB1 TextMining HuGE
HTR1A Inferred C CTD
HTR2A Inferred C CTD
HTR2C Inferred C CTD
MAPT linkage (Gan-Or, Girard, et al., 2015)
PARK2 literature DisGeNET
PSG5 literature DisGeNET
RPS27A Inferred MalaCards humandisease
SLC6A3 literature/Inferred MalaCards humandisease
SLC6A4 Inferred C CTD
SNCA literature/Inferred MalaCards humandisease
TCOF1 Inferred MalaCards humandisease
NR0B2 Inferred C CTD
REM1 literature DisGeNET
FNDC4 Inferred C CTD
LRRK2 Inferred MalaCards human disease
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Table S3: Ten most enriched GO terms in the RBD-module organised by ontology. Most Biological
processes (BP) and Cellular Compartments (CC) are immune and signalling related.

GOID Term Ontology

GO:0002232 leukocyte chemotaxis involved in inflammatory response BP
GO:0002673 regulaƟon of acute inflammatory response BP
GO:0002720 posiƟve regulaƟon of cytokine producƟon involved in immune response BP
GO:0002879 posiƟve regulaƟon of acute inflammatory response to non-anƟgenic sƟmulus BP
GO:0090276 regulaƟon of pepƟde hormone secreƟon BP
GO:1904322 cellular response to forskolin BP
GO:0018105 pepƟdyl-serine phosphorylaƟon BP
GO:0007189 adenylate cyclase-acƟvaƟng G-protein coupled receptor signaling pathway BP
GO:0006171 cAMP biosyntheƟc process BP
GO:0048009 insulin-like growth factor receptor signaling pathway BP
GO:0005891 voltage-gated calcium channel complex CC
GO:0005834 heterotrimeric G-protein complex CC
GO:0005886 plasma membrane CC
GO:1990454 L-type voltage-gated calcium channel complex CC
GO:0005942 phosphaƟdylinositol 3-kinase complex CC
GO:0005943 phosphaƟdylinositol 3-kinase complex, class IA CC
GO:0000159 protein phosphatase type 2A complex CC
GO:0032281 AMPA glutamate receptor complex CC
GO:1902494 catalyƟc complex CC
GO:0034704 calcium channel complex CC
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