
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The version of the following full text has not yet been defined or was untraceable and may

differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/36712

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/36712

A C onference M anagem ent System based on the
iData Toolkit

Rinus Plasmeijer and Peter Achten

Software Technology, Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen {rinus, P.Achten}@cs.ru.nl

A bstract. The iData Toolkit is a purely functional toolkit for the Clean
programming language to create highly dynamic, interactive, thin client
web applications on a high level of abstraction. Its main building block
is the iData element. With this element the programming effort of the
application programmer is reduced significantly because it takes care of
state handling, rendering, user interaction, and storage management au
tomatically. In this paper we show that it can be used for even more
tasks: handle destructively shared model data, perform version manage
ment, and state consistency management. This can be done entirely on
top of the iData Toolkit. The toolkit comes with a new programming
paradigm. We illustrate the extended power of the toolkit and program
ming paradigm by a case study of a conference management system.

1 In trodu ction

The purely functional language Clean has a library to create highly dynamic, in
teractive, thin client web applications on a high level of abstraction. This library
is the iData Toolkit [11,13,12].It is based on the language support for generic
programming [2, 3]. The toolkit’s main building block is the iData element, which
is a versatile unit tha t automates a great deal of things for the programmer:

— it manages a state of arbitrary type;
— it renders an HTML form representation of its state;
— it handles user actions made with these forms in a type safe way;
— it stores its state either in the page or at the server side on disk.

Web applications are created by interconnecting an arbitrary collection of iData
elements via their states and rendered forms. In the past years we have obtained
experience in programming applications with iData elements, and their desktop
GUI predecessors, the GEC elements of the GEC Toolkit [1]. This has resulted in
a new programming paradigm. In the iData Toolkit programming paradigm the
application programmer models the application as an in form ation system, by
identifying the entities and entity-relations and specify them as pure functional
data structures and pure functions. The generic power of the toolkit is used
subsequently to handle as much as possible automatically. Human intervention is
still required, but the power of generic programming is tha t it allows application
programmers to specialize the generic scheme where needed.

When constructing programs with the programming paradigm, it turns out
that the ‘classic’ version of the toolkit has a number of limitations:

— Model types are pure functional data structures. Although functional lan
guages can define and handle shared data structures, they cannot handle de
structively shared data because this destroys referential transparency. How
ever, in information systems destructive sharing is a natural phenomenon,
because data should not be stored redundantly. Hence, an iData Toolkit ap
plication programmer can not model destructive sharing directly, but instead
has to program this on top of the functional data structures and for each
and every edit operation. This is cumbersome, error-prone, and an example
of boilerplate code th a t should be automated once and for all.

— It is im portant in multi-user web applications with several persistent shared
states to manage versions of these states correctly. Again, the programmer
might be able to program this, but it should be dealt with once and for all.

— The final limitation concerns the consistency o f states. The iData Toolkit is
edit driven, i.e.: it reacts to (type safe) edit operations of the application user
who can alter a part of the state of one of the iData elements. In general, it
may well be the case tha t during a sequence of edit operations, the set of
states is inconsistent. In tha t case, the application should not commit this
configuration of states to disk, but rather work on a local version.

In this paper we show tha t the above concerns can be handled automatically
by the iData elements, on top of the ‘classic’ iData Toolkit. We believe tha t this
provides further evidence to the fact tha t iData elements form a powerful ab
straction mechanism to create highly interactive and dynamic web applications
with. We illustrate the use of the new techniques by studying the case of a
conference m anagem ent system. Conference management systems are software
systems th a t support conference managers, programme committee members, and
authors with a number of tasks, such as the electronic paper submission process,
paper distribution and reviewing process, deadline management, and the paper
discussion process. They serve as a good example of the domain of web applica
tions tha t suffer from the limitations tha t have been presented above. We show
th a t the resulting system widens the application domain of the toolkit while still
adhering to its programming paradigm.

This paper is structured as follows: we first briefly present the iData Toolkit
in Sect. 2. Next, in Sect. 3, we discuss the case study of a conference management
system. Implementation details are presented in Sect. 4. Finally, related work is
discussed in Sect. 5, and we conclude in Sect. 6.

2 T he iData T oolkit

In this section we present the ‘classic’ iData Toolkit, i.e. the toolkit without the
extensions tha t are discussed in the next sections. First, we give an informal
explanation of iData elements, which are the building blocks of the iData Toolkit
(Sect. 2.1). Second, we present the programming paradigm (Sect. 2.2).

2.1 iData e lem en ts

iData elements are the fundamental building blocks of the iData Toolkit. An iData
element is a typed unit tha t provides the application user with a GUI (an HTML
form) tha t allows him to edit values of tha t given type only. The GUI is derived
automatically from the type and value using the generic programming facilities
of Clean. In this paper, we use one toolkit function to create iData elements:

class iData d | gForm{|*|} , gUpd{|*|} , gPrint {|*|} , gParse{|*|} d

mkEditForm : : (inIDatald d) ^ HStIO d | iData d
: : HStIO d :== *HSt ^ (Form d ,*HSt)

The function mkEditForm uses four generic cornerstone functions tha t are collected
in the type class iData. The (inIDatald d) argument of mkEditForm describes the
type and value of the iData element tha t is to be created:

InIDataId d :== (I n i t ,FormId d)
In i t = Const | In i t | Set
FormId d = { id ::S tr in g , iv a l : :d , lifespan ::L ifespan , mode::Mode }
Lifespan = P ersisten tp | PersistentROr | Sessions | Page11 | Temp1
Mode = Edit | Displayd | NoFormx

Here it suffices to state tha t it is a pair of an In i t value th a t specifies the use
of the ival: :d value inside the (FormId d) record. The lifespan and mode fields
control the lifespan and rendering mode of the iData element. An iData element
can be stored persistently (Persistent (RO)) on the server side on disk, or locally
in the page (Session, Page, Temp). Although the default mode of an iData element
is Edit, it can also be used to display its state (Display), or even without any
rendering at all (NoForm). For each of these variants, a FormId constructor func
tion {p , r , s , n , t } [d, x] FormId :: String d ^ FormId d has been defined. *HSt is an
opaque environment th a t contains the internal administration th a t is required
to create HTML pages and form handling. It can be updated destructively, hence
the uniqueness type attribute *. (Please consult [13] for details.)

When evaluated, mkEditForm basically performs the following actions: it first
checks whether an earlier incarnation of the iData element (identified by the
id: : S tring1 label) exists. If this is not the case, or the In i t value is Set, then the
ival value of the FormId argument is used. If it already existed, then it contains
a possibly user-edited value. This value is used subsequently. Hence, the final
iData element is up-to-date. This is recorded in the (Form d) record:

: : Form d = { changed : : Bool, value :: d , form : : [BodyTag] }

The changed field records the fact if the application user has edited the value
of the iData element; the value is the up-to-date value, and form is the HTML
rendering of this iData element tha t can be used within an arbitrary HTML page.

As an example, the following code snippet creates an ¡Data element for Int
values that, initially, looks asi:

1 We are aware that the use of strings for form identification can be a source of (hard
to locate) errors, but we have yet to find a better system of equal expressiveness.

$ (in tF ,hst) = mkEditForm (I n i t ,nFormId "My f i r s t iData!" 42) hst

If included in a web page, the application user can only create integer values with
this iData element. A web application is any function tha t computes an HTML
page, using an *HSt environment. Hence, its type is (HStIO Html). The wrapper
function doHtmlServer transforms it into a real Clean interactive function:

doHtmlServer :: (HStIO Html) *World ^ *World

As an example, the following, complete code, creates a web application that
allows users to edit integer values (Fig. 1 (a)):

S ta rt world = doHtmlServer tiny world
where tiny : : (HStIO Html)

tiny hst
$ (in tF ,hst) = mkEditForm (I n i t ,nFormId "My f i r s t iData!" 42) hst
= mkHtml "Simple Example" intF.form hst

Fig. 1. (a) A single integer editor. (b) Display the sum of two integer input fields.

2.2 T h e iData Toolkit p ro g ra m m in g p a ra d ig m

The iData Toolkit programming paradigm advocates the use of pure data types
and pure functions to model the UoD (Universe of Discourse) of the application
that is to be constructed. From these types, the iData Toolkit derives the required
forms automatically tha t can be used in the HTML pages of the application. The
application programmer can specialize the derived GUI where needed, and in
the end interconnect all iData elements tha t are relevant to his application. This
amounts to the following four-step programming paradigm:

1. Model the UoD with pure data types and pure functions.
2. Derive iData from the data types generically.
3. Specialize iData where needed.
4. Define the logic of the application by interconnecting iData functionally.

Below, we illustrate the paradigm by constructing a small program th a t allows
the application user to enter two integer values, and display their sum (Fig.1(b)).
The same technique can be used to construct real-world applications such as a
CD shop and a work administration [12].

1. M o d ellin g th e U oD In this step the application programmer models the
entities and their relations by means of pure data types and pure functions over
these data domains. For the sake of the example, the second integer editor is
modeled distinctively as IntCounter, accompanied by two conversion functions:

:: IntCounter = IntCounter Int

instance to In t IntCounter where to In t (IntCounter i) = i
instance fromInt IntCounter where fromInt i = IntCounter i

2. D e riv in g iData In this step the application programmer unleashes the gen
erative power of the toolkit, and automatically derives instances for the four
cornerstone functions of the toolkit. In the example the model types are either
the basic In t type for which instances are already defined, or the integer counter
type, tha t is specialized below.

3. S pecia liz ing iData In general, the created GUI of an iData element displays
the structure of the type. For many types, this is sufficient. However, this is not
always the case, and the generically derived GUI needs to be overruled by the
application programmer. Overruling a generic recipe is known as specialization.
Specialization is a delicate task, and hence the iData Toolkit provides a function
th a t aids the application programmer with this:

specialize :: ((InIDataId a) ^ HStIO (Form a))
(InIDataId a) ^ HStIO (Form a) | gUpd{|*|} a

As an example, assume tha t there is a function

counterIData :: (InIDataId In t) ^ HStIO (Form Int)

that renders In t ¡Data elements as E__I.._LLJ (in [12] we show how such a
function is implemented). If we decide th a t from now on all In t iData elements
should be rendered in this way, then this is enforced by:

gForm{Int} iDataId hst = specialize counterIData iDataId hst

In the example, however, we want to model the integer counter with the model
type IntCounter. This amounts to calling counterIData, except that the In t values
need to be converted to IntCounter values and vice versa. This is done with:

gForm{IntCounter} iDataId hst
= specialize (coerceWith (to In t,fromInt) counterIData) iDataId hst

The coerceWith function is just a higher-order wrapper function tha t applies the
conversion functions just before and immediately after the core function.

coerceWith :: (a ^ b ,c ^ d) ((InIDataId b) ^ HStIO (Form c))
(InIDataId a) ^ HStIO (Form d)

coerceWith (f_ab,f_cd) f (i n i t ,formId=: {ival}) hst
$ ({changed,value,form} ,hst) = f (i n i t , {formId & ival=f_ab ival}) hst
= ({changed=changed,value=f_cd value,form=form} ,hst)

4. In te rc o n n e c tin g iData The final step is to interconnect iData elements. In
terconnecting means tha t we define a functional dependency relation between
the iData elements. The application programmer can exploit two im portant as
pects of iData elements. First, the behavior of iData elements (discussed in Sect.
2.1) implies th a t they can be shared, i.e.: referring to the same iData element
within the interconnection relation refers to the same iData element. In this
way cyclic dependency relationships can be defined. Second, every iData element
has a rendering tha t can be used subsequently arbitrarily many times, or even
not at all. Each rendering refers to the same iData element. In the example,
interconnecting the iData elements is straightforward:

S ta rt world = doHtmlServer add world 1

where add : : (HStIO Html) 2

add hst 3

$ (i1F ,hst) = mkEditForm (I n i t ,nFormId "i1" 0) h st 4

$ (i2F ,hst) = mkEditForm (I n i t ,nFormId "i2" (IntCounter 0)) h st 5

$ (i3F ,hst) = mkEditForm (S et, ndFormId "sum" 6

(to In t ilF .value + to In t i2F.value)) h st 7

= mkHtml "Sum" [STable [] [ilF .form ,i2F.form, i3F.form]] h st 8

The input elements are activated in lines 4-5. Their values are used by the sum
display in line 7. Their forms are displayed in a single column in line 8. The
resulting HTML page is displayed in Fig. 1 (b) .

3 A C onference M anagem ent S ystem

In this section we show how to design a conference management system with
the ‘classic’ iData Toolkit, its new tools, and the programming paradigm. The
new tools are: (i) modeling destructively shared data with reference types; (ii)
automatically guard the consistency of database and reference type values; (iii)
automatic version management. Fig. 2(a) shows the initial screen of the system.

3.1 M o d ellin g a co n feren ce m an ag e m en t sy s te m

Examples of the logical entities of a conference management system are members,
accounts, papers, and discussions. Appendix A.1 is a self-explanatory and self
contained subset of the collection of data types th a t have been defined. The
types PasswordBox, HtmlDate, and HtmlTime are ‘classic’ iData Toolkit data types
that have been specialized to model standard GUI elements. The types Account
and Login are generally useful types for login handling. Examples of the entity-
relations are determining the status of a member, determine the reviews of a
programme committee member, and setting conflicts of interest. Appendix A.2
gives a subset of the functional relations between these entities.

In the modeling step, the application programmer can use two of the above
mentioned features (i) and (ii) of the ‘non-classic’ iData Toolkit.

1 hfctp://íocalhost/cJean - M icrosoft In te rn e t Ex_ W S T

File Edit View Favorites Tools Help

Password I login forgotten ?

Type in your e-mail address:

Paper Submission Area:

Deadline is due on xx-yy-2006

Do you want to submit a paper?

: •• ' ■ ^ J n j x j

1 File Edit View Favorites Tools Help 1 t f 1

Conference AuthorsHom ePage
□

Manager o f peter

B B S
Welcome Author....

3 http / /lo ca lh o s t/c lean - W crosott Internet Explorer

Rie Ed* View Favorites Tools Help

ChangePsswrd

Conference Changelnfo of peter
Manager peter: all person fields need to

be filled in.

Change your personal information:

Hide-.

Fig. 2. (a) The initial system look. (b) The initial author page look. (c) An exception
in the author page look when editing personal information.

M o d ellin g d e s tru c tiv e ly sh a re d d a ta In Sect. 1, we have argued tha t de
structive sharing of entities is a natural phenomenon when modeling information
systems. In case of the conference management system, the programmer wants
to model the fact tha t members, papers, reports, and discussions are destruc
tively shared. As a result, whenever the application user alters a destructively
shared (sub)value in any iData element, then this (sub)value should be altered
everywhere where it appears in a destructively shared context. Clearly, destruc
tive sharing cannot be handled directly with pure data types in pure functional
languages. For this purpose reference types have been introduced.

A reference type (Ref2 d) is a phantom type tha t creates a reference to a
value of type d. Using the same reference value in a collection of data values
results in a destructively shared occurrence of tha t value. (Sect. 4.2 discusses the
implementation.) Briefly, a reference type ‘connects’ a type with an identifier:

:: Ref2 a = Ref2 String

Just as iData identifiers, this identifier is required to be unique. Hence, the
application programmer needs to set up an additional name space for refer
ence type identifiers. In the conference management system, this has been done
by the function setInvariantAccounts : : ConfAccounts ^ ConfAccounts tha t tra
verses the complete administration for reference type occurrences, and assigns
unique identifiers in such a way th a t the same entity obtains the desired destruc

tive sharing structure. For reasons of space, we omit its code. It implements the
following rules: persons are identified by their unique login name; refereed re
ports are identified by the identifier of the referee and their unique paper number;
discussions by the author identifier and unique paper number; papers by author
name and paper number.

G u a rd in g co n sis ten cy o f ¡Data In Sect. 1, we have argued tha t due to the
edit-driven evaluation mechanism of the ¡Data Toolkit, the consistency of the
¡Data states cannot be guaranteed. We have included a mechanism to judge the
consistency of destructively shared and persistent data. A Judgement is either Ok
(Nothing), or raises an issue (Just (id ,issue)) where id is the identifier of the
judging entity, and issue a text tha t describes the issue. The value of an entity
is committed to disk only if the corresponding judgement is Ok. Judgements can
be rather syntactic. For instance, for Person, Paper, and Login, the judgements
basically state tha t every field has to have a non-empty value:

invariantPerson :: String Person ^ Judgement
invariantPerson id {firstName,lastName,a f f i l i a t io n ,emailAddress}

| any ((==) "") [firstName,lastName,a f f i l i a t io n ,emailAddress]
= Just (id ," a ll person f ie ld s need to be f i l le d in .")

| otherwise = Ok

A more challenging example of a judgement is given below.

invariantConfAccounts :: String ConfAccounts ^ Judgement 1

invariantConfAccounts id accs 2

I any ((>) 0) papers = Just (id , "paper number must be positive") 3

I not (noDups papers) = Just (id , "paper number in use") 4

I not uniqConflicts = Just (id , "conflict already assigned to referee") 5

I not uniqAssigns = Just (id , "paper already assigned to referee") 6

I conflic ting = Just (id , "assigned paper in conflic t") 7

I not (allMembers reports papers) 8

= Just (id , "non-existing assigned paper") 9

I not (allMembers con flic ts papers) 10

= Just (id , "non-existing assigned co n flic t") 11

I otherwise = Ok 12

where 13

papers = [nr \ \ (n r ,_) ^ getRefPapers accs] 14

conflic ts = f la tte n [nrs \ \ (_,nrs) ^ getConflicts accs] 15

reports = f la tte n [nrs \ \ (_,nrs) ^ getAssignments accs] 16

uniqConflicts = and [noDups nrs \ \ (_,nrs) ^ getConflicts accs] 17

uniqAssigns = and [noDups nrs \ \ (_,nrs) ^ getAssignments accs] 18

conflicting = or [isAnyMember cNrs aNrs 19

\ \ (_ ,cNrs,aNrs) ^ getConflictsAssign accs] 2 0

This is a judgement over the complete content of the conference management
system’s database. Paper numbers should be positive (line 3) and uniquely iden
tify a paper (line 4). The list of conflicts and assigned papers should contain no
duplicates (lines 5-6). Referees should not review papers for which they have a

conflicting interest (line 7). Finally, the set of reports and conflicts should be a
subset of the set of papers (line 8 and 10).

Judgements are connected with reference type values and database values by
the following two new functions th a t have been built on top of the ¡Data Toolkit:

universalRefEditor
:: (inlDatald (Ref2 a)) (a ^ Judgement) ^ HStIO (Form a)

I iData a
universalDB :: (I n i t ,a ,String) (String a ^ Judgement) ^ HStIO a I iData a

Their implementation is discussed in Sect. 4. Applications of universalRefEditor
are all alike, and proceed as in the case of persons:

editorRefPerson :: (InlDatald RefPerson) ^ HStIO (Form Person)
editorRefPerson (i n i t ,formid=: {ival=RefPerson refp=: (Ref2 name)})

= universalRefEditor (init,{form id & ival=refp}) (invariantPerson name)

As an example of universalDB, we create the main conference database:

AccountsDB :: In i t ConfAccounts ^ HStIO ConfAccounts
AccountsDB in i t accounts

= universalDB (i n i t ,setInvariantAccounts accounts,uniqueDBname)
invariantConfAccounts

3.2 D e riv in g ¡Data

We can be very brief about this step, as this simply involves enumerating all
instances to derive of almost all types for the generic cornerstone functions gForm,
gUpd, gPrint, and gParse. The exceptions are th a t gForm needs to be specialized for
the four reference types, the four custom types Reports, Conflicts, Co_authors,
and Discussion, and the standard list type (display only the elements, not the
list data constructors). In total, derivation concerns 27 data types, hence there
are 99 derived instances and 9 specialized gForm instances.

3.3 S pecia liz ing ¡Data

Reference types are specialized in boilerplate style, as illustrated with RefPerson
(editorRefPerson is given above; invokeRefEditor is discussed in Sect. 4):

gForm {RefPerson}- iDataId hst
= specialize (invokeRefEditor editorRefPerson) iDataId hst

The four model types tha t need to be specialized are Reports, Conflicts,
Co_authors, and Discussion. The first three are all basically list structures, but
the application designer wants to display them in a column. They all proceed as
given here for the case of Co_authors:

gForm {Co_authors|} inIDataId hst
= specialize (coerceWith (to L is t,fromList) vertlistFormButs) inIDataId hst

where toL ist (Co_authors authors) = authors
fromList authors = Co_authors authors

Discussions are displayed in a table:

gForm{Discussion} inIDataId hst = specialize discussion inIDataId hst
where

discussion (i n i t ,formid=: {ival=Discussion d}) hst
= ({changed=False,form=flatten (map htmlOf d) , value=formid.ival} ,hst)

where
htmlOf {messageFrom,d a te ,tim e,message}

= [mkTable [[Txt "date: ", toHtml d a te , Txt "time: " , toHtml time]
, [Txt "from: " , B [] messageFrom]]

, Txt "message:" , Txt message, Hr []]

3.4 In te rc o n n e c tin g ¡Data

The conference management system basically proceeds along the following steps:
it reads in the current accounts database, and then attem pts to establish the
identity of the application user. If this is a known user, then the application
needs to present the current application page tha t the application user was
visiting. This is determined by means of a conference portal, th a t determines
and produces the correct page. If the user is unknown, then he is a guest, and
should attem pt to login to the system.

As shown in Sect. 2, the main entry of every ¡Data Toolkrt application is a
function of type (HStIO Html):

S ta rt world = doHtmlServer mainEntrance world 1 .

mainEntrance : : (HStIO Html) 2 .

mainEntrance hst 3 .

$ (body,hst) = loginhandling hst 4 .

= mkHtml "Conference Manager" body hst 5 .

loginhandling : : (HStIO [BodyTag]) 6 .

loginhandling hst 7 .

$ (accounts,hst) = AccountsDB In it 8 .

[initManagerAccount initManagerLogin] h st 9 .

= case loginHandlingPage accounts hst of 1 0 .

(Left account,hst) = doConfPortal account accounts h st 1 1 .

(Right body, hst) = (body,hst) 1 2 .

The loginhandling function checks the current user account. In order to do so,
first the main accounts database needs to be accessed (lines 8-9). This is done
with the function AccountsDB th a t was presented in Sect. 3.1. Initially, the ac
counts database contains a single entry for the conference manager. Later on, it
contains all current member accounts. Hence, at this stage the application has the
complete current accounts information. Second, the application needs to know
the current user and his status (conference manager, program committee mem
ber, author, or guest) in order to generate the correct HTML page. The function
loginHandlingPage :: ConfAccounts ^ HStIO (Either ConfAccount [BodyTag]) ei
ther yields the valid account of the current user or the HTML code body of the

login page th a t is displayed in Fig. 2(a). For conciseness, we omit its code. In case
of an unknown user, body is displayed (line 12); otherwise the application uses
account to switch to the proper page (line 11) using the function doConfPortal:

doConfPortal : : ConfAccount ConfAccounts ^ HStIO [BodyTag] 1

doConfPortal account accounts hst 2

$ (navButtons,hst) = navigationButtons account.state hst 3

$ (currPage, hst) = currPageStore (homePage account.state) 4

navButtons.value hst 5

$ (navBody, hst) = handleCurrPage currPage.value account accounts hst 6

$ (exception, hst) = eStore id hst 7

= ([mkSTable2 [[EmptyBody, B [] "Conference" < . | | .> B [] "Manager " 8

,oops exception currPage.value] 9

,[mkColForm navButtons.form,EmptyBody,BodyTag navBody] 10

] 11

] , h st) 12

This function creates a page tha t consists of four areas (lines 8-12): 1. a set
of navigation buttons (navButtons.form) tha t depend dynamically on the user
status; 2. the static “Conference Manager” title; 3. the user status and page in
case of no issues, and the issue otherwise (line 9); 4. the actual page content
that the user is visiting (navBody). Fig. 2(b) shows the initial look in case of an
author; Fig. 2(c) shows a failing judgement (empty entry in the person data).
The navigation buttons are created by navigationButtons simply by enumerating
the buttons, that, when pressed, yield the corresponding page tha t should be
displayed. If no button is pressed, then its function result is the identity function.
Here we only show the code for the author case:

navigationButtons :: Member ^ HStIO (Form (CurrPage ^ CurrPage))
navigationButtons member

= ListFuncBut (I n i t , sFormId "navigation" (navButtons member))
where navButtons :: Member ^ [(Button, a ^ CurrPage)]

navButtons (Authors _)
= [(LButton defpixel "Home" , const AuthorsHomePage)

, (LButton defpixel "SubmitPaper" , const SubmitPaper)
, (LButton defpixel "ChangeInfo" , const ChangeInfo)
, (LButton defpixel "ChangePsswrd",const ChangePassword)]

navButtons . . .

CurrPage enumerates the possible pages th a t can be visited:

:: CurrPage = RootHomePage | AssignPapers | ModifyStates / / root pages
| AuthorsHomePage | SubmitPaper / / authors
| ChangePassword | ChangeInfo / / common
| ListPapers | ListReports | DiscussPapers / / referees + root

| ShowPapersStatus | RefereeForm
| RefereeHomePage / / referees
| GuestHomePage / / guests

The current page is stored in an ¡Data element. The function currPageStore uses
the ¡Data Toolkit library function mkStoreForm for this purpose, which extends

the library function mkEditForm with a function argument tha t is applied to the
current value. Hence, when combined with the function result of the navigation
buttons, this is the page tha t should be displayed.

currPageStore : : CurrPage ^ (CurrPage ^ CurrPage) ^ HStIO (Form CurrPage)
currPageStore currpage = mkStoreForm (I n i t , sFormId "cf_currPage" currpage)

The functions homePage and handleCurrPage enumerate the default starting pages
and page content creation functions:

homePage : : Member ^ CurrPage
homePage (ConfManager _) = RootHomePage
homePage (Referee _) = RefereeHomePage
homePage (Authors _) = AuthorsHomePage
homePage (Guest _) = GuestHomePage

handleCurrPage : : CurrPage ^ ConfAccount ^ ConfAccounts ^ HStIO [BodyTag]
handleCurrPage RootHomePage = rootHomePage

handleCurrPage ChangeInfo = changeInfo

These functions define the final content of the HTML pages. As an example, here
is the function tha t computes the page tha t is displayed in Fig. 2(c) in which
members can modify their personal information:

changeInfo :: ConfAccount ConfAccounts ^ HStIO [BodyTag]
changeInfo {state} _ hst

$ ({form} ,hst) = mkEditForm (I n i t ,nFormId "sh_changeInfo"
(fromJust (getRefPerson s ta te))) hst

= ([Br, Txt "Change your personal information:" , Br, Br] ++ form,hst)

As this example demonstrates, some of these page generating functions are very
short, and basically use one ¡Data element; others can be rather extensive. The
14 page generating functions consume 232 lines of code, three of which consume
the largest part: guestHomePage (55 loc), assignPapersConflictsPage (52 loc), and
discussPapersPage (44 loc). Hence, this amounts to an average of 6-7 loc for the
remaining 11 functions.

3.5 S u m m a ry

In the above sections we have given an impression of working with the ¡Data
Toolkit and its programming paradigm. We would like to emphasize the fact
tha t the data types and functions tha t are created in the modeling step of the
programming paradigm belong to the programming repertoire of any novice
functional programmer. We also note tha t the relatively largest programming
effort is in the interconnection step of the paradigm. The application logic is
guided using local stores of application state to determine the proper status
of the application. The current version of the conference management system
consumes 945 loc.

4 Im plem entation

In this section we present the implementation of the new ¡Data Toolkit tools. In
Sect. 3 we enumerated them as (i) reference types; (ii) guarding consistency;
(iii) version management. We first explain how to implement (ii) and (iii) for
database values in Sect. 4.1. Due to their complexity, reference types earn a
separate discussion in Sect. 4.2.

4.1 U n iv e rsa l d a ta b a se

In Sect. 2, we have seen tha t an ¡Data can store its value persistently by using
the P ersis ten t(ro) Lifespan value. This implies tha t we can readily use ¡Data
elements as primitive databases:

universalDBi :: (I n i t , a , String) ^ HStIO a | iData a 1 .

universalDBi (i n i t , v , f i le) hst 2 .

$ (dbf,hst) = mkEditForm (i n i t ,pxFormId f i l e v) h st 3 .

= (dbf.value , hst) 4 .

It is rather easy to add version handling to this scheme:

universalDB2 :: (I n i t , a , String) ^ HStIO a | iData a 1 .

universalDB2 (i n i t , v , f i le) hst 2 .

$ (dbf,hst) = mkEditForm (I n i t ,rxFormId f i l e (0,v)) hst 3 .

$ (dbversion,dbvalue)= dbf.value 4 .

$ (versionf,hst) = versionNr In i t dbversion hst 5 .

| in i t == In it | | dbversion = versionf.value 6 .

= (dbvalue,snd (versionNr Set dbversion hst)) 7 .

$ (versionf,hst) = versionNr Set (dbversion+1) hst 8 .

= (v ,snd (mkEditForm (S et, pxFormId f i l e (versionf.value,v)) h st)) 9 .

where 1 0 .

versionNr in i t c = mkEditForm (i n i t ,txFormId ("vrs_db_"+++file) c) 1 1 .

Instead of storing a single value, we store a pair of the version number and the
value (line 3). In addition, we maintain a version counter per database tha t keeps
track of the correct version. The version counter is accessible by all applications
that refer to this database. This storage is defined in line 11, and read in line
5. If we are only reading the database, or in case of a conflicting version (line
6), we always adhere to the database version and store its version number (line
7). In any other case, we increase the version number, and store it in both the
global version counter (line 8) and the database (line 9).

The final addition is consistency handling:

universalDB3 :: (I n i t ,a ,String) (String a ^ Judgement) ^ HStIO a 1

| iData a 2 .

universalDB3 (i n i t ,v ,f i le) invariant hst 3

$ (dbf,hst) = mkEditForm (I n i t ,rxFormId f i l e (0,v)) h st 4

$ (dbversion,dbvalue) 5 .

= dbf.value 6

$ (versionf,hst) = versionNr In i t dbversion hst 7

| in i t == In it 8 .

= (dbvalue , snd (versionNr Set dbversion hst)) 9 .

| dbversion = versionf.value 1 0 .

$ (_,hst) = versionNr Set dbversion hst 1 1 .

$ (_, hst) = eStore ((+) (Just (f i le , "Screen out of date."))) h st 1 2 .

= (dbvalue ,hst) 1 3 .

$ exception = invariant f i l e v 1 4 .

| isJu st exception 1 5 .

= (v ,snd (eStore ((+) exception) h st)) 1 6 .

$ (versionf,hst) = versionNr Set (dbversion+1) hst 1 7 .

= (v ,snd (mkEditForm (S et, pxFormId f i l e (versionf.value,v)) h st)) 1 8 .

where 1 9 .

versionNr in i t c = mkEditForm (i n i t ,txFormId ("vrs_db_"+++file) c) 2 0 .

The second argument in line 1 and 3 of universalDB is the consistency check of
the database data. It is checked in line 14 just before updating the database. If
it raises an exception (line 15), then the new value is not stored in the database,
but instead the exception is passed on to a global exception store (line 16). This
exception store is again a simple storage ¡Data element:

eStore :: (Judgement ^ Judgement) ^ HStIO Judgement
eStore f hst

$ ({value},hst) = mkStoreForm (I n i t ,{txFormId "handle_exception" Ok}) f hst
= (value, h s t)

Exceptions are also stored here in case of conflicting version numbers (line 10
13). Any exception thus raised is reported to the application user as explained
in Sect. 3.4 (doConfPortal).

4 .2 R efe ren ce ty p e s

Reference types are used by application programmers to model destructively
shared data. Recall tha t a reference type is defined as :: Ref2 a = Ref2 String.
Suppose we want to destructively share values of some type A . In Sections 3.1
and 3.4 we have shown what needs to be programmed. Recapitulating:

: : Ref A = Ref A (Ref2 A) 1 .

gForm{Ref A|} id h st = specialize (invokeRefEditor editorRefA) id h st 2 .

editorRefA :: (inIDatald Ref A) ^ HStIO (Form A) 3 .

editorRefA (i n i t , formid=: {ival=(Ref A ref=: (Ref2 name)) }) 4 .

= universalRefEditor (init,{form id & ival=ref}) (invariantA name) 5 .

The new type Ref A serves as a reference to A values (line 1). For each Ref A value
within a model data type, the user wants an ¡Data element of A values. Clearly,
this requires specialization (line 2). The new library function universalRefEditor
handles this ‘dereferencing’. It is provided with the appropriate consistency
checking function invariantA (line 3-5).

The function invokeRefEditor evaluates its higher-order argument, and sub
stitutes the given value parameter in the resulting ¡Data:

invokeRefEditor :: ((inlD atald b) ^ HStIO (Form d))
(inlDatald b) ^ HStIO (Form b)

invokeRefEditor f (in it,{ iv a l}) = coerceWith (id ,const ival) f

The function universalRefEditor puts everything together.

universalRefEditor :: (InlDatald (Ref2 a)) ^ HStIO (Form a) | iData a 1

universalRefEditor (i n i t ,ref2Id=: {ival=Ref2 filename}) hst 2

$ ({value},hst) = mkEditForm (I n i t ,databaseId createDefault) hst 3

$ (valueF, hst) = mkEditForm (I n i t ,copyId value) hst 4

$ (_, hst) = mkEditForm (S et, databaseId valueF.value) hst 5

= ({valueF & changed = True} ,hst) 6

where 7

databaseId v = {pxFormId "" v & id = filename} 8

copyId v = {ref2Id & ival = v , id = "copy_r_"+++filename} 9

The clue of the implementation is tha t a persistent iData element databaseId
is created tha t is identified by the reference label filename (line 8). For this
iData a default value is generated using the function createDefault (line 3). The
application user never edits this iData, but instead is offered an iData on a copy
iData, tha t is identified by copyId (line 9). The altered value is written back to the
database (line 5), and the altered user iData is returned by universalRefEditor
(line 6).

We can extend universalRefEditor with version and consistency handling as
described in Sect. 4.1. For reasons of space, we omit these steps.

4 .3 S u m m a ry

We have shown how the new tools can be implemented on top of the ‘classic’
iData Toolkit. We use existing toolkit capabilities: elementary storages tha t can
be destructively shared, specialization, and the flexibility of name space man
agement. It allows us to manipulate persistent storage in a way tha t cannot be
done directly in a functional language without special structures such as heaps
or mutable variables. The toolkit itself has not been changed, but applications
can now use the new tools for their purposes.

5 R elated W ork

In the realm of functional programming, many solutions have been proposed
to program web applications. We mention just a few of them in a number of
languages: the HaskellCGI library by Meijer [10]; the Curry approach by Hanus
[6] (the CurryW eb application [7] shares a number of application concerns as
the conference management system described in this paper); writing XML appli
cations [5] by Elsman and Larsen in SM Lserver [4]. One sophisticated system
is Thiem ann’s WASH/CGI [14], based on Haskell. Here, HTML is produced as
an effect of the CGI monad whereas we consider HTML as first-class citizens,
using data types. Instead of storing state, WASH/CGI logs all user responses

and I/O operations. These are replayed when needed to bring the application
to its desired, most recent state. Forms are programmed explicitly in HTML,
and their elements may, or may not, contain values. In the iData Toolkit, forms
are generated from arbitrary data types, and always have value. Interconnecting
forms in WASH/CGI is done by adding callback actions to submit fields, whereas
the iData Toolkit uses a functional dependency relation. The above systems have
proven to be highly inspiring. Our contribution is the identification of a single
versatile unit, the iData element, tha t provides an integrated handling of all
of their concerns while maintaining a high level of abstraction. In addition, we
have shown tha t the programming paradigm advocates “classic” style functional
programming.

The popular framework Rails [15] is based on the object oriented program
ming language Ruby [8]. W ith Rails, database front-end applications can be
quickly developed. The application programmer is provided with scripts to con
figure directories and initial class files. The database tabling structure is used
as a data structure specification language. A Rails application is a set of classes
structured as a classic model-controller-view [9] application. Browser-server com
munication is based on urls tha t adhere to the configured directory structure,
and the Ruby controller classes tha t are supposed to reside there. Server-database
communication is realized by the model classes. These reflect on the database ta
ble structure, and generate the appropriate methods for the class scripts. Views
are created via HTML templates tha t contain Ruby code to manipulate its con
tent. This is similar to WASH/CGI in which HTML code is defined as an effect of
the CGI monad. Rails shares with the iData Toolkit the goal of generating as much
as possible from data structures. In Rails these are limited to table structures of
basic types. The iData Toolkit can handle arbitrary, recursive, higher-order data
structures. Rails applications are extremely vulnerable to configuration changes,
in contrast with iData Toolkit applications. These are single executables that
maintain their own state. (One can even remove all persistent files on-the-fly.
Any iData Toolkit application recreates them in their initial state.)

6 C onclusions

In this paper we have presented the programming paradigm of the iData Toolkit.
This four-step paradigm advocates the use of traditional, well-known, functional
programming techniques to model information systems, and uses the generative
power of the toolkit to automatically create interactive applications from these
models. When modeling information systems, programmers need tools to model
destructively shared data structures, deal with versions in a transparent way,
and guard the consistency of the data. We have shown how these tools can be
added on top of the ‘classic’ iData Toolkit, thus demonstrating its expressive
power. As a representative example, we have developed a prototype conference
management system, using the programming paradigm. The system is a single,
compact (1kloc), application.

R eferences
1. P. Achten, M. van Eekelen, R. Plasmeijer, and A. van Weelden. GEC: a toolkit for

Generic Rapid Prototyping of Type Safe Interactive Applications. In 5th Interna
tional Summer School on Advanced Functional Programming (AFP 2004), volume
3622 of LNCS, pages 210-244. Springer, August 14-21 2004.

2. A. Alimarine. Generic Functional Programming - Conceptual Design, Implemen
tation and Applications. PhD thesis, University of Nijmegen, The Netherlands,
2005. ISBN 3-540-67658-9.

3. A. Alimarine and R. Plasmeijer. A Generic Programming Extension for Clean.
In T. Arts and M. Mohnen, editors, The 13th International workshop on the Im
plementation of Functional Languages, IF L ’01, Selected Papers, volume 2312 of
LNCS, pages 168-186. Alvsjo, Sweden, Springer, Sept. 2002.

4. M. Elsman and N. Hallenberg. Web programming with SMLserver. In Fifth In
ternational Symposium on Practical Aspects of Declarative Languages (PADL ’03).
Springer-Verlag, January 2003.

5. M. Elsman and K. F. Larsen. Typing XHTML Web applications in ML. In In
ternational Symposium on Practical Aspects of Declarative Languages (PADL ’04),
volume 3057 of LNCS, pages 224-238. Springer-Verlag, June 2004.

6. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third In
ternational Symposium on Practical Aspects of Declarative Languages (PADL ’01),
pages 76-92. Springer LNCS 1990, 2001.

7. M. Hanus and F. Huch. An Open System to Support Web-based Learning. In
Proc. of the 12th International Workshop on Functional and (Constraint) Logic
Programming (WFLP 2003), Valencia (Spain), 2003.

8. A. Hunt and D. Thomas. Programming Ruby: The Pragmatic Programmer’s Guide.
Addison Wesley Professional, 1st edition, Oct. 2000.

9. G. Krasner and S. Pope. A cookbook for using the Model-View-Controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming,
1(3):26-49, August 1988.

10. E. Meijer. Server Side Web Scripting in Haskell. Journal of Functional Program
ming, 10(1):1-18, 2000.

11. R. Plasmeijer and P. Achten. Generic Editors for the World Wide Web. In Central-
European Functional Programming School, Eotvos Lorand University, Budapest,
Hungary, Jul 4-16 2005.

12. R. Plasmeijer and P. Achten. iData For The World Wide Web - Programming
Interconnected Web Forms. In Proceedings Eighth International Symposium on
Functional and Logic Programming (FLOPS 2006), volume 3945 of LNCS, Fuji
Susono, Japan, Apr 24-26 2006. Springer Verlag.

13. R. Plasmeijer and P. Achten. The Implementation of iData - A Case Study in
Generic Programming. In A. Butterfield, editor, Proceedings Implementation and,
Application of Functional Languages - Revised Selected Papers, 17th International
Workshop, IFL05, LNCS 4015, Department of Computer Science, Trinity College,
University of Dublin, September 19-21 2006.

14. P. Thiemann. WASH/CGI: Server-side Web Scripting with Sessions and Typed,
Compositional Forms. In S. Krishnamurthi and C. Ramakrishnan, editors, Prac
tical Aspects of Declarative Languages: 4th International Symposium, PADL 2002,
volume 2257 of LNCS, pages 192-208, Portland, OR, USA, January 19-20 2002.
Springer-Verlag.

15. D. Thomas and D. Heinemeier Hansson. Agile Web Development with Rails. The
Pragmatic Programmers, 1st edition, Aug. 2005.

A A p p en d ix

A.1 A sam p le o f th e U oD m o d e l ty p e s spec ified as p u re d a ta ty p e s

ConfAccounts
ConfAccount
Account s
Login
Member

ManagerInfo
PaperInfo

PaperNr :
PaperStatus

DiscussionStatus

Refereelnfo

Reports
Conflicts
Person

Discussion
Message

Paper

Co_authors
Report

Recommendation

Fam iliarity
RefPerson
RefPaper
RefReport
RefDiscussion

: : Login, s ta te : :
:: S tr in g , password ::
ManagerInfo | Authors
RefereeInfo | Guest

RefPerson
RefPerson, nr

s }
PasswordBox }
PaperInfo
Person

}
: : PaperNr

RefDiscussion,
PaperStatus

paper :: RefPaper

= [ConfAccount]
= Account Member
= { login
= { loginName
= ConfManager
| Referee

= { person
= { person

, discussion
, s ta tus

= Int
= Accepted | CondAccepted | Rejected | Submitted
| UnderDiscussion DiscussionStatus

= ProposeAccept | ProposeCondAccept | ProposeReject
| DoDiscuss

:: RefPerson, reports
:: Conflicts
[(PaperNr, RefReport)]
[PaperNr]
: : String
: : String

}

= { person
, conflic ts

= Reports
= Conflicts
= { firstName

, a f f i l ia t io n

Reports

lastName
emailAddress

String
String }

Discussion [Message]
date : : HtmlDate
time : : HtmlTime }
first_au thor : : Person
co_authors : : Co_authors

}

= { messageFrom :: S tr in g ,
, message :: S tr in g ,

= { t i t l e :: S tr in g ,
, abstract :: S tr in g ,
, pdf :: String

= Co_authors [Person]
= { recommendation:: Recommendation

, fam ilia rity :: Fam iliarity
= StrongAccept | Accept | WeakAccept | Discuss
| StrongReject | Reject | WeakReject

= Expert | Knowledgeable | Low
= RefPerson (Ref2 Person)
= RefPaper (Ref2 Paper)
= RefReport (Ref2 (Maybe Report))
= RefDiscussion (Ref2 Discussion)

A .2 A sam p le o f th e e n ti ty -re la tio n s spec ified as fu n c tio n s

getRefPapers
getConflicts
getAssignments
getConflictsAssign

ConfAccounts
ConfAccounts
ConfAccounts
ConfAccounts

[(PaperNr,RefPaper)]
[(RefPerson,[PaperNr])]
[(RefPerson,[PaperNr])]
[(RefPerson , [PaperNr] , [PaperNr])]

}

}

