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A b s tr a c t . We presen t an  approach  for inferring  tran sc rip tio n a l regu­
la to ry  m odules from  genom e sequence and  gene expression d a ta . O ur 
m ethod , w hich is based on sym m etric  causal independence m odels, is 
b o th  able to  m odel th e  logic beh ind  tran sc rip tio n a l regu la tion  and  to  
inco rpo ra te  u n ce rta in ty  ab o u t th e  functionality  o f p u ta tiv e  tran sc rip ­
tion  fac to r b ind ing  sites. A pplying our approach  to  th e  dead liest species 
of hum an  m alaria  paras ite , P lasm od ium  falciparum , we o b ta in  several 
strik ing  resu lts  th a t  deserve fu rth e r (biological) investigation .

K e y  w ord s: T ranscrip tiona l regu la to ry  netw orks, sym m etric  causal in ­
dependence m odels, P lasm od ium  falciparum

1 In trodu ction

One of the major challenges facing biologists is to understand the transcriptional 
regulation of genes, which is critical for the development, complexity and home­
ostasis of all living organisms. The introduction of DNA microarray technology 
[26], which enables researchers to simultaneously measure the concentration of 
RNA transcripts from a single sample of cells or tissues, has offered the possibil­
ity to infer large-scale transcriptional regulatory networks for various organisms. 
The algorithms developed for this purpose can be grouped into two general 
strategies: an influence strategy, which seeks to identify regulatory influences 
between RNA transcripts, and a physical strategy, which seeks to identify the 
proteins th a t regulate transcription and the DNA motifs to  which the proteins 
bind [11]. In this paper, we propose a method following the latter strategy, which 
has the advantage of being able to combine genome sequence data and RNA ex­
pression data to enhance the specificity and sensitivity of predicted interactions.

The physical strategy methods tha t make use of both RNA expression data 
and genome sequence data rely on the assumption th a t genes with similar ex­
pression profiles share common regulatory mechanisms. Based on the way in 
which the two sources of data are related, we can distinguish three groups of 
these methods. The first group includes the methods th a t first cluster genes on
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the basis of their expression patterns and then search for putative motifs in the 
upstream regions of the genes in each cluster. The early methods following this 
approach searched for individual transcription factor binding site patterns in 
upstream regions of the coexpressed genes (see e.g. [5,8,28]), while the more 
recent algorithms search for DNA target sites for cooperatively binding tran ­
scription factors [12,18]. The methods in the second group work in the opposite 
direction, first identifying a set of candidate motifs and then trying to explain 
RNA expression using these motifs [7,15, 22]. Finally, the algorithms in the last 
group use both sources of data together. These methods use one or more itera­
tions of the following procedure: first, genes are clustered or grouped according 
to their expression data, then the search for motifs in the upstream  regions of 
the coexpressed genes is performed, and, finally, the motifs identified are used 
to build models tha t predict the expression pattern  of the gene (see e.g. [2, 27]).

A key feature of transcriptional regulation of gene expression in eukaryotes 
is tha t genes are often regulated by more than one transcription factor [30]. A 
number of approaches have been proposed to address the combinatorial nature 
of transcriptional regulation. One approach is based on the assumption tha t the 
influence of different transcription factors on gene expression is additive. The 
studies based on this approach use a simple linear regression to relate transcrip­
tion factor binding sites to gene expression values [7,17]. A probabilistic model 
by Segal et al. [27] assumes tha t genes are partitioned into modules, which de­
termine the gene expression profile. The strength of the association of a gene 
with a module is the sum of its weighted motifs, where each weight specifies 
the extent to which the motif plays a regulatory role in the module. These ap­
proaches, however, cannot identify synergistic motif combinations tha t control 
gene expression patterns. Algorithms have been developed to model the synergy 
between two transcription factors tha t bind to sites located anywhere in the 
upstream region [22] or sites tha t are spatially close to each other [7,12]. Beer 
and Tavazoie [2] present an approach which utilizes AND, OR and NOT logic to 
capture combinatorial effects of transcription factors in the regulation of gene ex­
pression. This method is not only able to  infer combinatorial rules tha t involve 
more than two transcription factors, but it also includes constraints on motif 
strength, orientation and relative position. A similar method has been reported 
by Hvidsten et al. [15]. To link transcription factor binding site combinations to 
genes with particular expression profiles, the method extracts IF-THEN rules 
which correspond to AND logic.

Although the methods tha t model combinatorial effects of the motifs have 
appealing properties, their drawback is their inability to cope with uncertainty 
in the transcription factor binding sites tha t are identified. The robustness of the 
method in the face of uncertainty is im portant, as non-functional transcription 
factor binding sites can be readily found throughout the genome, including pro­
moters [31]. We present an approach which is both able to model the logic behind 
transcriptional regulation and to incorporate uncertainty about the functionality 
of putative transcription factor binding sites. Our probabilistic method, which 
is based on symmetric causal independence models, extends the earlier methods



that infer combinatorial rules in two im portant directions. First, we use a broad 
class of Boolean functions, symmetric Boolean functions, to capture combinato­
rial effects of transcription factors in the regulation of gene expression. Second, 
the motifs contribute to  the regulation of a gene through hidden variables; thus, 
the method is able to cope with non-functional transcription factor binding sites.

In this paper, we apply our method to Plasmodium falciparum, which is 
the deadliest species of the parasite tha t causes malaria in humans. Human 
malaria infects between 300 and 500 million people and causes up to 2.7 million 
deaths annually, mostly among young children in Sub-Saharan Africa [6]. In 
many endemic countries, malaria is also responsible for economic stagnation [23]. 
A good understanding of transcriptional regulation in this organism is im portant 
for devising new ways to  disrupt the parasite’s life cycle.

2 M eth od o logy

In this section, we present our approach based on symmetric causal independence 
models for inferring transcriptional regulatory modules from genome sequence 
and gene expression data. The underlying assumption in this approach is that 
genes in the different clusters share common regulatory mechanisms. When try ­
ing to separate the genes in one cluster from all others, we aim to find motifs 
and their interactions tha t are specific to specific regulatory mechanisms. We 
start our method (Figure 1) with a ‘data pre-processing’ step, where we use a 
motif-finding algorithm to identify putative transcription factor binding motifs 
and we cluster genes according to their expression profiles. Then, for each cluster 
of genes tha t exhibited significant changes, we learn a symmetric causal inde­
pendence model, which, given the binding sites of a gene, classifies the gene as 
belonging to the cluster or not. Finally, we analyze the results of experiments 
and identify potential transcription factors binding to the motifs th a t play a 
regulatory role in gene expression. All these steps are described in detail further 
in this section.

F ig . 1. O verview  of th e  proposed approach.



2.1 F inding transcription  factor b inding m otifs

We extracted the DNA sequence 1000 bp upstream from the initiation codon 
of each of 5404 Plasmodium falciparum genes using PlasmoDB release 5.2. In 
instances where the upstream regulatory region overlapped with another open 
reading frame, we extracted only the sequence between the open reading frames. 
To find over-represented motifs, the extracted sequences were analyzed using 
the AlignACE program [13]. We set the GC background param eter to 0.13 (the 
fractional GC background for these regions), the number of columns to align to 
10 and the number of expected sites to 5.

2.2 C lustering o f th e  R N A  expression  data

We used a Plasmodium falciparum 3D7 strain RNA expression data set [4]. We 
downloaded data th a t were normalized and median-centered and we only used 
data for those oligonucleotides th a t have a corresponding open reading frame 
assigned from PlasmoDB. We discarded the genes for which more than 20% of 
measurements were missing. A number of open reading frames had more than one 
oligonucleotide measured; we averaged the measurements of these open reading 
frames. After the data had been log2 transformed, we imputed missing values 
using the weighted K-nearest neighbours method. We chose to use this data 
im putation method as it has been shown to provide a more robust and sensitive 
missing value estimation in microarray data than a singular value decomposition 
based method or the commonly used row average method [29]. The weighted K- 
nearest neighbours method uses a weighted average of values from the K  genes 
closest to the gene of interest as an estimate for the missing value. Based on the 
results reported in [29], we chose the value of K  to be 15 and Euclidean distance 
as a metrics for gene similarity.

We used the K-means algorithm [19] with random initializations to cluster 
the genes according to their RNA expression data. Since the K-means algorithm 
is known to sometimes get stuck in a local optimum, we ran the algorithm 10 
times for each number of clusters. To select the optimal number of clusters we 
used the so-called C-index [14], which has been shown to outperform 13 other 
indices for determining the number of clusters in binary data sets when the data 
are clustered using the K-means algorithm [10].

2.3 Learning sym m etric causal independence m odels

The global structure of a symmetric causal independence model is shown in Fig­
ure 2; it expresses the idea th a t causes C i , . . .  ,C n influence a given common effect 
E  through hidden variables H i , . . . ,  H n and a symmetric Boolean function f . All 
variables in this model are binary; the hidden variable Hi is considered to be 
a contribution of the cause variable Ci to the common effect E. The function 
f  represents in which way the hidden effects H i , and indirectly also the causes 
Ci , interact to yield the final effect E. To learn more about symmetric causal 
independence models and learning them, see [16].



F ig . 2 . Sym m etric causal independence m odel

In this paper, we use symmetric causal independence models as a technique 
to model combinatorial effects of transcription factor binding motifs in the reg­
ulation of gene expression. Transcription factor binding sites are causes in this 
model, where the positive state of this variable is presence or absence of the 
motif, depending on the m otif’s effect on expression of genes in the cluster. The 
positive state of the effect variable represents gene belonging to the cluster, and 
the negative state represents gene belonging to  any other cluster.

We used a greedy approach to select the motifs whose absence or presence 
contributes to the difference between the expression of genes belonging to  a given 
cluster and the expression of the other genes. First, we ranked all motifs based 
on their mutual information scores, where the mutual information measures the 
mutual dependence of the variable M  tha t represents a motif and the class 
variable C  and is defined as:

'  ( m ; c  ) = £ E  .
meM ceo v ’ w

Then, we built a model from the h highest ranked motifs. We started from a 
model containing only a leaky cause, then iteratively added the next highest 
ranked motif and evaluated the model thus obtained. If the new model did not 
have a higher score than the previous model, the motif was removed from the 
model. Since there are 2”+1 symmetric Boolean functions for a model with n  
variables tha t represent motifs, evaluating all the resulting models is too expen­
sive computationally. Therefore, we restricted the interaction function space to 
the Boolean threshold functions. This restriction means tha t for every added 
motif we only had to evaluate two models, a gene model with the interaction 
function Tk and a gene model with the interaction function rk+1, where Tk is the 
interaction function from the model with the highest score. We evaluated each 
model using the classification accuracy on the validation set.

To solve the problem of unbalanced data (different class size, see Table 1), 
we added as many copies of every gene from the smaller class as was needed 
for this class to  amount for at least half of the genes. To learn the parameters 
of the gene model, we ran 25 iterations of the EM algorithm, computed the 
classification accuracy on the validation set after each iteration and chose those 
parameters tha t provided the highest score.



2.4  E v a lu a tio n  o f  th e  resu lts

We used two error estimation methods, cross-validation and bootstrap, to  eval­
uate the models learned. The cross-validation scheme was used to examine the 
predictive performance of the models, whereas the bootstrap approach was used 
to evaluate the reliability of the model parameters. For both methods, we per­
formed 100 runs, and the data was split into training, validation and test sets. 
The validation set was used to choose the number of iterations of the EM algo­
rithm  and the threshold function; the results reported were obtained using an 
independent test set.

We used the results of the bootstrap approach to test for potential syner­
gistic motif pairs. From the results of the bootstrap approach, we estimated 
9 =  (0\, 62, . . . ),  where 0 i is the probability th a t motif M i will be chosen as a 
feature in the model. We introduce a variable X j k tha t specifies four possible 
combinations of occurrence of the motifs M j and M k. Our null hypothesis was 
that X j k follows multinomial distribution, with each trial resulting in one of 4 
possible outcomes with probabilities pi =  (1 — 0j)(1 — 0k),p 2 =  0 j(1 — 0k),p3 =  
(1 — 0j)0k,P4 =  0j0k, and the number of trials n  being equal 100. To measure 
the discrepancy between the observed and expected counts, we used Pearson’s 
chi-square statistic:

X 2 (Oi — E i )2
X =  ^  E ,I

where i is a possible outcome and the expected count Ei =  npi .
To compare our classifier to  a classifier which assigns all genes to the biggest 

class, we used a binomial test described in [24]. The test uses the number of 
cases n  for which the two classifiers produce a different output, and the number 
of cases s where the output of the examined classifier was correct, while the 
output of the reference classifier was wrong. Under the null hypothesis tha t the 
two classifiers perform equally well, we compute:

p =  2 E  o.5n
i = s i!(n — i)!

2.5 Identify ing p oten tia l transcription  factors b inding to  th e  m otifs

To identify potential transcription factors binding to the motifs, we used com­
parative genome analysis, which is based on the fact th a t sequence similarity 
might reflect functional similarity. Identification, which was done separately for 
each motif, involves three steps. Firstly, we used STAMP [20], a web tool for ex­
ploring DNA-binding motif similarities, to  find a number of the closest matches 
for a given motif in 13 supported databases. Secondly, for each match found, 
we checked whether the database where the motif is stored reports a transcrip­
tion factor binding to it. Finally, if the transcription factor is known, we used 
BLAST [1, 25] to  find the most similar protein sequences from the Plasmodium 
falciparum protein database.



3.1 Transcription factor b inding m otifs found and clusters obtained

AlignACE found 100 transcription factor binding motifs in the given upstream 
sequences. The motifs tha t were found to be the most im portant features for 
classifying the genes will be discussed later in this section.

We chose the number of clusters to be 5, as the C-index curve had an ‘elbow’ 
at this value. Figure 3 presents the clusters obtained, which are comparable to 
the four characteristic stages of intraerythrocytic parasite morphology discussed 
by Bozdech et al. [4], as the vast m ajority of genes induced in every one of 
the stages belong to one of four clusters. Cluster 5 is a cluster of genes whose 
expression did not show a significant change. The correspondence among the 
characteristic stages and the clusters and the cluster sizes are given in Table 1.

3 E xperim en tal R esu lts

3.2 M odels learned

We learned the models for the first four clusters, i.e. the clusters of genes whose 
expression changed throughout the intraerythrocytic stage.

The classification accuracy of the gene models learned using the cross-validation 
procedure explained in 2.4 is reported in Table 1. The p-values for the null hy­
pothesis tha t the gene models perform equally well as a classifier which assigns 
all genes to a bigger class are less than 10~10.

Table 2 lists the motifs tha t were most often selected as features of the gene 
model. Due to  space limitations, we report only those motifs th a t were selected as



T a b le  1. A brief descrip tion  of th e  clusters, th e  num ber of th e  genes assigned, th e  
corresponding characteristic  stage of in trae ry th ro cy tic  pa ras ite  m orphology; and  clas­
sification accuracy ob ta ined  using th e  cross-validation  procedure.

C luster N um ber of
genes

C orresponding
stage

A ccuracy 
ob ta ined  (%)

B aseline 
accuracy (%)

1 329 schizont 60.48 50.79
2 1033 rin g /ea rly  trophozo ite 61.52 52.52
3 985 tro p h o zo ite /ea rly  schizont 59.16 50.90
4 144 early  ring 63.21 51.30
5 1344 - - -

features of the model in more than 50 bootstrap runs. Some of the motifs appear 
in more than one cluster; however, their weighting is different (not shown) and 
they can be either ‘present’ or ‘absent’ (the presence or absence is a positive 
state of the corresponding variable in the model). Sequence logos of the motifs, 
which were generated using the WebLogo program [9], are shown in Figure 4. A 
study of the positive states of the variables representing the motifs selected as 
features of the model in more than 20 bootstrap runs reveals a distinct pattern. 
The variables in models for cluster 2 and cluster 4 represent the absence of the 
motifs, while the variables in models for cluster 1 and cluster 3 mainly represent 
the presence of the motifs. Even though there are 6 motifs tha t break this pattern 
in clusters 1 and 3, these motifs are found in a very small number of genes (from
1 to 5 % of genes); the other motifs selected are much more common in genes. 
The summary of these results is presented in Table 3.

T a b le  2. M otifs th a t  were selected as fea tu res of th e  m odel in  m ore th a n  h a lf of th e  
b o o ts tra p  runs; th e  num ber of runs th e  m o tif was selected is given in  parentheses. 
‘P re se n t’ m otifs are w ritten  in  rom an, ‘ab sen t’ m otifs are w ritten  in  rom an.

C luste r M otifs selected m ore th a n  50 tim es

1 M otif 38 (100), M otif 37 (95), M otif 6 (65), M otif 59 (65), M otif 11 (63), 
M otif 21 (55)

2 M o t if  6 (98), M o tif  35  (93), M o tif  3 7  (89), M o t if  38  (89), M o tif  11 
(75), M o tif  21 (68), M o t if  59  (68), M o tif  7 (64), M o t if  80  (59)

3 M otif 6 (100), M o tif  88  (82), M otif 38 (67), M otif 59 (60), M otif 21 (51)
4 M o t if  6 (99), M o tif  11 (93), M o tif  4  (55)

Interpretation of the probabilities of the hidden variables is somewhat tricky 
as they highly depend on the number of input variables and the interaction 
function in the model, which currently vary a lot from one bootstrap run to 
another. Nevertheless, there is a pattern which suggests tha t probabilities of
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F ig . 4 . Sequence logos of th e  m otifs th a t  were selected as fea tu res of th e  m odel in  m ore 
th a n  h a lf of th e  b o o ts tra p  runs.

T a b le  3. Positive s ta te s  of variables rep resen ting  th e  m otifs th a t  were selected as 
fea tu res of th e  m odel in  a t  least 20 b o o ts tra p  runs.

C luste r M otifs selected Positive s ta te : absence Positive s ta te : presence

1 14
2 14
3 10
4 15

2
13
4
15

12
1
6
0

hidden variables contain information about functionality of putative transcrip­
tion factor binding sites. The pattern emerges when we compare probabilities of 
hidden variables with the average of probabilities of the other hidden variables 
in the model. The probabilities in clusters of ‘absent’ motifs were almost the 
same, while the probabilities in clusters of ‘present’ motifs differed much more 
and the m ajority of motifs had the tendency to have corresponding probabilities 
below or above the average.

To find statistically significant occurrences of motif pairs, we tested all pos­
sible pairs of the motifs selected as causes in the model in at least 20 bootstrap 
runs (see 2.4 for the description of the method). We rejected the null hypothesis 
at the significance level of 0.05 (corrected for multiple testing) for two motif 
pairs from cluster 4: for the pair of motifs 70 and 72 (with p-value of 0.0055), 
and the pair of motifs 4 and 5 (with p-value of 0.0174). These motifs were se­
lected together to be features in the model more often than it would be expected. 
Sequence logos for potential synergistic motif pairs are shown in Figure 5.

3.3 P oten tia l transcription  factors b inding to  th e  m otifs

We present the most significant findings for the motifs reported in Figure 4.
Motifs 6,11 and 35 have the same closest match - the binding site of fruit fly’s 

transcription factor Topoisomerase 2, reported in FlyReg database [3]. The most



Motif 4 Motif 5

F ig . 5 . Sequence logos of p o ten tia l synergistic m o tif pairs.

significant alignment in Plasmodium falciparum is PF14_0316, putative DNA 
topoisomerase 2, whose protein sequence is nearly identical (E value of 0.0).

Another gene of Plasmodium falciparum tha t is a potential transcription fac­
tor binding to at least two of the motifs discussed is PF14_0175, which is anno­
tated  as a hypothetical protein in PlasmoDB. One of the closest matches for mo­
tif 7 is MCM1+SFF_M01051 reported in TRANSFAC database [21]. The most 
significant alignment for MCM1, which is yeast transcription factor involved in 
cell-type-specific transcription and pheromone response and plays a central role 
in the formation of both repressor and activator complexes, is PF14_0175 (E 
value of 10~5). Another motif to which this transcription factor could bind is 
motif 80; this possible connection was found through a different transcription 
factor in a different organism. Motif F0XP1_M00987 reported in TRANSFAC is 
a close match to motif 80. Mouse transcription factor F0X P1 which binds to this 
motif is thought to  repress expression of epithelial genes in the lung and reduce 
expression from promoters of mouse CC10 gene G002818. The most significant 
alignment for variants T04812 and T04813 of F0X P1 in Plasmodium falciparum 
is PF14_0175 (E value of 10~8).

A gene which is found as potential transcription factor for one third of the 
motifs analyzed is PFL0465c, zinc finger transcription finger (krox1). For motif
4, the connection was found through motif Helios_M01004 reported in TRANS­
FAC and mouse transcription factor IKAROS family zinc finger 2, Helios, whose 
functions include zinc ion binding, DNA binding and nucleic acid binding (E 
value of 7 • 10~6). For motif 21, the connection was found through motif CF2- 
ILM00012 reported in TRANSFAC and fruit fly transcription factor CF2-II, a 
late activator in follicle cells during chorion formation (E value of 10~6).

4 D iscu ssion  and Future W ork

We have presented an approach which is both able to model the logic behind 
transcriptional regulation and to incorporate uncertainty about the functionality 
of putative transcription factor binding sites. Another advantage of our technique 
is that it does not require other biological knowledge than genome sequence data 
and RNA expression data to validate the results. Since we do not use expression 
data while searching for putative regulatory motifs, the accuracy of the models



in predicting gene expression pattern  is an unbiased measure of the soundness 
of the models learned.

Experimental results revealed the lack of consistency in the properties of the 
models learned. This inconsistency could be caused by the lack of additional 
constraints on the motifs, such as position relative to  the translation start, ori­
entation and functional depth. Therefore, the next step in our research is to 
implement normal and binomial approximations to Poisson binomial distribu­
tion, which will help to reduce computational complexity of the EM algorithm. 
Reduced computational complexity will enable us to test more interaction func­
tions and to examine the additional constraints on the motifs.

We will also continue our discussions with biologists to find the explanation 
to the experimental results, especially, the pattern  of clusters of ‘present’ and 
‘absent’ motifs, and potential transcription factors binding to the motifs.
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