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The correlated electronic structure of iron, cobalt and nickel is investigated within the dynamical 
mean-field theory formalism, using the newly developed full-potential LMTO-based LDA+DMFT 
code. Detailed analysis of the calculated electron self-energy, density of states and the spectral 
density are presented for these metals. It has been found that all these elements show strong 
correlation effects for majority spin electrons, such as strong damping of quasiparticles and formation 
of a density of states satellite at about — 7 eV below the Fermi level. The LDA+DMFT data for 
fcc nickel and cobalt (111) surfaces and bcc iron (001) surface is also presented. The electron self 
energy is found to depend strongly on the number of nearest neighbors, and it practically reaches 
the bulk value already in the second layer from the surface. The dependence of correlation effects 
on the dimensionality of the problem is also discussed.

PA C S numbers: 71.15.Q e, 71 .20 .B e, 71 .15 .A p, 73.20.A t

In troduction

The late 3d metals iron, cobalt, and nickel and their 
compounds are vital for nearly all fields of technology. 
The E arth  core is believed to be composed predominantly 
of iron. It is ironic tha t in the early 21-st century we still 
lack a complete understanding of these metals. Proper­
ties of “normal” (weakly correlated) solids are described 
quantitatively by density functional theory (D FT ) 1,2 in 
the local density (LDA) or generalized gradient (GGA) 
approximations. Not only DFT provides the ground state 
properties, but in many cases it also gives a rather good 
description of excitation spectra in terms of Kohn-Sham 
quasiparticles. The concept of quasiparticles originates 
from Landau's Fermi liquid theory and for weakly cor­
related solids the quasiparticles (electrons and holes) are 
well defined in a wide energy range.

Fe, Co and Ni, however, are more correlated systems. 
They have partially filled shells of fairly localized 3d 
electrons. These electrons form a narrow d-band, and 
their behavior shows signs of both atomic-like and free- 
electron-like behavior3,4. In strongly correlated systems 
the quasiparticle picture breaks down, except in a close 
vicinity of the Fermi surface. Quasiparticles often have 
short lifetimes and therefore are not well defined, and in 
many cases incoherent features such as Hubbard bands 
and satellites appear in excitation spectra5,6 . LDA and 
GGA typically fails for this class of systems and their 
theoretical description remains a great fundamental chal­
lenge. In particular, LDA and GGA give rather good 
magnetic moments for Fe, Co, and Ni, but fail to describe 
their electronic structure adequately. In particular, pho­
toemission experiments for these metals7,8,9 demonstrate 
tha t LDA/GGA calculations give too wide m ajority spin 
3d band, overestimate the spin splitting and fail to repro­
duce the 6 eV satellite in nickel, an essentially incoherent 
feature. Some other theoretical methods are needed to

properly describe the electronic structure of Fe, Co and 
Ni.

One of the successful schemes for correlated electron 
systems is the Dynamical Mean-Field Theory (DMFT), 
which replaces the lattice problem with a problem of a 
single correlated site in a self-consistent bath (impurity 
problem). It has been originally developed for the Hub­
bard model5,10,11. Being W the bandwidth and U the 
Coulomb interaction, the DMFT catches the main fea­
tures of weakly (W ^  U), intermediate (W ~  U) and 
strongly (W ^  U) correlated regimes, and becomes ex­
act in the limit of infinite dimensions. The crucial point 
of the DMFT is in the solution of the self-consistent im­
purity problem. The choice of the DMFT “solver” for 
a given system is always a compromise between general­
ity, accuracy and efficiency. There exist both numerically 
exact solvers (quantum Monte-Carlo, exact diagonaliza- 
tion) which can in principle be applied to all systems, and 
approximate solvers with limited area of applicability but 
high efficiency, such as the Spin Polarized T-m atrix Fluc­
tuation exchange (SPTF) solver 12 for the case W <  U .

Although DMFT was designed originally for the Hub­
bard model, it can be combined with LDA to describe 
realistic materials with a local electron correlation. This 
approach, known as LDA+DM FT 6,13,14 is at present 
the most universal practical technique for calculating 
the electronic structure of strongly correlated solids. 
LDA+DM FT has been successfully applied to various im­
portant problems, including, e.g., the electronic structure 
of manganese15, ¿-Pu 16,17, the a - 7  transition in cerium 18 
and the metal-insulator transition in V2O319. Despite all 
success stories of LDA+DMFT, the method is still less 
than a decade old and at a stage of active development. 
Most available implementations apply some drastic sim­
plifications to the LDA+DM FT formalism. In particular, 
many LDA+DM FT codes are based on atomic sphere ap­
proximation (ASA)-based LDA codes (LMTO-ASA13 or

http://arXiv.org/abs/cond-mat/0610621v1
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FIG. 1: (Color online) Imaginary part of the self energy 
ImS(e +  i0) for bcc iron, majority spin for orthogonal- 
ized LmTO (ORT) and muffin-tin-only (MT) correlated sub­
spaces. Two different temperatures are considered: T =  400 
K and T =  1500 K.

FIG. 2: (Color online) Imaginary part of the self energy 
for bcc iron, minority spin for two different correlated sub- 
space(MT and ORT orbitals) and two different temperatures 
(T =  400 K and T =  1500 K).

KKR-ASA20). These schemes might work well for close- 
packed crystal structures, but they are insufficient for 
open structures and low-dimensional geometries. How­
ever, until recently, the only all-electron full-potential 
LDA+DM FT implementation has been the one based on 
the full-potential LMTO code LMTART of Savrasov 16.

The goal of this paper is to investigate the correlated 
electronic structure of bulk and surface of iron, cobalt 
and nickel using the new full-potential LDA+DMFT 
code BRIANNA. Although iron and nickel have been 
previously investigated using ASA-based LDA+DMFT 
codes4,12,21, no full-potential results have been pub­
lished. The LDA+DM FT spectral density of nickel has 
never been published, while for cobalt only three-body 
scattering approximation22 data are available, but no 
LDA+DM FT results. Further, and most importantly, 
LDA+DM FT methods have not been previously applied 
to transition metal surfaces. Now, with the present 
full-potential LDA+DM FT scheme available, we want 
to check how the correlation effects depend on the di­
mensionality of the problem. We address fcc nickel and 
cobalt (111) surfaces and iron (0 0 1 ) surface in this paper, 
as examples.

This paper is organized as follows. In chapter I we 
present the LDA+DM FT formalism in its most gen­
eral form following a discussion of the basis set problem 
in Refs.23,24. Chapter II introduces our full-potential 
LDA+DM FT implementation BRIANNA. Results of our 
calculations are presented in chapter III, which is fol­
lowed by the conclusion.

e (eV)

FIG. 3: Real part of the self energy for bcc iron (MT orbitals, 
T =  1500 K).

I. L D A +D M FT  M ETHOD 

A. C orrelated  subspace

The LDA+DM FT method defines a ’’correlated sub­
space” {|R , £}} of the strongly correlated orbitals |R , £}, 
where R  stands for the Bravais lattice site and the quan­
tum  number £ specifies the correlated orbitals within the 
unit cell. W ithin this subspace the many-body problem 
is solved in a non-perturbative manner using DMFT. All 
remaining states of the crystal are assumed weakly cor­
related and treated within LDA. For simplicity, we can 
always choose correlated orbitals to be orthogonal and 
normalized (R 1, £1IR2, £2} =  ¿R i,r2% ,& .

Results of a LDA+DM FT calculation depend on the 
choice of the correlated orbitals. The correct form of 
| R , £} is dictated by physical considerations for each par-
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FIG. 4: (Color online) Density of states of bcc iron 
(LDA+DMFT with MT correlated orbitals at T =  400 K 
vs LDA).

ticular problem23,24,25. Usually the correlated orbitals 
are derived from d or f  atomic states. In this case £ 
stands for site (within unit cell) and atomic quantum 
numbers l, m, a. In early LDA+DM FT implementations 
\R ,£}’s were taken as orthogonalized muffin tin orbitals 
(M TO’s). Apart from the technical simplicity, however, 
there is no reason for making such a choice. In particu­
lar, orthogonalized M TO’s are poorly localized in real 
space (due to orthogonalization) and they don’t have 
pure lm character (due to tail cancellation and orthogo­
nalization). Besides, such choice of {\R, £}} de facto re­
stricts the LDA part of the LDA+DM FT code to muffin- 
tin based methods (LMTO, NMTO, KKR) with a mini­

mal basis set. Nowadays other choices, such as Wannier- 
like orbitals23,25 are investigated. Apart from atomic 
states, the correlated orbitals |R, £} can be chosen as 
hybridized orbitals (possibly describing covalent bonds) 
if dictated so by the physical problem. Sometimes the 
LDA Hamiltonian is downfolded in order to include only 
correlated degrees of freedom (such as d-states or even 
t 2g or eg states). This results in a very time efficient 
DMFT implementation, however this approach cannot 
be used to study the hybridization between sp-electrons 
and the correlated ones, which is im portant, e.g., for the 
superexchange interaction. In this section, we present the 
LDA+DM FT formalism in a more general form, without 
making any restrictions on the choice of the correlated 
subspace {\R, £}} or the basis set used by the LDA part 
of the code. We are going to return, however, to the 
question of choosing the correlated subspace in the sec­
tion describing our implementation.

In LDA a solid is described by the one-particle Kohn- 
Sham equation

(H l d a  -  E )  \V>} =  0 , (1)

where the LDA Hamiltonian H l Da has one-electron form

H LDA =  ^ 3  h LD A(r i ), (2)
i

with h LDA acting in the Hilbert space of one-electron 
states in a periodic crystal, and the index i numbering 
all electrons in the crystal. The LDA+U Hamiltonian 
adds explicit Coulomb term  for the correlated orbitals 
|R , £) to the LDA Hamiltonian

H l d a +u — H l d a  +  ^ E  E  UÇi,Î2,Ç3,Ç4cR,Ç1 CR,Ç2Cr,Í4CR, 3̂ • (3) 
R Çl,Ç2,Ç3,Ç4

r

It has a form of a multiband Hubbard Hamiltonian with 
the LDA Hamiltonian used as ” hopping” . The Coulomb 
parameters U^ 1 , ^ 2 , ^ 3 , ^ 4 are screened Coulomb integrals for 
the states {\R, £}}. They are to be found empirically or 
calculated from first principles, and they, in general, de­
pend on the choice of the correlated subspace {\R, £}}. 
Note th a t H lD a  is not a kinetic energy and the Hubbard- 
U term  is not a ”raw” Coulomb interaction. Rather, the 
LDA+U Hamiltonian is an effective Hubbard Hamilto­
nian for the correlated orbitals, and the rest of the states 
(e.g. sp states) is described within LDA. The justification 
of this approach24 is not a trivial m atter, and the main 
practical reason why it is widely used is the local nature 
of the screened Coulomb interaction. Note tha t we have 
included the explicit Coulomb term  in the Hamiltonian, 
although many static effects of the Coulomb interaction

are already included in the LDA Hamiltonian. Namely, 
LDA includes a Hartree term, an exchange term, and 
some correlation effects (including a good description of 
the screening). However, the many-body treatm ent of 
the Hubbard-U part of the Hamiltonian will also give the 
Hartree-Fock term  and various correlation terms. There­
fore, a double-counting correction scheme is necessary

E (z) ^  AS(z) =  E (z) -  S dc, (4)

where E (z) is the local self energy of the DMFT prob­
lem. For treating metals within LDA+DM FT the most 
common choice of the double-counting correction is the 
static part of the self-energy:

Sdc =  £ (+ i0 ). (5)
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FIG. 5: (Color online) Spectral density of bcc iron along high simmetry directions of the Brillouin zone from LDA+DMFT 
with MT correlated orbitals at T =  400 K.

The multiband Hubbard Hamiltonian, such as Eq. 3 
cannot be solved exactly, therefore various approxima­
tions are applied. Unlike the static LDA+U method26, 
LDA+DM FT takes into account dynamical corelation ef­
fects through the frequency-dependent self energy £(z).

B. L D A +D M FT  equations

Spectral density functional theory6,24,27 uses the local 
Green function GR (z) as the main observable quantity, 
much like the particle density p(r) in DFT or the one- 
electron Green function G(z) in Baym-Kadanoff theory. 
Namely, for sensible definitions of GR (z ), a functional 
r[GR] exists, which is minimized by the true value of 
GR (z), and the local self energy S R (z) plays the role sim­
ilar to the Kohn-Sham potential in DFT. In the present 
paper we define GR (z) as the projection of the total one- 
electron GF to the correlated states \R, £} of a given site 
R

G r (z ) =  P r  G (z  )PR,

where

P r  =  £  \R,£} <R,£\ 
«

(6 )

(7)

is the projection operator to the correlated subspace be­
longing to site R . The one-electron GF G(z) can in turn 
be expressed via the one-electron self energy £(z) as

G(z) =  [(z — p) — hLDA — ^ (z)] (8 )

where p  is the chemical potential, and hLDA plays the 
role of the unperturbed Hamiltonian (” hopping” ).

Precisely like in DFT or Baym-Kadanoff theory, the 
exact expression for the functional r[G R] is not known. 
The most widely used approximation is the dynamical 
mean field theory (DMFT). The approximation behind 
DMFT is th a t the total one-electron self energy £(z) is 
taken as the sum of the local self energies of all lattice 
sites (with double-counting correction when appropriate)

E(z) =  £ E r (z).
R

(9)

This self energy is local, i.e. it does not have matrix 
elements between different sites

Rl,R; (£ r )«1,«2 (10 )

W ith this form of £(z), the local self-energy £ R (z) can 
be obtained from the impurity problem, with the rest of 
the lattice replaced by the bath GF (or ” dynamical mean 
field” ) G -1(R, z) defined by

G ^ (R ,z )  =  Gr 1(z) +  S r (z). (11 )

In a periodic solid all atoms are equivalent, therefore 
the local quantities such as (S R)«i «2, (GR)«i «2 and 
(£0- 1(R ,z ) )«i «2 do not depend on the site R . More­
over, if there are several sites within unit cell, and the 
Hubbard-U term  does not have m atrix elements between 
different sites, (S r)« i «2 takes a block diagonal form with 
a block for each site.

The system of one correlated site in the self-consistent 
bath does not have a Hamiltonian, but can be described 
by an effective action. Here and in the following we use 
the M atsubara formalism for a finite tem perature T . The

1
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G F ’s and self energies are defined at the M atsubara fre- The action in the M atsubara formalism is 
quencies

z =  iw„ =  in T (2n + 1) , n  =  0 , ± 1 , ± 2 , .. . . (12)

S = — J J  d x \d x 2 Ĉ  (x \)Q 0 1(xi, x 2 )c (x 2 ) +  — J  d x \d x 2d x ‘i d x 4Lc '( x \ ) c ^ ( x 2)U (x \ ,  x 2, X3 , x 4 )c (x 4 )c (x s ) , (13)

where x =  (£, t ), t  is the imaginary time (0 < t  < 1/ T ) 
and

G0- 1(x1,x 2) =  T ^  exp [ - i ^ n (T1 -  t 2)] ( S - 1)«i ,«2 .
iwn

(14)
The Coulomb interaction U (x1,x 2 ,x 3 ,x 4) does not de­
pend on time for the Hubbard model

U (x1 ,x 2,x 3 ,x 4 ) =  ¿ (tí -T 2)^ (t1 -T 3 ) J ( t1 T4 )U«i ,«2,«3 ,«4.
(15)

This problem still cannot be solved exactly, however, 
compared to the original many-body problem it has only 
a few degrees of freedom, so it can be solved by the 
DMFT solver, which can be for example Quantum Monte 
Carlo (QMC), exact diagonalization, or a number of ap­
proximate methods, such as SPTF 12. The DMFT solver 
is the central part of the LDA+DM FT scheme. It uses 
the bath GF (Go)«i «2 (z) and produces the new self en­
ergy S«i ,«2 (z). The equations (4), (6 ), (8 ), (9), (11) 
and (13) constitute the DMFT cycle which is solved self- 
consistently until the convergence is reached. The num­
ber of electrons is given by

N  =  lim t V (á^+o 'T r  G ( iu n ) = T '% 2  Tr Í G(tcon) + -
iwn '

n (16) 
This equation is used to determine the LDA+DMFT 
chemical potential (Fermi energy), which must produce 
the correct number of electrons. In the following subsec­
tion we show how the DMFT equations can be presented 
in a given LDA basis set.

C. D M FT equations for a given LDA basis set

The Kohn-Sham eigenfunctions belong to the Hilbert 
space of one-electron states in a solid. The choice of the 
basis set in this space is dictated by the method (LMTO, 
LAPW, . . . ), and we can use a basis either in the real­
space or in the reciprocal-space. The real space basis set 
{\R, x}} is defined by the wavefunction

^R,X(r) =  ^X(r -  R) (17)

which is typically localized in a small area around the 
lattice site R . The k-space basis set {\k, x}} is a basis

set tha t satisfies the Bloch theorem: for any translation 
vector T

^k,x (r +  T) =  ei ^k,x(r) (18)

where k  belongs to the Brillouin zone. There is a one-to- 
one correspondence between real-space and k-space basis 
sets, given by the Fourier transformation

\k, x} =  £  eikR \R, x } , \R, x} =  £  e-ikR  \k, x } , (19) 

where

R

VBZ 1BZ
dk, 1 =  1 . (2 0 )

Since the basis set {\R, x}} or {\k, x}} in general is 
not orthogonal and not normalized, the linear algebra 
becomes more cumbersome. The overlap m atrix is

SXi,X2 =  <x1\x2} . (21)

The conjugate basis set {\x}} is defined by the relations

<x 1 \x2} =  <x1 \: 2̂} =  « W , E  \x̂ } <x\ =  1, (22)
X

or, explicitly,

\x 1} =  t s - 1)x2,xi \x 2} , <x 1 \ =  t S - 1)xi,X2 <x 2 \ . (23)

If, and only if, the basis set {\x}} is orthogonal and nor­
malized, then {!x}} coincides with {\x}}.

We use the following definition for the matrix elements 
of an operator

AXi ,X2 =  <x1\A \x2} , A =  \x 1} Axi,X2 <x 2 \ , (24)
Xi,X2

and in this subsection we always put a hat above an op­
erator to distinguish operators from matrices. This con­
vention leads to the following rules of operator-to-m atrix 
correspondence

A — A 
1 — S

operator 
unity operator

(25)
(26)

AB — AS 1B product of two operators (27)

A- SA - 1  S  inverse of an operator (28)

1

1 —»
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The LDA k-space basis set {|k, x}} should be used in space with a real-space basis set {|R , £}}. Transforming
order to calculate the local GF (6 ), since we know the back and forth between the local G F’s and the self en-
LDA Hamiltonian m atrix h LDA (k) and the overlap ma- ergies is thus necessary at each DMFT iteration. Using
trix S(k) in this basis set. On the other hand, the DMFT Eqs. (22)- (28), it is easy to show tha t Eq. (6 ) becomes 
impurity problem is formulated for the correlated sub-

(G r )£i,i2 (z) =  $ 3  (€i|k, xi} [S(k)(z -  M) -  h LDA (k) -  S (k ,z )] - i1iX2 (k,x2|£2},
k,Xi,X2

(29)

r

where £ (k , z) is the self energy m atrix in the LDA basis 
{|k, x}}. This expression would be exact only if the basis 
set { |k, x}} was complete. It would also be exact if the 
correlated orbitals |R, £} belonged to the space spanned 
by the basis functions |k, x}, like for the orthogonalized 
M TO’s, since it would mean tha t { |k, x}} is complete 
within the space of interest. In realistic full-potential 
calculations the completeness of { |k, x}} is a reasonable 
approximation. The local self energy transformed into 
the LDA basis is in tu rn  given by

S X1,X2(k ,z) =  E  (k ,x i |Ci} % ,« 2 (z) (^2 |k ,x 2} . (30) 
?1>?2

The one-particle excitation spectrum of a system is 
given by the density of states (DOS)

D (e) =  — — Tr ImG(e +  *0) 
n

(31)

E, eV

and by the spectral density, which is the k-resolved DOS

FIG. 6: (Color online) Imaginary part of the self energy for 
iron, cobalt and nickel, majority spin (MT correlated orbitals 
at T =  400 K).

A(k,e) =  - -  V ' (k,xjImG(e + *0)|k,x) • (32) 
X

The spectral density generalizes the concept of quasipar­
ticle band structure by allowing quasiparticles to decay, 
thus introducing smearing of bands. In the absence of self 
energy it reduces to  the usual Kohn-Sham band structure

a k s (k , e) 5  (e — £n(k)) •
n

As we already mentioned, typical spectral density has 
coherent (quasiparticles) features and also possibly non­
coherent (dispersionless) ones: Hubbard band satellites. 
Note tha t DMFT gives Green function at M atsubara fre­
quencies ¿wn, while DOS and the spectral density are 
defined via GF at the e +  i0  contour. The numerical an­
alytical continuation can be done, for example, using the 
Pade approximation.

II. IM PLEM EN TA TIO N

In this paper we introduce the code BRIANNA, a new 
LDA+DM FT implementation based on the full-potential

linear muffin tin orbital (FP-LMTO) code developed 
in Ref.28. As we already mentioned, FP-LMTO gives 
an accurate description of solids within LDA, and the 
full-potential treatm ent is especially im portant for open 
structures and surfaces. On the other hand, FP-LMTO 
uses a relatively small basis set, which is convenient for 
calculating Green functions, since it involves inverting 
a m atrix in the LDA basis set for each M atsubara fre­
quency and k-point. The typical basis set is “double­
minimal” , i.e. it contains two basis functions per each 
site and l,m , a, with different “tail energies” . It is still 
much smaller than  the basis set in the plane wave and 
augmented plane wave based codes.
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FIG. 7: (Color online) Imaginary part of the self energy for 
iron, cobalt and nickel, minority spin (MT correlated orbitals 
at T =  400 K).
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FIG. 8: (Color online) Density of states of fcc nickel 
(LDA+DMFT with MT correlated orbitals at T =  400 K 
vs LDA).

There are a few other technical issues worth mention­
ing here. A DMFT solver typically needs about 1000 or 
more M atsubara frequencies (above the real axis). In­
stead of performing m atrix inversion in Eq. (29) for ev­
ery frequency (and every k-point), it is a standard tech­
nique nowadays to use a smaller (usually logarithmic) 
mesh in Eq. (29) and, after having calculated the lo­
cal GF, transform it to the M atsubara mesh using cubic 
splines. Inverse transformation is applied to the self en­
ergy in order to plug it into Eq. (29). All calculations of 
the present paper use 1024 M atsubara frequencies in the 
DMFT solver, but only 80 points in Eq. (29). The first 
16 of them  coincide with the first M atsubara frequen­
cies, while the rest forms a logarithmic mesh. Another 
issue involves numerical analytical continuation in (31) 
and (32). Analytical continuation using the Pade ap­
proximation can introduce serious numerical errors. In 
the present implementation we do not apply the Pade

approximation to the Green functions. Instead, we use it 
only for the self energy £(z), while the GF is calculated 
directly at the e +  ¿0 contour using Eq. (8 ) .

We have already mentioned the very im portant ques­
tion of choosing the orbitals spanning the correlated sub­
space. In this paper we use two different definitions, both 
of them atomic-like and derived from transition metal d 
states. The first, more traditional, uses orthogonalized 
d-type basis functions of the FP-LM TO method, trans­
formed to the real space via (19). We call this definition 
orthogonalized LMTO (ORT) correlated subspace. We 
remind the reader tha t it is poorly localized, and also 
tha t the orbitals |R, £} do not have pure l, m  character. 
Such kind of approach requires minimal LDA basis set 
for the d-type electrons. This FP-LM TO code28 allows 
to use a double-minimal basis set (two or even more en­
ergy tails) for sp-electrons and a minimal one (single tail) 
for d electrons. The latter have less dispersion than sp 
electrons, and use of the single-tail basis set for them 
does not lead to any severe errors within LDA.

Our second choice is somewhat opposite, since it deals 
with extremely localized correlated orbitals. We call it 
muffin-tin only (MT) correlated subspace. |R, £} is cho­
sen as

^R ,«(r)
^ l ( |r  — R Ç|)Yîm(r — R Ç ), |r — R Ç | < RMT,Ç

v0 , |r -  R ç | > R m t ,ç
(33)

Rç =  R + rç is the site where the orbital |R, £} is located 
and R mt,ç is the muffin-tin radius for this site. The 
pure muffin-tin radial function $ ¡(r) is the solution of the 
radial Schrödinger equation in the spherically averaged 
Kohn-Sham potential28, inside the muffin-tin only, for a 
certain energy E v.

The correlated orbital in Eq. (33) is zero outside a 
given muffin-tin, and is thus ultimately local. The cor­
related orbitals have pure angular momentum character, 
but, at the same time, they are orthogonal by definition 
(since they do not overlap). Note tha t the correlated or­
bitals obviously do not form a complete basis set within 
the Hilbert space of one-electron wafefunctions (since the 
interstitial region is not included at all). This is not a 
problem, since they are only used to define the Hubbard- 
U term  in the Hamiltonian (3), while the ”hopping” term  
is the LDA Hamiltonian defined using the FP-LM TO ba­
sis set, which we assume to be sufficiently complete.

III. RESULTS

A. Iron

The LDA+DM FT self energies of bcc iron have been 
calculated for U =  2.3 eV, J  =  0.9 eV. We used both 
muffin-tin only (MT) and the orthogonalized LMTO 
(ORT) sets of correlated orbitals, and also performed cal­
culations for different temperatures. In Figures 1 and 
2 we present the imaginary part of the self energies,
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FIG. 9: (Color online) Spectral density of fcc nickel from LDA+DMFT with MT correlated orbitals at T =  400 K.

£ (eV)

FIG. 10: (Color online) Density of states of hcp cobalt 
(LDA+DMFT with MT correlated orbitals at T =  400 K 
vs LDA)

Im E(e +  ¿0), for m ajority and minority spins respectively, 
while in Figure 3 we show the real part of E (only for the 
MT basis and for T  =  1500 K). In quasiparticle lan­
guage the m atrix elements R eE (E  +  ¿0)ç,ç describe the 
shift of the quasiparticle bands, while -  Im E(e +  ¿0)ç,ç 
has the physical meaning of quasiparticle band smearing 
r ,  which is the inverse of the quasiparticle decay time 
t =  1 /r .  The band structure is only well defined if 
|ImEç,ç | ^  W , where W is the bandwidth. For met­
als this is always true in the vicinity of the Fermi level, 
since Im E(+¿0) =  0. The self energies presented here 
are averaged over the orbital indices m, namely

(34)

The crystal field splitting of E is rather small and we 
are not going to discuss it in details. Figure 4 shows the 
total density of states (DOS) of bcc iron (LDA+DMFT 
vs LDA), while the spectral density (k-resolved DOS) is 
presented in Figure 5 for several high-symmetry direc­
tions. We remind the reader th a t the spectral density is 
the generalization of the band structure with finite quasi­
particles lifetime taken into account. Both figures use the 
MT basis set and T  =  400 K.

The three curves in Figs. 1 and 2 are qualitatively sim­
ilar, proving th a t both MT and ORT correlated orbitals 
(corresponding to well-localized and poorly localized d- 
states, respectively) can be used to adequately describe 
iron within LDA+DM FT. However, the exact amplitude 
of the peaks in E is sensitive to the choice of the corre­
lated subspace. We are going to use the muffin-tin only 
(MT) correlated orbitals for the rest of this paper. Note 
also th a t E is practically temperature-independent for a 
wide range of temperatures.

The m ajority spin Im E(e +  ¿0) in Fig. 1 has the main 
peak at e ^  - 7  eV, by reaching the value -3 .4  eV. This 
gives rather strong damping of quasiparticles, as we can 
observe in Fig. 5. There is also a shoulder or small mini­
mum at e ~  - 2  eV. The correlation effects are more pro­
nounced for the m ajority spin electrons, which is common 
for late transition metals (see Ref. 22 for an interesting 
discussion). The LDA+DM FT density of states (Fig. 4) 
shows the narrowing of the majority-spin d-band com­
pared to the LDA DOS and also a satellite at e ^  - 7  
eV. This is the effect of ReE(e +  ¿0). The positive re­
gion of Re E for the m ajority electrons between -6  eV 
and the Fermi level in Fig. 3 leads to the narrowing of 
the band, while the sharp negative peak at -8  eV ”draws” 
the electrons down in energy, leading to the formation of 
the DOS satellite. Naturally, the smearing of the quasi-
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FIG. 11: (Color online) Spectral density of hcp cobalt from LDA+DMFT with MT correlated orbitals at T =  400 K.
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FIG. 12: (Color online) Imaginary part of the self energy 
for nickel 5-layer (111) slab, 3-layer (111) slab and bulk fcc 
nickel, majority spin (from LDA+DMFT with MT correlated 
orbitals at T =  400 K). In the legend ”1 of 5” indicates the 
surface atom of the 5-layer slab, ”2 of 5” the sub-surface atom 
and ” 3 of 5” the quasi-bulk atom. Similarly ” 1 of 3” indicates 
the surface atom of the 3-layer slab and ” 2 of 3” the quasi-bulk 
atom.

e (cV )

FIG. 13: (Color online) Imaginary part of the self energy for 
nickel 5-layer and 3-layer (111) slabs and bulk, minority spin 
(from LDA+DMFT with MT correlated orbitals at T =  400 
K). In the legend ”1 of 5” indicates the surface atom of the 
5-layer slab, ”2 of 5” the sub-surface atom and ”3 of 5” the 
quasi-bulk atom. Similarly ” 1 of 3” indicates the surface atom 
of the 3-layer slab and ”2 of 3” the quasi-bulk atom.

particle bands, given by Im E , leads to the smearing of 
the sharp peaks of the LDA DOS. Note tha t our self en­
ergies and DOS differ somewhat from the ones in Ref. 
21. In particular, we clearly observe a DOS satellite at 
e ~  -  7 eV, which was not observed in the earlier calcu­
lation for U =  2.3 eV and J  =  0.9 eV, but only for much 
larger values of U . The reason, we believe, is tha t Ref. 
21 used a simplified version of the SPTF solver, while in 
the present paper the full implementation of the SPTF i2

is used. To the best of our knowledge this is the first 
calculation tha t shows the existence of such a satellite, 
and this could open a new scientific problem, since it has 
never been reported in any experiment.

B. C obalt and nickel

The LDA+DM FT self energies for fcc nickel, hcp 
cobalt and fcc cobalt are presented in Figs. 6 and 7,
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FIG. 14: (Color online) Spectral density of nickel (111) surface modelled by the 5-layer slab (from LDA+DMFT with MT 
correlated orbitals at T =  400 K).

e (eV)

FIG. 15: (Color online) Imaginary part of the self en­
ergy for fcc cobalt 5-layer (111) slab, majority spin (from 
LDA+DMFT with MT correlated orbitals at T =  400K K). 
In the legend ”1 of 5” indicates the surface atom of the slab, 
”2 of 5” the sub-surface atom and ”3 of 5” the quasi-bulk 
atom.

FIG. 16: (Color online) Imaginary part of the self en­
ergy for fcc cobalt 5-layer (111) slab, minority spin (from 
LDA+DMFT with MT correlated orbitals at T =  400K K). 
In the legend ”1 of 5” indicates the surface atom of the slab, 
”2 of 5” the sub-surface atom and ”3 of 5” the quasi-bulk 
atom.

and the bcc iron self energy is also shown for compari­
son. The values of Hubbard parameters were U =  2.3 eV, 
J  =  0.9 eV for cobalt and U =  3 eV, J  =  1 eV for nickel. 
Strictly speaking the parameters U and J  are somewhat 
arbitrary (since they apply to a model LDA+U Hamilto­
nian) and their values depend on the choice of the corre­
lated orbitals. We make a rather traditional choice of U 
and J 2 1 ,2 2  in the present paper, however4,12,21,22.

The general structure of the self energy is similar for 
Fe, Co and Ni. The correlation effects for m ajority spin

electrons are strongest for nickel and weakest for iron, at 
least for the values of U and J  used here. The shoulder 
at -  2 eV is most pronounced for iron and practically dis­
appears for nickel. The self energy curves for fcc cobalt 
and hcp cobalt are almost identical. The correlation for 
minority spin electrons (Fig. 7) are by far strongest in 
nickel, which has the lowest magnetic moment of the 
three elements, therefore the difference between m ajor­
ity and minority spin behavior is less profound in nickel 
compared to iron and cobalt.
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FIG. 17: (Color online) Spectral density of fcc cobalt (111) surface modelled by the 5-layer slab (from LDA+DMFT with MT 
correlated orbitals at T =  400 K).
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FIG. 18: (Color online) Imaginary part of the self energy for 
bcc iron (001) surface modelled by the 5-layer slab, majority 
spin (from l Da +DMFT with MT correlated orbitals at T = 
400 K). In the legend ”1 of 5” indicates the surface atom 
of the slab, ”2 of 5” the sub-surface atom and ”3 of 5” the 
quasi-bulk atom.

- 8 - 4  0 4
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FIG. 19: (Color online) Imaginary part of the self energy for 
bcc iron (001) surface, modelled by the 5-layer slab, minority 
spin (from l Da +DMFT with MT correlated orbitals at T = 
400 K). In the legend ”1 of 5” indicates the surface atom 
of the slab, ”2 of 5” the sub-surface atom and ”3 of 5” the 
quasi-bulk atom.

Figures 8 and 10 present density of states of fcc nickel 
and hcp cobalt respectively, while Figures 9 and 11 show 
the spectral density for these materials. The density of 
states for nickel is in a good agreement with previous 
LDA+DM FT calculations12. Note tha t the SPTF solver 
places the majority-spin satellite at about -7 .5  eV, while 
in experiment it is observed at - 6  eV. The spectral den­
sity of fcc nickel is, to the best of our knowledge, pre­
sented here for the first time. Since bcc iron, fcc cobalt 
and fcc nickel have different crystal structure, their band

structures naturally look different. However, Fe, Co and 
Ni all have strong smearing of majority-spin bands at 
about - 7  eV dictated by the peak in the self energy (Fig. 
6 ), and show a DOS satellite at about -7 .5  eV.

The LDA+DM FT values of the spin magnetic mo­
ments are substantially equal to the LDA values (e.g. for 
bcc Fe we have p  =  2.23pB per atom from the DMFT 
calculation which should be compared to p  =  2 .2 2p B per 
atom from LSDA, and for hcp Co we obtain p  =  1.54pB 
per atom from the DMFT calculation which should be
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FIG. 20: (Color online) Spectral density of bcc iron (001) surface modelled by the 5-layer slab (from LDA+DMFT with MT 
correlated orbitals at T =  400 K).
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FIG. 21: (Color online) Real part of the self energy for bcc 
iron (001) surface modelled by the 5-layer slab. Both majority 
and minority spins for the surface atom (labelled ” 1 of 5” ) are 
reported and compared to the bulk values (from LDA+DMFT 
with MT correlated orbitals at T =  400 K).

compared to p  =  1.57pB from LSDA). Indeed the prob­
lem of the effect of the correlations on the spin and or­
bital magnetic moments is very interesting and will be 
the subject of further investigations in the near future.

C. Surfaces

We model the nickel (111) surface with slabs having 
different number of close-packed atomic layers. Such 
slabs form a superlattice with a 30 A thick layer of vac­

uum separating them, with each slab having two (111) 
surfaces. The calculations have been done for 5-layer 
slabs; however just for methodical aims, to show the sen­
sitivity to the computational details the results for 3-layer 
slabs are also presented on some figures. In Figs. 12 and 
13 we present the LDA+DM FT self energies (imaginary 
part) for nickel slabs for majority and minority spin re­
spectively. D ata for each layer of the 3-layer and 5-layer 
slabs and for the bulk fcc nickel (for comparison) are pre­
sented. Notice tha t the self energy of a nickel atom at 
the surface is obviously quite different from the self en­
ergies for the rest of the atoms in the slab. The most 
noticeable effect is tha t the positions of the peaks are 
shifted and tha t the correlation effects for m ajority spin 
electrons seem to be more enhanced at the surface com­
pared to bulk. We will encounter similar effects for the 
other surfaces studied here (see below). This shows that 
the effect of the correlations is different for the topmost 
surface layer, compared to the rest of the surface layers, 
and tha t the sub-surface layer already seems really bulk­
like. This finding is an observation tha t is worthy exper­
imental attention. The reasons of such a difference are 
rather obvious: due to the reduced coordination number 
of the surface atoms the bands become narrower, which 
makes correlation effects more important. In addition the 
screening of the electron-electron interaction is less effec­
tive for the surface atoms, and this increases the value 
of the Hubbard U. Although the basic mechanisms are 
easily identified for why correlation effects are more im­
portant at the surface, we provide here a quantitative 
measure of this effect.

The spectral density of the nickel 5-layer slab is pre­
sented in Fig. 14 along high-symmetry directions of the 
two-dimensional Brillouin zone. For well-defined quasi­
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FIG. 22: (Color online) Spectral density of bcc iron (001) surface modelled by the 5-layer slab and with different values of U 
for atoms belonging to different layers of the slab (from LDA+DMFT with MT correlated orbitals at T =  400 K).

e (eV) e (eV)

FIG. 23: (Color online) Real part of the self energy for bcc 
iron (001) surface modelled by the 5-layer slab and with dif­
ferent values of U for atoms belonging to different layers of 
the slab. Both majority and minority spins for the surface 
atom (labelled ”1 of 5”) are reported and compared to the 
values calculated in the simulation with constant U (from 
LDA+DMFT with MT correlated orbitals at T =  400 K).

FIG. 24: (Color online) Real part of the self energy for bcc 
iron (001) surface modelled by the 5-layer slab and with dif­
ferent values of U for atoms belonging to different layers of 
the slab. Both majority and minority spins for the surface 
atom (labelled ”1 of 5”) are reported and compared to the 
values calculated in the simulation with constant U (from 
LDA+DMFT with MT correlated orbitals at T =  400 K).

particles, each band of the bulk nickel splits into five 
bands for the 5-layer slab. Some of the bands are surface 
states, while the rest joins into the bulk continuum when 
the number of atomic layers go to infinity. In Fig. 14, it 
is already possible to observe the surface states (isolated 
bands) and the hint of the bulk continuum formation 
(several bands tha t are very close to each other).

Similar results are obtained for the fcc cobalt (111) 
surface and for bcc iron (0 0 1 ) surface, whose self ener­

gies are respectively shown in Figs. 15-16 and in Figs. 
18-19. We can notice two main differences with respect to 
the results for the nickel: for the m ajority spin the shift 
of the peak and the increase of its depth for the atoms on 
the surface are stronger, while for the minority spin the 
correlation effects are, somewhat surprisingly, decreased 
(slightly for Co and strongly for Fe). In Fig. 21 we can 
observe the real part of the self energies for the atoms on 
the iron surface, compared to the bulk values. It is espe­
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cially interesting tha t for the surface layer the self energy 
of minority spin states is considerably suppressed, which 
leads to the fact tha t the satellite at -7 .  5 eV is almost 
totally polarized and possesses m ajority spin charachter. 
In Figs. 17 and 20 we show the spectral densities for the 
surfaces of Co and Fe, and the effects of the change of 
the imaginary parts of E with respect to the bulk are 
clearly evident in the difference of the definition of the 
quasi-particle bands for m ajority and minority spins.

Finally we have to notice tha t the choice of the values 
of U, already non trivial for the bulk materials, becomes 
more problematic for the surfaces, where the screening is 
much smaller. To analyze this problem, we have tried to 
model the bcc Fe (001) surface with different values of U 
for atoms belonging to different layers, namely U =  2.3 
for the inner layer, U =  2.4 for the intermediate one 
and U =  3.0 for the external one. In Figs. 23 and 24 
we respectively show the real and the imaginary part of 
the self energy for the external atoms. In comparison to 
the previous calculation we do not observe any drastic 
effect, but mainly a reasonable increasing of the peaks 
and a small shift of the -7 .5  eV satellite. This makes 
the satellite more pronounced in the density of states. 
The spectral densities are reported in Fig. 22.

smeared band structure). The main correlation effects in 
iron, cobalt and nickel are observed for the majority spin 
electrons and they include strong quasiparticle damping 
for at about -  7 eV, narrowing of the d-band (compared 
to LDA/GGA) and the appearance of a DOS satellite at 
about -7 .  5 eV, which is a non-quasiparticle feature.

The calculations for Ni and Co (111) surfaces and 
for Fe (001) surface show tha t the electron self energy 
depends mostly on the local coordination number, with 
the atoms in the second layer from the surface already 
being similar to the bulk. Hence our calculations suggest 
tha t the effect of correlations should be different for the 
surfaces of these elements, compared to the bulk. In 
addition, the spectral density of the Ni (111) surface 
show both bulk and surface states. The question “How 
do the correlation effects depend on the dimensionality 
of the problem?” still needs further investigation, 
however, and the the LDA+DMFT studies of slabs of 
different thickness and nanowires are the subject of the 
future research.

A CK NO W LEDGEM ENTS

IV. CONCLUSION

In this paper we have introduced the new full-potential 
LDA+DM FT code BRIANNA and we have applied it to 
the correlated electronic structure of bulk Fe, Co, Ni, 
and the fcc Co and Ni (111) surface, and the bcc Fe 
(001) surface. The calculated self energies, DOS and the 
spectral densities are presented. The spectral density 
plots show the corelated electronic structure in the most 
clear way, as the k-resolved DOS (or, equivalently, as the
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