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e-m ail address : pieter@cs.ru.nl
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A b s t r a c t .  In this paper we show how to generate terms in the A-calculus that match a 
given number of function argument result pairs. It appears that the number of A-terms 
is too large to find terms reasonably fast based on the grammar of A-calculus alone. By 
adding knowledge such as the desired number of arguments it is possible to synthesize 
A-terms effectively for some interesting examples. This yields surprising terms that are 
unlikely to be found by a human.

An interesting subproblem is the determination of suitability of candidate terms based 
on equivalence of terms. We used an approximation of equivalence by a finite number 
of reduction steps. This implies that the test for equivalence can also yield the value 
undefined. Fortunately the test system used is able to handle undefined test results.

F o r  H e n k  B a r e n d r e g t  o n  h is  s i x t i e th  b ir th d a y

1. I n t r o d u c t io n

In  com pu ter science one often  looks for reducts  of A-expressions (th e  A-expression is 
seen as a functional p rogram  represen ting  th e  desired value), or general p roperties  of A- 
calculus (like th e  fam ous C hurch-R osser p roperty ). T he co nstruc tion  of A-terms possessing 
som e desirable p ro p e rty  is com m only done m anually. In  th is  p ap er we describe a technique 
to  synthesize such A-terms au tom atically . T ypical exam ples are: find a te rm  Y  such th a t  
Vf. Y  f  =  f  ( Y  f  ), or find a te rm  s such th a t  Vn >  0 .s  n  =  Y ^i= 0 i  T his technique can 
be used to  find ra th e r com plicated  term s, or term s th a t  are not very in tu itive. A lthough 
th e  (m athem atical) exam ples shown in th is  p ap e r are m erely a p roof of concept. T here 
exists also serious app lications of th is  kind of synthesis techniques, like th e  generalization  of 
behavior in adap tive  system s. In  th is  p ap e r we concen tra te  on un typed  A-terms as described 
by B arendreg t in [1] ex tended  w ith  num bers and  som e operations on num bers. See [3] for 
an  in tro d u ctio n  to  ty p ed  A-calculus.
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T he approach  to  generate  A-terms obeying some p ro p e rty  is inspired by our previous 
work [9]. In  th a t  p ap er we described how one can  synthesize functions m atch ing  a p ro p erty  
such as /  4 =  5 A /  5 =  8. In  general th ere  are um p teen  functions m atch ing  a given 
set of in p u t-o u tp u t pairs. In  p rogram  synthesis it is our goal to  find sm all functions th a t  
generalize th e  given behavior. We prefer a nonrecursive function  over a recursive function, 
and  a recursive function  is highly preferred  over a sequence of conditionals th a t  exactly  
coincides w ith  th e  given argum ent result pairs (like /  x  =  if (x = =  4) 5 (if ( x  = =  5) 8 0)). 
T he approach  in [9] is to  define a d a ta  ty p e  th a t  represen ts th e  g ram m ar of th e  can d id a te  
functions, for our exam ple prim itive recursive functions of ty p e  i n t ^ i n t  will do. Using th e  
generic generation  of instances of th is  type, ab s tra c t sy n tax  trees of can d id a te  functions are 
g enerated  [8]. Such a sy n tax  tree  is tu rn ed  in to  th e  equivalent function . T he su itab ility  
of these functions is determ ined  by th e  au to m atic  te s t system  GVst [7]. T he te s t system  
is used to  find functions /  m atch ing  th e  desired property , by s ta tin g  th a t  such a function  
does no t exists, e.g. V / . - ( /  4 =  5 A /  5 =  8). T he counterexam ples found by GVst are 
exactly  th e  functions w anted. For /  4 =  5 A /  5 =  8 th e  te s t system  finds th e  function  
f x = if  (x< 1) 1 (f(x -2)+f(x- 1  )), th e  well known F ibonacci function.

In  th is  p ap e r we do not define a specific g ram m ar for can d id a te  functions, since we w ant 
to  find o rd in ary  A-terms m atch ing  th e  given property . For th e  synthesis of A-terms we s ta r t 
w ith  th e  sam e approach. F irs t we define a d a ta  ty p e  represen ting  A-terms and  synthesize 
instances of th is  ty p e  from  sm all to  large as cand ida tes. T hen  we check w ith  th e  tes t 
system  if these instances of th e  d a ta  ty p e  represen t a function  (A-term) obeying th e  given 
constra in ts . However, th e re  are some significant differences com pared to  th e  generation  of 
th e  functions m entioned above. These difference corresponds to  problem s th a t  needs to  be 
tackled in o rder to  m ake th e  system atic  synthesis of A-terms work. F irs t, th e  te rm in a tio n  
of co m pu ta tions needed to  d eterm ine th e  su itab ility  of can d id a te  A-terms is an  issue. In  
th e  generation  of o rd inary  functions, we co n stru c ted  th e  functions such th a t  te rm in a tio n  of 
reduction  is g uaran teed . In  our new approach  it is no t possible to  gu aran tee  te rm in a tio n  
of reduction  w ith o u t to o  serious restric tions on th e  te rm s considered. Second, in order 
to  o b ta in  in teresting  A-terms (corresponding to  recursive functions) it is essential to  have 
higher o rder functions. T he use of higher o rder and  p o ten tia lly  non term in atin g  expressions 
m akes th e  equivalence of A-terms an  issue. T heoretically  it is known th a t  th e  equivalence of 
A-terms is in general undecidable. T h ird , th e  A-terms corresponding  to  recursive functions 
like th e  F ibonacci function  m entioned above are re la tive large as well. T his is caused by 
th e  fine gra in  co m pu ta tions in A-calculus. E xperience shows th a t  th e  num ber of can d id a te  
te rm s to  be considered becom es im prac tica lly  large. Hence we need som e guidance in th e  
generation  of can d id a te  term s. A fo u rth  difference w ith  previous work is th a t  we will use 
also logical p roperties like Vx, y  . k  x  y  =  x  instead  of only in p u t-o u tp u t pairs like k  1 2  =  1.

P rob lem  one and  tw o are covered by using norm al order (left m ost) single step  reduction  
in th e  com parison of equations. If equivalence is no t found in a given num ber of steps, th e  
equivalence is decided to  be u n d e f in e d .  T he te s t system  GVst is well equipped  to  handle 
these undefined te s t results. T he th ird  problem  is handled  by a sim ple yet effective and 
flexible generation  a lgorithm  for can d id a te  term s. A lthough  th e  d a ta  ty p e  used allows 
m ore term s, th e  syn thesization  a lgorithm  used generates only instances of a g ram m ar th a t  
allows a sm aller num ber of term s. Since we still hand le  term s prescrib ing p o ten tia lly  infinite 
com pu tations, transfo rm ing  th e  term s to  o rd inary  expressions and  evalua ting  these is unsafe. 
For th e  reduction  a lgorithm  however, it is crucial th a t  all term s used are described by a 
sm all and  sim ple d a ta  type.
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In  th e  rem ainder of th is  p ap er we first give a quick overview of tes tin g  logical p roperties 
using th e  te s t too l GVst. In  section 3 we in troduce th e  d a ta  s tru c tu re  th a t  will be used to  
represent A-terms. T h e  equivalence of A-terms is tre a te d  in section 4. N ext we use th e  
generic a lgorithm  from  GVst to  generate  A-terms in section 5 and  look a t th e  effectiveness of 
th is  approach  w ith  some exam ples. In  section 6 we in troduce m ore effective algorithm s to  
generate  A-terms m atch ing  a given condition . Finally, th e re  is a conclusion and  a discussion 
of re la ted  work in section 7.

2. T e s t in g  l o g ic a l  p r o p e r t ie s  w it h  t h e  t e s t  t o o l  GVst

T he te s t system  GVst checks properties in first o rder logic by evaluating  th e  p ro p erty  
for a (large) num ber of argum ents. GVst is im plem ented as a lib rary  for th e  functional 
p rogram m ing language Clean [10]. T his lib rary  provides op era to rs  corresponding  to  th e  
logical o p era to rs  from  logic as well as a class of functions called te s t  to  check properties.

T he te s t system  tre a ts  every o rd inary  function  argum ent as a universally  quantified  
variable if th e  function  is used as a logicalproperty. C onsider th e  function  pAbs n = abs n > 0, 
w here abs is a function  from  th e  s tan d a rd  lib rary  th a t  com putes th e  abso lu te  value of 
in teger argum ents. T his function  is in te rp re ted  by GVst as th e  p ro p erty  Vn G In t . pAbs n. 
By unfolding th e  function  defin ition  th is  is Vn G In t . abs n  >  0. T his p ro p e rty  can  be tes ted  
by executing  S ta rt = te s t  pAbs. B y th e  ty p e  of th e  function  pAbs to  be te s ted  in t ^  Bool, 
th e  te s t system  determ ines th a t  th e  p ro p e rty  should be evaluated  for a large num ber of 
integers. These te s t values are synthesized system atically  (from  sm all to  large for recursive 
types) by th e  generic function  ggen. If GVst finds a counterexam ple w ith in  th e  first maxTest 
tests , th e  te s t resu lt is ce. A p art from  th is  te s t result, th e  te s t system  gives also inform ation  
ab o u t th e  counterexam ple found (like th e  num ber of tes ts  done and  th e  values used to  find 
th is  counterexam ple). maxTest is th e  defau lt num ber of tests , by defau lt 1000. I t is easy 
to  change th is  num ber in general or in a specific te s t. O therw ise, th e  resu lt is ok if GVst 
de tec ts  th a t  th e  num ber of te s t values is less th a n  maxTest and  th e  p ro p erty  holds for all 
these te s t values. If no coun terexam ple is found in th e  first maxTest te s ts  and  th e re  are m ore 
th a n  maxTest values in th e  list generated  by ggen, th e  te s t resu lt is Pass. T he te s t resu lt Pass 
is weaker th en  ok: doing add itional te s t m ight show a coun ter exam ple if th e  resu lt is Pass, 
while ok ind icates p roof by exhaustive testing .

In  th e  exam ple pAbs n = abs n>  0 th e  te s t system  finds a counterexam ple corresponding 
to  th e  m inim um  integer value in th e  dom ain  for te s t  pAbs. T he instance of th e  generic te s t 
su ite  generato r, ggen, for integers generates te s t values like 0, 1 , - 1 , m axin t, and  m inin t th a t  
are known to  cause often  issues som ew here in th e  beginning of each te s t su ite  for integers.

W ith  th e  o p era to r 3 we can  te s t ex isten tially  qualified expressions like 3 x . / x  =  x. T he 
o p era to r 3 takes a function  as a rgum ent. T he ty p e  of th e  argum ent determ ines th e  ty p e  of 
te s t argum ents generated  by ggen in GVst. In  th e  exam ple pFix above, we used a nam eless 
function  (A-expression) as argum ent for th e  o p e ra to r 3. C om pared w ith  th e  o rd inary  logical 
n o ta tio n , we have to  w rite  only an  add itional A betw een 3 and  th e  variable. O f course one 
can  use any function  as argum ent for th e  o p era to r 3. C lean’s ty p e  inference system  detec ts 
in th is  exam ple th a t  x m ust be an  integer. Hence, GVst will generate  in teger values.

T he te s t system  GVst is used to  handle undefined values. For any function  f : : In t ^  Int 
we can  te s t if th e  function  has a fixed poin t ( 3 x . / x  =  x) by defining th e  p roperty :
pFix :: (Int ^  In t) ^  Property
pFix f = 3 Ax. f x==x / /  the type o f x is determ ined by the context, here In t
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We can  te s t if th e  function  g x = x+1 has a fixed po in t by executing  S ta rt = te s t  (pFix g). 
T he te s t system  generates a fixed num ber of in teger values (by defau lt 500) and  checks if 
one of these values m akes g x==x tru e . If such a value does no t occur th e  te s t system  can 
ne ither decide th a t  th e  p ro p e rty  holds, nor th a t  th e re  is a counterexam ple. T he te s t system  
uses th e  value Undef to  ind icate  th a t  a positive te s t resu lt has no t been encountered  w ith in  
th e  te s ts  to  be done, b u t such a value m ight exist. Hence, th e  possible te s t resu lts are:
: : Result = Pass | OK | CE | Undef

T he difference betw een th is te s t system  and  a m odel checker is th a t  th e  te s t system  
evaluates p roperties  using th e  o rd inary  evaluation  m echanism . A m odel checker uses an  
ab s trac tio n  of th e  system  (th e  m odel) as basis for reasoning ra th e r th a n  ac tua l code. A 
m odel checker uses also ab s tra c t evaluating  steps to  check th e  valid ity  of th e  m odel (e.g. 
V x . x  =  x ). T his im plies th a t  a m odel checker is able to  prove properties th a t  can 
only be tes ted  p artia lly  by a te s t system . A dvantages of a te s t system  are th a t  no sep ara te  
m odel is needed and  th a t  th e  ac tu a l code is used ra th e r  th a n  a m odel of th is code.

3. A  data  t y p e  t o  r e p r e s e n t  A-t e r m s

T he first step  is to  co n stru c t a d a ta  ty p e  to  represen t A-terms. A p a rt from  variables, 
ab strac tio n , and  app lica tion  we in troduce num erical co n stan ts  and  construc to rs  Plus and 
I f  for a prim itive ad d ition  and  conditional in th e  te rm s trea ted . We use th e  functional 
p rogram m ing language Clean for th e  algorithm s in th is  paper.
:: Expr = Var V | Abs V Expr | Ap Expr Expr | Const C | Plus | I f  / /  A-expression  
: : V = V In t / /  variable
: : C = C In t / /  constant

T he add itiona l types V and  c are superfluous for th e  sy n tax  trees describ ing A-terms, b u t 
are convenient to  control th e  generation  of variables and  constan ts.

A lthough th a t  it is known th a t  th e  num erical co n stan ts  and th e  co n stan ts  Plus and 
I f  are th eo re tica l superfluous [1], it is convenient to  in troduce them . T he use of these 
co n stan ts  m akes co m pu ta tions m uch m ore efficient. M oreover, th is  rep resen ta tion  is m uch 
m ore com pact th a n  th e  rep resen ta tio n  of co n stan ts  by C hurch num bers.

By using ta ilo r m ade instances of th e  generic show function, instances of these types 
can  be p rin ted  as usual in A-calculus. T h e  te rm  Abs (V 1) (Ap (Var (V 0)) (Ap (Var (V 1)) 
(Var (V 1 )))) will be p rin ted  as Ab.a (b b). T his is m ore com pact and  b e tte r  readable.

4. E q u iv a l en c e  o f  A-t e r m s  and  r e d u c t io n

A key step  in th e  search for A-terms is d e te rm in a tio n  of th e  equivalence of term s. 
Looking for som e te rm  I  such th a t  I  x  =  x  th e  system  needs to  be able to  determ ine th a t  
(Aa.a) x  and  x  are equivalent. If  we w rite  N  =  M  we m ean equality  m odulo  reduction: 
N  = ß  M . T he term s M  and  N  are ß-convertib le  if th ey  are equal, if one reduces to  th e  
o th er (i.e. M  ^ ß  N  or N  ^ ß  M ), or th e re  is a com m on reduct L of M  and  N  (i.e. 
3L G A .M  ^ ß  L A N  ^ ß  L ). In  general checking w hether N  = ß  M  is undecidable [1].

T he undecidab ility  of convertib ility  does no t im ply th a t  it is im possible to  look for 
equivalent term s. I t ju s t says th a t  th e re  are term s w here th e  convertib ility  is unknow n. For 
m any te rm s we can  d eterm ine w hether th ey  are convertib le by reducing th em  a finite num ber 
of steps. We will use th e  norm al order (left m ost) reduction  s tra teg y  for these reductions
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since it is known to  find a norm al form  if it exists [1]. If we find a com m on reduct (m odulo 
a-conversion) w ith in  th is  finite num ber of reduction  steps th e  te rm s are clearly  convertible. 
If we o b ta in  unequal norm al form s th e  te rm s are obviously not convertible. If one of th e  
te rm s shows a cyclic reduction  (like w w where w =  Ax.x x  th a t  has th e  p ro p e rty  th a t  
w w ^ ß  w w) and  th e  o th er is no t a redex th e  te rm s are also unconvertib le . In  all o th er 
s itu a tio n  th e  convertib ility  is considered to  be undefined.

To reduce th e  space consum ption  in th is  p ap er we will only list th e  rules for th e  t ra d i­
tional A-calculus here and  ignore th e  constan ts . A dding co n stan ts  is straigh tforw ard: two 
co n stan ts  are convertib le if th ey  are syn tactica lly  equal, otherw ise th ey  are unconvertible. A 
co n stan t is unconvertib le to  any o th e r te rm  in norm al form. T he convertib ility  of a constan t 
to  a redex is undefined. T he system  will do a finite num ber of reduction  steps to  determ ine 
if it is possible to  determ ine convertibility. We use th e  co n stru c to r ok from  th e  ty p e  Result 
to  represen t convertib ility  and  ce to  ind icate  inconvertibility.

A single reduction  step  on an  expression is done by th e  function  hnf1 : : Expr ^  (Bool, Expr). 
T he B oolean in th e  resu lting  tu p le  ind icates w hether a reduction  step  is done.
hnf1 :: Expr ^  (Bool, Expr)
hnf1 (Ap (Abs v e )  a) = (True, sub e v a)
hnf1 (Ap n a)

J ( r , m) = hnf1 n / /  the symbol #  introduces a le t  defin ition  in  Clean 
= ( r  , Ap m a)

hnf1 e = (False, e) / /  reduction to  weak head norm al fo rm : no reduction under an abstraction.

T he notion  of su b stitu tio n , e[v :=  a], in A-calculus is im plem ented as sub e v a. T he function  
sub : : Expr V Expr ^  Expr replaces each free occurrence of th e  second argum ent in th e  first 
a rgum ent by th e  th ird  argum ent.
sub m=:(Var v) x n = if  (v==x) n m 
sub m=:(Abs y e )  x n 

| x==y
= m / /  stop substitu tion , every occurrence o f x in  m bound by th is A x.

| isMember y (freeVars n) / /  x =  y : m akes this A y an undesirable binding in  m?
= Abs v (sub (sub e y (Var v) ) x n) / /  yes, renam e y to  v in  m before actual substitu tion  
= Abs y (sub e x n) / /  no, continue w ith substitu tion  in  e

where v = newVar startV al [ x : freeVars m++freeVars n ] / /  a fr e sh  variable 
sub (Ap f a) x n = Ap (sub f x n) (sub a x n) 
sub m x n = m

T he function  freeVars yields a list con tain ing  th e  free variables in th e  given expression. T he 
expression newVar n l  yields th e  first variable s ta rtin g  a t V n th a t  does no t occur in th e  list 
of variables l. T his is used to  prevent undesirab le  b inding of variables in exam ples such as 
Aa.a 6[6 :=  a  c]. B y th e  renam ing  of variables th is  is transfo rm ed  to  Ad.d 6[6 :=  a  c].

T he com plete function  hnf1 also contains a lte rna tives for th e  co n stan ts  Plus and  If. 
W hen  b o th  argum ents of th e  Plus are co n stan ts  th e  expression is replaced by a new constan t, 
o therw ise hnf1 tries to  evaluate  argum ents of th e  add ition . For th e  conditional expression 
num bers are in te rp re ted  as B ooleans. P ositive num bers are  in te rp re ted  as th e  B oolean 
value True, all o th er values as False. If th e  su b term  c in a te rm  Ap (Ap (ap I f  c) t )  e is not 
a co n stan t, th e  functions hnf1 tries to  reduce it.

As a first step  to  determ ine convertib ility  we define a-equality . Tw o expressions are 
a -eq u a l (resu lt ok) if th ey  can  be m ade identical by a-conversion of variables in troduced  by 
ab strac tio n s  w ith in  th e  expressions. If th e  expressions are not a -eq u al and  are no t in norm al
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form  th e  resu lt is undefined (Undef). O therw ise th e  expressions are  clearly  no t a -equal, and 
th e  resu lt is ce.
alphaEQ : : Expr Expr ^  Result
alphaEQ (Var x) (Var y) = if  (x==y) OK CE 
alphaEQ (Var x) (Abs v e )  = CE 
alphaEQ (Abs v e) (Var y) = CE 
alphaEQ (Abs x e1) (Abs y e2)

| x == y
= alphaEQ e1 e2 

| not (isMember x (freeVars e2))
= alphaEQ e1 (sub e2 y (Var x)) / /  a-conversion: e2[y:=x]

| not (isMember y (freeVars e1))
= alphaEQ (sub e1 x (Var y )) e2 / /  a-conversion: e1[x:=y]
= alphaEQ (sub e1 x (Var v)) (sub e2 y (Var v)) / /  a-conversion: e1[x:=v] and e2[y:=v] 

where v = newVar startV al (freeVars e1++freeVars e2) / /  a fresh  variable 
alphaEQ e1=:(Ap f x) e2=:(Ap g y)
= case alphaEQ f g of

OK = case alphaEQ x y of
CE = if (isRedex e1 || isRedex e2) Undef CE 
r  = r

CE = if (isRedex e1 || isRedex e2) Undef CE 
Undef = Undef 

alphaEQ e1 e2 = Undef

T he equivalence (convertab ity) of expressions is determ ined  by th e  infix o p era to r = .

( =  ) infix 4 :: Expr Expr ^  Result 
(= )  x y = redEQ maxReductions [x] [y]

T he co n stan t maxReductions determ ines th e  m axim um  num ber of reductions done on th e  
expressions. T his is a trade-off betw een speed and  th e  ab ility  to  d eterm ine th e  convertib ility  
of expressions. In  th e  te s ts  rep o rted  in th is  p ap er th e  value 500 was used to  full satisfaction. 
If we use exam ples w here m ore reductions are needed to  d eterm ine equality, th e  constan t 
maxReductions should be increased. For m ost exam ples a value of 50 is m ore th a n  enough. 
T he real work to  d eterm ine convertib ility  is done by redEQ.

T he function  redEQ gets th e  num ber of reduction  steps to  be done and  two stacks of 
expressions as argum ents. If  th e  num ber of steps to  be done is zero, th e  resu lt of determ in ing  
equality  is Undef unless one of th e  te rm s shows cyclic reduction  and  th e  o th e r is in head 
norm al form  (in th a t  case th e  resu lt is ce). If th e  num ber of steps to  be done is no t zero, th e  
function  redEQ determ ines a -eq u a lity  of th e  to p  of one stack  (th e  m ost recent expression) 
and  one of th e  elem ents in th e  o th er stack  is unequal to  Undef. Any resu lts unequal to  Undef 
determ ines th e  resu lt of redEQ. If all com parisons for a -eq u a lity  yield Undef, we try  to  reduce 
th e  m ost recent expressions one single step . If such a reduction  is possible for a t least one 
of th e  term s, th e  function  redEQ continues recursively w ith  th e  new expressions. O therw ise 
we decom pose an  app lica tion  or ab s trac tio n  if it occurs in b o th  expressions to  be com pared, 
and  continue w ith  th e  fragm ents of th e  expressions to  be com pared. In  all o th er situations 
th e  given expressions are unequal u nder reduction: th e  resu lt is ce.
redEQ : : In t [Expr] [Expr] ^  Result 
redEQ n lx=: [x :xs] ly = :[y :ys]

| n==0
| (isMem x xs == OK && —(isRedex y)) || (isMem y ys == OK && —(isRedex x))
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= CE 
= Undef 

J rx = isMem x ly 
| rx =  Undef 

= rx
J ry = isMem y lx 
| ry =  Undef 

= ry
J (bx,x1) = hnf1 x 

(by,y1) = hnf1 y 
| bx && by = redEQ (n-1) [x1:lx ] [y1:ly ]
| bx = redEQ (n-1) [x1:lx ] ly 
| by = redEQ (n-1) lx  [y1:ly ] 

redEQ n lx = :[Ap f a :xs] ly=: [Ap g b :ys]
| redEQ (n/2) [f ] [g] == OK

| isMem a lx  == OK | | isMem b ly  == 
= Undef
= redEQ (n/2) [a] [b] 

redEQ n lx=: [Abs a c :xs] ly=: [Abs b d :ys]
| isMem c xs == OK | | isMem d ys == OK 

= Undef 
| a==b

= redEQ (n-1) [c ] [ d]
J v = newVar startV al (freeVars c ++ 
= redEQ (n-1) [sub c a (Var v )] [sub 

redEQ n lx  ly 
= CE

/ /  n =  0; check i f  x = a y or one o f its  ancestors

/ /  check i f  y = a x or one o f its  ancestors

/ /  single step  reduction o f  x 
/ /  single step  reduction o f  y 
/ /  x and y are reduced 
/ /  only x could be reduced 
/ /  only y could be reduced 
/ /  x and y are applications in  h n f  
/ /  compare left argum ents o f applications 

OK// on a cycle?

/ /  compare right argum ents o f applications 
/ /  x and y are abstractions 
/ /  on a cycle?

/ /  compare bodies o f the abstractions 
freeVars d) 
d b (Var v)]

T he function  isMem looks for a resu lt unequal to  Undef in th e  list of results. If such a value 
exists, th e  resu lt of th e  app lica tion  is th e  value of th e  first list elem ent unequal to  Undef, 
otherw ise th e  resu lt is Undef.
isMem x [ ] = Undef 
isMem x [a: r]

= case alphaEQ x a of 
Undef = isMem x r  
re su lt = re su lt

T his is sufficient to  com pare A-terms. In  a num ber of exam ples th e  resu lt of com parison 
m ight be undefined, b u t for each p ro p erty  th e  te s t system  will generate  a lot of te s t a r­
gum ents. U sually  some of these a rgum ents will show w hether th e  p ro p e rty  holds or not. 
Some im provem ents of th e  a lgorithm  to  com pare expressions are possible. For instance, 
expressions w ith  a different type, such as Aa. a and  0, will always be unequal.

5. G e n e r ic  g e n e r a t io n  o f  A-t e r m s

In  order to  find A-terms m atch ing  som e property , th e  te s t system  needs to  generate  
can d id a te  expressions. Since GVst contains a generic a lgorithm  to  generate  th e  m em bers 
of a type, we can  com pletely derive th e  generation  of cand ida tes. In  order to  lim it th e  
search space (and  hence speed up  th e  finding of m atch ing  A-terms) we lim it th e  num ber of 
variables to  3, and  use only th e  often occurring  co n stan ts  - 1 , 1  and  2:
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ggen { V } n r  = map V [ 0 . . 2 ] 
ggen { C } n r  = map C [-1, 1, 2 ]

T he generation  of expressions is done by th e  generic algorithm . We derive an  instance of 
th is  a lgorithm  for th is  ty p e  by:
derive ggen Expr

If we w ould have used th e  generic a lgorithm  to  derive th e  generation  of values for th e  types
V and  c, values like V minint and  c maxint w ould have been generated . We considered th is 
undesirab le  in th is  s itu a tio n  and  hence we used a ta ilo r m ade instance of ggen for these 
types. T his is all we need to  get s ta rted .

5.1. S om e exam p les. L e t’s s ta r t  w ith  a very sim ple exam ple: a A-term  i w ith  th e  p ro p erty  
V x .ix  = ß  x. We s ta te  th a t  such a te rm  does no t exist: V i G A .-V x  G A ( ix  = ß  x). T he 
te s t system  will try  to  find counterexam ples of th is  p roperties. T he coun terexam ple found 
are exactly  th e  A-terms obeying i x  = ß  x. T h e  p ro p e rty  expressed in GVst reads.

pI : : Expr ^  Property 
pI i  = —(V Ax.Ap i  x =  x)

GVst uses th e  generic a lgorithm  to  generate  can d id a te  expressions for i and  d. T he first 
ten  iden tity  functions found by te s tin g  th is  p ro p erty  are: Aa.a, Ab.b, Ac. c, (Aa.a) (Aa.a), 
Aa .((Ab. a) Plus), Ab .((Aa. a) b ) , Ab.(( Aa. b) P lus), Aa.(( Ab. a) (Aa. a ) ) , and  Aa. ((Ac . a) Plus). 
For these ten  m atch ing  A-terms th e  system  had  to  generate  only 464 can d id a te  expressions. 
N ote th a t  we use here a p ro p e rty  w ith  a universal quan tifier ra th e r  th a n  some in p u t-o u tp u t 
pairs (like i  1 =  1 , i  (Aa. a) =  Aa.a and  i  ((Aa. a a) (Aa. a a)) =  (Aa.a a) (Aa. a a)). A fter 
th e  p rep ara tio n s described above, GVst is very well capable of te s tin g  th is  kind of p ro p er­
ties. In  our opinion th e  p ro p e rty  shown above is clearer and  m ore elegant th a n  th e  explicit 
in p u t-o u tp u t pairs of th e  function  i. O f course it is still possible to  search for functions 
using in p u t-o u tp u t pairs.

In  th e  sam e sp irit we can  look for te rm s represen ting  th e  K -com binato r by:
pK : : Expr ^  Property
pK k = —(V Ax y .Ap (Ap k x) y =  x)

As expected  th e  system  produces te rm s like Aa. Ab. a and  Ab .Aa. b w ith in  th e  sam e num ber of 
cand ida tes. T he system  finds also some less obvious te rm s like Aa. Ab.(Aa. a) a and  I f  - 1.

For functions th a t  only have to  work on argum ents of a specific type, e.g. num eric 
co n stan ts  of th e  form  Const (c i ) ,  th e  V o p e ra to r will generate  undesired  argum ents if th e  
ty p e  of a rgum ents is Expr. I t is no t relevant to  know w hat a plus o p era to r does on free 
variables or argum ents like Aa. a, hence we should exclude th em  from  th e  p ro p e rty  and  th e  
tests . T his problem  can  easily be tack led  by using a quan tifica tion  over ty p e  In t and  th e  
needed ty p e  conversion in th e  property .
pPlus : : Expr ^  Property
pPlus p = —(V Aa b .Ap (Ap p (Const (C a ))) (Const (C b )) =  Const (C (afb)))

T his will p roduce correct A-terms for p like Plus, (Aa. a) Plus, Aa.Plus a, Aa.Plus b, (Aa.Plus) a, 
and  (Aa.Plus) (-1  - 1). If we do not w ant to  use all integers in th e  p ro p erty  or have only 
specific in p u t-o u tp u t com bination  available, th e  p ro p e rty  will no t con ta in  a V -operator. We 
use th e  given in p u t-o u tp u t pairs in th e  property . For exam ple:
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pF1 : : Expr — Result
pF1 p = —( f 1 1 1  &&& f 2 2 4  &&& f 3 3 6 )
where f a b c = Ap (Ap p (Const (C a ))) (Const (C b )) =  Const (C c)

T he o p era to r &&& is th e  logical and for values of ty p e  Result. M atch ing  A-terms found are 
Aa. Ab.( Plus b) b, Aa. Ab.( Plus a) b, Aa. Ab.( Plus b) a, and  Aa .Ab.( Plus (( Plus b) b )) 0.

A lthough these exam ples work fine, th ey  show also th a t  expressions are generated  
th a t  are usually  considered undesirab le  like Aa. Plus b (w here b is a free variable) and 
(Aa.Plus) (-1  - 1) (w ith  th e  co n stan t -1  a t a function  position). In  these exam ples these 
te rm s are only curious, b u t th ey  do occupy space in th e  search space and  hence tim e during  
th e  search for th e  desired A-terms. If we search A-terms im plem enting  th e  Y -com binators 
by testing :
pY : : Expr — Property
pY y = —(V Af.Ap y f =  Ap f (Ap y f ))

no success is found in th e  first 1 ,000 ,000  tes ts . T he search space is sim ply too  large to  find 
a su itab le  te rm  in a reasonable tim e.

6. S m a r t e r  g e n e r a t io n  o f  A-t e r m s

T here  are  um p teen  way to  reduce th e  search space. A n u n a ttra c tiv e  a lte rn a tiv e  is to  
reject cand ida tes th a t  represent w rongly ty p ed  A-terms in a property , as these te rm s will 
still be generated  and  hence consum e resources. I t will be b e tte r  to  prevent th e  generation  
of term s th a t  are clearly  unsu itab le . Take care not to  elim inate th e  w anted term s. In  th is 
section we describe an  approach  to  generate  b e tte r  can d id a te  term s.

W ith  a few sim ple restric tions we can  generate  m uch b e tte r  can d id a te  A-terms. F irs t, we 
will always generate  a num ber of ab strac tio n s  th a t  corresponds to  th e  num ber of argum ents 
needed by th e  function  a t hand . Second, th e re  is no need to  generate  open  A-terms. In  
th e  generation  we keep track  of th e  bound  variables and  only generate  th em  a t applied 
occurrences. In  principle th a t  can  be fu rth e r im proved by keeping track  of th e  ty p e  of these 
variables, as done by K a tay am a [6]. T h ird , we will generate  th e  right num ber of argum ents 
for co n stan ts  like Plus and  If . F orth , it is useless to  generate  num erical co n stan ts  as first 
a rgum ent of an  Ap. F ifth , if th e  righ t co n stan ts  are generated  th en  th ere  is no need to  
generate  com plex subexpressions con tain ing  only constan ts.

For pY defined above we clearly  need a h igher o rder function. Hence we add  th e  in tro ­
duction  of new ab strac tio n s in th e  generated  expressions. T he function  ho generates higher 
order can d id a te  functions. T he first a rgum ent of ho is th e  num ber of argum ents needed, th e  
second argum ent a list of th e  bound  variables, and  th e  last a rgum ent th e  nam e (num ber) 
of th e  next argum ent.
ho : : In t [V] In t —— [Expr]
ho 0 vs x = r
where

r  = l  |. [Const (C i)  \ \  i ^ [ - 1, 1 ]] 
l  = [Var v \ \  v ^  vs]

|. [Ap e1 e2 \ \  (e1,e2) ^  diag2 l  r ]
|. [Abs (V x) e \ \ e  ^  ho 0 [V x : vs] (x+1 )]
| . [Ap (Ap Plus e1) e2 \ \  (e1,e2) ^  diag2 l  r ] 

ho i  vs x = [Abs (V x) e \ \  e ^  ho ( i - 1) [V x : vs] (x+1 )]
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As a g ram m ar th is  is:

ho n  m  =  Avn . . .  Av1 . r

w here r  =  l | — 1 | 1

l =  vm | . . .  | v 1 | l r  | Avn+1 . h o 0 (m  +  1) | (P lu s  l) r

T he infix o p e ra to r |  . m erges tw o lists in to  a single list by tak in g  elem ents from  th e  argum ent 
lists in tu rn .
( | .) in fix l 4 :: [x] [x] — [x]
( | .) [ a : x ] y = [ a : y | . x] / /  no te  the swap o f argum ent 
(| . ) [] y = y

Now th e  first 1 ,000 ,000  cand ida tes generated  con tain  7 Y -com binators. Some exam ples are 
Aa .(Ab. b b) (Ab. a (b b ) ) , Aa.( Ab. a (b b )) (Ab. a (b b ) ) , and  Aa.(( Ab. b) (Ab. b b )) (Ab. a (b b )).

M ost in teresting  functions are recursive. However, th is  does no t im ply th a t  we need to  
g enerate  higher order A-terms. I t  is sufficient to  generate  te rm s con tain ing  an  app lica tion  of 
a predefined Y -com binator. M oreover, for recursive functions th a t  yield a nonrecursive type, 
like In t, it is essential to  con tain  a stop  condition . T h a t is, afte r th e  Y -com binator th ere  
should be a conditional (an  If)  before th e  recursive occurrence of th e  recursive function. 
T his is exactly  w ha t th e  g enera to r of A-terms fun does.
fun : : In t — [ Expr ]
fun n = [abs 1 n e \ \  e ^  r  []] | . [Ap exprY (abs 0 (n+1) e) \ \  e ^  rFun] 
where

vars = [ Var (V v) \ \  v ^  [ 1.. n ]] / /  V 0 is the recursive fu n  i f  i t  exists
r  c = [Const (C i)  \ \  i  ^  [-1, 1,-2]] | . e c
e c = vars | . [Ap (Ap Plus e1) e2 \ \  (e1,e2) ^  diag2 (e c) (r c )] | . c 
rFun = [Ap (Ap (Ap I f  c) t)  e

\ \  (c , t , e) ^  diag3 simple (e (rApp n )) ([Const (C i)  \ \  i  ^  [0,1]] | . v a rs)] 
rApp 0 = [ Var ( V 0 ) ]
rApp n = [Ap f a \ \ ( f  ,a ) ^  diag2 (rApp (n-1 )) simple]
simple = vars | . [Ap (Ap Plus v) c \ \ ( v ,c)^d iag2  vars [Const (C i)  \ \  i  ^  [-1 ,-2 ]]] 
abs n 0 e = e
abs n m e = Abs (V n) (abs (n+1) (m-1) e)

U sing th is generation  function  we will look for a te rm  th a t  im plem ents m u ltip lication  by 
repea ted  add ition . Since we w ant to  prevent (very) large values as a rgum ents for th is 
m u ltip lication  function  (it is O (n )), we select som e te s t values m anually  ra th e r th a n  using 
a quan tifica tion  over all integers. 
pTimes p = —(f 0 3 &&& f 2 4 &&& f 7 5 &&& f 3 0)
where f a b  = Ap (Ap p (Const (C a ))) (Const (C b )) =  Const (C (a*b))

We look for 2-argum ent te rm s generated  by th e  function  fun by tes tin g  pTimes For (fun 2). 
T he system  produces m u ltip lica tion  functions for non-negative num bers of th e  form:

Y (Aa.Ab.Ac. ( ( I f  c) ((Plus ((a ((Plus c) -1 )) b)) b)) 0),
Y (Aa.Ab.Ac. ( ( I f  c) ((Plus ((a ((Plus c) -1 )) b)) b)) c)

and  te rm s th a t  a hum an  is m ore likely to  w rite
Y (Aa.Ab.Ac. ( ( I f  c) ((Plus ( ( a b )  ((Plus c) -1 )))  b)) 0),
Y ((Aa.Ab.Ac. ( ( I f  b) ((Plus ((a ((Plus b) -1 )) c)) c)) 0)
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In  these expressions we use y as abb rev ia tion  of th e  te rm  (Aa.(Ab.a (b b)) (Ab.a (b b))).  T he 
first tw o term s are som ew hat peculiar due to  th e  swap of argum ents. As a d irect recursive 
function  th e  second te rm  is:
f b c = if (c > 0) (b+f (c -1) b) c

A lthough th is  function  looks ex trao rd in ary  th ro u g h  th e  swap of argum ents, it com putes th e  
desired p ro d u c t of non-negative argum ents.

Term s for s n  =  ^™=o i are found by tes tin g  pSum For (fun 1) w ith

pSum p = —(f 3 &&& f 5) where f a = Ap p (Const (C a)) =  Const (C (sum [ 1.. a ]))

T he first te rm  found is Y (Aa.Ab. ( ( I f  b) ((Plus (a ((Plus b) -1  ))) b)) 0).
In  th e  sam e way we can  look for A-terms m atch ing  ƒ 4 =  5 A ƒ 5 =  8 from  th e  

in troductions by looking for counterexam ples for:
pFib p = —(f 4 5 &&& f 5 8) where f a b  = Ap p (Const (C a )) =  Const (C b)

T he first solutions found by te s tin g  pFib For (fun 1) are no t th e  F ibonacci function  found 
in our earlier work, b u t nonrecursive te rm s such as

Ab.(Plus ((Plus ((Plus ((Plus ((Plus b) -1 )) -1 )) -1 )) b))
((Plus ((Plus ((Plus ((Plus b) -1  )) -1  )) -1  )) -1)

and  som e single-recursive te rm  like
Y (Aa.Ab.( ( I f  ((Plus b) -2 ))  ((Plus (a ((Plus b) -1  ))) ((Plus ((Plus b) -1 ))-1 )) )  b)

C ounterexam ple 13 found a fte r 1583 te s t is th e  first (double-recursive) F ibonacci function:

Y (Aa.Ab.( ( I f  ((Plus b) -1  )) ((Plus (a ((Plus b) -2) ) )  (a ((Plus b)-1 )))) 1)

B y adding  ƒ 6 =  13 to  th e  p a tte rn s  to  be m atched , th is  is th e  first te rm  found.
T he speed of generating  and  te s tin g  can d id a te  functions depends strongly  on th e  con­

d ition  th a t  has to  be evaluated  and  th e  size of th e  expression. O n a ra th e r slow (1GHz) 
W indow s X P  lap to p  we m easured a speed of 500 to  200,000 can d id a te  te rm s per second.

7. D isc u ssio n  a n d  r e l a t e d  w o r k

In  th is p ap er we d em o n stra te  th a t  it is possible to  find A-terms m atch ing  some condition  
by system atic  synthesis of can d id a te  expressions. Since we w ant to  be able to  find te rm s like 
th e  Y -com binator, re s tric tin g  ourselves to  te rm in a tin g  expressions is no option. T his im plies 
th a t  tes tin g  th e  su itab ility  of a can d id a te  expression is ra th e r  delicate . T he equivalence of 
te rm s is know n to  be undecidable. In  th is  p ap e r we used a sim ple approxim ation : a finite 
(and  ra th e r  sm all) norm al order reduction  steps are done on th e  te rm s to  be com pared. 
If th e  reduction  sequences contains elem ents th a t  are a -eq u al th e  te rm s are obviously a -  
equivalent. If  th e  term s are unequal norm al form s th e  te rm s are non-equivalent. O therw ise 
th e  equivalence has th e  value u n d e fin e d .

It appears th a t  th e  num ber of A-terms is to o  large to  find m ost in teresting  te rm s by 
b ru te  force search in reasonable tim e. We have in troduced  tw o ra th e r  sim ple b u t effective 
generato rs for expressions. T he first one generates higher order te rm s like th e  fam ous Y  - 
com binator. T he second one generates (recursive) functions like m u ltip lication  by repeated  
ad d ition  and  th e  F ibonacci function. B y using ty p e  in form ation  it is possible to  generate  
can d id a te  functions even m ore effectively. K a tay am a [6] uses th is  in his generation  of 
functions m atch ing  exam ples. He generates only first o rder term s, all o th er th ings (like 
recursion) have to  be defined as a recursion p a tte rn  in a lib rary  of p rim itive functions.
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B ro d a  [5] and  W ang [11] discuss algorithm s to  generate  A-terms random ly. B ro d a  uses a 
g ram m ar to  specify th e  ty p e  of th e  term s, som ew hat sim ilar to  our generation  functions. 
H enk B arendreg t has touched  th e  generation  of A-terms v ia enum eration  in [1, 2, 4].

B y adding  co n stru c ts  like th e  Y -com binato r and  m ultip lication  to  th e  term s, th e  gen­
e ra ted  te rm s becom e m ore powerful. Hence com plex functions will be found quicker.

W ith o u t th e  struggle for non term ination , it is m ore elegant to  in troduce a ty p e  class 
eval to  evaluate  instances of various g ram m ars represen ted  as ty p e  [9]. T he g ram m ar of th e  
can d id a te  te rm s can th en  elegantly  and  effectively be determ ined  by m ore specific types. 
T he types control th e  generation  of can d id a te  functions a t a h igher level of ab s trac tio n  th a n  
th e  generation  functions used in section 6. W hen  in term ed ia te  term s in th e  reduction  need 
to  be com pared, as needed to  com pare A-terms for equivalence, th is  is no t possible.

W e find A-terms generalizing th e  behavior of th e  given in p u t-o u tp u t pairs or properties. 
B o th  th e  obvious functions and  m ore surprising  A-terms are synthesized. If  th e  goal is to  
find only prim itive recursive functions th e  d irec t approach  in [9] is m ore effective. This 
p ap e r shows th a t  it is possible to  find th e  prim itive recursive functions as well as o th er 
A-termslike th e  Y -com binator. T he advan tage of th e  approach  in troduced  in th is  p ap e r is 
th a t  it is able to  synthesize A-terms for general p roperties  w ith o u t th e  need to  define a very 
precise g ram m ar for th e  can d id a te  functions. Some guidance is needed to  find larger term s, 
b u t th e  generato rs m ight p roduce to ta lly  w rong cand ida tes (like ill-typed  term s or term s 
w ith  non term in atin g  reduction  sequences) w ith o u t causing any troub le.

A c k n o w l e d g e m e n t

T he au th o rs  wish to  th a n k  th e  anonym ous referees, th e  ed ito rs and  P e te r  A chten for 
th e ir  suggestions to  im prove th is  paper.

R e f e r e n c e s

[1] H. Barendregt. The Lam bda Calculus, its S yn ta x  and Sem antics. Revised edition, volume 103 of Stud ies  
in  Logic. North-Holland, 1984.

[2] H. Barendregt. Enumerators of lambda terms are reducing. J. Funct. Program., 2(2):233-236, 1992.
[3] H. Barendregt. Lambda calculi with types. In M. Abramsky, Gabbay, editor, Handbook o f Logic in  

C om puter Science, volume 2. Oxford university press, 1992.
[4] H. Barendregt. Enumerators of lambda terms are reducing constructively. A nn . Pure A ppl. Logic, 

73(1):3-9, 1995.
[5] S. Broda and L. Damas. Generating normal inhabitants of types with a common structure. Technical 

Report DCC-2001-1, DCC-FC & LIACC, Universidade do Porto.
[6] S. Katayama. Systematic search for lambda expressions. In Proceedings S ix th  Sym posium  on Trends in  

F unctional Program m ing (T F P 2005), pages 195-205, 2005.
[7] P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic automated software testing. 

In R. Pena and T. Arts, editors, The 14th In terna tiona l W orkshop on the Im p lem en ta tion  o f F unctional 
Languages, I F L ’02, Selected Papers, volume 2670 of L N C S, pages 84-100. Springer, 2003.

[8] P. Koopman and R. Plasmeijer. Generic Generation of Elements of Types. In Proceedings S ix th  S y m ­
posium  on Trends in  F unctional Program m ing (T F P 2005), Tallin, Estonia, Sep 23-24 2005.

[9] P. Koopman and R. Plasmeijer. Systematic Synthesis of Functions. In H. Nilsson, editor, Proceedings 
S even th  Sym posium  on Trends in  F unctional Program ming, T F P  2006, pages 68-83, Nottingham, UK, 
The University of Nottingham, April 19-21 2006.

[10] R. Plasmeijer and M. van Eekelen. C oncurrent C L E A N  Language R eport (version 2.0), December 2001. 
http://www.cs.ru.nl/~clean/.

[11] J. Wang. Generating random lambda calculus terms. Master’s thesis, Boston University, 2005.

12

http://www.cs.ru.nl/~clean/

