
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/36536

Please be advised that this information was generated on 2018-07-07 and may be subject to

change.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Radboud Repository

https://core.ac.uk/display/16123667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/36536

SY STEM A TIC SY N TH ESIS OF A-TERMS

PIETER KOOPMAN AND RINUS PLASMEIJER

Institute for Computing and Information Sciences, Radboud University Nijmegen, The Nether
lands
e-m ail address : pieter@cs.ru.nl

Institute for Computing and Information Sciences, Radboud University Nijmegen, The Nether
lands
e-m ail address : rinus@cs.ru.nl

A b s t r a c t . In this paper we show how to generate terms in the A-calculus that match a
given number of function argument result pairs. It appears that the number of A-terms
is too large to find terms reasonably fast based on the grammar of A-calculus alone. By
adding knowledge such as the desired number of arguments it is possible to synthesize
A-terms effectively for some interesting examples. This yields surprising terms that are
unlikely to be found by a human.

An interesting subproblem is the determination of suitability of candidate terms based
on equivalence of terms. We used an approximation of equivalence by a finite number
of reduction steps. This implies that the test for equivalence can also yield the value
undefined. Fortunately the test system used is able to handle undefined test results.

F o r H e n k B a r e n d r e g t o n h is s i x t i e th b ir th d a y

1. I n t r o d u c t io n

In com pu ter science one often looks for reducts of A-expressions (th e A-expression is
seen as a functional p rogram represen ting th e desired value), or general p roperties of A-
calculus (like th e fam ous C hurch-R osser p roperty). T he co nstruc tion of A-terms possessing
som e desirable p ro p e rty is com m only done m anually. In th is p ap er we describe a technique
to synthesize such A-terms au tom atically . T ypical exam ples are: find a te rm Y such th a t
Vf. Y f = f (Y f), or find a te rm s such th a t Vn > 0 .s n = Y ^i= 0 i T his technique can
be used to find ra th e r com plicated term s, or term s th a t are not very in tu itive. A lthough
th e (m athem atical) exam ples shown in th is p ap e r are m erely a p roof of concept. T here
exists also serious app lications of th is kind of synthesis techniques, like th e generalization of
behavior in adap tive system s. In th is p ap e r we concen tra te on un typed A-terms as described
by B arendreg t in [1] ex tended w ith num bers and som e operations on num bers. See [3] for
an in tro d u ctio n to ty p ed A-calculus.

2000 A C M Subject C lassification: D.1.2, I.2.2.
K ey words and phrases: Program Synthesis, Automatic Programming, A-Terms, programming by

example.

LOGICAL METHODS © Koopman and Plasmeijer
IN COMPUTER SCIENCE DOI:10.2168/LMCS-??? Creative Commons

1

mailto:pieter@cs.ru.nl
mailto:rinus@cs.ru.nl

T he approach to generate A-terms obeying some p ro p e rty is inspired by our previous
work [9]. In th a t p ap er we described how one can synthesize functions m atch ing a p ro p erty
such as / 4 = 5 A / 5 = 8. In general th ere are um p teen functions m atch ing a given
set of in p u t-o u tp u t pairs. In p rogram synthesis it is our goal to find sm all functions th a t
generalize th e given behavior. We prefer a nonrecursive function over a recursive function,
and a recursive function is highly preferred over a sequence of conditionals th a t exactly
coincides w ith th e given argum ent result pairs (like / x = if (x = = 4) 5 (if (x = = 5) 8 0)).
T he approach in [9] is to define a d a ta ty p e th a t represen ts th e g ram m ar of th e can d id a te
functions, for our exam ple prim itive recursive functions of ty p e i n t ^ i n t will do. Using th e
generic generation of instances of th is type, ab s tra c t sy n tax trees of can d id a te functions are
g enerated [8]. Such a sy n tax tree is tu rn ed in to th e equivalent function . T he su itab ility
of these functions is determ ined by th e au to m atic te s t system GVst [7]. T he te s t system
is used to find functions / m atch ing th e desired property , by s ta tin g th a t such a function
does no t exists, e.g. V / . - (/ 4 = 5 A / 5 = 8). T he counterexam ples found by GVst are
exactly th e functions w anted. For / 4 = 5 A / 5 = 8 th e te s t system finds th e function
f x = if (x< 1) 1 (f(x -2)+f(x- 1)), th e well known F ibonacci function.

In th is p ap e r we do not define a specific g ram m ar for can d id a te functions, since we w ant
to find o rd in ary A-terms m atch ing th e given property . For th e synthesis of A-terms we s ta r t
w ith th e sam e approach. F irs t we define a d a ta ty p e represen ting A-terms and synthesize
instances of th is ty p e from sm all to large as cand ida tes. T hen we check w ith th e tes t
system if these instances of th e d a ta ty p e represen t a function (A-term) obeying th e given
constra in ts . However, th e re are some significant differences com pared to th e generation of
th e functions m entioned above. These difference corresponds to problem s th a t needs to be
tackled in o rder to m ake th e system atic synthesis of A-terms work. F irs t, th e te rm in a tio n
of co m pu ta tions needed to d eterm ine th e su itab ility of can d id a te A-terms is an issue. In
th e generation of o rd inary functions, we co n stru c ted th e functions such th a t te rm in a tio n of
reduction is g uaran teed . In our new approach it is no t possible to gu aran tee te rm in a tio n
of reduction w ith o u t to o serious restric tions on th e te rm s considered. Second, in order
to o b ta in in teresting A-terms (corresponding to recursive functions) it is essential to have
higher o rder functions. T he use of higher o rder and p o ten tia lly non term in atin g expressions
m akes th e equivalence of A-terms an issue. T heoretically it is known th a t th e equivalence of
A-terms is in general undecidable. T h ird , th e A-terms corresponding to recursive functions
like th e F ibonacci function m entioned above are re la tive large as well. T his is caused by
th e fine gra in co m pu ta tions in A-calculus. E xperience shows th a t th e num ber of can d id a te
te rm s to be considered becom es im prac tica lly large. Hence we need som e guidance in th e
generation of can d id a te term s. A fo u rth difference w ith previous work is th a t we will use
also logical p roperties like Vx, y . k x y = x instead of only in p u t-o u tp u t pairs like k 1 2 = 1.

P rob lem one and tw o are covered by using norm al order (left m ost) single step reduction
in th e com parison of equations. If equivalence is no t found in a given num ber of steps, th e
equivalence is decided to be u n d e f in e d . T he te s t system GVst is well equipped to handle
these undefined te s t results. T he th ird problem is handled by a sim ple yet effective and
flexible generation a lgorithm for can d id a te term s. A lthough th e d a ta ty p e used allows
m ore term s, th e syn thesization a lgorithm used generates only instances of a g ram m ar th a t
allows a sm aller num ber of term s. Since we still hand le term s prescrib ing p o ten tia lly infinite
com pu tations, transfo rm ing th e term s to o rd inary expressions and evalua ting these is unsafe.
For th e reduction a lgorithm however, it is crucial th a t all term s used are described by a
sm all and sim ple d a ta type.

2

In th e rem ainder of th is p ap er we first give a quick overview of tes tin g logical p roperties
using th e te s t too l GVst. In section 3 we in troduce th e d a ta s tru c tu re th a t will be used to
represent A-terms. T h e equivalence of A-terms is tre a te d in section 4. N ext we use th e
generic a lgorithm from GVst to generate A-terms in section 5 and look a t th e effectiveness of
th is approach w ith some exam ples. In section 6 we in troduce m ore effective algorithm s to
generate A-terms m atch ing a given condition . Finally, th e re is a conclusion and a discussion
of re la ted work in section 7.

2. T e s t in g l o g ic a l p r o p e r t ie s w it h t h e t e s t t o o l GVst

T he te s t system GVst checks properties in first o rder logic by evaluating th e p ro p erty
for a (large) num ber of argum ents. GVst is im plem ented as a lib rary for th e functional
p rogram m ing language Clean [10]. T his lib rary provides op era to rs corresponding to th e
logical o p era to rs from logic as well as a class of functions called te s t to check properties.

T he te s t system tre a ts every o rd inary function argum ent as a universally quantified
variable if th e function is used as a logicalproperty. C onsider th e function pAbs n = abs n > 0,
w here abs is a function from th e s tan d a rd lib rary th a t com putes th e abso lu te value of
in teger argum ents. T his function is in te rp re ted by GVst as th e p ro p erty Vn G In t . pAbs n.
By unfolding th e function defin ition th is is Vn G In t . abs n > 0. T his p ro p e rty can be tes ted
by executing S ta rt = te s t pAbs. B y th e ty p e of th e function pAbs to be te s ted in t ^ Bool,
th e te s t system determ ines th a t th e p ro p e rty should be evaluated for a large num ber of
integers. These te s t values are synthesized system atically (from sm all to large for recursive
types) by th e generic function ggen. If GVst finds a counterexam ple w ith in th e first maxTest
tests , th e te s t resu lt is ce. A p art from th is te s t result, th e te s t system gives also inform ation
ab o u t th e counterexam ple found (like th e num ber of tes ts done and th e values used to find
th is counterexam ple). maxTest is th e defau lt num ber of tests , by defau lt 1000. I t is easy
to change th is num ber in general or in a specific te s t. O therw ise, th e resu lt is ok if GVst
de tec ts th a t th e num ber of te s t values is less th a n maxTest and th e p ro p erty holds for all
these te s t values. If no coun terexam ple is found in th e first maxTest te s ts and th e re are m ore
th a n maxTest values in th e list generated by ggen, th e te s t resu lt is Pass. T he te s t resu lt Pass
is weaker th en ok: doing add itional te s t m ight show a coun ter exam ple if th e resu lt is Pass,
while ok ind icates p roof by exhaustive testing .

In th e exam ple pAbs n = abs n> 0 th e te s t system finds a counterexam ple corresponding
to th e m inim um integer value in th e dom ain for te s t pAbs. T he instance of th e generic te s t
su ite generato r, ggen, for integers generates te s t values like 0, 1 , - 1 , m axin t, and m inin t th a t
are known to cause often issues som ew here in th e beginning of each te s t su ite for integers.

W ith th e o p era to r 3 we can te s t ex isten tially qualified expressions like 3 x . / x = x. T he
o p era to r 3 takes a function as a rgum ent. T he ty p e of th e argum ent determ ines th e ty p e of
te s t argum ents generated by ggen in GVst. In th e exam ple pFix above, we used a nam eless
function (A-expression) as argum ent for th e o p e ra to r 3. C om pared w ith th e o rd inary logical
n o ta tio n , we have to w rite only an add itional A betw een 3 and th e variable. O f course one
can use any function as argum ent for th e o p era to r 3. C lean’s ty p e inference system detec ts
in th is exam ple th a t x m ust be an integer. Hence, GVst will generate in teger values.

T he te s t system GVst is used to handle undefined values. For any function f : : In t ^ Int
we can te s t if th e function has a fixed poin t (3 x . / x = x) by defining th e p roperty :
pFix :: (Int ^ In t) ^ Property
pFix f = 3 Ax. f x==x / / the type o f x is determ ined by the context, here In t

3

We can te s t if th e function g x = x+1 has a fixed po in t by executing S ta rt = te s t (pFix g).
T he te s t system generates a fixed num ber of in teger values (by defau lt 500) and checks if
one of these values m akes g x==x tru e . If such a value does no t occur th e te s t system can
ne ither decide th a t th e p ro p e rty holds, nor th a t th e re is a counterexam ple. T he te s t system
uses th e value Undef to ind icate th a t a positive te s t resu lt has no t been encountered w ith in
th e te s ts to be done, b u t such a value m ight exist. Hence, th e possible te s t resu lts are:
: : Result = Pass | OK | CE | Undef

T he difference betw een th is te s t system and a m odel checker is th a t th e te s t system
evaluates p roperties using th e o rd inary evaluation m echanism . A m odel checker uses an
ab s trac tio n of th e system (th e m odel) as basis for reasoning ra th e r th a n ac tua l code. A
m odel checker uses also ab s tra c t evaluating steps to check th e valid ity of th e m odel (e.g.
V x . x = x). T his im plies th a t a m odel checker is able to prove properties th a t can
only be tes ted p artia lly by a te s t system . A dvantages of a te s t system are th a t no sep ara te
m odel is needed and th a t th e ac tu a l code is used ra th e r th a n a m odel of th is code.

3. A data t y p e t o r e p r e s e n t A-t e r m s

T he first step is to co n stru c t a d a ta ty p e to represen t A-terms. A p a rt from variables,
ab strac tio n , and app lica tion we in troduce num erical co n stan ts and construc to rs Plus and
I f for a prim itive ad d ition and conditional in th e te rm s trea ted . We use th e functional
p rogram m ing language Clean for th e algorithm s in th is paper.
:: Expr = Var V | Abs V Expr | Ap Expr Expr | Const C | Plus | I f / / A-expression
: : V = V In t / / variable
: : C = C In t / / constant

T he add itiona l types V and c are superfluous for th e sy n tax trees describ ing A-terms, b u t
are convenient to control th e generation of variables and constan ts.

A lthough th a t it is known th a t th e num erical co n stan ts and th e co n stan ts Plus and
I f are th eo re tica l superfluous [1], it is convenient to in troduce them . T he use of these
co n stan ts m akes co m pu ta tions m uch m ore efficient. M oreover, th is rep resen ta tion is m uch
m ore com pact th a n th e rep resen ta tio n of co n stan ts by C hurch num bers.

By using ta ilo r m ade instances of th e generic show function, instances of these types
can be p rin ted as usual in A-calculus. T h e te rm Abs (V 1) (Ap (Var (V 0)) (Ap (Var (V 1))
(Var (V 1)))) will be p rin ted as Ab.a (b b). T his is m ore com pact and b e tte r readable.

4. E q u iv a l en c e o f A-t e r m s and r e d u c t io n

A key step in th e search for A-terms is d e te rm in a tio n of th e equivalence of term s.
Looking for som e te rm I such th a t I x = x th e system needs to be able to determ ine th a t
(Aa.a) x and x are equivalent. If we w rite N = M we m ean equality m odulo reduction:
N = ß M . T he term s M and N are ß-convertib le if th ey are equal, if one reduces to th e
o th er (i.e. M ^ ß N or N ^ ß M), or th e re is a com m on reduct L of M and N (i.e.
3L G A .M ^ ß L A N ^ ß L). In general checking w hether N = ß M is undecidable [1].

T he undecidab ility of convertib ility does no t im ply th a t it is im possible to look for
equivalent term s. I t ju s t says th a t th e re are term s w here th e convertib ility is unknow n. For
m any te rm s we can d eterm ine w hether th ey are convertib le by reducing th em a finite num ber
of steps. We will use th e norm al order (left m ost) reduction s tra teg y for these reductions

4

since it is known to find a norm al form if it exists [1]. If we find a com m on reduct (m odulo
a-conversion) w ith in th is finite num ber of reduction steps th e te rm s are clearly convertible.
If we o b ta in unequal norm al form s th e te rm s are obviously not convertible. If one of th e
te rm s shows a cyclic reduction (like w w where w = Ax.x x th a t has th e p ro p e rty th a t
w w ^ ß w w) and th e o th er is no t a redex th e te rm s are also unconvertib le . In all o th er
s itu a tio n th e convertib ility is considered to be undefined.

To reduce th e space consum ption in th is p ap er we will only list th e rules for th e t ra d i
tional A-calculus here and ignore th e constan ts . A dding co n stan ts is straigh tforw ard: two
co n stan ts are convertib le if th ey are syn tactica lly equal, otherw ise th ey are unconvertible. A
co n stan t is unconvertib le to any o th e r te rm in norm al form. T he convertib ility of a constan t
to a redex is undefined. T he system will do a finite num ber of reduction steps to determ ine
if it is possible to determ ine convertibility. We use th e co n stru c to r ok from th e ty p e Result
to represen t convertib ility and ce to ind icate inconvertibility.

A single reduction step on an expression is done by th e function hnf1 : : Expr ^ (Bool, Expr).
T he B oolean in th e resu lting tu p le ind icates w hether a reduction step is done.
hnf1 :: Expr ^ (Bool, Expr)
hnf1 (Ap (Abs v e) a) = (True, sub e v a)
hnf1 (Ap n a)

J (r , m) = hnf1 n / / the symbol # introduces a le t defin ition in Clean
= (r , Ap m a)

hnf1 e = (False, e) / / reduction to weak head norm al fo rm : no reduction under an abstraction.

T he notion of su b stitu tio n , e[v := a], in A-calculus is im plem ented as sub e v a. T he function
sub : : Expr V Expr ^ Expr replaces each free occurrence of th e second argum ent in th e first
a rgum ent by th e th ird argum ent.
sub m=:(Var v) x n = if (v==x) n m
sub m=:(Abs y e) x n

| x==y
= m / / stop substitu tion , every occurrence o f x in m bound by th is A x.

| isMember y (freeVars n) / / x = y : m akes this A y an undesirable binding in m?
= Abs v (sub (sub e y (Var v)) x n) / / yes, renam e y to v in m before actual substitu tion
= Abs y (sub e x n) / / no, continue w ith substitu tion in e

where v = newVar startV al [x : freeVars m++freeVars n] / / a fr e sh variable
sub (Ap f a) x n = Ap (sub f x n) (sub a x n)
sub m x n = m

T he function freeVars yields a list con tain ing th e free variables in th e given expression. T he
expression newVar n l yields th e first variable s ta rtin g a t V n th a t does no t occur in th e list
of variables l. T his is used to prevent undesirab le b inding of variables in exam ples such as
Aa.a 6[6 := a c]. B y th e renam ing of variables th is is transfo rm ed to Ad.d 6[6 := a c].

T he com plete function hnf1 also contains a lte rna tives for th e co n stan ts Plus and If.
W hen b o th argum ents of th e Plus are co n stan ts th e expression is replaced by a new constan t,
o therw ise hnf1 tries to evaluate argum ents of th e add ition . For th e conditional expression
num bers are in te rp re ted as B ooleans. P ositive num bers are in te rp re ted as th e B oolean
value True, all o th er values as False. If th e su b term c in a te rm Ap (Ap (ap I f c) t) e is not
a co n stan t, th e functions hnf1 tries to reduce it.

As a first step to determ ine convertib ility we define a-equality . Tw o expressions are
a -eq u a l (resu lt ok) if th ey can be m ade identical by a-conversion of variables in troduced by
ab strac tio n s w ith in th e expressions. If th e expressions are not a -eq u al and are no t in norm al

5

form th e resu lt is undefined (Undef). O therw ise th e expressions are clearly no t a -equal, and
th e resu lt is ce.
alphaEQ : : Expr Expr ^ Result
alphaEQ (Var x) (Var y) = if (x==y) OK CE
alphaEQ (Var x) (Abs v e) = CE
alphaEQ (Abs v e) (Var y) = CE
alphaEQ (Abs x e1) (Abs y e2)

| x == y
= alphaEQ e1 e2

| not (isMember x (freeVars e2))
= alphaEQ e1 (sub e2 y (Var x)) / / a-conversion: e2[y:=x]

| not (isMember y (freeVars e1))
= alphaEQ (sub e1 x (Var y)) e2 / / a-conversion: e1[x:=y]
= alphaEQ (sub e1 x (Var v)) (sub e2 y (Var v)) / / a-conversion: e1[x:=v] and e2[y:=v]

where v = newVar startV al (freeVars e1++freeVars e2) / / a fresh variable
alphaEQ e1=:(Ap f x) e2=:(Ap g y)
= case alphaEQ f g of

OK = case alphaEQ x y of
CE = if (isRedex e1 || isRedex e2) Undef CE
r = r

CE = if (isRedex e1 || isRedex e2) Undef CE
Undef = Undef

alphaEQ e1 e2 = Undef

T he equivalence (convertab ity) of expressions is determ ined by th e infix o p era to r = .

(=) infix 4 :: Expr Expr ^ Result
(=) x y = redEQ maxReductions [x] [y]

T he co n stan t maxReductions determ ines th e m axim um num ber of reductions done on th e
expressions. T his is a trade-off betw een speed and th e ab ility to d eterm ine th e convertib ility
of expressions. In th e te s ts rep o rted in th is p ap er th e value 500 was used to full satisfaction.
If we use exam ples w here m ore reductions are needed to d eterm ine equality, th e constan t
maxReductions should be increased. For m ost exam ples a value of 50 is m ore th a n enough.
T he real work to d eterm ine convertib ility is done by redEQ.

T he function redEQ gets th e num ber of reduction steps to be done and two stacks of
expressions as argum ents. If th e num ber of steps to be done is zero, th e resu lt of determ in ing
equality is Undef unless one of th e te rm s shows cyclic reduction and th e o th e r is in head
norm al form (in th a t case th e resu lt is ce). If th e num ber of steps to be done is no t zero, th e
function redEQ determ ines a -eq u a lity of th e to p of one stack (th e m ost recent expression)
and one of th e elem ents in th e o th er stack is unequal to Undef. Any resu lts unequal to Undef
determ ines th e resu lt of redEQ. If all com parisons for a -eq u a lity yield Undef, we try to reduce
th e m ost recent expressions one single step . If such a reduction is possible for a t least one
of th e term s, th e function redEQ continues recursively w ith th e new expressions. O therw ise
we decom pose an app lica tion or ab s trac tio n if it occurs in b o th expressions to be com pared,
and continue w ith th e fragm ents of th e expressions to be com pared. In all o th er situations
th e given expressions are unequal u nder reduction: th e resu lt is ce.
redEQ : : In t [Expr] [Expr] ^ Result
redEQ n lx=: [x :xs] ly = :[y :ys]

| n==0
| (isMem x xs == OK && —(isRedex y)) || (isMem y ys == OK && —(isRedex x))

6

= CE
= Undef

J rx = isMem x ly
| rx = Undef

= rx
J ry = isMem y lx
| ry = Undef

= ry
J (bx,x1) = hnf1 x

(by,y1) = hnf1 y
| bx && by = redEQ (n-1) [x1:lx] [y1:ly]
| bx = redEQ (n-1) [x1:lx] ly
| by = redEQ (n-1) lx [y1:ly]

redEQ n lx = :[Ap f a :xs] ly=: [Ap g b :ys]
| redEQ (n/2) [f] [g] == OK

| isMem a lx == OK | | isMem b ly ==
= Undef
= redEQ (n/2) [a] [b]

redEQ n lx=: [Abs a c :xs] ly=: [Abs b d :ys]
| isMem c xs == OK | | isMem d ys == OK

= Undef
| a==b

= redEQ (n-1) [c] [d]
J v = newVar startV al (freeVars c ++
= redEQ (n-1) [sub c a (Var v)] [sub

redEQ n lx ly
= CE

/ / n = 0; check i f x = a y or one o f its ancestors

/ / check i f y = a x or one o f its ancestors

/ / single step reduction o f x
/ / single step reduction o f y
/ / x and y are reduced
/ / only x could be reduced
/ / only y could be reduced
/ / x and y are applications in h n f
/ / compare left argum ents o f applications

OK// on a cycle?

/ / compare right argum ents o f applications
/ / x and y are abstractions
/ / on a cycle?

/ / compare bodies o f the abstractions
freeVars d)
d b (Var v)]

T he function isMem looks for a resu lt unequal to Undef in th e list of results. If such a value
exists, th e resu lt of th e app lica tion is th e value of th e first list elem ent unequal to Undef,
otherw ise th e resu lt is Undef.
isMem x [] = Undef
isMem x [a: r]

= case alphaEQ x a of
Undef = isMem x r
re su lt = re su lt

T his is sufficient to com pare A-terms. In a num ber of exam ples th e resu lt of com parison
m ight be undefined, b u t for each p ro p erty th e te s t system will generate a lot of te s t a r
gum ents. U sually some of these a rgum ents will show w hether th e p ro p e rty holds or not.
Some im provem ents of th e a lgorithm to com pare expressions are possible. For instance,
expressions w ith a different type, such as Aa. a and 0, will always be unequal.

5. G e n e r ic g e n e r a t io n o f A-t e r m s

In order to find A-terms m atch ing som e property , th e te s t system needs to generate
can d id a te expressions. Since GVst contains a generic a lgorithm to generate th e m em bers
of a type, we can com pletely derive th e generation of cand ida tes. In order to lim it th e
search space (and hence speed up th e finding of m atch ing A-terms) we lim it th e num ber of
variables to 3, and use only th e often occurring co n stan ts - 1 , 1 and 2:

7

ggen { V } n r = map V [0 . . 2]
ggen { C } n r = map C [-1, 1, 2]

T he generation of expressions is done by th e generic algorithm . We derive an instance of
th is a lgorithm for th is ty p e by:
derive ggen Expr

If we w ould have used th e generic a lgorithm to derive th e generation of values for th e types
V and c, values like V minint and c maxint w ould have been generated . We considered th is
undesirab le in th is s itu a tio n and hence we used a ta ilo r m ade instance of ggen for these
types. T his is all we need to get s ta rted .

5.1. S om e exam p les. L e t’s s ta r t w ith a very sim ple exam ple: a A-term i w ith th e p ro p erty
V x .ix = ß x. We s ta te th a t such a te rm does no t exist: V i G A .-V x G A (ix = ß x). T he
te s t system will try to find counterexam ples of th is p roperties. T he coun terexam ple found
are exactly th e A-terms obeying i x = ß x. T h e p ro p e rty expressed in GVst reads.

pI : : Expr ^ Property
pI i = —(V Ax.Ap i x = x)

GVst uses th e generic a lgorithm to generate can d id a te expressions for i and d. T he first
ten iden tity functions found by te s tin g th is p ro p erty are: Aa.a, Ab.b, Ac. c, (Aa.a) (Aa.a),
Aa .((Ab. a) Plus), Ab .((Aa. a) b) , Ab.((Aa. b) P lus), Aa.((Ab. a) (Aa. a)) , and Aa. ((Ac . a) Plus).
For these ten m atch ing A-terms th e system had to generate only 464 can d id a te expressions.
N ote th a t we use here a p ro p e rty w ith a universal quan tifier ra th e r th a n some in p u t-o u tp u t
pairs (like i 1 = 1 , i (Aa. a) = Aa.a and i ((Aa. a a) (Aa. a a)) = (Aa.a a) (Aa. a a)). A fter
th e p rep ara tio n s described above, GVst is very well capable of te s tin g th is kind of p ro p er
ties. In our opinion th e p ro p e rty shown above is clearer and m ore elegant th a n th e explicit
in p u t-o u tp u t pairs of th e function i. O f course it is still possible to search for functions
using in p u t-o u tp u t pairs.

In th e sam e sp irit we can look for te rm s represen ting th e K -com binato r by:
pK : : Expr ^ Property
pK k = —(V Ax y .Ap (Ap k x) y = x)

As expected th e system produces te rm s like Aa. Ab. a and Ab .Aa. b w ith in th e sam e num ber of
cand ida tes. T he system finds also some less obvious te rm s like Aa. Ab.(Aa. a) a and I f - 1.

For functions th a t only have to work on argum ents of a specific type, e.g. num eric
co n stan ts of th e form Const (c i) , th e V o p e ra to r will generate undesired argum ents if th e
ty p e of a rgum ents is Expr. I t is no t relevant to know w hat a plus o p era to r does on free
variables or argum ents like Aa. a, hence we should exclude th em from th e p ro p e rty and th e
tests . T his problem can easily be tack led by using a quan tifica tion over ty p e In t and th e
needed ty p e conversion in th e property .
pPlus : : Expr ^ Property
pPlus p = —(V Aa b .Ap (Ap p (Const (C a))) (Const (C b)) = Const (C (afb)))

T his will p roduce correct A-terms for p like Plus, (Aa. a) Plus, Aa.Plus a, Aa.Plus b, (Aa.Plus) a,
and (Aa.Plus) (-1 - 1). If we do not w ant to use all integers in th e p ro p erty or have only
specific in p u t-o u tp u t com bination available, th e p ro p e rty will no t con ta in a V -operator. We
use th e given in p u t-o u tp u t pairs in th e property . For exam ple:

8

pF1 : : Expr — Result
pF1 p = —(f 1 1 1 &&& f 2 2 4 &&& f 3 3 6)
where f a b c = Ap (Ap p (Const (C a))) (Const (C b)) = Const (C c)

T he o p era to r &&& is th e logical and for values of ty p e Result. M atch ing A-terms found are
Aa. Ab.(Plus b) b, Aa. Ab.(Plus a) b, Aa. Ab.(Plus b) a, and Aa .Ab.(Plus ((Plus b) b)) 0.

A lthough these exam ples work fine, th ey show also th a t expressions are generated
th a t are usually considered undesirab le like Aa. Plus b (w here b is a free variable) and
(Aa.Plus) (-1 - 1) (w ith th e co n stan t -1 a t a function position). In these exam ples these
te rm s are only curious, b u t th ey do occupy space in th e search space and hence tim e during
th e search for th e desired A-terms. If we search A-terms im plem enting th e Y -com binators
by testing :
pY : : Expr — Property
pY y = —(V Af.Ap y f = Ap f (Ap y f))

no success is found in th e first 1 ,000 ,000 tes ts . T he search space is sim ply too large to find
a su itab le te rm in a reasonable tim e.

6. S m a r t e r g e n e r a t io n o f A-t e r m s

T here are um p teen way to reduce th e search space. A n u n a ttra c tiv e a lte rn a tiv e is to
reject cand ida tes th a t represent w rongly ty p ed A-terms in a property , as these te rm s will
still be generated and hence consum e resources. I t will be b e tte r to prevent th e generation
of term s th a t are clearly unsu itab le . Take care not to elim inate th e w anted term s. In th is
section we describe an approach to generate b e tte r can d id a te term s.

W ith a few sim ple restric tions we can generate m uch b e tte r can d id a te A-terms. F irs t, we
will always generate a num ber of ab strac tio n s th a t corresponds to th e num ber of argum ents
needed by th e function a t hand . Second, th e re is no need to generate open A-terms. In
th e generation we keep track of th e bound variables and only generate th em a t applied
occurrences. In principle th a t can be fu rth e r im proved by keeping track of th e ty p e of these
variables, as done by K a tay am a [6]. T h ird , we will generate th e right num ber of argum ents
for co n stan ts like Plus and If . F orth , it is useless to generate num erical co n stan ts as first
a rgum ent of an Ap. F ifth , if th e righ t co n stan ts are generated th en th ere is no need to
generate com plex subexpressions con tain ing only constan ts.

For pY defined above we clearly need a h igher o rder function. Hence we add th e in tro
duction of new ab strac tio n s in th e generated expressions. T he function ho generates higher
order can d id a te functions. T he first a rgum ent of ho is th e num ber of argum ents needed, th e
second argum ent a list of th e bound variables, and th e last a rgum ent th e nam e (num ber)
of th e next argum ent.
ho : : In t [V] In t —— [Expr]
ho 0 vs x = r
where

r = l |. [Const (C i) \ \ i ^ [- 1, 1]]
l = [Var v \ \ v ^ vs]

|. [Ap e1 e2 \ \ (e1,e2) ^ diag2 l r]
|. [Abs (V x) e \ \ e ^ ho 0 [V x : vs] (x+1)]
| . [Ap (Ap Plus e1) e2 \ \ (e1,e2) ^ diag2 l r]

ho i vs x = [Abs (V x) e \ \ e ^ ho (i - 1) [V x : vs] (x+1)]

9

As a g ram m ar th is is:

ho n m = Avn . . . Av1 . r

w here r = l | — 1 | 1

l = vm | . . . | v 1 | l r | Avn+1 . h o 0 (m + 1) | (P lu s l) r

T he infix o p e ra to r | . m erges tw o lists in to a single list by tak in g elem ents from th e argum ent
lists in tu rn .
(| .) in fix l 4 :: [x] [x] — [x]
(| .) [a : x] y = [a : y | . x] / / no te the swap o f argum ent
(| .) [] y = y

Now th e first 1 ,000 ,000 cand ida tes generated con tain 7 Y -com binators. Some exam ples are
Aa .(Ab. b b) (Ab. a (b b)) , Aa.(Ab. a (b b)) (Ab. a (b b)) , and Aa.((Ab. b) (Ab. b b)) (Ab. a (b b)).

M ost in teresting functions are recursive. However, th is does no t im ply th a t we need to
g enerate higher order A-terms. I t is sufficient to generate te rm s con tain ing an app lica tion of
a predefined Y -com binator. M oreover, for recursive functions th a t yield a nonrecursive type,
like In t, it is essential to con tain a stop condition . T h a t is, afte r th e Y -com binator th ere
should be a conditional (an If) before th e recursive occurrence of th e recursive function.
T his is exactly w ha t th e g enera to r of A-terms fun does.
fun : : In t — [Expr]
fun n = [abs 1 n e \ \ e ^ r []] | . [Ap exprY (abs 0 (n+1) e) \ \ e ^ rFun]
where

vars = [Var (V v) \ \ v ^ [1.. n]] / / V 0 is the recursive fu n i f i t exists
r c = [Const (C i) \ \ i ^ [-1, 1,-2]] | . e c
e c = vars | . [Ap (Ap Plus e1) e2 \ \ (e1,e2) ^ diag2 (e c) (r c)] | . c
rFun = [Ap (Ap (Ap I f c) t) e

\ \ (c , t , e) ^ diag3 simple (e (rApp n)) ([Const (C i) \ \ i ^ [0,1]] | . v a rs)]
rApp 0 = [Var (V 0)]
rApp n = [Ap f a \ \ (f ,a) ^ diag2 (rApp (n-1)) simple]
simple = vars | . [Ap (Ap Plus v) c \ \ (v ,c)^d iag2 vars [Const (C i) \ \ i ^ [-1 ,-2]]]
abs n 0 e = e
abs n m e = Abs (V n) (abs (n+1) (m-1) e)

U sing th is generation function we will look for a te rm th a t im plem ents m u ltip lication by
repea ted add ition . Since we w ant to prevent (very) large values as a rgum ents for th is
m u ltip lication function (it is O (n)), we select som e te s t values m anually ra th e r th a n using
a quan tifica tion over all integers.
pTimes p = —(f 0 3 &&& f 2 4 &&& f 7 5 &&& f 3 0)
where f a b = Ap (Ap p (Const (C a))) (Const (C b)) = Const (C (a*b))

We look for 2-argum ent te rm s generated by th e function fun by tes tin g pTimes For (fun 2).
T he system produces m u ltip lica tion functions for non-negative num bers of th e form:

Y (Aa.Ab.Ac. ((I f c) ((Plus ((a ((Plus c) -1)) b)) b)) 0),
Y (Aa.Ab.Ac. ((I f c) ((Plus ((a ((Plus c) -1)) b)) b)) c)

and te rm s th a t a hum an is m ore likely to w rite
Y (Aa.Ab.Ac. ((I f c) ((Plus ((a b) ((Plus c) -1))) b)) 0),
Y ((Aa.Ab.Ac. ((I f b) ((Plus ((a ((Plus b) -1)) c)) c)) 0)

10

In these expressions we use y as abb rev ia tion of th e te rm (Aa.(Ab.a (b b)) (Ab.a (b b))). T he
first tw o term s are som ew hat peculiar due to th e swap of argum ents. As a d irect recursive
function th e second te rm is:
f b c = if (c > 0) (b+f (c -1) b) c

A lthough th is function looks ex trao rd in ary th ro u g h th e swap of argum ents, it com putes th e
desired p ro d u c t of non-negative argum ents.

Term s for s n = ^™=o i are found by tes tin g pSum For (fun 1) w ith

pSum p = —(f 3 &&& f 5) where f a = Ap p (Const (C a)) = Const (C (sum [1.. a]))

T he first te rm found is Y (Aa.Ab. ((I f b) ((Plus (a ((Plus b) -1))) b)) 0).
In th e sam e way we can look for A-terms m atch ing ƒ 4 = 5 A ƒ 5 = 8 from th e

in troductions by looking for counterexam ples for:
pFib p = —(f 4 5 &&& f 5 8) where f a b = Ap p (Const (C a)) = Const (C b)

T he first solutions found by te s tin g pFib For (fun 1) are no t th e F ibonacci function found
in our earlier work, b u t nonrecursive te rm s such as

Ab.(Plus ((Plus ((Plus ((Plus ((Plus b) -1)) -1)) -1)) b))
((Plus ((Plus ((Plus ((Plus b) -1)) -1)) -1)) -1)

and som e single-recursive te rm like
Y (Aa.Ab.((I f ((Plus b) -2)) ((Plus (a ((Plus b) -1))) ((Plus ((Plus b) -1))-1))) b)

C ounterexam ple 13 found a fte r 1583 te s t is th e first (double-recursive) F ibonacci function:

Y (Aa.Ab.((I f ((Plus b) -1)) ((Plus (a ((Plus b) -2))) (a ((Plus b)-1)))) 1)

B y adding ƒ 6 = 13 to th e p a tte rn s to be m atched , th is is th e first te rm found.
T he speed of generating and te s tin g can d id a te functions depends strongly on th e con

d ition th a t has to be evaluated and th e size of th e expression. O n a ra th e r slow (1GHz)
W indow s X P lap to p we m easured a speed of 500 to 200,000 can d id a te te rm s per second.

7. D isc u ssio n a n d r e l a t e d w o r k

In th is p ap er we d em o n stra te th a t it is possible to find A-terms m atch ing some condition
by system atic synthesis of can d id a te expressions. Since we w ant to be able to find te rm s like
th e Y -com binator, re s tric tin g ourselves to te rm in a tin g expressions is no option. T his im plies
th a t tes tin g th e su itab ility of a can d id a te expression is ra th e r delicate . T he equivalence of
te rm s is know n to be undecidable. In th is p ap e r we used a sim ple approxim ation : a finite
(and ra th e r sm all) norm al order reduction steps are done on th e te rm s to be com pared.
If th e reduction sequences contains elem ents th a t are a -eq u al th e te rm s are obviously a -
equivalent. If th e term s are unequal norm al form s th e te rm s are non-equivalent. O therw ise
th e equivalence has th e value u n d e fin e d .

It appears th a t th e num ber of A-terms is to o large to find m ost in teresting te rm s by
b ru te force search in reasonable tim e. We have in troduced tw o ra th e r sim ple b u t effective
generato rs for expressions. T he first one generates higher order te rm s like th e fam ous Y -
com binator. T he second one generates (recursive) functions like m u ltip lication by repeated
ad d ition and th e F ibonacci function. B y using ty p e in form ation it is possible to generate
can d id a te functions even m ore effectively. K a tay am a [6] uses th is in his generation of
functions m atch ing exam ples. He generates only first o rder term s, all o th er th ings (like
recursion) have to be defined as a recursion p a tte rn in a lib rary of p rim itive functions.

11

B ro d a [5] and W ang [11] discuss algorithm s to generate A-terms random ly. B ro d a uses a
g ram m ar to specify th e ty p e of th e term s, som ew hat sim ilar to our generation functions.
H enk B arendreg t has touched th e generation of A-terms v ia enum eration in [1, 2, 4].

B y adding co n stru c ts like th e Y -com binato r and m ultip lication to th e term s, th e gen
e ra ted te rm s becom e m ore powerful. Hence com plex functions will be found quicker.

W ith o u t th e struggle for non term ination , it is m ore elegant to in troduce a ty p e class
eval to evaluate instances of various g ram m ars represen ted as ty p e [9]. T he g ram m ar of th e
can d id a te te rm s can th en elegantly and effectively be determ ined by m ore specific types.
T he types control th e generation of can d id a te functions a t a h igher level of ab s trac tio n th a n
th e generation functions used in section 6. W hen in term ed ia te term s in th e reduction need
to be com pared, as needed to com pare A-terms for equivalence, th is is no t possible.

W e find A-terms generalizing th e behavior of th e given in p u t-o u tp u t pairs or properties.
B o th th e obvious functions and m ore surprising A-terms are synthesized. If th e goal is to
find only prim itive recursive functions th e d irec t approach in [9] is m ore effective. This
p ap e r shows th a t it is possible to find th e prim itive recursive functions as well as o th er
A-termslike th e Y -com binator. T he advan tage of th e approach in troduced in th is p ap e r is
th a t it is able to synthesize A-terms for general p roperties w ith o u t th e need to define a very
precise g ram m ar for th e can d id a te functions. Some guidance is needed to find larger term s,
b u t th e generato rs m ight p roduce to ta lly w rong cand ida tes (like ill-typed term s or term s
w ith non term in atin g reduction sequences) w ith o u t causing any troub le.

A c k n o w l e d g e m e n t

T he au th o rs wish to th a n k th e anonym ous referees, th e ed ito rs and P e te r A chten for
th e ir suggestions to im prove th is paper.

R e f e r e n c e s

[1] H. Barendregt. The Lam bda Calculus, its S yn ta x and Sem antics. Revised edition, volume 103 of Stud ies
in Logic. North-Holland, 1984.

[2] H. Barendregt. Enumerators of lambda terms are reducing. J. Funct. Program., 2(2):233-236, 1992.
[3] H. Barendregt. Lambda calculi with types. In M. Abramsky, Gabbay, editor, Handbook o f Logic in

C om puter Science, volume 2. Oxford university press, 1992.
[4] H. Barendregt. Enumerators of lambda terms are reducing constructively. A nn . Pure A ppl. Logic,

73(1):3-9, 1995.
[5] S. Broda and L. Damas. Generating normal inhabitants of types with a common structure. Technical

Report DCC-2001-1, DCC-FC & LIACC, Universidade do Porto.
[6] S. Katayama. Systematic search for lambda expressions. In Proceedings S ix th Sym posium on Trends in

F unctional Program m ing (T F P 2005), pages 195-205, 2005.
[7] P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic automated software testing.

In R. Pena and T. Arts, editors, The 14th In terna tiona l W orkshop on the Im p lem en ta tion o f F unctional
Languages, I F L ’02, Selected Papers, volume 2670 of L N C S, pages 84-100. Springer, 2003.

[8] P. Koopman and R. Plasmeijer. Generic Generation of Elements of Types. In Proceedings S ix th S y m
posium on Trends in F unctional Program m ing (T F P 2005), Tallin, Estonia, Sep 23-24 2005.

[9] P. Koopman and R. Plasmeijer. Systematic Synthesis of Functions. In H. Nilsson, editor, Proceedings
S even th Sym posium on Trends in F unctional Program ming, T F P 2006, pages 68-83, Nottingham, UK,
The University of Nottingham, April 19-21 2006.

[10] R. Plasmeijer and M. van Eekelen. C oncurrent C L E A N Language R eport (version 2.0), December 2001.
http://www.cs.ru.nl/~clean/.

[11] J. Wang. Generating random lambda calculus terms. Master’s thesis, Boston University, 2005.

12

http://www.cs.ru.nl/~clean/

