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Introduction

On operator theory, one of the main subjects is the description and study of functions on
spaces of in�nite dimensions. According to our interests and academic foundation, it is
possible to regard matrices as particular symbols that we manipulate to solve linear systems
or as linear transformations relating to �nite dimensional vector spaces, and conversely.
Additionally, we can analyze how these objects behave when the range of a matrix tends to
in�nity.

In this branch of analysis, many concepts, theories, and problems have been introduced
by numerous mathematicians in di�erent epochs of time. Alongside this growth, mathemati-
cians have been able to collaborate in other sciences. Under this atmosphere of scienti�c
developments, Otto Toeplitz came into view as a professor in Germany and a disciple of
David Hilbert.

His mathematical interests were wide and covered all branches of research, but mainly
algebra. Most of his papers deal with problems of in�nite matrices and the corresponding
bilinear and quadratic forms.

Toeplitz matrices can be easily de�ned as matrices with constant diagonals parallel to
the main diagonal. With this theory, it has been possible to illustrate abstract results and
methods of linear algebra and functional analysis, such as C∗-algebras and index theory of
Fredholm operators.

The continuous and increasing interest in analysis of Toeplitz operators can be explained
by two reasons. On the one hand, these operators have an important connection with
variety of problems in physics, probability theory, and several other �elds. On the other
hand, Toeplitz operators are one of the most important classes of non-selfadjoint operators
and they are an interesting example in topics such as Banach algebras.

Our emphasis is on Toeplitz operators over the complex unitary circle (T) and our aim is
to establish a relation between the functional analytic properties of Toeplitz operators and
their geometric behavior. That is how we divided our work in �ve chapters.

In Chapter 1, we will introduce the necessary concepts and theorems to understand
Hilbert and Banach spaces. Many properties of the inner product and the norm appear, in
detail, in [13]. Later, we will see Lebesgue spaces and Fourier transform. We will integrate
this theory to incorporate the space L2(T), which will be important for us.

In Chapter 2, our purpose is to associate an in�nite matrix with a linear bounded opera-
tor. Moreover, we will de�ne the Banach algebra B(X), the collection of all bounded linear
operators on X, and their norm. It is fundamental to discuss boundedness and invertibility
inside this algebra and the meaning of the spectrum of a given matrix.
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In Chapter 3, we are interested in Laurent matrices and their matrix representation.
Again, the question when an operator on `2(Z) generates a Laurent matrix and viceversa,
will be answered with the most important theorem of the chapter. We will characterize the
multiplication operator and the range of a symbol on L∞(T). Finally, we illustrate some
examples of symbols.

Chapter 4 is the last one before we present our main result. We will de�ne Toeplitz
matrices and bring together all the study to explain under which conditions a Toeplitz matrix
generates a bounded operator on `2(N). The Banach and Steinhaus theorem is necessary to
introduce the norm of a Toeplitz operator. Besides, we will learn the connection between
Fredholmness and invertibility, and we will use Hardy spaces to prove Coburn's Lemma.

In Chapter 5, we will give a review of the paper �Asymptotic spectra of dense Toeplitz
matrices are unstable� [2] written by Albrecht Böttcher and Sergei M. Grudsky. In addition,
we will use a speci�c symbol. Handling this symbol, we will calculate some truncated
Toeplitz matrices and deal with the limiting set of the eigenvalues. We will announce two
lemmas that help us to prove our main theorem which discusses the convergence of the
limiting set of family of functions in the Hausdor� metric.
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Chapter 1

Preliminaries

In this chapter we deal with some concepts taken from the �rst chapter of [4]. These will
help us to understand the theory of in�nite matrices and bounded linear operators. The
purpose is to set up the fundamentals and show basic results. We will study the Toeplitz
matrices and �nally we present various abstract results and methods of linear algebra and
functional analysis.

1.1 Elementary concepts

De�nition 1.1.1 (Metric). A metric on a set X is a function

d : X ×X −→ R

having the following properties:

(i) d(x, y) ≥ 0 for all x, y ∈ X; equality holds if and only if x = y.

(ii) d(x, y) = d(y, x) for all x, y ∈ X.

(iii) (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

De�nition 1.1.2 (Hausdor� metric). Let X and Y be two nonempty subsets of a metric
space. The Hausdor� metric is de�ned by

dH(X,Y ) ≡ max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
.

De�nition 1.1.3 (Normed space). A normed space is a vector space V together with a
function ‖ · ‖ de�ned on it, called a norm, satisfying:

(i) 0 ≤ ‖f‖ <∞.

(ii) ‖f‖ = 0 if and only if f = 0.

(iii) (Homogeneity) ‖cf‖ = |c|‖f‖ for any scalar c.
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(iv) (Triangle inequality) ‖f + g‖ ≤ ‖f‖+ ‖g‖.

For all f, g ∈ V .

We want to know the relation between a norm and a metric. A norm and a metric are
two di�erent notions, a norm is measuring the size of an object and a metric is measuring
the distance between two elements. That means, a norm is a property of an element while
a metric assigns a distance. If we have a vector space with a norm, it is always possible
to de�ne a metric in terms of that norm by putting d(f, g) ≡ ‖f − g‖. In other words, a
normed space is automatically a metric space, by de�ning the metric in terms of the norm
in the natural way. But a metric space may not be a vector space. Thus, the concept of
metric space is a generalization of the concept of a normed vector space.

Example 1.1.4. Let d : X ×X −→ R be the function,

d(x, y) =

{
1, if x 6= y;
0, if x = y.

This function satis�es the three conditions mentioned in De�nition 1.1.1, so d is a metric.
But, there is no a norm satisfying d(x, y) = ‖x − y‖. To check this, suppose there is such
a norm and let α 6= 0 with |α| 6= 1. Choose any x, y ∈ X such that x 6= y. Then, αx 6= αy
and we have

1 = d(αx, αy) = ‖αx− αy‖ = ‖α(x− y)‖ = |α|‖x− y‖ = |α|d(x, y) = |α|,

which is a contradiction.

De�nition 1.1.5 (Power set). Let X be a set. The power set of X is the collection of all
subsets of X (including ∅ and X). A standard notation for the power set of X is 2X .

De�nition 1.1.6 (Algebra). An algebra of subsets of X is a collection of sets M ⊂ 2X

which satis�es

(i) ∅ ∈ X.

(ii) If A,B ∈M, then A ∪B ∈M.

(iii) If A ∈M, then Ac ∈M.

By using de Morgan's laws we have immediately that an algebra satis�es other properties:
X ∈M; if A,B ∈M, then A ∩B ∈M, and A \B ∈M. Note thatM is called an algebra
because it accomplishes the set operations and if they are performed �nitely many times on
sets inM, this always produces sets which are in it.

We include the trivial examples of an algebra: {∅, X} (the smallest one) and 2X (the
biggest one).

Example 1.1.7. Let X = {a, b, c}. For this set the power set is

2X = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}.

Now, considerM = {∅, {a, b}, {c, d}, X}. It is easy to verify thatM is an algebra.
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De�nition 1.1.8 (σ-algebra). Let M ⊂ 2X be an algebra. Then, M is a σ-algebra if
additionally

A1, A2, A3, . . . ∈M =⇒
∞⋃
k=1

Ak ∈M.

It follows from de Morgan's laws that
⋂∞
k=1Ak ∈ M as well. Besides, in a σ-algebra all

the set operations performed countably many times on sets inM result in sets which belong
to it.

De�nition 1.1.9 (Extended real number line). The extended real line Ṙ is de�ned as

Ṙ ≡ R ∪ {+∞,−∞}.

De�nition 1.1.10 (Measure). Let X be a set and M a σ-algebra over X. A function µ
fromM to Ṙ is called a measure if it satis�es the following properties:

(i) 0 ≤ µ(A) ≤ ∞.

(ii) µ(∅) = 0.

(iii) If A1, A2, . . . are disjoint sets inM, then

µ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak).

De�nition 1.1.11 (Measure space). A measure space consists of the following three things:

(i) A nonempty set X.

(ii) A σ-algebraM⊂ 2X .

(iii) A measure µ de�ned onM.

We call the triple (X,M, µ) a measure space. When this is clear, we will simply write
X.

De�nition 1.1.12 (Almost everywhere). Let (X,M, µ) be a measure space and P a prop-
erty, when it can be applied to X we say that P is true almost everywhere in X if

µ({x ∈ X : P(x) is false}) = 0.

De�nition 1.1.13 (σ-�nite measure). Let µ be a positive measure of X. We say that µ is
σ-�nite if X is the countable union of numerable sets with �nite measure.

The term �almost everywhere� (a.e.) has a notion of a negligible set. For our context, if
we are working with a measure space (X,M, µ), we do not pay attention to sets of measure
zero. In the context of measure theory we use the term �µ-almost everywhere� (µ-a.e.).

De�nition 1.1.14 (Null set). Let (X,M, µ) be a measure space and N ⊂ X be a measurable
set. N is a null set if µ(N) = 0 and we say that N has measure zero.
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De�nition 1.1.15 (Field). A �eld F is any set of elements that satis�es associativity, com-
mutativity, distributivity, identity, and invertibility properties for both addition and multi-
plication operations. It is an algebraic structure: a nonzero commutative ring.

From now on F is a �eld.

De�nition 1.1.16 (Supremum norm). Let S be a set. Let (X, ‖ · ‖) be a normed space over
a �eld F. Let f : S −→ X, then the supremum norm of f is

‖f‖∞ ≡ inf{M : ‖f(x)‖ ≤M for µ-a.e. x ∈ S}.

Thus, there exists a null set Nf such that ‖f‖∞ = sup{‖f(x)‖ : x ∈ N c
f}.

For example, consider the function χQ : [0, 1] −→ {0, 1} de�ned by

χQ(x) ≡
{

1, if x ∈ Q,
0, if x /∈ Q.

Then, ‖χQ‖∞ = 0.

For Proposition 1.1.17 and Theorem 1.1.18 we introduce A as the set of all the mappings
f : S −→ X such that ‖f‖∞ < ∞. Note that A is a vector space because addition of
two bounded functions gives us a new bounded function, which belongs to A, and the
pointwise scalar multiplication gives us again a bounded function on A; it is similar for
their multiplication. It is important to mention that A is a function space with a geometric
property which allows us to talk about topological and analytical concepts.

Proposition 1.1.17. Let f ∈ A, then |f(x)| ≤ ‖f‖∞ for µ-a.e. x ∈ S.

Proof. By de�nition of in�mum, there exists a sequence (Mj)j∈N such that |f(x)| ≤Mj for
µ-a.e. x ∈ S and Mj −→ ‖f‖∞ whenever j goes to in�nity. This means that, there exist
null sets Nj ( S satisfying |f(x)| ≤ Mj for x ∈ N c

j . Now, we de�ne N ≡
⋃∞
j=1Nj . Thus,

N is a null set and if x ∈ N c, then |f(x)| ≤ Mj for all j. Therefore, x ∈ N c implies that
|f(x)| ≤ ‖f‖∞. �

Theorem 1.1.18. ‖ · ‖∞ is a norm on A.

Proof. Let f, g ∈ A.

(i) Suppose that ‖f‖∞ = 0. Then, ‖f(x)‖ = 0 µ-a.e. for x ∈ S. Since ‖x‖ = 0 if and
only if x = 0, we have that f(x) = 0 µ-a.e. for x ∈ S.

(ii) Now, let α ∈ F. We have,

‖αf‖∞ = inf{M : ‖αf(x)‖ ≤M for µ-a.e. x ∈ S}
= inf{M : ‖f(x)‖ ≤M/α for µ-a.e. x ∈ S}.

Taking M ′ = M
|α| , we obtain

‖αf‖∞ = inf{|α|M ′ : ‖f(x)‖ ≤M ′ for µ-a.e. x ∈ S} = |α|‖f‖∞.
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(iii) At last, by Proposition 1.1.17 we know that f, g ∈ A satisfy that |f(x)| ≤ ‖f‖∞ µ-a.e.
and |g(x)| ≤ ‖g‖∞ µ-a.e., then

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞ µ-a.e.

Therefore, ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

We claim that ‖ · ‖∞ is a norm. �

De�nition 1.1.19 (Inner product). Let V be a vector space. An inner product is a function
from V × V to F, denoted by 〈·, ·〉, satisfying:

(i) 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉 for all f, g, h ∈ V .

(ii) 〈cf, g〉 = c〈f, g〉 for all f, g ∈ V and any scalar c.

(iii) 〈f, g〉 = 〈g, f〉 for all f, g ∈ V .

(iv) 0 ≤ 〈f, f〉 <∞ for all f ∈ V .

(v) 〈f, f〉 = 0 if and only if f = 0.

Note that if F = C, we call 〈·, ·〉 a complex inner product and if F = R, we call 〈·, ·〉 a
real inner product.

De�nition 1.1.20 (Inner product space). An inner product space is a vector space V to-
gether with an inner product. Any inner product space gives rise to a normed space by
de�ning

‖f‖2 ≡ 〈f, f〉. (1.1.1)

Theorem 1.1.24 will show that ‖ · ‖ is a norm.

Theorem 1.1.21 (Pythagorean theorem). If u, v are orthogonal vectors in V , then

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Proof.

‖u+ v‖2 = 〈u+ v, u+ v〉 = ‖u‖2 + ‖v‖2 + 〈u, v〉+ 〈v, u〉 = ‖u‖2 + ‖v‖2. �

The inner product is the generalization of the dot product. In a vector space V , it is
a way to multiply vectors and it associates to each pair of vectors in the space a scalar
quantity. Geometrically, inner products measure the length of a vector or the angle between
two vectors. Then, we can de�ne the orthogonality between vectors u, v ∈ V requiring
〈u, v〉 = 0 and we denote it by u⊥v. On the other hand, if two vectors u, v ∈ V are parallel
we have the following situation: u = c · v for some scalar c, and we write u ‖ v.

De�nition 1.1.22 (Orthogonal decomposition). Let V be a vector space. Let u, v ∈ V and
a ∈ F. The orthogonal decomposition of u is a pair u1, u2 satisfying:

(i) u1 and v are parallel, and we have u1 = 〈u,v〉
‖v‖2 v.
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(ii) u2 and v are orthogonal, and we have u2 = u− 〈u,v〉‖v‖2 v.

(iii) u = u1 + u2.

It is easy to see that this decomposition is unique.

Theorem 1.1.23 (Cauchy-Schwarz inequality). If u, v ∈ V , then

|〈u, v〉| ≤ ‖u‖‖v‖.

Proof. Let u, v ∈ V . If v = 0, then the desired inequality holds. Thus, we can assume that
v 6= 0. Consider the orthogonal decomposition

u =
〈u, v〉
‖v‖2

v + w,

where w ⊥ v. By the Pythagorean Theorem 1.1.21,

‖u‖2 =

∥∥∥∥ 〈u, v〉‖v‖2
v

∥∥∥∥2

+ ‖w‖2 =
|〈u, v〉|2

‖v‖2
+ ‖w‖2 ≥ |〈u, v〉|

2

‖v‖2
.

Multiplying both sides of this inequality by ‖v‖2 and taking square roots, we obtain Cauchy-
Schwarz inequality. �

Theorem 1.1.24. Let V be a vector space with an inner product. Then, ‖ · ‖ given by
Equation (1.1.1) is a norm.

Proof. Let f, g ∈ V . We know that ‖f‖2 = 〈f, f〉, by De�nition 1.1.19 we immediately
obtain that 0 ≤ ‖f‖ <∞, and ‖f‖ = 0 if and only if f = 0. Now,

(i) Let c be any scalar. ‖cf‖2 = 〈cf, cf〉 = cc〈f, f〉 = |c|2‖f‖2. Then, ‖cf‖ = |c|‖f‖.

(ii) Triangle inequality:

‖f + g‖2 = 〈f + g, f + g〉 = 〈f, f〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉

= 〈f, f〉+ 〈f, g〉+ 〈f, g〉+ 〈g, g〉
= ‖f‖2 + 2Re(〈f, g〉) + ‖g‖2

≤ ‖f‖2 + 2|〈f, g〉|+ ‖g‖2

≤ ‖f‖2 + 2‖f‖‖g‖+ ‖g‖2, due to Theorem 1.1.23.

= (‖f‖+ ‖g‖)2.

Therefore, ‖f‖2 = 〈f, f〉 is a norm. �

Before introducing new concepts, we will discuss the completeness idea. It is a property of
a space. In general, it can be interpreted as the idea that there are no gaps or missing points.
One approach of completeness is known as the Least Upper Bound property (LUB), it states
that any nonempty set of R which has an upper bound necessarily has a supremum in R.
Another approach to completeness is through the Bolzano�Weierstrass theorem which states
that every bounded sequence has a convergent subsequence, and as a third approach we have
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the monotone convergence theorem, saying that a monotone sequence of real numbers is
convergent if and only if it is bounded. The last notion is the Nested Intervals Property that
states that if there is a nested sequence of closed bounded intervals, then their intersection
is not empty.

We mentioned all the properties that describe completeness of the real numbers and
permit us to take limits, which is central in everything done in real analysis.

In the idea of limit and its calculation, it is relevant to know the value to which a function
or sequence is approaching, this is the purpose of the (ε, δ)-de�nition of limit. But, Cauchy's
de�nition of a limit says that it is not necessary to know its value. Because, at the moment
of doing calculations, the values that are being found are approaching a �xed value; they
di�er eventually of the limit by as little as one could wish. That �xed value is called the
limit.

De�nition 1.1.25 (Cauchy sequence). A sequence (xn)n∈N is said to be a Cauchy sequence
if for every ε > 0 there exists a natural number H(ε) such that if m,n ≥ H(ε), then
|xn − xm| < ε.

De�nition 1.1.26 (Complete metric space). A complete metric space is a metric space in
which every Cauchy sequence is convergent.

De�nition 1.1.27 (Uniform convergence). Suppose S is a set and fn : S −→ F is a function
for every natural number n. We say that the sequence (fn)n∈N is uniformly convergent to
a limit f : S −→ F if for every ε > 0, there exists a natural number N(ε) such that for all
x ∈ S and all n ≥ N(ε) we have |fn(x)− f(x)| < ε, for all x ∈ S.

Example 1.1.28. (i) Let xn = 1
n

√
2 for each n ∈ N. Note that, each xn is an irrational

number, i.e., xn /∈ Q and notice that (xn)n∈N converges to 0 ∈ Q. Therefore, (xn)n∈N
converges in R, so although the sequence is entirely in I, it does not converge in I.
Moreover, we know that (xn)n∈N is a Cauchy sequence. Finally, I is not a complete
metric space.

(ii) Let x̂ ∈ I. For each n ∈ N, let xn be a rational number in the interval (x̂− 1
n , x̂+ 1

n ).
Then, (xn)n∈N is a sequence in Q that converges to x̂ /∈ Q. Thus, (xn)n∈N is a Cauchy
sequence in Q that does not converge in Q. It means that Q, is not a complete metric
space.

De�nition 1.1.29 (Hilbert space). A complete space with an inner product on which the
norm is induced by its inner product is called a Hilbert space.

Theorem 1.1.30 (Parallelogram law). Let H be a Hilbert space with the associated norm
‖ · ‖. Let f, g ∈ H be arbitrary. Then,

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2).

Proof.

‖f + g‖2 + ‖f − g‖2 = 〈f + g, f + g〉+ 〈f − g, f − g〉
= 〈f, f〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉+ 〈f, f〉 − 〈f, g〉 − 〈g, f〉+ 〈g, g〉
= 2〈f, f〉+ 2〈g, g〉
= 2(‖f‖2 + ‖g‖2). �
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De�nition 1.1.31 (Banach space). Let V be a normed space. If V is complete, then it is
a Banach space.

Now we distinguish between Hilbert and Banach spaces, we will mentioned how they
are associated. Firstly, the essential di�erence between these two spaces is how the norm is
de�ned. In Hilbert spaces the norm is de�ned via the inner product, ‖f‖2 = 〈f, f〉 while in
Banach spaces the norm is de�ned directly by De�nition 1.1.3. Thus, each Hilbert space is a
Banach space. Something else to notice is that Hilbert spaces have a geometrical structure
which allows us to talk about orthonormal bases, unitary operator, and so on (these terms
will be de�ned later). However, many spaces of interest that are Banach spaces are not
Hilbert spaces.

Theorem 1.1.34 presents a property that a Banach space needs to be a Hilbert space.

To continue with our analysis of these two spaces, we need to introduce the concept of
smoothness that is related with how many derivatives of a function exist and are continuous.
It is possible to classify functions according to the properties of their derivatives. Let k be a
non-negative integer, we say that the function f belongs to the class Ck(X) if its derivatives
f (1), f (2), . . . , f (k) exist and are continuous. On the other hand, when k =∞ the collection
C∞(X) consist of all the functions that have continuous derivatives of all orders. The other
case is k = 0, we denote C(X) instead of C0(X) and it consists of all the continuous functions.

Note that, C∞(X) =
⋂∞
k=0 Ck(X) and we have the inclusions:

C∞(X) ( · · · ( C3(X) ( C2(X) ( C1(X) ( C(X).

Lemma 1.1.32. Let V be a real inner product space, then

〈u, v〉 =
‖u+ v‖2 + ‖u− v‖2

4
,

for all u, v ∈ V .

Proof. Let u, v ∈ V ,

‖u+ v‖2 + ‖u− v‖2

4
=
〈u+ v, u+ v〉+ 〈u− v, u− v〉

4

=
‖u‖2 + 2〈u, v〉+ ‖v‖2 − (‖u‖2 − 2〈u, v〉+ ‖v‖2)

4
= 〈u, v〉. �

Lemma 1.1.33 (Polarization identity). Let V be a complex inner product space, then

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

4
, (1.1.2)

for all u, v ∈ V .

Proof. Let u, v ∈ V ,
‖u+ v‖2 = ‖u‖2 + 2Re(〈u, v〉) + ‖v‖2. (1.1.3)

‖u− v‖2 = ‖u‖2 − 2Re(〈u, v〉) + ‖v‖2. (1.1.4)
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Now subtracting Equations (1.1.3) and (1.1.4) we get,

‖u+ v‖2 − ‖u− v‖2 = 4Re(〈u, v〉). (1.1.5)

Further,

i‖u+ iv‖2 = i〈u+ iv, u+ iv〉 = i〈u, u〉+ i〈u, iv〉+ i〈iv, u〉+ i〈iv, iv〉
= i‖u‖2 + |i|2〈u, v〉+ i2〈v, u〉+ i‖v‖2

= i‖u‖2 + 〈u, v〉 − 〈u, v〉+ i‖v‖2. (1.1.6)

i‖u− iv‖2 = i〈u− iv, u− iv〉 = i〈u, u〉+ i〈u,−iv〉+ i〈−iv, u〉+ i〈−iv,−iv〉
= i‖u‖2 − |i|2〈u, v〉 − i2〈v, u〉+ i| − i|2‖v‖2

= i‖u‖2 − 〈u, v〉+ 〈u, v〉+ i‖v‖2. (1.1.7)

If we subtract Equations (1.1.6) and (1.1.7), we obtain

2〈u, v〉 − 2〈u, v〉 = 4i Im(〈u, v〉). (1.1.8)

Finally, adding Equations (1.1.5) and (1.1.8) we have

4(Re(〈u, v〉) + 4i Im(〈u, v〉)) = 4〈u, v〉. �

After these lemmas we are ready to present Theorem 1.1.34 which states the relation
between Banach and Hilbert spaces.

Theorem 1.1.34. Suppose X is a Banach space. The norm ‖ · ‖ is induced by an inner
product if and only if Parallelogram law 1.1.30 holds on X.

Proof. Let X be a Banach space.
(=⇒) Suppose that the norm on X is induced by an inner product, this means ‖x‖2 = 〈x, x〉
for x ∈ X. Then, the parallelogram law holds and we already checked it.
(⇐=) Suppose that the parallelogram law holds on X. We need to introduce an inner
product which will induce the norm in this space and we use Polarization identity 1.1.33.
We de�ne 〈·, ·〉 by Equation (1.1.2),

〈u, u〉 ≡ 4‖u‖2

4
+
i|1 + i|2‖u‖2

4
− i|1− i|2‖u‖2

4
=
(

1 +
i

2
− i

2

)
‖u‖2 = ‖u‖2.

Immediately, we obtain ‖u‖2 = 〈u, u〉 for u ∈ X. Besides, by De�nition 1.1.19 we �nd that
this inner product will satisfy conjugate symmetry, linearity in the �rst argument, and the
remaining properties. �

Theorem 1.1.35. Let K ( R be a compact set. (C(K), ‖ · ‖∞) is a Banach space.

Proof. C(K) is the space of all continuous functions on K. Here, we have

‖f‖∞ = sup{|f(x)| : x ∈ K}.

By Theorem 1.1.18, we easily obtain that C(K) is a normed space.
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Let (fn)n∈N be a Cauchy sequence in C(K), we need to show that fn is convergent.

Let x ∈ K �xed. Now, consider (fn(x))n∈N which is a real number sequence. Let ε > 0,
there exists N > 0 such that

n,m ≥ N =⇒ |fm(x)− fm(x)| ≤ ‖fn − fm‖∞ <
ε

2
.

What we did shows that for every x ∈ K, (fn(x))n∈N is a Cauchy sequence in R. But, R
equipped with the euclidean metric is a complete metric space. Then, the limit of fn(x)
exists in R, we denote this limit by f(x).

Now, we want to show that fn converges to f in the supremum norm. By assumption
fn is Cauchy, from the triangle inequality we get

‖fn − f‖∞ ≤ ‖fn − fN‖∞ + ‖f − fN‖∞,

by how we picked N , we have that ‖fn−fN‖∞ < ε
2 . Taking the limit when n goes to in�nity

we obtain,

lim
n→∞

‖fn − fN‖∞ = ‖f − fN‖∞ <
ε

2
.

Thus, ‖fn − f‖∞ < ε
2 + ε

2

?
= ε for n ≥ N , accomplishing the aim.

To conclude, we will see that f belongs to C(K). Let ε > 0 and x ∈ K �xed. Further,
by ? we get,

|fn(x)−f(x)| ≤ ‖fn−f‖ <
ε

3
and |fn(y)−f(y)| ≤ ‖fn−f‖ <

ε

3
, for all y ∈ K. (1.1.9)

In addition, fn is continuous, so there exists δ(x, n) > 0 such that

|x− y| < δ(x, n) =⇒ |fn(x)− fn(y)| < ε

3
, for every y ∈ K.

Finally, if n > N and |x− y| < δ(x, n) then,

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| < ε

3
+
ε

3
+
ε

3
= ε.

We have used the inequalities of (1.1.9). Therefore, f is continuous on K and it implies that
f is uniformly continuous on K. �

Now, we exhibit an example that reveals a Banach space which is not a Hilbert space.
Consider (C([0, 1]), ‖·‖∞), by Theorem 1.1.35 this is a Banach space. Consider the functions
f(x) = 1− x and g(x) = x, they belong to C([0, 1]). However,

‖f − g‖2∞ + ‖f + g‖2∞ = ‖1− 2x‖2∞ + ‖1‖2∞ = 2

and
2(‖f‖2∞ + ‖g‖2∞) = 2‖1− x‖2∞ + 2‖x‖2∞ = 2 + 2 = 4.

Whence, these functions do not accomplish Parallelogram law 1.1.30.

De�nition 1.1.36 (Borel sets). The class of Borel sets in Rn is the σ-algebra generated by
the collection of open sets.
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De�nition 1.1.37 (Measurable functions). LetM be a σ-algebra of subsets of X. Suppose
that f : X → Ṙ. Then, f is M-measurable if for all t ∈ Ṙ the set f−1([−∞, t]) belongs to
M. In other words,

{x ∈ X : f(x) ≤ t} ∈ M, for every t ∈ Ṙ.

Some very well known equivalent de�nitions are:

(i) f−1([−∞, t]) ∈M for every t ∈ Ṙ.

(ii) f−1([−∞, t)) ∈M for every t ∈ (−∞,∞].

(iii) f−1([t,∞]) ∈M for every t ∈ Ṙ.

(iv) f−1((t,∞]) ∈M for every t ∈ [−∞,∞).

(v) f−1({−∞}), f−1({∞}) belong toM, and f−1(E) ∈M for every Borel set E ⊂ R.

At this point, we would like to share some Lebesgue contributions. Lebesgue may be said
to have created the �rst genuine theory of integration. His important contributions are (1)
a fully developed measure-theoretic point of view that provided new ways of looking at the
Cauchy-Riemann de�nition of the de�nite integral and (2) theoretical problems that had
been found out within the context of Riemann's de�nition of the integral.

Building on the work of others, including those of Émile Borel and Camille Jordan,
Lebesgue formulated the theory of measure in the early twentieth century. Also, he gener-
alized the notion of the Riemann integral and revolutionized the integral calculus. Finally,
he extended the concept of the area below a curve including many discontinuous functions.
It was one of his main achievements in modern analysis.

De�nition 1.1.38 (Lebesgue spaces Lp). Let (X,M, µ) be a measure space and 1 ≤ p <∞.
The space Lp(X) consists of the equivalence classes of measurable functions f : X → C such
that ∫

X

|f |p dµ <∞,

where two measurable functions are equivalent if they are equal µ-a.e. The Lp-norm of f is
de�ned by

‖f‖pp ≡
∫
X

|f |p dµ.

Theorem 1.1.39. (Lp(X), ‖ · ‖p) is a normed space. It satis�es:

(i) 0 ≤ ‖f‖p <∞.

(ii) ‖f‖p = 0 if and only if f = 0 (µ-a.e.).

(iii) ‖cf‖p = |c|‖f‖p for c any scalar.

(iv) ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

The last property is known as Minkowski's inequality 1.1.43. We will prove it later.
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Proof. Properties (i) and (iii) are easy to check.

(ii) (⇐=) Let C = {x ∈ X : f(x) 6= 0}. By assumption µ(C) = 0. Now, it is possible to
write ∫

X

|f |p dµ = A+B,

where A =
∫
C
|f |p dµ and B =

∫
C′
|f |p dµ, where C ′ = X \ C. Since C has measure zero,

A = 0. Additionally, f �C′≡ 0 so we get that B = 0. Therefore, ‖f‖p = 0.

(=⇒) Suppose that f 6= 0 (µ-a.e.). Then, there exists x◦ ∈ X and ε > 0 such that
|f(x)| 6= 0 for every x ∈ Bε(x◦). Without loss of generality (w.l.o.g.), we take ε > 0 small
enough such that

inf{|f(x)| : x ∈ Bε(x◦)} ≡ α  0 =⇒
∫
X

|f |p dµ ≥ α · µ(Bε(x◦))  0.

Finally, we conclude that ‖f‖p 6= 0. �

Straightaway, we will introduce a new concept and two relevant results which were given
by the German mathematician Otto Hölder. These are necessary to prove Minkowski's
inequality 1.1.43.

De�nition 1.1.40 (Hölder conjugate). Let 1 < p < ∞. Then, p′ ≡ p
p−1 and it satis�es

1
p + 1

p′ = 1. p′ is known as the Hölder conjugate of p.

Lemma 1.1.41. Let a ≥ 0, b ≥ 0 and p ∈ (1,∞). Then,

ab ≤ ap

p
+
bp
′

p′
.

Proof. Let a, b be �xed. We de�ne f(a) ≡ ab− ap

p . We will �nd its minimum value, we get

f ′(a) = b− ap−1 = 0.

This means that, at a = b
1
p−1 = b

p′
p f gets its minimum. Thus, using De�nition 1.1.40 we

obtain,

f(a) = ab− ap

p
≤ b

1
p−1 b− b

p
p−1

p
= b

p
p−1 − b

p
p−1

p
= bp

′
(

1− 1

p

)
=
bp
′

p′
.

Arriving at, ab ≤ ap

p + bp
′

p′ . �

Theorem 1.1.42 (Hölder's inequality). Let (X,M, µ) be a measure space. Assume that
1 < p <∞ and 1 < q <∞ are Hölder conjugates. In addition, u ∈ Lp(X) and v ∈ Lq(X).
Then, uv ∈ L1(X) and ‖uv‖1 ≤ ‖u‖p‖v‖q.

Proof. If u ≡ 0 or v ≡ 0 (µ-a.e.) then, the result is trivial. Consequently, we can assume
that ‖u‖p > 0 and ‖v‖q > 0. Now, note that by Lemma 1.1.41,
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|u(x)v(x)|
‖u‖p‖v‖q

≤ |u(x)|p

p‖u‖pp
+
|v(x)|q

q‖v‖qq
.

Taking integrals, we get∫
X

|u(x)v(x)|
‖u‖p‖v‖q

dµ ≤
∫
X

|u(x)|p

p‖u‖pp
dµ+

∫
X

|v(x)|q

q‖v‖qq
dµ,

1

‖u‖p‖v‖q
‖uv‖1 ≤

1

p‖u‖pp
‖u‖pp +

1

q‖v‖qq
‖v‖qq,

1

‖u‖p‖v‖q
‖uv‖1 ≤

1

p
+

1

q
= 1.

Therefore, ‖uv‖1 ≤ ‖u‖p‖v‖q. �

Theorem 1.1.43 (Minkowski's inequality). Let f, g ∈ Lp(X) and p ≥ 1. Then,

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. If f + g ≡ 0 (µ-a.e.), we immediately get the result. Suppose that f + g 6≡ 0 (µ-a.e.).
Using the triangle inequality, we obtain

‖f + g‖pp =

∫
X

|f + g|p dµ =

∫
X

|f + g| · |f + g|p−1 dµ

≤
∫
X

(|f |+ |g|) · |f + g|p−1 dµ =

∫
X

|f | · |f + g|p−1 dµ+

∫
X

|g| · |f + g|p−1 dµ,

taking u = f or u = g, and v = (f + g)p−1, Hölder's inequality 1.1.42 gives us,

‖f + g‖pp ≤

((∫
X

|f |p dµ
) 1
p

+

(∫
X

|g|p dµ
) 1
p

)
·
(∫

X

|f + g|(p−1)
(

p
p−1

)
dµ

)1− 1
p

= (‖f‖p + ‖g‖p) ·
‖f + g‖pp
‖f + g‖p

.

Thus, multiplying both sides by ‖f+g‖p
‖f+g‖pp we get Minkowski's inequality.

To prove that f + g ∈ Lp(X) we need this observation:

|f + g|p ≤ (|f |+ |g|)p ≤ (2 max{|f |, |g|})p = 2p max{|f |p, |g|p} ≤ 2p(|f |p + |g|p).

The functions |f |p and |g|p are integrable. Therefore, |f+g|p is integrable and f+g ∈ Lp(X)
as we desire. �

To talk about completeness of Lp(X) we will establish a few lemmas which we found in
[8].

Lemma 1.1.44. If (fk)k∈N is a Cauchy sequence onM, a metric space with metric d, and
there exists a subsequence (fkj )j∈N convergent, then fk converges.
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Proof. Let ε > 0. There exist N1, N2, and f ∈M such that

m,n > N1 =⇒ d(fn, fm) <
ε

2
and j > N2 =⇒ d(fkj , f) <

ε

2
.

W.l.o.g., we can assume that kj > N1 for j > N2 and with this assumption we have:

d(fn, f) ≤ d(fn, fkj ) + d(fkj , f) <
ε

2
+
ε

2
= ε.

Thus, fk converges to f . �

Lemma 1.1.45. Suppose that (fk)k∈N is a Cauchy sequence on M, a metric space with a
metric d. Then, there exists a subsequence (fkj )j∈N such that d(fkj+1

, fkj ) <
1
2j .

Proof. Let ε > 0. By assumption, there exists N(ε) such that if n, k > N , then |fn−fk| < ε.
We attempt to construct a sequence (nj)j∈N as follows:

n1, k > N(2−1) =⇒ d(fn1
, fk) <

1

2
,

n2, k > N(2−2) =⇒ d(fn2
, fk) <

1

22
,

...

In general, we require:

nj ≥ N(2−j) and nj+1 > nj for j ∈ N.

Since nj+1 > nj ≥ N(2−j), we deduce that d(fkj+1
, fkj ) ≤ 1

2j . �

Lemma 1.1.46 (Triangle inequality for in�nite factors). Assume that (fk)k∈N is a sequence
of functions in Lp(X) and each fk ≥ 0. Then,∥∥∥∥ ∞∑

k=1

fk

∥∥∥∥
p

≤
∞∑
k=1

‖fk‖p.

Proof. First of all, we have to mention that the statement is similar to Minkowski's inequality
for a countable sum. De�ne FN ≡

∑N
k=1 fk. Besides, we know that∥∥∥∥ ∞∑

k=1

fk

∥∥∥∥
p

= ‖ lim
N→∞

FN‖p =
(∫

X

∣∣ lim
N→∞

FN
∣∣p dµ) 1

p

=
(∫

X

lim
N→∞

|FN |p dµ
) 1
p

.

By Lebesgue's dominated convergence theorem (LDCT),∥∥∥∥ ∞∑
k=1

fk

∥∥∥∥
p

= lim
N→∞

(∫
X

|FN |p dµ
) 1
p

= lim
N→∞

‖FN‖p = lim
N→∞

∥∥∥∥ N∑
k=1

fk

∥∥∥∥
p

.

By Minkowski's inequality 1.1.43 we get,∥∥∥∥ ∞∑
k=1

fk

∥∥∥∥
p

≤ lim
N→∞

N∑
k=1

‖fk‖p =

∞∑
k=1

‖fk‖p. �
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The next theorem was found out and proven independently by Frigyes Riesz and Ernst
Fischer.

Theorem 1.1.47 (Riesz-Fischer). (Lp(X), ‖ · ‖p) is a Banach space (p ≥ 1).

By Theorem 1.1.39 we know that Lp(X) is a normed space. What remains is to prove
the completeness of Lp(X).

Proof. Let (fk)k∈N be a Cauchy sequence in Lp(X). By Lemmas 1.1.44 and 1.1.45, we can
assume that ‖fk+1 − fk‖p < 1

2k
for k ≥ 1.

We want to see that fk converges. So, we de�ne the function F as:

F (x) ≡ |f1(x)|+
∞∑
j=1

|fj+1(x)− fj(x)|.

Using Lemma 1.1.46 we shall prove that F isM-measurable, whereM is a σ-algebra. By
Lemma 1.1.45, we could take a subsequence if it were necessary, we get

‖F‖p ≤ ‖f1‖p +

∞∑
j=1

‖fj+1 − fj‖p ≤ ‖f1‖p +

∞∑
j=1

1

2j
= ‖f1‖p + 1 <∞.

This provides that F ∈ Lp(X). Since F < ∞ (µ-a.e.), there exists a null set N ⊂ X such
that |F (x)| 6=∞ for x ∈ N c.

Considering such a set, if x ∈ N c we can establish that

F (x) = |f1(x)|+
∞∑
j=1

|fj+1(x)− fj(x)| converges pointwise. (1.1.10)

We know that a series converges if it is absolutely convergent. Then, by Equation (1.1.10)

� f1(x) +

∞∑
j=1

(fj+1(x)− fj(x)) converges for every x ∈ N c,

� f1(x) + lim
k→∞

k∑
j=1

(fj+1(x)− fj(x)) exists for every x ∈ N c, and �nally

� lim
k→∞

fk(x) also exists for every x ∈ N c.

Therefore, it is possible to de�ne

f(x) ≡

{
lim
k→∞

fk(x) if x 6∈ N ;

0 if x ∈ N.

Note that, f(x) = f1(x) +
∑∞
j=1(fj+1(x)− fj(x)) and |f(x)| ≤ F (x), for x ∈ N c.

Thus,

f(x)− fk(x) =

∞∑
j=k

(fj+1(x)− fj(x)), for x ∈ N c.
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The last equality is true because
∑∞
j=k(fj+1(x)− fj(x)) is a telescoping series. This implies

that,

|f(x)− fk(x)| ≤
∞∑
j=k

|fj+1(x)− fj(x)|.

By Lemma 1.1.46, we can assume that ‖f−fk‖p ≤
∑∞
j=k ‖fj+1−fj‖p ≤

∑∞
j=k

1
2j = 21−k,

this means that lim
k→∞

‖f − fk‖p = 0. Then, fk converges to f .

Recall that |f(x)| ≤ F (x) for x ∈ N c and since F ∈ Lp(X), we deduce f ∈ Lp(X). �

We want to know a little bit more about the space L∞(X) and we will state two important
de�nitions. First, we say that the class L∞(X) consists of the bounded measurable functions.

De�nition 1.1.48 (Essentially bounded). Let (X, ‖ · ‖) be a normed space over F. Let f
be a function on X. We say that f is essentially bounded on X if there exists M > 0 such
that ‖f‖ ≤M (µ-a.e.) on X.

De�nition 1.1.49 (Essential supremum). Let L∞(X) be the collection of all essentially
bounded functions on X. Moreover, let f ∈ L∞(X) then, we state that the essential supre-
mum of f is

ess sup f ≡ inf{M : ‖f‖ ≤M for µ-a.e. x ∈ X} = ‖f‖∞.

By Theorem 1.1.18 we obtain that ess sup f is the L∞-norm.

L1(K)

L2(K)

L∞(K)

C0(K)

C1(K)

C∞(K)

p1

Figure 1.1: Nested spaces with K a compact set.

Now, we know that Lp(X) is a Banach space. It is time to give some examples:

1. Rn with the norm de�ned thereby ‖x‖2 ≡
∑n
i=1 |xi|2 is a Banach space.

2. Rn associated with the norm ‖x‖ ≡ max{|x1|, |x2|, . . . , |xn|} is a Banach space.
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3. Let Cb(X) be the space of bounded continuous functions (f : X −→ C) with the
supremum norm ‖f‖∞ ≡ sup{|f(x)| : x ∈ X}. Then, (Cb(X), ‖ · ‖∞) is a Banach
space.

By Theorem 1.1.18, ‖ · ‖∞ is a norm and mimicking the proof of Theorem 1.1.35 we
can deduce the completeness.

4. Let Cc(X) be the space of continuous functions (f : X −→ C) with compact support.
We de�ne the support of f as supp(f) ≡ {x ∈ X : f(x) 6= 0}. With the supremum
norm the space (Cc(X), ‖ · ‖∞) is not a Banach space because it is not complete. Let
φ be a nonzero continuous function with support inside [0, 1]. We de�ne the functions
fn as follows,

f1(x) ≡ φ(x),

f2(x) ≡ φ(x) +
1

2
φ(x− 1),

f3(x) ≡ φ(x) +
1

2
φ(x− 1) +

1

3
φ(x− 2),

...

In general, we require:

fn(x) ≡
n−1∑
i=0

1

i+ 1
φ(x− i).

In particular, if we take φ(x) = sin(πx) the graphics of the fn's are:

1 2 3 4

0.2

0.4

0.6

0.8

1.0

Figure 1.2: Graphic of f1.
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Figure 1.3: Graphic of f2.
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Figure 1.4: Graphic of f3.
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Figure 1.5: Graphic of f4.

Then, for every n we get that fn ∈ Cc(R). We need prove that (fn)n∈N is a Cauchy
sequence.

W.l.o.g., suppose that n < m. Let J ≡ |fm(x)− fn(x)|.

J =
∣∣∣m−1∑
i=n

1

i+ 1
φ(x− i)

∣∣∣ ≤ m−1∑
i=n

1

i+ 1
|φ(x− i)|.

Note that, x− i ∈ [0, 1] if and only if i = bxc. Then, we get

J =

{ 1
bxc+1 |φ(x− bxc)|, if bxc ∈ [n,m− 1],
0, otherwise.

In either case, J ≤ 1
n+1‖φ‖∞ tends to zero as n goes to ∞. Therefore, (fi)i∈N is a

Cauchy sequence.

Additionally, fn converges uniformly to the continuous function

f(x) =

∞∑
i=0

1

i+ 1
φ(x− i).

However, f does not have compact support. Therefore, Cc(R) is not a complete space
with the supremum norm.

5. (Continuous functions which vanish at in�nity).

C0(X) ≡
{
f : X −→ C : lim

|x|→∞
f(x) = 0

}
.

Vanishing at in�nity means that for every ε > 0 there exists a compact subset K ⊂ X
such that |f(x)| < ε for x ∈ Kc . Moreover, notice that C0(X) ⊆ Cb(X). It is easy to
prove that C0(X) is a subspace of Cb(X).

For example, consider the function fn : R −→ [0, 1] de�ned by

fn(x) =


1
n , if |x| < n,
(n+1−|x|)

n , if n ≤ |x| ≤ n+ 1,
0, if |x| > n+ 1.

To be clear, we illustrate some f ′ns as follows:
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-6 -4 -2 0 2 4 6

0.5

1.0

1.5

2.0

Figure 1.6: f1 in purple, f2 in blue, f3 in green and f5 in red.

For every n ∈ N, fn ∈ C0(R) but notice that limn→∞ fn 6≡ 0. We must be careful
at x = 0 while we are �nding out the limit of this sequence of functions, because
limn→∞ fn(0) = ∞. Hence, limn→∞ fn(x) 6∈ C0(R) and C0(X) is not a complete
subspace of Cb(X).

Example 1.1.50. Consider real functions. The function f(x) = e−x
2

belongs to
C0(R) but not to Cc(R). Moreover, the function

f(x) =

{
1− x2, if |x| ≤ 1,
0, if |x| > 1.

belongs to Cc(R).

Finally, we obtain that Cc(X) ⊆ C0(X) ⊆ Cb(X). These are vector spaces but only
Cb(X) is a Banach space.

We will be particularly interested in the Lebesgue space L2(T) during the development of
this document.

Now, we will introduce other vector spaces (linear spaces) that are important to us. These
are the �sequence spaces� which are vector spaces whose elements are in�nite sequences, they
can be real or complex. Here, addition and scalar multiplication are de�ned componentwise.
Sequence spaces have similar properties as those mentioned for Lebesgue spaces.

De�nition 1.1.51 (Lebesgue spaces `p). Let 1 ≤ p <∞. The space `p(I), with I a countable
set of indices, consists of all sequences x : I→ F such that

∑
i∈I |xi|p <∞. The `p-norm of

x ∈ `p(I) is de�ned by

‖x‖pp ≡
∑
i∈I
|xi|p.

The Lebesgue space `p(I) is a sequence space. The sequence x ∈ `p(I) can be indexed by
N or Z and these are the most common cases.

Proposition 1.1.52. The `p-norm of x ∈ `p(I) is indeed a norm. We have,
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(i) For any x ∈ `p(I) it holds that ‖x‖p = 0 if and only if x = 0, i.e., each xi must be
zero for i ∈ I.

(ii) For any α ∈ F and x ∈ `p(I) we have that ‖α · x‖pp = |α|p‖x‖pp.

(iii) For any x,y ∈ `p(I), Theorem 1.1.54 will show that ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

Then, we state that `p(I) is a normed space.

The next theorems allow us to talk about completeness in `p(I). Besides, they present
properties which we should be familiar with.

The counting measure permits us to obtain the properties of `p(I) and their proofs.

Theorem 1.1.53 (Hölder's inequality for sequences). Assume that 1 < p, q <∞ are Hölder
conjugates. In addition, u ∈ `p(I) and v ∈ `q(I). Then, uv ∈ `1(I) and ‖uv‖1 ≤ ‖u‖p‖v‖q.

Proof. Let u ≡ (ui)i∈I and v ≡ (vj)j∈I. If we have u ≡ 0 or v ≡ 0, then theorem holds
trivially. Assume that u 6≡ 0 and v 6≡ 0. W.l.o.g., suppose that

∑
i∈I |ui|p =

∑
j∈I |vj |q = 1.

Due to Lemma 1.1.41 we have,

|uivj | ≤
1

p
|ui|p +

1

q
|vj |q. (1.1.11)

Adding over I, we get∑
i,j∈I
|uivj | ≤

1

p

∑
i∈I
|ui|p +

1

q

∑
j∈I
|vj |q =

1

p
+

1

q
= 1.

When u and v converge to a number di�erent of 1. We construct two new sequences as
follows:

(ai)i∈I ≡
(ui)i∈I
‖u‖p

and (bj)j∈I ≡
(vj)j∈I
‖v‖q

.

Note that,
∑
i∈I |ai|p = 1 and

∑
j∈I |bj |q = 1. Then, we can apply Equation (1.1.11),

∑
i,j∈I
|aibj | =

∑
i,j∈I

|uivj |
‖u‖p · ‖v‖q

≤ 1.

Therefore,
∑
i,j∈I |aibj | ≤ (

∑
i∈I |ui|p)

1
p (
∑
j∈I |vj |q)

1
q as we desired. �

Theorem 1.1.54 (Minkowski's inequality for series). Let x,y ∈ `p(I) and p ≥ 1. Then,
x+ y ∈ `p(I) and

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

Proof. Firstly, we know that x+ y ≡ (xi + yi)i∈I. If x+ y ≡ 0, we get Minkowski's
inequality. Assume that x+ y 6≡ 0. Using triangle inequality we obtain,

‖x+ y‖pp =
∑
i∈I
|xi + yi|p =

∑
i∈I
|xi + yi| · |xi + yi|p−1

≤
∑
i∈I
|xi + yi|p−1|xi|+

∑
i∈I
|xi + yi|p−1|yi|.
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Taking u = x or u = y, and v = (x+ y)p−1 Hölder's inequality for sequences 1.1.53 give
us,

‖x+ y‖pp ≤
((∑

i∈I
|xi|p

) 1
p

+
(∑
i∈I
|yi|p

) 1
p
)
·
(∑
i∈I
|xi + yi|p

) p−1
p

= (‖x‖p + ‖y‖p) ·
(∑
i∈I
|xi + yi|(p−1) p

p−1

)1− 1
p

= (‖x‖p + ‖y‖p) ·
‖x+ y‖pp
‖x+ y‖p

.

Finally, multiplying both sides by ‖x+y‖p
‖x+y‖pp we obtain Minkowski's inequality for series.

To prove that x+ y ∈ `p(I), notice that for i ∈ I:

|xi + yi|p ≤ (|xi|+ |yi|)p ≤ (2 max{|xi|, |yi|})p = 2p max{|xi|p, |yi|p} ≤ 2p(|xi|p + |yi|p).

Therefore, for each i ∈ I we have xi + yi ∈ F and additionally x+ y : I −→ F is a new
sequence satisfying

∑
i∈I |xi + yi|p <∞. �

Theorem 1.1.55. (`p(I), ‖ · ‖p) is a Banach space.

Proof. By Proposition 1.1.52 we know that `p(I) is a normed space. So, we will prove the
completeness of this space. Suppose that x(n) ≡ ((x

(n)
i )i∈I)n∈N ∈ `p(I) is a Cauchy sequence

respect to `p-norm. Then, for every ε > 0 there exists N(ε) such that if n,m ≥ N(ε) then,∑
i∈I
|x(n)
i − x(m)

i |p = ‖x(n) − x(m)‖pp < ε. (1.1.12)

In particular, for any i ∈ I we have,

|x(n)
i − x(m)

i |p < ε.

Thus, for each �xed i, (x
(n)
i )n∈N is a Cauchy sequence in F and so has a limit xi ∈ F.

Let's see that xi
(n) converges to (xi)i∈I.

If we take m goes to in�nity in Equation (1.1.12), it gives us∑
i∈I
|x(n)
i − xi|p ≤ ε. (1.1.13)

For any n ≥ N(ε) we have,∑
i∈I
|xi|p ≤

∑
i∈I
|xN(ε)
i − xi|p +

∑
i∈I
|xN(ε)
i |p ≤ ε+ ‖xi

N(ε)‖pp.

We conclude
∑
i∈I |xi|p is �nite, it implies that (xi)i∈I ∈ `p(I).

Finally, Equation (1.1.13) shows that limn→∞ ‖x(n)
i − xi‖pp = 0, as we required. �
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On `2(Z) we de�ne an inner product as follows:

〈x, y〉 ≡
∑
i∈Z

xiyi for x, y ∈ `2(Z).

It is easy to see that 〈x+ y,w〉 = 〈x,w〉 + 〈y,w〉, 〈cx,y〉 = c〈x,y〉, and 〈x,y〉 = 〈x,y〉,
for x, y, w ∈ `2(Z) and c any scalar. Furthermore, it holds that 〈x,x〉 = ‖x‖22 and using
De�nition 1.1.51 with d = 2 and I = Z we have that 0 ≤ 〈x,x〉 < ∞. Finally, Proposition
1.1.52 gives us that 〈x,x〉 = 0 if and only if xi = 0 for every i ∈ Z.

Notice that, `2−norm arises from this inner product. With the work we have already
done about `p(I), we get that (`2(Z), ‖ · ‖2) is a Hilbert space.

With this result we have shown that Lebesgue spaces `p(I) are Banach spaces. The entire
work we have done is intended to establish a relation between a function and its Fourier
coe�cients, and for that task we need to impose some requirements. Furthermore, we will
be interested in L2(X) and `2(I) spaces. Our purpose is to understand the isomorphism
between L2(T) and `2(Z).

1.2 Fourier section

Initially, it is important to know that Fourier analysis will be done in Hilbert spaces. In this
section we study how to construct a Fourier series and what it means.

De�nition 1.2.1 (Orthonormal basis). A subset {v1, . . . , vk} of a vector space V with the
inner product 〈·, ·〉, is called orthonormal if 〈vi, vj〉 = 0 when i 6= j. Moreover, they are all
required to have length one: 〈vi, vi〉 = 1. This subset must be linearly independent and must
span V .

Now, we can gather information about L2(X). First, recall that we are working with
measurable functions f : X → C that are square integrable on X. We can de�ne an inner
product on (L2(X), ‖ · ‖2) via

〈f, g〉 ≡
∫
X

fḡ dµ.

Proposition 1.2.2. Let (L2(X), ‖ · ‖2) and f, g ∈ L2(X). Then, 〈f, g〉 =
∫
X
fḡ dµ is an

inner product.

Proof. We will verify that it satis�es all the properties:

(i) Let f, g, h ∈ L2(X).

〈f + g, h〉 =

∫
X

(f + g)h̄ dµ =

∫
X

(fh̄+ gh̄) dµ =

∫
X

fh̄ dµ+

∫
X

gh̄ dµ = 〈f, h〉+ 〈g, h〉.

(ii) Let c be any scalar.

〈cf, g〉 =

∫
X

(cf)ḡ dµ =

∫
X

c(fḡ) dµ = c

∫
X

fḡ dµ = c〈f, g〉.
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(iii) 〈f, g〉 =
∫
X
fḡ dµ =

∫
X
gf̄ dµ = 〈g, f〉.

(iv) 〈f, f〉 =
∫
X
ff̄ dµ =

∫
X
|f |2 dµ = ‖f‖22. By how L2(X) is de�ned we obtain that

0 ≤ 〈f, f〉 <∞, as we desire.

(v) By the property (ii) of Theorem 1.1.39 we easily get that, 〈f, f〉 = 0 if and only if
f = 0 (µ−a.e.).

Therefore, we conclude that 〈·, ·〉 is an inner product on L2(X). �

Note that, the norm does indeed come from this inner product. Furthermore, by Theorem
1.1.47 we know that L2(X) is complete with the norm ‖·‖2. Thus, (L2(X), ‖·‖2) is a Hilbert
space.

Now, we deal with the space L2(T) which is the space of functions f : T −→ C such that∮
T |f(t)|2 dt <∞ and the norm for f ∈ L2(T) is de�ned as follows

‖f‖22 ≡
1

2πi

∮
T
|f(t)|2 dt

t
.

In this case, for any f, g ∈ L2(T) we have

〈f, g〉 ≡ 1

2π

∫ 2π

0

f(eiθ)g(eiθ) dθ =
1

2πi

∮
T
f(t)g(t)

dt

t
.

De�nition 1.2.3 (Fourier coe�cients). On L2(T) let B = (tk)∞k=−∞. We de�ne fk ≡ 〈f, tk〉
for all f ∈ L2(T) and k ∈ Z, fk is known as the k-th Fourier coe�cient of f . Thus,

fk =
1

2πi

∮
T
f(t)t−k−1 dt =

1

2π

∫ 2π

0

f(eiθ)e−ikθdθ.

Theorem 1.2.6 will show that B is an orthonormal basis.

The mapping Φ: L2(T) −→ `2(Z) given by f 7−→ (fk)k∈Z is known as the Fourier
transform for T. It is the operator which sends a function to the sequence of its Fourier
coe�cients and de�nes an isomorphism between the spaces L2(T) and `2(Z). Besides, notice
that if f belongs to L2(T) then, the Fourier transform is the function fk : Z −→ C.

Theorem 1.2.4 (Parseval's identity). Let f ∈ L2(T) and fk be the k-th Fourier coe�cient
of f . Then, ∑

k∈Z
|fk|2 =

1

2π

∫ 2π

0

|f(eiθ)|2 dθ.

Proof.

‖f‖22 = 〈f, f〉 =
〈∑
k∈Z

fkt
k,
∑
j∈Z

fjt
j
〉

=
∑
k,j∈Z

fkfj〈tk, tj〉 =
∑
k∈Z
|fk|2. �

Theorem 1.2.5. The Fourier transform is an isometric isomorphism from L2(T) onto
`2(Z).
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Proof. Let Φ: L2(T) −→ `2(Z) be the Fourier transform. By Parseval's identity we know
that ‖Φf‖2 = ‖f‖2. Now, we want to show that Φ is linear.

Let a, b ∈ C and f, g ∈ L2(T).

Φ(af + bg)(t) =
1

2π

∫ 2π

0

[af(eiθ) + bg(eiθ)]e−ikθ dθ

=
1

2π

∫ 2π

0

[af(eiθ)e−ikθ + bg(eiθ)e−ikθ] dθ

=
1

2π

∫ 2π

0

af(eiθ)e−ikθ dθ +
1

2π

∫ 2π

0

bg(eiθ)e−ikθ dθ

=a
1

2π

∫ 2π

0

f(eiθ)e−iθ dθ + b
1

2π

∫ 2π

0

g(eiθ)e−ikθ dθ

=aΦf(t) + bΦg(t).

What remains is to verify the isomorphism L2(T) ' `2(Z). First, Φ is bijective and admits
an inverse by how we have de�ned it. We will see that these spaces are equivalent with
respect to the inner product. For f, g ∈ L2(T) we assume that f(t) =

∑
k∈Z fkt

k and
g(t) =

∑
j∈Z gjt

j ,

〈f, g〉 =
1

2πi

∮
T

(∑
k∈Z

fkt
k
)(∑

j∈Z
gjt
−j
) dt
t

=
1

2πi

∮
T

∑
s∈Z

(∑
k∈Z

fkgk−s

)
ts
dt

t

=
∑
s∈Z

(∑
k∈Z

fkgk−s

) 1

2πi

∮
T
ts
dt

t
.

Calculating this last integral, we get that

1

2πi

∮
T
ts
dt

t
=

{
1, if s = 0,
0, if s 6= 0.

Thus, 〈f, g〉 =
∑
k∈Z fkgk = 〈(fk)k∈Z, (gk)k∈Z〉 = 〈Φf,Φg〉. �

Theorem 1.2.6. B is an orthonormal basis for L2(T).

Proof. (i) 〈tk, tk〉 =
1

2πi

∮
T
|tk|2 dt

t
=

1

2π

∫ 2π

0

|eikθ|2 dθ = 1. Therefore, ‖tk‖2 = 1 for

every k ∈ Z.

(ii) Let m,n ∈ Z with m 6= n.

〈tn, tm〉 =
1

2π

∫ 2π

0

ei(n−m)θdθ =
1

2πi

[
ei(n−m)θ

n−m

]2π

0

= 0.
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(iii) Let f ∈ L2(T). We require that f(t) =
∑
k∈Z fkt

k.

Now we denote A ≡
∥∥∥f − N∑

k=−N

fkt
k
∥∥∥2

2
and a simple calculation reveals that:

A =

〈
f −

N∑
k=−N

fkt
k, f −

N∑
k=−N

fkt
k

〉

= 〈f, f〉 −
〈
f,

N∑
k=−N

fkt
k

〉
−
〈 N∑
k=−N

fkt
k, f

〉
+

〈 N∑
k=−N

fkt
k,

N∑
k=−N

fkt
k

〉

= ‖f‖22 −
N∑

k=−N

fk〈f, tk〉 −
N∑

k=−N

fk〈tk, f〉+

N∑
j=−N

N∑
l=−N

fjfl〈tj , tl〉.

In the case that j 6= l from the previous item we get 〈tj , tl〉 = 0, then

A = ‖f‖22 −
N∑

k=−N

fk〈f, tk〉 −
N∑

k=−N

fk〈f, tk〉+

N∑
k=−N

|fk|2

= ‖f‖22 −
N∑

k=−N

fkfk −
N∑

k=−N

fkfk +

N∑
k=−N

|fk|2

= ‖f‖22 −
N∑

k=−N

|fk|2.

Therefore,
∥∥∥f − N∑

k=−N

fkt
k
∥∥∥2

2
= ‖f‖22 −

N∑
k=−N

|fk|2. At this point, we should analyze the

limit limN→∞
∑N
k=−N |fk|2, but Parseval's identity gives us that

lim
N→∞

N∑
k=−N

|fk|2 = ‖f‖22.

We get that
∥∥∥f − N∑

k=−N

fkt
k
∥∥∥2

2
−−−−→
N→∞

0. Thus, the set of vectors (tk)k∈Z spans L2(T).

Whence, B is an orthonormal basis. �

Remark 1.2.7. Note that f(t) =
∑
k∈Z fkt

k means that f −
∑
k∈Z fkt

k is a function with
‖ · ‖2 = 0. Besides, the functions f(t) and

∑
k∈Z fkt

k are not necessarily equal for every
value of t. That being so, we can interpret that given f it is possible to represent it as an
in�nite sum and this is done via Fourier transform which decomposes the function f .

De�nition 1.2.8 (Fourier series). A Fourier series for a piecewise continuous function is
an in�nite series expansion of oscillating functions. We are referring to the study of wave
motion, when a basic waveform repeats itself periodically. Then, for f ∈ L2(T) the Fourier
series is ∑

k∈Z
fke

ikθ =
∑
k∈Z

fkt
k.
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Example 1.2.9. Consider the function f : T −→ [0, 1] given by

f(eiθ) =

 0, if 0 ≤ θ ≤ 2π
3 ,

1, if 2π
3 ≤ θ ≤

4π
3 ,

1
2π θ, if 4π

3 ≤ θ ≤ 2π.

2π

3

4π

3
2π

1

3

2

3

1

Note that f is a piecewise continuous function. The k-th Fourier coe�cient of f is

fk =
1

2π

∫ 2π

0

a(eiθ)e−ikθ dθ.

We can write it as follows:

fk =
1

2π

∫ 2π
3

0

a(eiθ)e−ikθ dθ +
1

2π

∫ 4π
3

2π
3

a(eiθ)e−ikθ dθ +
1

2π

∫ 2π

4π
3

a(eiθ)e−ikθ dθ

=
1

2π

∫ 4π
3

2π
3

e−ikθ dθ +
1

4π2

∫ 2π

4π
3

θe−ikθ dθ.

After calculating these integrals we get,

fk =
e−2ikπ

12k2π2

(
3 + 6ikπ − 6ikπe

4ikπ
3 + e

2ikπ
3 (−3 + 2ikπ)

)
, k 6= 0 and f0 =

11

18
.

Let Fm(t) ≡
∑m
k=−m fkt

k. Clearly, f = limm→∞ Fm. The �gures 1.7�1.9 exhibit the
graphics of the functions F5, F10, and F40 for f as in Example 1.2.9.
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Figure 1.7: Graphic of F5 (yellow) and f
(blue) from Example 1.2.9.
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Figure 1.8: Graphic of F10 (yellow) and
f (blue) from Example 1.2.9.
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Figure 1.9: Graphic of F40 (yellow) and f (blue) from Example 1.2.9.





Chapter 2

In�nite matrices

2.1 Boundedness and invertibility

Boundedness of functions is a useful condition, but it is stronger on linear transformations.
Besides, it has a profound e�ect all over operator theory. Regarding invertible transforma-
tions, we say that a bounded linear transformation A from a Hilbert space H to a Hilbert
space K is invertible if there exists a bounded linear transformation B (from K into H) such
that AB ≡ IK and BA ≡ IH.

De�nition 2.1.1 (Linear operator). If E,F are vector spaces over a �eld F, a linear
operator from E to F is a mapping T : E −→ F such that T (λx + µy) = λTx + µTy for
every λ, µ ∈ F and every x, y ∈ E.

De�nition 2.1.2 (Bounded linear operator). If E,F are normed spaces, then a linear
operator T : E −→ F is said to be bounded if there exists M ≥ 0 such that ‖Tx‖ ≤ M‖x‖
for every x ∈ E.

De�nition 2.1.3 (Topological vector space). Let V be a vector space endowed with a topol-
ogy τ . The pair 〈V, τ〉 is called a topological vector space if the vector space operations are
continuous with respect to τ .

The condition means that the mappings:

V × V −→ V (x, y) 7−→ x+ y and F× V −→ V (α, x) 7−→ αx

are continuous. In addition, functions and linear operators belong to a topological vector
space and the topology is de�ned to catch the notion of convergence of sequences of functions.
Then, all Hilbert and Banach spaces are examples of topological vector spaces.

Given a Banach spaceX, we denote by B(X) the collection of all bounded linear operators
on X. Besides, B(X) is equipped with ‖ · ‖op, this is the norm of an operator A ∈ B(X) and
it is de�ned as follows,

‖A‖op ≡ sup

{
‖Ax‖X
‖x‖X

: x 6= 0

}
.

‖A‖op is the largest ratio of ‖A‖X to ‖x‖X by which A stretches an element of X. When
the supremum exists it is the number by which this ratio is bounded.

29
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Theorem 2.1.4. Let D1 = sup{‖Ax‖X : ‖x‖X ≤ 1}, D2 = sup{‖Ax‖X : ‖x‖X = 1}, and
D3 = sup{‖Ax‖X/‖x‖X : x 6= 0}. Then, D1 = D2 = D3.

Proof. To begin with, notice that D2 ≤ D1. Let x 6= 0, then
∥∥∥ x
‖x‖X

∥∥∥
X

= 1. Moreover,

1
‖x‖X (Ax) = A

(
x
‖x‖X

)
. Then,

∥∥∥A( x
‖x‖X

)∥∥∥
X

= ‖Ax‖X
‖x‖X and we get that D3 ≤ D2.

Now, if we assume that ‖x‖X ≤ 1, then ‖Ax‖X ≤ ‖Ax‖X‖x‖X . Thus, D1 ≤ D3.

Finally, we obtain that D1 = D2 = D3. �

Theorem 2.1.5. Let A ∈ B(X). Then, A is a continuous linear operator.

Proof. By assumption A is bounded, then there exists M > 0 such that ‖Ax‖X ≤ M‖x‖X
for all x ∈ X.

Let ε > 0. If x, y ∈ X and ‖x− y‖X < ε
M , then

‖Ax−Ay‖X = ‖A(x− y)‖X ≤M‖x− y‖X < ε.

Therefore, A is not only continuous but uniformly continuous also. �

De�nition 2.1.6 (Algebra over a �eld). Let F be a �eld and V be a vector space over
F equipped with an additional binary operation · : V × V −→ V , i.e., given two elements
x, y ∈ V , then x · y ∈ V and it is the product of x and y. Thus, V is an algebra over F if
the following hold for x, y, z ∈ V and a ∈ F,

(i) x(yz) = (xy)z.

(ii) x(y + z) = xy + xz and (x+ y)z = xz + yz.

(iii) a(xy) = (ax)y = x(ay).

De�nition 2.1.7 (Normed algebra). Let V be an algebra over a �eld which has a submul-
tiplicative norm, i.e., for all x, y ∈ V it satis�es

‖xy‖V ≤ ‖x‖V ‖y‖V .

Now, we consider the structure of B(X). In general terms, B(X) is a vector space with
the usual operations: addition, scalar multiplication, and associativity for the composition.
Additionally, there is an identity operator, denoted by IX . More precisely, B(X) is an
algebra of continuous linear operators on X and a topological vector space.

Proposition 2.1.8. Let B(X) be the space of bounded linear operators. Then, ‖ · ‖op is a
norm.

Proof. Let A,B ∈ B(X) and a be any scalar.

(i) We know that X is, in particular, a normed space. Thus, for every x ∈ X we obtain
0 ≤ ‖Ax‖X < ∞ and 0 ≤ ‖x‖X < ∞. Thus, for x 6= 0 it holds 0 ≤ ‖Ax‖X‖x‖X < ∞ and
we get that 0 ≤ ‖A‖op <∞.

(ii) It is clear that ‖A‖op = 0 if and only if A = 0.
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(iii) ‖aA‖op = sup{‖(aA)x‖X/‖x‖X : x 6= 0} = sup{|a|‖Ax‖X/‖x‖X : x 6= 0} = |a|‖A‖op.

(iv)

‖A+B‖op = sup

{
‖(A+B)x‖X
‖x‖X

: x 6= 0

}
= sup

{
‖Ax+Bx‖X
‖x‖X

: x 6= 0

}
,

here ‖Ax+Bx‖X ≤ ‖Ax‖X + ‖Bx‖X because X is a normed space. Then,

‖A+B‖op ≤ sup

{
‖Ax‖X
‖x‖X

+
‖Bx‖X
‖x‖X

: x 6= 0

}
≤ sup{‖Ax‖X/‖x‖X : x 6= 0}+ sup{‖Bx‖X/‖x‖X : x 6= 0}
=‖A‖op + ‖B‖op. �

An immediate consequence of De�nition 2.1.2 is that ‖Av‖X ≤ ‖A‖op‖v‖X for each
v ∈ X.

Proposition 2.1.9. If A,B ∈ B(X), then BA ∈ B(X) and ‖BA‖op ≤ ‖B‖op‖A‖op. There-
fore, the operator norm is compatible with the composition or multiplication of operators.

Proof. BA is clearly linear and (being a composition of continuous mappings) continu-
ous. For any x ∈ X, ‖BAx‖X = ‖B(Ax)‖X ≤ ‖B‖op‖Ax‖X ≤ ‖B‖op‖A‖op‖x‖X . Hence,
‖BA‖op ≤ ‖B‖op‖A‖op. �

With what we have done, we say that (B(X), ‖ · ‖op) is a normed space. Furthermore,
B(X) is a normed algebra.

Theorem 2.1.10. (B(X), ‖ · ‖op) is a Banach space.

Proof. By Propositions 2.1.8 and 2.1.9 we know that B(X) is a normed space. Then, all
that remains is checking the completeness.

Let (Bk)k∈N be a Cauchy sequence on B(X). Then, for every ε > 0 there exists N(ε) > 0
such that

m,n > N(ε) =⇒ ‖Bm −Bn‖op < ε.

Let x ∈ X. Note that,

‖Bm(x)−Bn(x)‖X
‖x‖X

=

∥∥∥∥Bm(x)−Bn(x)

x

∥∥∥∥
X

≤
∥∥∥∥ (Bm −Bn)(x)

x

∥∥∥∥
X

≤ ‖Bm −Bn‖op < ε.

Then, for each x ∈ X, (Bk(x))k∈N is a Cauchy sequence on X. Since X is complete, the
sequence has a limit and we denote it by B(x).

Let α, β ∈ F and x1, x2 ∈ X. We have:

B(αx1 + βx2) = lim
k→∞

Bk(αx1 + βx2) = lim
k→∞

(Bk(αx1) +Bk(βx2))

= lim
k→∞

(αBk(x1) + βBk(x2)) = αB(x1) + βB(x2).

Thus, B is linear.

We know that every Cauchy sequence is bounded, so we get that

lim
k→∞

‖Bk‖op = ‖ lim
k→∞

Bk‖op = ‖B‖op <∞.
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Finally, note that

lim
k→∞

‖Bk −B‖op = lim
k→∞

sup

{
‖Bk(x)−Bx‖X

‖x‖X
: x 6= 0

}
= sup

{
lim
k→∞

‖Bk(x)−Bx‖X
‖x‖X

}
= 0.

Therefore, B ∈ B(X) and the sequence (Bk)k∈N converges to B. �

De�nition 2.1.11 (Finite rank operator). Let K ∈ B(X). An operator K is said to be of
�nite rank if its range, ran(K), is �nite dimensional.

We denote the set of the �nite rank operators on X as B00(X).

De�nition 2.1.12 (Relatively compact set). Let X be a Banach space and let Ω ⊂ X. The
subset Ω is called relatively compact if its closure is compact.

De�nition 2.1.13 (Relatively compact operator). Let X be a Banach space, let Ω ⊂ X,
and let K : Ω −→ X be a bounded linear operator. K is said to be a relatively compact
operator if for any bounded set S ⊂ Ω, K(S) is a relatively compact set on X.

De�nition 2.1.14 (Compact operator). Let K ∈ B(X) and let S ⊂ X be a bounded subset.
We say that if K(S) is a relatively compact subset of X, then K is compact.

We denote the set of all compact operators on X as B0(X). If we assume that X is a
Hilbert space, then

B00(X) ⊂ B0(X).

This is a known result. Additionally, B0(X) ⊂ B(X) for any set X.

Erik Ivar Fredholm was born in Stockholm, Sweden, in 1866. Fredholm received the best
education and he displayed his brilliance at an early age.

Fredholm's thesis treated a topic in the theory of partial di�erential equations, which
had applications to the study of deformations of objects subjected to interior or exterior
forces. Later, he acquired fame for his solution of Fredholm integral equation, which has
wide applications in physics.

This work constitutes an achievement in functional analysis and spectral theory.

Compact operators originated in the study of integral equations. The theory of compact
operators, known as the Riesz�Schauder theory, is a generalization of the classical Fredholm
operator theory for integral equations, which has found many important applications in both
ordinary and partial di�erential equations.

2.2 In�nite matrices

In�nite matrices can be regarded as a generalization of linear algebra to in�nite dimensions.
On the other hand, we appeal to in�nite matrices because they have an important application
to the theory of summability of divergent sequences and series, and the Heisenberg�Dirac
theory of quantum mechanics.
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At this point, we focus on in�nite matrices and their spectral phenomena. According to
this, we work with the Hilbert spaces `2(Z) and `2(N). For these spaces we consider the set
(ej)j∈J where J = N or J = Z, and ej is the vector whose jth entry is 1 and the remaining
entries are zero. Clearly, (ej)j∈J is an orthonormal basis for `2(J).

Theorem 2.2.1. Let (ej)j∈J be a basis. Then, an in�nite matrix representation for an
operator A ∈ B(`2(J)) is given by aj,k = 〈Aek, ej〉.

Proof. For J = Z. Let (ej)j∈Z be an orthonormal basis for `2(Z). Then, for α ∈ `2(Z) we
have

Aα = A
∑
j∈Z

αjej =
∑
j∈Z

αjAej =


...

...
...

· · · Ae−1 Ae0 Ae1 · · ·
...

...
...

 ·α.
Note that, Aek =

∑
j∈Z〈Aek, ej〉ej . Whence, if we say that TA is (aj,k)j,k∈Z, we have that

Aα = TA ·α.
The case J = N is similar. �

Straightaway, we understand `2(J) as a space of in�nite columns. The action of A on
`2(J) can be described as a multiplication by the in�nite matrix TA. Let aj,k ≡ 〈Aek, ej〉.

In the case of J = Z we have the following matrix representation,

Ax =


· · · · · · · · · · · · · · · · · ·
· · · a−2,−2 a−2,−1 a−2,0 a−2,1 · · ·
· · · a−1,−2 a−1,−1 a−1,0 a−1,1 · · ·
· · · a0,−2 a0,−1 a0,0 a0,1 · · ·
· · · a1,−2 a1,−1 a1,0 a1,1 · · ·
· · · · · · · · · · · · · · · · · ·





...
x−2

x−1

x0

x1

...


=



...
y−2

y−1

y0

y1

...


= y

with yi =
∑
k∈Z

aj,kxk. Similarly, when J = N we have the next one,

Ax =


a1,1 a1,2 a1,3 · · ·
a2,1 a2,2 22,3 · · ·
a3,1 a3,2 a3,3 · · ·
· · · · · · · · · · · ·




x1

x2

x3

...

 =


y1

y2

y3

...

 = y

with yi =
∑
k∈N

aj,kxk.

Example 2.2.2. Let S : `2(N) −→ `2(N) be the shift operator given by

S(α1, α2, . . .) = (0, α1, α2, . . .).

(i) Let α,β ∈ `2(N) and a, b ∈ F. Then, we get

S(a ·α+ b · β) =(0, aα1 + bβ1, aα2 + bβ2, . . .) = (0, aα1, aα2, . . .) + (0, bβ1, bβ2 . . .)

=a · (0, α1, α2, . . .) + b · (0, β1, β2, . . .) = a · Sα+ b · Sβ.

Therefore, S is linear.
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(ii) Let α ∈ `2(N) with α 6= 0. We want to calculate ‖S‖op. Note that, it holds the
following: ‖Sα‖2 = ‖(0, α1, α2, . . .)‖2 = ‖α‖2. Thus, ‖S‖op = 1 and we conclude that
S is bounded. Thus, S ∈ B(`2(N)).

(iii) Using the standard orthonormal basis for `2(N), we obtain

〈Sej , ei〉 = 〈ej+1, ei〉 = δj+1,i.

Therefore, the matrix corresponding to S and (ej)j∈N is the lower diagonal matrix

TS =


0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
...

...
...

. . .

 .

Before continuing, we present a short review of the mathematical work of Israel Gohberg.

He was born in 1928. He began his mathematical studies around 1950. Later, he became
head of the mathematics department and a full professor of the functional analysis course
at the Mathematical Institute of the newly organized Moldavian Academy of Science. With
two doctoral degrees and many honors which marked his career, he supervised more than
40 doctoral students.

The mathematical work of Gohberg is extensive and in�uential. His contributions belong
to the �eld of analysis, operator theory and linear algebra. He was a leader in these research
areas:

• Integral equations.

• Theory of non-selfadjoint operators.

• Spectral theory and factorization of matrices and operator functions.

• Inversion problems for structured matrices.

His papers and books are oriented to theory of Fredholm operators (perturbation, index and
representations). Furthermore, he made a connection between the theory of commutative
algebras and integral operators.

Once we know how an operator A ∈ B(`2(J)) can be represented by an in�nite matrix,
we ask if every in�nite matrix de�nes a bounded operator on `2(J). For answering this
question we establish that an in�nite matrix (aj,k)j,k∈J generates a bounded operator on
`2(J), i.e., an in�nite matrix represents a bounded operator on `2(J) if there exists an
operator A ∈ B(`2(J)) such that 〈Aek, ej〉 is valid for all j, k ∈ J . Thus, we set up the
next de�nition which says under what conditions it holds that a matrix generates a bounded
operator.

De�nition 2.2.3. The in�nite matrix A = (aj,k)j,k∈J generates a bounded operator on `2(J)
if and only if there exists a constant M < ∞ such that for every x ∈ `2(J) the following
conditions hold:

(i) The series yj ≡
∑
k∈J aj,kxk converge for all j ∈ J .
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(ii) y ≡ (yj)j∈J belongs to `2(J).

(iii) ‖y‖22 ≤M‖x‖22.

The smallest constant M for which (iii) is true equals the norm: ‖A‖op.
De�nition 2.2.4 (Banach algebra). Let A be a complex Banach space. Then, if A is a
complete normed algebra, we say that A is a Banach algebra.

If a Banach algebra has a unit element, which is denoted by e, 1, or I, it is referred to as
a unitary Banach algebra. This unit satis�es that ‖e‖ = ‖1‖ = ‖I‖ = 1.

De�nition 2.2.5 (Involution). Let A be a Banach algebra. A mapping ∗ : A −→ A is called
an involution if it satis�es the following:

(i) (x+ y)∗ = x∗ + y∗.

(ii) (cx)∗ = c̄x∗.

(iii) (xy)∗ = y∗x∗.

(iv) x∗∗ = x.

For all x, y ∈ A and c ∈ C.
De�nition 2.2.6 (C∗-algebra). Let A be a Banach algebra with an involution ∗. Then, A
is a C∗-algebra if ‖x∗x‖A = ‖x‖2A.
Example 2.2.7. Let S be a set. The collection of all complex functions that are essentially
bounded on S is L∞(S) and it is a unitary Banach algebra with these operations:

(i) (f + g)(x) = f(x) + g(x).

(ii) (fg)(x) = f(x)g(x).

(iii) (αf)(x) = αf(x).

The associated norm is ‖ · ‖∞. We show that given f, g ∈ L∞(S), then fg ∈ L∞(S).
Let x ∈ S. We get

‖fg‖∞ = inf{M : ‖(fg)(x)‖ ≤M for µ-a.e. x ∈ S}
= inf{M : ‖f(x)g(x)‖ ≤M for µ-a.e. x ∈ S}
= inf{M : ‖f(x)‖‖g(x)‖ ≤M for µ-a.e. x ∈ S}
≤ inf{M1 : ‖f(x)‖ ≤M1 for µ-a.e. x ∈ S} · inf{M2 : ‖g(x)‖ ≤M2 for µ-a.e. x ∈ S}
=‖f‖∞ · ‖g‖∞ <∞.

Thus, fg ∈ L∞(S).

Example 2.2.8. Let C(K) be the space of continuous functions on a compact set K,
with pointwise multiplication (fg)(x) ≡ f(x)g(x), and unity the constant function 1. By
Theorem 1.1.35 we know that C(K) is a Banach space. Thus, C(K) is an unitary Banach
algebra.

Example 2.2.9. Let X be a Banach space. Let B(X) be the collection of all bounded
linear operators on X and IX be the identity operator. By Theorem 2.1.10 we get that B(X)
is a Banach space. Therefore, B(X) is an unitary Banach algebra.
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2.3 Spectrum

Proposition 2.3.1 (Uniqueness of multiplicative inverse). Let A be a Banach algebra with
unity e. An element a ∈ A is said to be invertible on A if there exists an element b ∈ A
such that ab = ba = e. Then, b is unique whenever it exists, in that case we denote it by
a−1 and call it the inverse of a.

Proof. Let a ∈ A, such that a 6= 0. Suppose that there exist b, b′ ∈ A with b 6= b′ and both
are inverses of a. Then, we have ab = ba = e, and ab′ = b′a = e. Now, note that

b = eb = (b′a)b = b′(ab) = b′e = b′.

Therefore, b = b′ = a−1, i.e., the multiplicative inverse of a exists and is unique. �

De�nition 2.3.2 (Spectrum). Let A be a Banach algebra. The spectrum of an element
a ∈ A is de�ned as the set

spA(a) = {λ ∈ C : a− λe is not invertible in A}.

Its complement C \ spA(a) is called the resolvent of a and we denote by ρA(a).

Example 2.3.3. Let GL(n,C) be the general linear group of n × n invertible matrices
over C. The spectrum of a matrix consists of its eigenvalues.

Note that, it is possible to have di�erent matrices with the same spectrum. The spectrum
yields important information about a matrix, but need not characterize it uniquely.

Example 2.3.4. Let x ∈ `∞(N) given by x = (xn)n∈N. The spectrum of the sequence x is
sp`∞(N)(x) = Im(x). To see this note that the inverse of the sequence x−λid = (xn−λ)n∈N

is
(

1
xn−λ

)
n∈N

and it is bounded if and only if there exists c > 0 such that |xn − λ| ≥ c for

each n ∈ N.
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Laurent matrices

The french mathematician Pierre Alphonse Laurent found out that some complex functions
admit an expansion into an in�nite power series (positive and negative), this series is known
as the Laurent series. We say that the Laurent series for a complex function a about a point
c is given by

a(z) =
∑
n∈Z

an(z − c)n.

It is important to mention that this kind of series takes into account the singularities of the
function. In addition, the coe�cients an are constants and can be de�ned by a line integral.

We will use these coe�cients for the construction of an in�nite matrix.

Similarly, let (an)∞n=−∞ be a sequence of complex numbers and A be the following in�nite
matrix

A ≡



· · · · · · · · · · · · · · · · · · · · ·
· · · a0 a−1 a−2 a−3 a−4 · · ·
· · · a1 a0 a−1 a−2 a−3 · · ·
· · · a2 a1 a0 a−1 a−2 · · ·
· · · a3 a2 a1 a0 a−1 · · ·
· · · a4 a3 a2 a1 a0 · · ·
· · · · · · · · · · · · · · · · · · · · ·


.

We claim that A is a doubly-in�nite matrix and is constant along their diagonals. Such
matrices are known as Laurent matrices.

We can see A as an operator on B(`2(Z)), thereby:

Ax =



· · · · · · · · · · · · · · · · · · · · ·
· · · a0 a−1 a−2 a−3 a−4 · · ·
· · · a1 a0 a−1 a−2 a−3 · · ·
· · · a2 a1 a0 a−1 a−2 · · ·
· · · a3 a2 a1 a0 a−1 · · ·
· · · a4 a3 a2 a1 a0 · · ·
· · · · · · · · · · · · · · · · · · · · ·





...
x−2

x−1

x0

x1

x2

...


=



...∑∞
k=−∞ a−2−kxk∑∞
k=−∞ a−1−kxk∑∞
k=−∞ a−kxk∑∞
k=−∞ a1−kxk∑∞
k=−∞ a2−kxk

...


.

37
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In order to use the theory of bounded operators that are generated by in�nite matrices, we
are interested in the conditions under which a Laurent matrix generates a bounded operator
on `2(Z).

The following theorem answers this question.

Theorem 3.0.5. Let (an)n∈Z be a sequence. The associated Laurent matrix A generates a
bounded operator on `2(Z) if and only if there is a function a ∈ L∞(T) such that (an)n∈Z is
the sequence of the Fourier coe�cients of a:

an =
1

2π

∫ 2π

0

a(eiθ)e−inθ dθ.

Consequently, we denote the Laurent matrix and the bounded operator generated by this
matrix on `2(Z) by L(a).

Otto Toeplitz, born at Breslau in 1881, studied mathematics in Breslau and Berlin. He
preferred to consider mathematics as an art than as a science.

Toeplitz's mathematical interest was mainly in algebra. He liked to consider analysis
as an algebra of an in�nite number of variables. Most of his papers deal with problems of
in�nite matrices and the corresponding bilinear and quadratic forms. In 1911, he wrote �Zur
Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen� [11],
Toeplitz considered the Laurent matrices and proved that the spectrum of the corresponding
operator on `2(Z) is just the curve

R(a) ≡
{∑
n∈Z

ant
n : t ∈ T

}
.

In the same paper he established that the in�nite matrix (aj−k)∞j,k=0 induces a bounded
operator on `2(Z+) if and only if the Laurent matrix generates a bounded operator on
`2(Z). Because of this result the matrix (an)n∈N is known as the Toeplitz matrix.

De�nition 3.0.6 (Band matrix). Let A = (ai,j) be a matrix. The subscripts of the entries
of A are i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Let k1, k2 > 0 be integers. We say that A has
lower bandwidth k1 if ai,j = 0 for i > j+k1 and upper bandwidth k2 if ai,j = 0 for j > i+k2.
In any case, A is a band matrix.

The bandwidth of the matrix A is max{k1, k2}, in other words, there exists a constant
k ∈ N such that ai,j = 0 for |i− j| > k.

Example 3.0.7 (Tridiagonal matrices). Let A be a matrix with i, j = 1, 2, . . . , n. Consider
k1 = k2 = 1, then we get that

A =



a1,1 a1,2 0 · · · · · · 0

a2,1 a2,2 a2,3
. . .

...

0 a3,2 a3,3 a3,4
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . an−1,n

0 · · · · · · 0 an,n−1 an,n


.
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Example 3.0.8 (Hessenberg matrix). A Hessenberg matrix is a special kind of square
matrix because it is almost triangular.

Let A with i, j = 1, 2, . . . , n be a square matrix and take k1 = 1, and k2 = n− 1. Then,
we say that A is an upper Hessenberg matrix and has the following form

A =



a1,1 a1,2 a1,3 · · · a1,n−1 a1,n

a2,1 a2,2 a2,3 · · · a2,n−1 a2,n

0 a3,2 a3,3 · · · a3,n−1 a3,n

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . an−1,n

0 · · · · · · 0 an,n−1 an,n


.

Additionally, if we take k1 = n − 1, and k2 = 1, then A is a lower Hessenberg matrix and
we have,

A =



a1,1 a1,2 0 · · · · · · 0

a2,1 a2,2 a2,3
. . .

...

a3,1 a3,2 a3,3
. . .

. . .
...

...
...

...
. . .

. . . 0
an−1,1 an−1,2 an−1,3 · · · an−1,n−1 an−1,n

an,1 an,2 an,3 · · · an,n−1 an,n


.

De�nition 3.0.9 (Laurent polynomial). Let f be a function with the following form

s∑
k=−r

αkt
k, α−r 6= 0 ,and αs 6= 0.

Thus, that linear combination of positive and negative powers is called a Laurent polynomial.

This polynomial is also called a trigonometric polynomial. The function a on T, whose
Fourier coe�cients are just what we de�ned in Theorem 3.0.5, is referred to as the symbol
of the Laurent matrix. Afterwards, we will see that in the case of Toeplitz band matrices,
the symbol is a Laurent polynomial.

De�nition 3.0.10 (Multiplication operator). Let a ∈ L∞(T). Then, the multiplication
operator

Ma : L2(T) −→ L2(T)

is given by f 7−→ af .

Proposition 3.0.11. Let a ∈ L∞(T). Then, Ma is bounded and ‖Ma‖op ≤ ‖a‖∞.

Proof. Let f ∈ L2(T). We have that Ma(f) = af ∈ L2(T). Notice that,

‖Ma(f)‖22 =

∮
T
|a(t)f(t)|2 dµ ≤

∮
T
‖a‖2∞|f(t)|2 dµ = ‖a‖2∞‖f‖22 <∞.

It means that, ‖Ma(f)‖22
‖f‖22

≤ ‖a‖2∞.
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Then,

‖Ma‖op = sup

{
‖Ma(f)‖2
‖f‖2

: ‖f‖2 6= 0

}
= sup

{
‖af‖2
‖f‖2

: ‖f‖2 6= 0

}
≤ sup

{
‖a‖∞‖f‖2
‖f‖2

: ‖f‖2 6= 0

}
= ‖a‖∞. �

The next proposition was taken from [5]. It will provide us the reverse inequality,
‖Ma‖op ≥ ‖a‖∞. To be clear in the proof of the following result, we de�ne χj(t) ≡ tj

for t ∈ T and j ∈ Z.

Proposition 3.0.12. Let A ∈ B(L2(T)). Suppose that there is a sequence (an)n∈Z of
complex numbers such that 〈Aχj , χk〉 = ak−j. Then, there is a function a belonging to
L∞(T) such that A = Ma and (an)n∈Z is the Fourier coe�cient sequence of a. Moreover,
‖Ma‖op = ‖a‖∞.

Proof. By Theorem 1.1.47 we get that (L2(T), ‖ · ‖2) is a Banach space, by Theorem 2.1.10
we have that (B(L2(T)), ‖ · ‖op) is a Banach space. Additionally, we can conclude that
B(L2(T)) is a Banach algebra.

Consider A ∈ B(L2(T)) and let a ≡ Aχ0 be a function that belongs to L2(T). Then, the
n-th Fourier coe�cient of a is given by 〈a, χn〉 = 〈Aχ0, χn〉 = an. Now, if f ∈ L∞(T), then
the functions Af and af belong to L2(T).

We claim that,
Af = af for each f ∈ L∞(T).

Foremost, take the Fourier coe�cient sequence of f , (fn)n∈Z. Some calculations give us that
the j-th Fourier coe�cient of af is

∑
k∈Z aj−kfk which we denote as

[af ]j =
∑
k∈Z

aj−kfk.

Carrying on, by Theorem 1.2.6 we already know that
∥∥∥f − N∑

k=−N

fkt
k
∥∥∥2

2
−−−−→
N→∞

0, i.e., the

series converges to f in this norm.

Note that, we can represent Af as follows,

Af =
∑
k∈Z

fk ·Aχk.

Thus,

〈Af, χj〉 =
〈∑
k∈Z

fk ·Aχk, χj
〉

=
∑
k∈Z

fk · 〈Aχk, χj〉 =
∑
k∈Z

fkaj−k = [Af ]j , ∀j ∈ Z.

Therefore, [af ]j = [Af ]j for every j ∈ Z which implies that the functions Af and af are
equal.



Chapter 3. Laurent matrices 41

We now want to see that a ∈ L∞(T). We establish the set E which is de�ned by
E ≡ {t ∈ T : |a(t)| > ‖A‖op} with E ⊆ T and µ(E) > 0. Denoting χE as the characteristic
function of E and using the previous result, we obtain:

‖AχE‖22 = ‖aχE‖22 =

∫
E

|a(t)|2 dt =

∮
T
|a(t)|2χE dt

= ‖a‖22 · ‖χE‖22
> ‖A‖2op · ‖χE‖22.

However, this is impossible because ‖A‖op is the supremum of the quotient ‖AχE‖2‖χE‖2 and so
|a(t)| ≤ ‖A‖op µ-a.e. on T. Hence, a ∈ L∞(T) and taking the in�mum

inf{M : |a(t)| ≤M for µ-a.e. t ∈ T} ≤ ‖A‖op,

it can be concluded that ‖a‖∞ ≤ ‖A‖op.
Because of Af = af the operators A and Ma coincide on a dense subset of L2(T) and

both operators are bounded, it follows that A = Ma. Finally, ‖Ma‖op = ‖a‖∞ is proved. �

Theorem 3.0.13.
√

2π‖Φf‖2 = ‖f‖2 for each f ∈ L2(T).

Proof. (i) Let (αk)k∈Z ∈ `2(Z). By De�nition 1.1.51 we have that
∑
k∈Z |αk|2 < ∞.

Now, we de�ne
∑
k∈Z αkt

k ≡ f(t), by Parseval's identity we obtain that f ∈ L2(T),
and Φf = (ak)k∈Z.

(ii) We want to see that 2π‖Φf‖22 = ‖f‖22. By Parseval's identity we get,

2π‖Φf‖22 = 2π‖(fk)k∈Z‖22 = 2π
∑
k∈Z
|fk|2 = ‖f‖22. �

Now, we can understand the properties of Laurent matrices by knowing that these are
the matrix representations of multiplication operators on L2(T).

From now on, we will use b to refer the function in L2(T) or the Fourier coe�cients in
`2(Z).

Proposition 3.0.14. Let a ∈ L∞(T). Then, L(a) = ΦMaΦ−1.

Proof. Let b(t) =
∑
n∈Z bnt

n ∈ L2(T). Then, we easily get

[ΦMaΦ−1](b) = ΦMa(b) = Φab = (ab)n∈Z.

To calculate the Fourier coe�cients of ab we will need the following observation:

a(t)b(t) =

(∑
j∈Z

ajt
j

)(∑
n∈Z

bnt
n

)

= · · ·+
( ∞∑
k=−∞

akb−2−k

)
t−2 +

( ∞∑
k=−∞

akb−1−k

)
t−1 + · · ·

=

∞∑
n=−∞

( ∞∑
k=−∞

akbn−k

)
tn.

Therefore, the n-th Fourier coe�cient of ab is given by [ab]n =
∑∞
k=−∞ akbn−k. Additionally,

we conclude that (ab)n∈Z = L(a)b. �
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Proposition 3.0.15. Let a, b ∈ L∞(T). Then, L(a)L(b) = L(ab) and ‖L(a)‖op = ‖a‖∞.

Proof. By Proposition 3.0.14 we know that,

L(a)L(b) =(ΦMaΦ−1)(ΦMbΦ
−1) = ΦMa(Φ−1Φ)MbΦ

−1 = ΦMaMbΦ
−1

=ΦMabΦ
−1 = L(ab).

Further, by Propositions 2.1.9 and 3.0.12 we have,

‖L(a)‖op = ‖ΦMaΦ−1‖op
= ‖Φ‖op · ‖Ma‖op · ‖Φ−1‖op
= ‖Φ‖op · ‖Φ−1‖op · ‖Ma‖op
= ‖Ma‖op = ‖a‖∞. �

When dealing with linear operators on a Hilbert space we may approximate them (with
respect to the L∞(T) norm) with �nite matrices by choosing an orthonormal basis of the
space. For multiplication operators on L2(T), we study how well the eigenvalues of those
matrices approximate the spectrum of each of these operators, which (as we will see) is the
essential range of the symbol.

If the symbol a belongs to L∞(T), then it is not a function but an equivalence class of
functions. This means that to compute the spectrum, it is required the understanding of
this element. Then, the notion of the range of a ∈ L∞(T) must be approached with some
care.

De�nition 3.0.16 (Essential range). Let a ∈ L∞(T). We denote by R(a) the essential
range of a as an element of L∞(T). Likewise, we may de�ne R(a) as the spectrum of the
multiplication operator Ma on L2(T).

We can use that a ∈ L∞(T) to de�ne a measure ma on the σ-algebra of Borel sets in C
thereby:

ma(S) ≡ µ{t ∈ T : a(t) ∈ S}, S ⊆ C.

This measure only depends on the equivalence class of a as an element of L∞(T). Besides,
if µ is a �nite measure, then so is ma. However, in the case that µ is only σ-�nite, ma need
not be σ-�nite or could be in�nite. In all cases ma is a countably additive measure de�ned
on the Borel σ-algebra of C.

Now, let G be the union of all open subsets of C having ma-measure zero. It implies
that ma(G) = 0. Note that, G is the largest open set of ma-measure zero and if we consider
F = C \G which is a closed set that satis�es:

A complex number λ belongs to F if and only if for every ε > 0 it holds

µ{t ∈ T : |a(t)− λ| < ε} > 0.

Moreover, every point of the complement of F has a neighborhood of ma-measure zero.
Therefore, the essential range of a is the nonempty and compact set:

R(a) =
{
λ ∈ C : µ{t ∈ T : |a(t)− λ| < ε} > 0 ∀ε > 0

}
.
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Theorem 3.0.17. Let a ∈ L∞(T). Then, it holds

(i) If 0 /∈ R(a), then the inverse of L(a) is L(a−1).

(ii) sp`2(Z)L(a) = R(a).

Proof. Let a ∈ L∞(T).

(i) Assuming that 0 /∈ R(a), it is possible to consider the multiplicative inverse of a, i.e.,
a−1 = 1

a . Propositions 3.0.14 and 3.0.15 give us L(a) = ΦMaΦ−1,
L(a−1) = ΦMa−1Φ−1, and L(a)L(a−1) = ΦMaa−1Φ−1. Thus, Maa−1 = I and we can
deduce that L(a)L(a−1) = I.

(ii) Take λ ∈ sp`2(Z)L(a). Then, L(a)−λI is not invertible. Note that, L(a)−λI = L(a−λ).
By item (i) of the proof we get that L−1(a) = L( 1

a ), this means that

1

a
∈ L∞(T)⇐⇒ 0 /∈ R(a).

Therefore, L(a− λ) is not invertible if and only if λ ∈ R(a). �

3.1 Examples of symbols

In this section we are going to include some examples of symbol classes that allow us to
discuss their representations.

1. (Band matrices). Suppose that the band matrix L(a) is given by an = 0 if |n| > 2.
Then, the symbol a is a trigonometric polynomial:

a(t) =

2∑
n=−2

ant
n with t = eiθ.

The matrix L(a) is given as follows

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · 1 2 1 0 0 0 · · ·
· · · 0 1 2 1 0 0 · · ·
· · · 0 0 1 2 1 0 · · ·
· · · 0 0 0 1 2 1 · · ·
· · · 0 0 0 0 1 2 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·


.

The corresponding symbol is a(eiθ) = 2 + 2 cos θ. Besides, Theorem 3.0.17 permits us
to say that the spectrum of the operator is the line segment [0, 4].

2. (Rational symbols). A rational function a belongs to L∞(T) if and only if it does
not have poles on T. Such symbols de�ne Laurent matrices whose entries decay as a
geometric sequence. For example, for the following rational symbol

a(t) = 1 +

∞∑
n=1

αnt−n +

∞∑
n=1

βntn = 1 +
α

t− α
+

β

1/t− β
, for t ∈ T,
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the corresponding matrix L(a) is

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · β 1 α α2 α3 α4 · · ·
· · · β2 β 1 α α2 α3 · · ·
· · · β3 β2 β 1 α α2 · · ·
· · · β4 β3 β2 β 1 α · · ·
· · · β5 β4 β3 β2 β 1 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·


, with |α| < 1, |β| < 1.

3. We will discuss symbols in the Wiener algebra (see reference [3]), but �rst we need a
de�nition.

De�nition 3.1.1 (Wiener algebra). The Wiener algebra W ≡W (T) is de�ned as the
set of all functions a : T −→ C with absolutely convergent Fourier series, that is, W is
the colletion of all functions admitting the representation

a(t) =

∞∑
n=−∞

ant
n, where t ∈ T and such that

∑
n∈Z |an| <∞.

The norm in the Wiener algebra, ‖ · ‖W , is de�ned as follows

‖a‖W ≡
∑
n∈Z
|an|.

It is well known that (W, ‖ · ‖W ) is a Banach algebra with the pointwise algebraic
operations.

Remark 3.1.2. (i) Let C(T) be the set of all continuous functions on T with the
maximum norm. Then, the space (C(T), ‖ · ‖∞) is a Banach algebra and W is
contained in it.

• W ⊂ C(T). Let a ∈ W . It means that, a(t) =
∑
n∈Z ant

n. For N ∈ N,
consider each function de�ned by a(N) ≡

∑N
n=−N ant

n ∈ C(T). Then, using
the maximum norm we obtain

‖a− a(N)‖∞ −−−−→
N→∞

0.

Therefore, by the uniform limit theorem we conclude that a ∈ C(T).

(ii) Wiener's theorem says that if a ∈W and a has no zeros on T, then a−1 = 1
a ∈W .

Thus, by Theorem 3.0.17, the inverse of an invertible Laurent operator with a
symbol on W is again a Laurent operator with a symbol on W .

4. (Continuous symbols). For a function a ∈W its image is a(T) and coincides with the
essential range of it. So, sp L(a) = a(T).

Looking at functions of C(T) \W can be di�cult in terms of their Fourier coe�cients.
To understand the problem, we will study a special class of functions. Assume that
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(bn)∞n=2 is a sequence of positive numbers converging monotonously to zero. Consider
the series:

∞∑
n=2

bn sinnθ =

∞∑
n=2

bn
2i

(einθ − e−inθ), eiθ ∈ T. (3.1.1)

The following result is well known:

(i) The series (3.1.1) is the Fourier series of a function in C(T) if and only if

bn = o(1/n) as n→∞.

(ii) The series (3.1.1) is the Fourier series of a function in L∞(T) if and only if

bn = O(1/n) as n→∞.

Particularly, the symbol of the Laurent matrix induced by (an)n∈Z with

a−1 = a0 = a1 = 0, an =
1

n log |n|
for |n| ≥ 2

belongs to C(T) \W ; while the Laurent matrix de�ned by (an)n∈Z with

a−1 = a0 = a1 = 0, an =
log |n|
n

for |n| ≥ 2

does not generate a bounded operator on `2(Z).

5. (Piecewise continuous functions). A function a ∈ L∞(T) is said to be piecewise con-
tinuous if for each t ∈ T the one-sided limits

a(t+) ≡ lim
ε→0+

a(ei(θ+ε)), a(t−) ≡ lim
ε→0−

a(ei(θ+ε))

exist. We denote by PC ≡ PC(T) the set of all piecewise continuous functions on T.
It is well known that PC is a closed subalgebra of L∞(T).

Functions belonging to PC have at most countably many jumps, i.e., for a ∈ PC we
set up

Λa ≡ {t ∈ T : a(t−) 6= a(t+)}.

This set is at most countable. In addition, for each δ > 0 the set,

{t ∈ T : |a(t+)− a(t−)| > δ}

is �nite. Given a ∈ PC, we always assume that a is continuous on T \ Λa. Therefore,

R(a) =
⋃

t∈T\Λa

{a(t)} ∪
⋃
t∈Λa

{a(t−), a(t+)}. (3.1.2)

By Theorem 3.0.17 we get that the Equation (3.1.2) is the spectrum of L(a).
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Toeplitz matrices

Continuing with the study about bounded linear operators and invertibility, our main inter-
est is to include a complete analysis of Toeplitz operators.

There are at least two reasons for the constant and rising interest in Toeplitz operators.
Initially, Toeplitz operators have an important connection with a variety of problems in
physics, probability theory, information, and control theory. Moreover, Toeplitz operators
constitute one of the most important classes of non-selfadjoint operators and they are a
fascinating example in topics such as operator theory and theory of Banach algebras.

De�nition 4.0.3 (Toeplitz matrix). A Toeplitz matrix is de�ned by

(aj−k)∞j,k=0 ≡


a0 a−1 a−2 · · ·
a1 a0 a−1 · · ·
a2 a1 a0 · · ·
...

...
...

. . .

 .

This matrix is completely determined by its entries in the �rst row and �rst column, this is,
by the sequence

(an)n∈Z = {. . . , a−2, a−1, a0, a1, a2, . . .}.

Previously, we described under which conditions a Laurent matrix generates a bounded
linear operator on `2(Z). Now, we present a new theorem which associates a Toeplitz matrix
with a bounded linear operator on `2(N).

Theorem 4.0.4. Let (an)n∈Z be a sequence. The Toeplitz matrix (aj−k)∞j,k=0 generates a

bounded operator on `2(N) if and only if there is a function a ∈ L∞(T) such that (an)n∈Z is
the sequence of the Fourier coe�cients.

This theorem was established by Otto Toeplitz in his paper �Zur Theorie der quadratis-
chen und bilinearen Formen von unendlichvielen Veränderlichen� (1911, [11]). As we could
see in Theorem 3.0.5, Toeplitz' paper actually deals with Laurent matrices. Nevertheless,
the proof of Theorem 4.0.4 is a footnote of the paper and it is on this theorem that the name
Toeplitz matrix was given.

In accordance with our work we only need the �if portion� of the theorem, which we can
easily prove. Before describing the proof we introduce a de�nition.

47
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M
0

M⊥

Ph

h− Phh

Figure 4.1: Orthogonal projection.

De�nition 4.0.5 (Orthogonal projection). An orthogonal projection on a Hilbert space H
is a linear map P : H −→ H that satis�es

P 2 = P and 〈Px, y〉 = 〈x, Py〉, for every x, y ∈ H.

In the following theorem we recall some basic properties of projections. The proof can
be found in every text of discrete mathematics (see e.g. [9]).

Theorem 4.0.6. IfM is a linear subspace of H and h ∈ H. Let Ph be the only element of
M such that h− Ph ⊥M. Then,

(i) P is a linear map onto H.

(ii) ‖Ph‖ ≤ ‖h‖ for each h ∈ H.

(iii) P 2 = P where P 2 is the composition of P with itself.

(iv) ker P =M⊥ and ran P =M.

From the second item of the theorem it is possible to say that ‖P‖op ≤ 1. Additionally,
if e is a unitary vector inM, then Pe = e. It implies that ‖Pe‖H‖e‖H = 1, i.e., ‖P‖op = 1.

Now, suppose that there is a function a ∈ L∞(T). We identify `2(N) as a subspace of
`2(Z) and denote by P the orthogonal projection of `2(Z) onto `2(N). Thus, the operator A
given by an in�nite Toeplitz matrix can be written as PL(a)P . This shows that A generates
a bounded operator on `2(N) whenever a ∈ L∞(T).

Moreover, notice that ‖A‖op = ‖PL(a)P‖op ≤ ‖L(a)‖op = ‖a‖∞.
The function a ∈ L∞(T) is known as the symbol of the operator induced by this matrix

on `2(N). Henceforth, we will denote the Toeplitz operator by T (a).

The next theorems will help us to prove the important Theorem 4.0.9.
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Theorem 4.0.7 (Baire's category). Let X be a nonempty complete metric space. Then, X
cannot be written as a countable union of nowhere dense subsets. Hence, if X is the union
of countably many closed sets (Ak)k∈N, then at least one of the Ak's must contain an open
set.

For a proof see [1].

Theorem 4.0.8 (Banach and Steinhaus). Let (An)n∈N be a sequence of operators An ∈
B(X,Y ) such that (Anx)n∈N is a convergent sequence on Y for each x ∈ X. Therefore,
supn≥1 ‖An‖op <∞, the operator A de�ned by Ax ≡ limn→∞Anx belongs to B(X,Y ), and
‖A‖op ≤ lim infn→∞ ‖An‖op.

This theorem is also known as the uniform boundedness principle.

Proof. Let X be a Banach space, Y a normed space, and (An)n∈N ∈ B(X,Y ) be a sequence
of operators. Suppose that for every x ∈ X, it holds

sup{‖Anx‖Y : n ∈ N} <∞.

For every k ∈ N, we de�ne the sets

Xk ≡ {x ∈ X : sup{‖Anx‖Y : n ∈ N} ≤ k}.

Note that, the setsXk's are closed and the fact that (An)n∈N is a pointwise bounded sequence
implies that

X =
⋃
k∈N

Xk 6= ∅.

Baire's category Theorem 4.0.7 guarantees that one of these closed sets contains an open
ball, so there exists k0 such that,

Bε(x0) ≡ {x ∈ X : ‖x− x0‖X ≤ ε} ⊆ Xk0 .

Thus, ‖Anx‖Y ≤ k0 for any x ∈ Bε(x0) and n ∈ N.
Now, let x̃ ∈ X with ‖x̃‖X ≤ 1. It satis�es that,

‖Anx̃‖Y = ε−1 · ‖An(x0 + εx̃)−Anx0‖Y
≤ ε−1 · (‖An(x0 + εx̃)‖Y + ‖Anx0‖Y )

≤ ε−1(2k0).

Taking the supremum over x̃ in the unit ball of X, it follows that

‖An‖op = sup{‖Anx̃‖Y : ‖x̃‖X ≤ 1} ≤ 2ε−1k0 <∞.

Therefore, taking the limit when n goes to in�nity we get ‖A‖op <∞. �

Theorem 4.0.9 (Norm of a Toeplitz operator). Let a ∈ L∞(T). Then,

‖T (a)‖op = ‖a‖∞.
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Proof. We already know that ‖A‖op ≤ ‖a‖∞, it implies that ‖T (a)‖op ≤ ‖a‖∞. We want
to prove the reverse inequality. To accomplish that, for each n we will de�ne the following
operators

(Snx)k =

{
0, if k < −n,
xk, if k ≥ −n.

It is apparent that Sn −−−−→
n→∞

I strongly on `2(Z). This allows us to say that SnL(a)Sn

converges strongly to L(a) and ‖SnL(a)Sn‖op = ‖T (a)‖op.
By Theorem 4.0.8 with X = Y = `2(N), we have that

‖L(a)‖op ≤ lim inf
n→∞

‖SnL(a)Sn‖op = ‖T (a)‖op.

Thus, by Proposition 3.0.15 we immediately have ‖T (a)‖op ≥ ‖a‖∞. �

4.1 Spectrum of a Toeplitz operator

The determination of the spectra of Toeplitz operators is a much di�cult problem, since we
must examine the connection between Fredholmness and invertibility. In a �rst approach
we say that the study of Fredholmness and invertibility for singular integral operators over
the unit circle (thus over smooth curves) is equivalent to the study of the corresponding
problems for Toeplitz operators.

We will encompass Coburn's Lemma and some of the theory behind it, i.e., Calkin
algebra, essential spectrum, and Hardy spaces.

De�nition 4.1.1 (Fredholm). Let X be a Banach space and A ∈ B(X). For this operator
we de�ne its image or range and kernel,

KerA ≡ {x ∈ X : Ax = 0} and ImA ≡ {Ax : x ∈ X}.

Then, the operator A is said to be Fredholm if Im A is a closed subspace of X and the two
quantities

α(A) ≡ dim KerA and β(A) ≡ dim(X/ ImA)

are �nite. The space X/ ImA is referred to as the cokernel of A and denoted as CokerA.

Other de�nition of Fredholm: An operator A ∈ B(X) is said to be Fredholm if it is
invertible module compact operators, i.e., if there exists an operator B ∈ B(X) such that
AB − I and BA− I are compact.

De�nition 4.1.2 (Index). If A is Fredholm, then the index of A is de�ned as

IndA ≡ α(A)− β(A).

4.2 The connection between Fredholmness

and invertibility

John Williams Calkin (1909-1964) was an american mathematician. He was awarded his MA
in 1934 and his PhD in 1937 by Harvard University. His PhD dissertation was �Applications
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of the theory of Hilbert space to partial di�erential equations; the self-adjoint transformations
in Hilbert space associated with a formal partial di�erential operator of the second order and
elliptic type�.

Today, Calkin is mostly remembered by the algebras bearing his name. The relevant
work dates back to 1941 when he published his paper �Two-sided ideals and congruences in
the ring of bounded operators in Hilbert spaces� [6].

De�nition 4.2.1 (Calkin algebra). Let B0(X) denote the set of all compact operators on
a Banach space X. So, B0(X) is a closed two-sided ideal of the Banach space B(X). The
algebra B(X)/B0(X) is known as the Calkin algebra of X.

Remark 4.2.2. Let X be a Banach space. Then, it is possible to prove that an operator
A ∈ B(X) is Fredholm if and only if the coset A+B0(X) is invertible in the quotient algebra
B(X)/B0(X).

De�nition 4.2.3 (Essential spectrum). Let X be a Banach space and A ∈ B(X). The
essential spectrum of A, spess A, is the spectrum of A+ B0(X) in B(X)/B0(X), that is,

spessA ≡ {λ ∈ C : A− λI is not Fredholm on X}.

Proposition 4.2.4. If A ∈ B(X), then spess A ⊂ sp A.

Proof. Firstly, we make an observation. Let H,K be Hilbert spaces.

If A ∈ B(H), B ∈ B(K), and T ∈ B0(H,K) then TA,BT ∈ B0(H,K).

Assume that λ /∈ sp A. Thereby, A − λI is invertible and we call B its inverse. By the
observation we made it holds that,

((A− λI) + B0(X))(B + B0(X)) = (A− λI)B + (A− λI)B0(X) + B0(X)B + B0(X)B0(X)

= I+ B0(X).

Thus, A− λI is invertible in B(X)/B0(X), i.e., λ 6∈ spess A. �

The theory of Hardy spaces originated in the context of complex function theory and
Fourier analysis in the beginning of twentieth century. The classical Hardy space Hp(X),
where 0 < p <∞, consists of holomorphic functions f de�ned on the unit disc or upper half
plane.

They were introduced by Frigyes Riesz (1923), but received that name due to the paper
�The mean value of the modulus of an analytic function� [7] written by Godfrey Harold
Hardy in 1915. In real analysis these spaces are certain spaces of distributions on the real
line, which are boundary values of the holomorphic functions of the complex Hardy spaces
and are related to Lp(X) spaces.

The reason why we will work on Hardy spaces is that we can de�ne the logarithm function
for functions belonging to H2(T)

De�nition 4.2.5 (Hardy spaces). Let (fn)n∈Z be the sequence of the Fourier coe�cients of
f . On L2(T) the closed subspaces

H2(T) ≡ {f ∈ L2(T) : fn = 0 for n < 0} and H2
−(T) ≡ {f ∈ L2(T) : fn = 0 for n ≥ 0}

are called Hardy spaces of L2(T).
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It is clear that L2(T) decomposes into the orthogonal sum

L2(T) = H2(T)⊕H2
−(T).

Let P stand for the orthogonal projection of L2(T) onto H2(T). It is possible to prove
that {

1√
2π
einθ

}∞
n=0

is an orthonormal basis of H2(T).

Let a ∈ L∞(T). The matrix representation of the operator P : H2(T) −→ H2(T) given
by f 7−→ P (af) is the Toeplitz matrix T (a). Note that, the operator P is the compression
PM(a)P of the multiplication operator M(a) to H2(T).

The following theorem is a result of the brothers Frigyes Riesz and Marcel Riesz on
analytic measures. In addition, we will need it to prove the important Theorem 4.2.7.

Theorem 4.2.6 (F. and M. Riesz). A function in H2(T) vanishes either almost everywhere
or almost nowhere on T.

Theorem 4.2.7 (Coburn's Lemma). Let a ∈ L∞(T) and suppose a does not vanish identi-
cally. Then, T (a) has a trivial kernel on `2(N) or its image is dense in `2(N). In particular,
T (a) is invertible if and only if T (a) is Fredholm of index zero:

sp T (a) = sp
ess
T (a) ∪ {λ ∈ C \ sp

ess
T (a) : Ind(T (a)− λI) 6= 0}. (4.2.1)

Proof. Let a ∈ L∞(T). Assume that T (a) has a nontrivial kernel and the image of T (a) is not
dense in `2(N). First, we want to interpret the adjoint operator of T (a). Let x ∈ KerT (a)
with x 6= 0, we get that T (a)x = 0. Taking conjugate in both sides we obtain T (a)x̄ = 0
with x̄ 6= 0. What this is telling us is that T (ā) has nontrivial kernel. Besides, ā(t) ≡ a(t)
for each t ∈ T.

Now, there are nonzero functions f+ ∈ H2(T) and g+ ∈ H2(T) with f+ 6= 0 and g+ 6= 0
such that T (a)f+ = 0 and T (ā)g+ = 0.

Notice that, Paf+ = 0 and this implies that f− ≡ af+ ∈ H2
−(T). Also, P āg+ = 0 and it

means that g− ≡ āg+ ∈ H2
−(T). Theorem 4.2.6 gives us that, f+ 6= 0 and g+ 6= 0 µ-a.e. on

T. So,
ḡ−f+ = āg+f+ = aḡ+f+ = af+ḡ+ = f−ḡ+ ≡ ϕ.

By Hölder's inequality 1.1.42, ϕ ∈ L1(T). Furthermore, we know the following:

ḡ− ∈ H2(T)⇒ ḡ−f+ ∈ H2(T) and ḡ+ ∈ H2
−(T)⇒ f−ḡ+ ∈ H2

−(T).

Thus, we get ϕn = (ḡ−f+)n = 0 for n ≥ 0 and ϕn = (f−ḡ+)n = 0 for n ≤ 0, i.e., ϕ = 0.
Since f+ 6= 0 and g+ 6= 0 µ-a.e. on T, we deduce that g− = 0 µ-a.e. on T, and as we
established that g− = āg+ it indicates that a = 0. However, this is a contradiction and
shows that T (a) has a trivial kernel or a dense range.

On the other hand, suppose that T (a) is Fredholm of index zero. It means that,

IndT (a) = dim KerT (a)− dim(`2(N)/ ImT (a)) = 0.
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Then, by what we already did there are two options: KerT (a) = {0} or ImT (a) = `2(N).
This tells us that a(t) 6= 0 for every t ∈ T. Thus, T (a) is invertible.

If T (a) were not invertible, we would have two cases: dim KerT (a) > 0 and dim(`2(N)/T (a)) =
0, or dim KerT (a) = 0 and dim(`2(N)/T (a)) > 0. In both cases we have that IndT (a) 6= 0.
Therefore, T (a) is not Fredholm.

Equation (4.2.1) suggests us that if we suppose T (a) is not invertible, we will have that
T (a) is not invertible on the Calkin algebra, i.e., is not Fredholm or IndT (a) 6= 0. Hence,
this equality of sets is true. �

We �nish this chapter with an example of the spectrum of a speci�c function. Take
a : T −→ C given by t 7−→ −it−1 − 0.2 + 0.7it4. Then, we have
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Figure 4.2: spess T (a).
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Figure 4.3: sp T (a).





Chapter 5

A review of �Asymptotic spectra

of dense Toeplitz matrices are

unstable�

In this last chapter we want to use our preliminary study, mathematical tools, and important
results that we have obtained for understanding the paper �Asymptotic spectra of dense
Toeplitz matrices are unstable� [2] written by Albrecht Böttcher and Sergei M. Grudsky and
published in 2003.

Nowadays, there are many techniques developed for the asymptotic analysis of the eigen-
value distribution of Toeplitz matrices. What we will do is to present asymptotic estimates
for the eigenvalues of a bounded operator on `2(N). In addition, the methods from the
theory of Banach spaces may be handled to obtain quantitative estimates.

The increasing development in this theory answers eigenvalue problems of mechanics and
mathematical physics.

The paper deals with the limiting set of the eigenvalues of the �nite truncations of an
in�nite Toeplitz matrix whose symbol is continuous but not rational. Furthermore, we will
consider a sequence of symbols (a(n))n∈N that converges uniformly to the symbol a. Also,
we will �nd the limiting sets of this sequence and of a. Using the Hausdor� metric, we will
exhibit that Λ(a(n)) does not converge to Λ(a). It declares us the limiting set is unstable
with respect to small perturbations of the symbol in the uniform norm.

5.1 Introduction

Consider a function a ∈ L∞(T) and let (ak)k∈Z be the sequence of its Fourier coe�cients
(see 1.2.3). We denote by T (a) and Tn(a) the in�nite and n× n Toeplitz matrices with the
symbol a, these are de�ned by

T (a) = (aj−k)∞j,k=0, Tn(a) = (aj−k)n−1
j,k=0.

By Theorem 4.0.4 we know that T (a) induces a bounded linear operator on `2(N).

55
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In chapter 3 we saw examples of symbol classes, so we are familiar with the geometric
representation that a continuous or piecewise continuous symbol a has. Thus, we have two
cases:

1. If a ∈ C(T), then sp T (a) is the union of the range of a and all the points in the plane
encircled by a(T) with nonzero winding number, i.e., the total number of times that
the curve travels counterclockwise around the point.

2. If a ∈ PC(T), we denote by a#(T) the continuous curve that arises from the essential
range of a by �lling in a line segment between the two endpoints of each jump of a.
Then, sp T (a) consists of a#(T) and all points in the plane with nonzero winding
number with respect to a#(T).

We say that the spectrum of a Toeplitz operator T (a) is continuous on C(T) and PC(T), if
for every sequence (a(n))n∈N in C(T) or PC(T) converging uniformly to a, then

lim
n→∞

sp T (a(n)) = sp T (a).

It means that, sp T (a(n)) converges to sp T (a) in the Hausdor� metric (see 1.1.2).

Let (Tn(a))n∈N be the sequence of n × n Toeplitz matrices, where sp Tn(a) is the set
of eigenvalues of the truncated Toeplitz matrix Tn(a). The asymptotic spectrum of T (a) is
given by the set

Λ(a) ≡ lim sup
n→∞

sp Tn(a).

That is, the limiting set Λ(a) is de�ned as follows

λ ∈ Λ(a)⇐⇒ n1 < n2 < n3 < · · · and λnk ∈ sp Tnk(a) such that λnk −→ λ.

Theorem 4.2.7 helps us to �nd the spectrum of a Toeplitz operator sp T (a) when a is a
rational symbol. In general the determination of the asymptotic spectrum Λ(a) is a di�cult
task.

Example 5.1.1. Let a(t) =
∑s
k=−r akt

k be a Laurent polynomial, it implies that T (a)
is a band matrix. Denote by z1(λ), z2(λ), z3(λ), . . . , zr+s(λ) the zeros of the polynomial
zr(a(z) − λ) = (

∑r+s
k=0 ak−rz

k) − λzr. We have labeled the zeros of the polynomial in such
a way that |z1(λ)| ≤ |z2(λ)| ≤ · · · ≤ |zr+s(λ)|.

In 1960, Palle Schmidt and Frank Spitzer proved, in their paper �The Toeplitz matrices
of an arbitrary Laurent polynomial� (1960, [10]), that Λ(a) = {λ ∈ C : |zr(λ)| = |zr+1(λ)|}.
Additionally, they showed that the limiting set Λ(a) is either a singleton or the union of
�nitely many analytic arcs.

Gàbor Szeg® was a hungarian mathematician who worked mainly in function theory,
classical orthogonal polynomials, isoperimetric inequalities, orthogonal polynomials on the
unitary circle, and Toeplitz forms. This work led him to prove a number of limit theorems,
among them the famous Szeg®'s �rst limit theorem and the strong Szeg® limit theorem.

Given certain classes of continuous or piecewise continuous symbols a, he described the
asymptotic eigenvalue distribution of Tn(a) by the formulas of the Szeg® type.



Chapter 5. A review of �Asymptotic spectra of dense Toeplitz matrices� 57

Let a be a continuous or piecewise continuous symbol and λ
(n)
1 , λ

(n)
2 , . . . , λ

(n)
n be the

eigenvalues of Tn(a), then for every continuous function ϕ : C→ R with compact support it
holds,

lim
n→∞

1

n

n∑
j=1

ϕ(λ
(n)
j ) =

1

2π

∫ 2π

0

ϕ(a(eiθ)) dθ.

Since we are interested in the eigenvalue distribution of Toeplitz matrices, there are a few
eigenvalues that are located at a far distance respect to the other eigenvalues. However,
these can be omitted. Within our study, it is important to characterize them as isolated
points of the overall shape of sp Tn(a). Moreover, this formula is measuring the degree of
dispersion of the eigenvalues with respect to the mean value of their distribution.

In order to �nd Λ(a) there are two alternatives that have been tested. The �rst works
only for rational symbols and what we do is to compute sp Tn(a) for some large values of n
and hope that we will get a good approximation for Λ(a). Referring to large values of n we
might state n = 213 as a maximum value for a regular computer and n = 220 as a maximum
value for the fastest computer in the world, but these spectra are used in statistical physics
with required matrix orders of 1020. Thus, we discard this option.

The second alternative is to approximate a by a Laurent polynomial a(n), attempting
that Λ(a(n)) is close to Λ(a). This procedure fails for piecewise continuous symbols because
they can never be approximated uniformly by Laurent polynomials; and in this work we
will show that it can fail for continuous symbols also, which is curious because a continuous
function can be uniformly approximated by Laurent polynomials. Whence, we have the
following result: the asymptotic spectrum Λ(·) is discontinuous on C(T).

5.2 Main result

In this section we will present the main result, that is Theorem 5.2.3, but �rst we need
Lemmas 5.2.1 and 5.2.2. These lemmas and some calculations will help us to prove the
theorem. We mention that some proofs were not in the paper, we had to construct them.

Consider the following symbol

a(t) =
33− (t+ t2)(1− t2)3/4

t
, t ∈ T. (5.2.1)

Note that, the only singularity of this function occurs at t = 1 and at this point the
derivative of a has a jump discontinuity. Then, a belongs to PC∞(T) but not to C∞(T).
Besides, T (a) is a lower Hessenberg matrix (see 3.0.8), the Fourier series of a is convergent
with ak = 0 for k ≤ −2. We de�ne the Laurent polynomial a(n) ≡ Pna, where Pna (see
4.0.5) denotes the n-th partial sum of the Fourier series.

The american mathematician Harold Widom has researched in the areas of integral equa-
tions and operator theory, in particular the study of Toeplitz and Wiener�Hopf operators,
and the asymptotic behavior of the spectra for various classes of operators. Widom and
collaborators have used ideas from operator theory to obtain new results in random matrix
theory and limiting distributions of the largest and smallest eigenvalues of random matrices.

In particular, Widom in his paper �Eigenvalue distribution of non-selfadjoint Toeplitz
matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index�
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(1990, [12]) gives results which show that the eigenvalues of Tn(a) for the symbol (5.2.1)
cluster along the its range a(T).

For the symbol (5.2.1), Figures 5.1 and 5.2 show that the eigenvalues of T128(a) and
T256(a) cluster along the range of a. Besides, we plot the eigenvalues of T128(Pna) for
n = 4, 6, 8, 12. These eigenvalue distributions exhibit that the set Λ(Pna) grows like a
rampant tree and does not converge to Λ(a) whenever n approaches to ∞.

Figure 5.1: Range of a(T) (purple) and
the eigenvalues of T128(a) (pink).

Figure 5.2: Range of a(T) (purple) and
the eigenvalues of T256(a) (pink).

Figure 5.3: Range of a(T) (purple) and
the eigenvalues of T128(P4a) (red).

Figure 5.4: Range of a(T) (purple) and
the eigenvalues of T128(P6a) (green).
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Figure 5.5: Range of a(T) (purple) and
the eigenvalues of T128(P8a) (brown).

Figure 5.6: Range of a(T) (purple) and
the eigenvalues of T128(P12a) (orange).

We will start with a computation. Take α = 3
4 . For t ∈ T, by the binomial theorem we

have

(1− t2)α =

∞∑
n=0

(−1)n
(
α

n

)
t2n. (5.2.2)

The Weierstrass product formula is well known and it states that
∞∏
k=1

(
1− α

k

)
e
α/k =

eγα

Γ(1− α)
, (5.2.3)

where γ is the Euler-Mascheroni constant.
Let us now treat about the connection between the harmonic series and γ. The earliest

recorded appearance of the harmonic series seems to be in the 14-th century by the french
mathematician Nicole Oresme (1323, 1382). He knew how to add harmonic and geometric
progressions as well as in�nite geometric series, and he was the �rst to prove that the
harmonic series diverges. Now, consider the n-th partial sum of the harmonic series called
the harmonic number Hn de�ned as,

Hn ≡ 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

His proof relies on grouping the terms in the series furnishes the following inequality, some-
times called Oresme's inequality,

H2m > 1 +
m

2
, m ≥ 0. (5.2.4)

A careful analysis of Oresme's inequality (5.2.4) shows that Hn increases at the same rate
as the logarithm of n, this implies that the harmonic series has a logarithmic property.

Furthermore, the di�erence between Hn and log(n + 1) decreases as n increases and
eventually converges to the Euler's constant γ as n tends to in�nity. Thus,

γ = lim
n→∞

(Hn − log(n+ 1)). (5.2.5)
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It implies that, Hn = log(n+ 1) + γ + o(1) whenever n→∞.
Therefore, a calculation gives us,

(−1)n
(
α

n

)
=

1

n!
((−1)nα(α− 1)(α− 2) · · · (α− n+ 1))

=
1

n!

(
(−1)nα(−1)(1− α)(−2)(1− α

2
)(−3)(1− α

3
) · · · (−(n− 1))(1− α

n− 1
)

)
= −α (n− 1)!

n!

n−1∏
k=1

(
1− α

k

)
= −α

n

n−1∏
k=1

(
1− α

k

)
= −α

n

( n−1∏
k=1

(
1− α

k

)
e
α/k
)( n−1∏

k=1

e
−α/k

)
= −α

n

( n−1∏
k=1

(
1− α

k

)
e
α/k
)
e−αHn−1 .

(5.2.6)

Inserting Equations (5.2.3) and (5.2.5) in Equation (5.2.6) we obtain,

(−1)n
(
α

n

)
= −α

n

eγα

Γ(1− α)
e−α(logn+γ+o(1)).

If we use the Maclaurin series of eo(1), we get that

(−1)n
(
α

n

)
= − αeγα

nΓ(1− α)
n−αe−αγeo(1) = − α

Γ(1− α)

1

n1+α
(1 + o(1)). (5.2.7)

Now, if we consider the in�nite sum
∞∑
n=0

(−1)n
(
α

n

)
= − α

Γ(1− α)

∞∑
n=0

1

n1+α
(1 + o(1)).

In addition, by the np criterion for series with p = 7
4 it is clear that the series converges.

Moreover, it illustrates that the Fourier series of the function de�ned by (5.2.2) is absolutely
convergent.

The next step is to deal with the algebra H∞(T) = {h ∈ L∞(T) : hn = 0 for n < 0}. Let
a(t) ≡ t−1(h0 − ϕ(t)) where ϕ(t) = (t+ t2)(1− t2)3/4 for t ∈ T. We will exhibit h explicitly
and prove that it belongs to H∞(T). Likewise, we can take h0 > 0 large enough such that
h0 − ϕ is invertible in H∞(T).

Lemma 5.2.1. Let λ ∈ D and de�ne rλ(θ) ≡ λ(eiθ− 1) +ϕ(eiθ). Then, rλ and its �rst two
derivatives r′λ, r

′′
λ satisfy the estimates

|r(k)
λ (θ)| ≤ Ck|θ|α−k, k = 0, 1, 2,

for 0 < |θ| < π, where Ck ∈ (0,∞) are constants independent of λ and θ. Moreover,
C0 ≤ 10.

Proof. Recall that α = 3
4 and λ ∈ D. Then, the Maclaurin series of eiθ is eiθ =

∑∞
k=0

(iθ)k

k! .
Thus, if we insert this series in the function rλ and expand it, we obtain

rλ(θ) = δ0θ
3/4 + δ1θ + δ2θ

7/4 +O(θ2)

= θ
3/4(δ0 + δ1θ

1/4 + δ2θ +O(θ
5/4)), (5.2.8)
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where, for example δ0 = −2((−1)5/823/4), δ1 = iλ, and δ2 = 3(−1)
1/8

21/4
+ 3(−1)1/823/4. That is,

δi ∈ C for i ∈ N.
The �rst derivative of rλ is

r′λ(θ) =
3

4
δ0θ

−1/4 + δ1 +
7

4
δ2θ

3/4 +O(θ)

= θ
−1/4

(
3

4
δ0 + δ1θ

1/4 +
7

4
δ2θ +O(θ

5/4)

)
.

Lastly, the second derivative of rλ is

r′′λ(θ) = − 3

16
δ0θ

−5/4 +
21

16
δ2θ

−1/4 +O(1)

= θ
−5/4

(
− 3

16
δ0 +

21

16
δ2θ +O(θ

5/4)

)
.

Now, for rλ we have the following calculation:

|rλ(θ)| ≤ |θ|3/4(|δ0|+ |δ1| · |θ|
1/4 + |δ2| · |θ|+O(|θ|5/4))

≤ |θ|3/4C0 = |θ|αC0,

where C0 is some positive constant.

We can ensure that the mentioned series are convergent because they come from the
Maclaurin series of eiθ and we already know that this series is convergent.

Handling with the �rst derivative we get this second calculation:

|r′λ(θ)| ≤ |θ|−1/4

(
3

4
|δ0|+ |δ1| · |θ|

1/4 +
7

4
|δ2| · |θ|+O(|θ|5/4)

)
≤ |θ|−1/4C1 = |θ|α−1C1,

where C1 is some positive constant.

Finally, using the second derivative of rλ we have:

|r′′λ(θ)| ≤ |θ|−5/4

(
3

16
|δ0|+

21

16
|δ2| · |θ|+O(|θ|5/4)

)
≤ |θ|−5/4C2 = |θ|α−2C2,

where C2 is some positive constant.

Therefore, |r(k)
λ (θ)| ≤ Ck|θ|α−k for k = 0, 1, 2 as we desired.

Additionally, a simple calculation shows that C0 ≤ 10. �

Lemma 5.2.2. Let λ ∈ D and de�ne h(t) ≡ h0 − λt− ϕ(t) for t ∈ T. If h0 ≥ 33, then h is
invertible in H∞(T) and there is an n0 such that the n-th Fourier coe�cient (h−1)n of h−1

is nonzero for all n ≥ n0.
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Proof. Recall that α = 3/4 and ϕ(t) = (t + t2)(1 − t2)α. Using the function rλ from
Lemma 5.2.1 we obtain,

h(eiθ) = h0 − λeiθ − ϕ(eiθ) = h0 − λ− λ(eiθ − 1)− ϕ(eiθ)

= h0 − λ− rλ(θ) = (h0 − λ)

(
1− rλ(θ)

h0 − λ

)
.

By assumption λ ∈ D and h0 ≥ 33, so |h0 − λ| > 32 and ‖rλ‖∞ = 1 · 2 + 1 · 2 · 23/4 =
2(1 + 23/4) < 2(1 + 2) = 6 < 32. Then, h is invertible in H∞(T). Besides, we will �nd the
multiplicative inverse of h and denote it as h−1. Note that,

1

h(eiθ)
=

1

h0 − λ
· 1

1− rλ(θ)
h0−λ

=
1

h0 − λ
·
∞∑
j=0

(
rλ(θ)

h0 − λ

)j
, when

∣∣∣ rλ(θ)
h0−λ

∣∣∣ < 1. (5.2.9)

From Equation (5.2.9) we have an explicit form of h−1:

h−1(eiθ) =
1

h0 − λ

[
1 +

rλ(θ)

h0 − λ
+ sλ(θ)

]
,

with sλ(θ) ≡
∑∞
j=2

(
rλ(θ)
h0−λ

)j
.

We desire to �nd the n-th Fourier coe�cient of h−1. Then, given that the Fourier
transform is linear (see Theorem 1.2.5) we obtain that each coe�cient of h−1 is

(h−1)n = (h0 − λ)−2(rλ)n + (h0 − λ)−1(sλ)n for n ≥ 1. (5.2.10)

Using Equation (5.2.2) it holds that,

ϕ(t) = (t+ t2)(1− t2)α =

∞∑
k=0

(−1)k
(
α

k

)
(t2k+1 + t2k+2).

Equation (5.2.7) implies that whenever n approaches to∞, we have (rλ)n = Eα
1

n1+α (1+o(1))
where Eα is a nonzero constant independent of λ, it guarantees us that (rλ)n 6= 0 for
su�ciently large n.

Now, we will prove that (sλ)n = O(1/n2) as n −→ ∞ showing that (sλ)n is arbitrarily
close to zero for enough large n.

Since C0|θ|
3/4

h0−1 ≤
10π

3/4

32 < 1, we can estimate sλ as follows

|sλ(θ)| ≤
∞∑
j=2

∣∣∣∣ rλ(θ)

h0 − 1

∣∣∣∣j ≤ ∞∑
j=2

(
C0|θ|3/4

h0 − 1

)j
by Lemma 5.2.1,

≤

(
C0|θ|

3/4

h0−1

)2

1− C0|θ|3/4
h0−1

by the criterion of geometric series,

= |θ|2α
C2

0

(h0−1)2

1− C0|θ|3/4
h0−1

≤ |θ|2αD0,
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where D0 = 25
8(32−10π3/4)

.

We use Equation (5.2.8) in sλ and get that:

sλ(θ) = θ
3/2
(
δ̂0 + δ̂1θ

1/4 +O(θ
1/2)
)
, (5.2.11)

where, for example δ̂0 = − (1/128 + i/128) and δ̂1 = (−1)
1/8λ

128·21/4
.

From Equation (5.2.11), we �nd the �rst and second derivatives of sλ

s′λ(θ) = θ
1/2

(
3

2
δ̂0 +

7

4
δ̂1θ

1/4 +O(θ
1/2)

)
(5.2.12)

s′′λ(θ) = θ
−1/2

(
3

4
δ̂0 +

21

16
δ̂1θ

1/4 +O(θ
1/2)

)
. (5.2.13)

Now, analysing Equation (5.2.12) we can estimate |s′λ|:

|s′λ(θ)| ≤ |θ|1/2
(

3

2
|δ̂0|+

7

4
|δ̂1| · |θ|

1/4 +O(|θ|1/2)
)
≤ |θ|1/2D1 = |θ|2αD1,

where D1 is some positive constant.

Lastly, from Equation (5.2.13) the second derivative of sλ will satisfy that

|s′′λ(θ)| ≤ |θ|−1/2

(
3

2
|δ̂0|+

21

16
|δ̂1| · |θ|

1/4 +O(|θ|1/2)
)
≤ |θ|−1/2D2 = |θ|2α−1D2,

where D2 is some positive constant.

Finally, from De�nition 1.2.3 we can calculate (sλ)n by integrating by parts twice:

(sλ)n =
1

2π

∫ π

−π
e−inθsλ(θ) dθ =

1

2πi2n2

∫ π

−π
e−inθs′′λ(θ) dθ.

Then, it is possible to enclose each (sλ)n by using the estimates we found,

|(sλ)n| ≤
D2

2πn2

∫ π

−π
|θ|2α−2 dθ =

D2π
2α−1

π(2α− 1)

1

n2
.

Therefore, we have seen that (sλ)n = O(1/n2). This result combined with our study of (rλ)n
and Equation (5.2.10) gives us that (h−1)n 6= 0 for all su�ciently large n. �

At this point, we have done the necessary work for proving our main result. Now,
we present Theorem 5.2.3 that concerns the limiting set of a continuous symbol a in the
Hausdor� metric.

Theorem 5.2.3. There exist a family of functions a(n) ∈ C(T) and a ∈ C(T) such that
‖a(n) − a‖∞ −−−−→

n→∞
0 but Λ(a(n)) does not converge to Λ(a) in the Hausdor� metric.

Proof. Recall that h0 ≥ 33, α = 3/4, and λ ∈ D. For every t ∈ T, let a(t) = t−1(h0 − ϕ(t))
where ϕ(t) = (t+ t2)(1− t2)α.



64 5.2. Main result

Notice that,

a(t)− λ = t−1(h0 − ϕ(t))− λ = t−1(h0 − ϕ(t)− λt) = t−1h(t),

where h ∈ L∞(T) is the function we de�ned in Lemma 5.2.2.

Now, consider the Toeplitz matrix Tn+1(h). After calculating its Fourier coe�cients, we
construct its Toeplitz matrix which is a lower triangular matrix. Thus, hn = 0 for n > 0
and we conclude that h ∈ H∞(T).

Consider such matrix Tn+1(h), we can delete its �rst row and last column. This procedure
will gives us the Toeplitz matrix Tn(a−λ). It is well known that the Cramer's rule gives an
explicit formula for the solution of a system of linear equations and also it may be useful to
�nd the inverse of a nonsingular matrix, so it is possible to identify the (n + 1, 1) entry of
T−1
n+1(h),

[T−1
n+1(h)]n+1,1 = (−1)n+2 detTn(a− λ)

detTn+1(h)
. (5.2.14)

Since h is an invertible function in H∞(T), we get that T−1
n+1(h) = Tn+1(h−1) (see 3.0.17),

it implies that [T−1
n+1(h)]n+1,1 = (h−1)n. Clearly, detTn+1(h) = hn+1

0 .

From Equation (5.2.14) we obtain that detTn(a−λ) = (−1)nhn+1
0 (h−1)n, for n ∈ N. By

Lemma 5.2.2, (h−1)n is nonzero for n su�ciently large and every λ ∈ D. Then, it holds too
for detTn(a− λ) and we state that,

D ∩ Λ(a) = ∅. (5.2.15)

We shall prove that 0 ∈ Λ(P2m+1a) for every m ≥ 2, where P2m+1a denotes the (2m+ 1)-th
partial sum of the Fourier series. De�ne the polynomial q(P2m+1a) as follows

q(P2m+1a)(z) ≡ h0 −
m∑
k=0

(−1)k
(
α

k

)
(z2k+1 + z2k+2). (5.2.16)

We can notice that this polynomial is particularly de�ned and previous results will be helpful.

We conveniently label its zeros like z1, z2, . . . , z2m+2 belonging to C such that |z1| ≤
|z2| ≤ · · · ≤ |z2m+2|. In Example 5.1.1 we saw that Λ(a) = {λ ∈ C : |zr+1(λ)| = |zr+2(λ)|}.
We know that for this function, r = 0. Then, we have that 0 ∈ Λ(P2m+1a) if and only if
|z1| = |z2|.

From Equation (5.2.16) it holds that the polynomial q(P2m+1a) has real coe�cients. It is
well known that if a polynomial with real coe�cients has complex roots, then they come in
conjugate pairs. So, it is enough to show that q(P2m+1a) has no real zeros. Immediately, it
follows the equality |z1| = |z2|. Thus, we can think that these two roots are the ones closest
to zero.

If we expand the polynomial q(P2m+1a), we get

q(P2m+1a)(z) = h0 − (z + z2) + α(z3 + z4) +
α(1− α)

2!
(z5 + z6)

+ · · ·+ α(1− α)(2− α) · · · (m− 1− α)

m!
(z2m+1 + z2m+2)

= h0 − (z − z2) +

m∑
k=1

bk(z2k+1 + z2k+2), (5.2.17)
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where bk = (−1)k+1
(
α
k

)
> 0 for all k ∈ N.

Assuming that |z| ≤ 1, we realize that∣∣∣∣∣
m∑
k=0

(−1)k
(
α

k

)
(z2k+1 + z2k+2)

∣∣∣∣∣ ≤
m∑
k=0

∣∣∣∣(αk
)∣∣∣∣ (|z|2k+1 + |z|2k+2) ≤ 2

∞∑
k=0

∣∣∣∣(αk
)∣∣∣∣

= 2 + 2α+ 2

(
α(1− α)

2!
+
α(1− α)(2− α)

3!
+ · · ·

)
= 2 + 2α+ 2

(α
2

(1− α/1) +
α

3
(1− α/1)(1− α/2) + · · ·

)
= 2 + 2α+ 2

∞∑
k=1

α

k + 1
(1− α/1) · · · (1− α/k).

Additionally, note that e−α/k > 1− α/k for every k. Whence,∣∣∣∣∣
m∑
k=0

(−1)k
(
α

k

)
(z2k+1 + z2k+2)

∣∣∣∣∣ < 2 + 2α+ 2

∞∑
k=1

α

k + 1
e
−α/1 · · · e−α/k

= 2 + 2α+ 2

∞∑
k=1

α

k + 1
e−αHk

< 2 + 2α+ 2

∞∑
k=1

α

k + 1
e−α(log(k+1)−log 2)

< 2 + 2α+ 2

∞∑
k=1

α

(k + 1)

2α

(k + 1)α

< 2 + 2 + 4

∞∑
k=1

1

(k + 1)3/2
< 12 < 32.

Hence, we have seen that the di�erence h0 −
∑m
k=0(−1)k

(
α
k

)
(z2k+1 + z2k+2) is not zero. It

means that z(P2m+1a) has no zeros in [−1, 1]. On the other hand, if z is a real number it
holds the following:

(i) If we suppose that |z| ≥ 1√
α
, then α(z3 + z4) ≥ z + z2.

(ii) Since bk(z2k+1 + z2k+2) > 0 for each k and all |z| > 1, we have from Equation (5.2.17)
that q(P2m+1a)(z) 6= 0 for all |z| ≥ 1√

α
.

(iii) Since bk(z2k+1 + z2k+2) > 0 for every k. If we assume that 1 < |z| < 1√
α
, then

|z + z2| < 1√
α

+ 1
α <
√

2 + 2 < 33. Thus, it follows that q(P2m+1a)(z) 6= 0 for all real

z satisfying 1 < |z| < 1√
α
.

With these previous observations we �nally get that, |z1| = |z2| and therefore 0 ∈ Λ(P2m+1a)
for every m.

Finally, by Equation (5.2.15) and 0 ∈ Λ(P2m+1a) we arrive at the conclusion that the
Hausdor� distance from Λ(a) to Λ(P2m+1a) will be at least one. Thus, Λ(P2m+1a) does not
converge to Λ(a) in the Hausdor� metric. �
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