
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/36506

Please be advised that this information was generated on 2019-12-04 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16123637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/36506

STRICTNESS ANALYSIS VIA RESOURCE TYPING

ERIK BARENDSEN AND SJAAK SMETSERS

Institute for Computing and Information Sciences, Radboud University Nijmegen, Toernooiveld 1,
6525 ED Nijmegen, The Netherlands
e-mail address: E.Barendsen@cs.ru.nl

Institute for Computing and Information Sciences, Radboud University Nijmegen, Toernooiveld 1,
6525 ED Nijmegen, The Netherlands
e-mail address: S.Smetsers@cs.ru.nl

Abstract. We present a new typing system for strictness analysis of functional programs.
The system extends standard typing (including recursive data types) with strictness an-
notations and subtyping. Strictness typing is shown to be sound with respect to a natural
operational semantics. We demonstrate that strictness types can be computed effectively.

Introduction

Static analysis techniques are crucial components of state-of-the-art implementations
of lazy functional programming languages. These techniques are employed to determine
properties of the specified functions, as a service to the programmer (for instance to detect
inconsistencies), but also to provide for the generation of efficient executables by a compiler.

Strictness analysis is meant to determine dependencies between evaluation of arguments
of functions and evaluation of their results. Strictness information can be used to change
inefficient call-by-need evaluation into efficient call-by-value evaluation. This gain in effi-
ciency lies in the fact that construction of unevaluated expressions (so-called closures) is
circumvented.

Traditional strictness analysers are based on abstract interpretation using a non-standard
semantics to derive strictness properties, see [Myc81], [BHA85] and [Wad87]. This involves
determination of fixed points which in general cannot be implemented efficiently, thus mak-
ing the method unsuitable for compilers.

Another technique is abstract reduction, which analyses evaluation by mimicking re-
duction on sets of concrete values extended with generic elements for undefinedness. This
technique approximates ordinary computations much closer than for instance abstract in-
terpretation or strictness typing. The rewriting semantics is adjusted by specifying the
behaviour of functions on non-standard elements. Abstract reduction sequences may not

2000 ACM Subject Classification: 68N18, 68Q55, 03B15 (68N18).
Key words and phrases: strictness analysis, functional programming languages, typing, operational se-

mantics, recursive types.

REFLECTIONS ON TYPE THEORY,
λ-CALCULUS, AND THE MIND

Essays Dedicated to Henk Barendregt
on the Occasion of his 60th Birthday

Copyright c© 2007 by
Erik Barendsen and Sjaak Smetsers

29

30 ERIK BARENDSEN AND SJAAK SMETSERS

terminate. A special technique called reduction path analysis is used to cut off these se-
quences in a way that does keep most of the strictness information intact; see [Nöc93].

The present paper presents a type-theoretic approach to strictness analysis. Our
method is based on standard Hindley-Milner typing systems. The idea is to annotate the
types of function arguments with so-called strictness attributes. With these annotations we
are able to determine how the arguments are used inside the function body. For our usage
analysis we regard inputs as rescources and monitor them via a so-called resource conscious

typing system. This idea has also been used in the context of reference analysis, for example
with linear typing (based on linear logic, [Wad90]) and uniqueness typing [BS96]. We will
use a principle similar to uniqueness typing: resource properties are encoded as (polymor-
pic) type attributes and different uses of these resources are combined via special typing
rules and a subtyping relation.

Compared to traditional strictness analysers, our strictness typing has some important
advantages. First, strictness typing can be combined with ordinary typing; no additional
analysis phase is need during compilation. Second, by adopting the Hindley-Milner approach
for recursion, we can avoid fixed point computations, making the algorithm much more
efficient. Moreover, the strictness typing system is able to deal with arbitrary (recursive and
non-recursive) data-types as well as with higher order functions. Apart from the outermost
type level, strictness attributes are added to each internal type component. Thus, strictness
information is not restricted to traditional head-normal form evaluation only. In this respect
it differs from other approaches such as [CDG02].

1. Syntax

We will focus on evaluation in functional programming languages by describing a ‘core
language’ in which expressions are built up from applications of function symbols and
data constructors, all with a fixed arity. Pattern matching is expressed by a construction
case · · ·of · · · .

Definition 1.1. (i) The set of expressions is defined by the following syntax. Below, x

ranges over variables, C over constructors and f over function symbols.

E ::= x | S(E1, . . . , Ek) | case E of P1 → E1 · · ·Pn → En

S ::= C | f
P ::= C(x1, . . . , xk)

(ii) The set of free variables (in the obvious sense) of E is denoted by FV(E).
(iii) A function definition is an expression of the form

f (x1, . . . , xk) = E

where all the xi’s are disjoint and FV(E) ⊆ {x1, . . . , xk}.

In the sequel we will assume that a fixed set of function definitions (a ‘functional
program’) is given.

Example 1.2. A function that computes the size of a tree can be defined as follows.

size(t) = case t of Leaf → 0
Node(x, l, r) → plus(plus(size(l), size(r)), 1)

STRICTNESS ANALYSIS VIA RESOURCE TYPING 31

2. Semantics

In this section we will characterize the process of (lazy) evaluation of expressions to
data objects. We focus on evaluation to an expression starting with a data constructor, a
so-called constructor normal form (cnf for short). The actual computation of the resulting
data object is done via iterated evaluation to constructor normal form.

We will describe a straightforward evaluation in which computations are done by suc-
cessive substitutions or replacements (call-by-name). With some adjustments to the syntax
it is possible to incorporate proper sharing, including cycles, with a call-by-reference se-
mantics in the style of [Lau93], see [BS99]. Since this extension is not essential for studying
strictness analysis, we will describe the simple system without sharing.

Substitution semantics. For a clear presentation we limit the set of constructors to �,
the binary constructor 〈 , 〉 (intended meaning: pairing) and to the unary constructors inl

and inr (intended meaning: injections of disjoint union). The � constructor is used as a
representation of all elementary values; the other constructors represent compound values.
To prepare for a typed variant, we assume that each case construct handles either the
product constructor or the sum constructors.

Definition 2.1. (i) An expression is in constructor normal form if it has one of the fol-
lowing shapes.

�, 〈E,E′〉, inl E, inr E

(ii) Let E,V be expressions. Then E is said to evaluate to V (notation E ⇓ V) if E ⇓ V

can be produced in the following derivation system.

x ⇓ x C(~E) ⇓ C(~E)

E[~x := ~E] ⇓ V
if f (~x) = E

f (~E) ⇓ V

E ⇓ Cj(~E) Ej [~x := ~E] ⇓ V

case E of . . . (Cj(~x) → Ej) . . . ⇓ V

Strictness. We will introduce a notion of strictness for expressions and functions.

Definition 2.2. (i) Let E be an expression. E is defined (notation E⇓) if E ⇓ V for some
V . Otherwise E is undefined (notation E⇑).

(ii) E is strict in x if for all expressions A

A⇑ ⇒ E[x := A]⇑.

(iii) A unary function f (say with definition f (x) = E) is strict if E is strict in x. (Likewise
one formulates argumentwise strictness of functions of larger arity.)

Example 2.3. One can easily check that the boolean function and is strict in its first and
not strict (lazy) in its second argument.

and(x, y) = case x of True → y

False → False

32 ERIK BARENDSEN AND SJAAK SMETSERS

The usage of strictness information in evaluation of functional programs is based on
the following observation. Whenever a function f is strict, one could modify the evaluation
of f -applications by the call-by-value rule

E′ ⇓ V ′ E[x := V ′] ⇓ V
if f (x) = E

f (E′) ⇓ V

without affecting definedness (‘termination’) of graph expressions. By evaluating function
arguments before evaluating the function body one avoids duplicating unevaluated expres-
sions in the case of copying semantics.

Our aim is to refine the notion of strictness to evaluation properties of various parts
of compound data objects (instead of just the outermost constructor, like above) and to
determine strictness properties in an effective way.

3. Typing

In programming languages, typing systems are used to ensure consistency of function
applications: the type of each function argument should match some specified input type.
In functional languages, functions are usually regarded as polymorphic: their types are
given in a schematic form. The most common typing systems for these languages are based
on Hindley/Milner typing. An important property of these standard typing systems is the
so-called principal type property : for every typable expression E there is exists a principal

typing, i.e. a type representing all possible types for E. These principal types can be
computed effectively, see the next section.

Such standard type systems can be extended to characterize properties such as reference
counts and strictness. This is done by annotating the type expressions. A common aspect
of these non-standard type systems is that they contain a refined analysis of resources, i.e.
occurrences of input objects (the free variables in our expressions).

We will capture evaluation properties by an extension of standard typing.

3.1. Evaluation structures. Our data objects are built up from data constructors. Data
objects can be complex or even infinite (in the case of lazy evaluation). The part of the
data object that is actually used (‘needed’) depends on the context of the object. When a
list is used by a function selecting its third element, only the spine structure up to depth 3
and the third element itself are needed to produce the result.

The result of a function may also be a compound data object. It therefore makes
sense to analyse dependencies between the evaluation structure of function results and the
evaluation structure of arguments.

We can represent evaluation structures by trees corresponding to the syntax of data
objects. We indicate evaluation by ‘!’ and non-evaluation by ‘?’. For tuples (pairs), for
example, we can represent ‘not evaluated’, ‘evaluated up to the Pair constructor’ and ‘eval-
uation of the first element’ respectively by the trees

!

? ?

!

! ?

?

STRICTNESS ANALYSIS VIA RESOURCE TYPING 33

For tuples of tuples, the following tree represents evaluation of the second element of the
second element.

!

? !

? !

The evaluation structure for the lists in the example of the previous paragraph is represented
by

!

? !

? !

! ?

Evaluation properties of functions can be expressed by evaluation structures for result
and inputs. Strictness properties can be derived from these structures. Our ‘third element
selection’ is strict with respect to the first three spine components and the third element:
if either of these is undefined (or better: cannot be evaluated) the result is undefined.

!

? !

? !

! ?

!

One could say that the ‘!’ of the result is connected to (‘caused by’) the ‘!’occurrences in
the argument structure. Our goal is to analyze these connections. For compound result
structures, we will be able to express these connections componentwise using ‘evaluation
variables’, see 4.2.

We will use a typing system for the evaluation analysis. Therefore we restrict the
evaluation structures to those that are expressible by annotating type expressions. E.g.,
the annotated type (α! × β?)! corresponds to the third tuple evaluation structure above. A

possible annotation for lists over some type α is List
!(α?), corresponding to the (infinite)

structure
!

? !

? !

?

!!

...

34 ERIK BARENDSEN AND SJAAK SMETSERS

3.2. Strictness typing. For strictness analysis via typing, we will annotate types and
typing statements with strictness attributes. Each typing statement expresses the relation
between (cnf) the evaluation structures of the parameters (the free variables) and of the
result of an expression. Strictness of E in x corresponds to a typing statement

x:σ! ⊢ E : τ !,

which can be read as ‘if x is undefined then E is undefined’ or equivalently ‘if E has a cnf
then x has a cnf’.

Strictness annotations are not restricted to the outermost level. For example,

p:(σ! × τ ?)! ⊢ case of 〈x, y〉 → x : σ!.

Definition 3.1. (i) The collection of strictness types is obtained by annotating standard
types. Below, α ranges over type variables, and u over the attributes ! and ?.

S ::= αu | (S1 × S2)
u | (S1 + S2)

u | 1u

(ii) The outermost attribute of S is denoted by pSq.
(iii) We define an ordering on strictness types with the same underlying standard type

(i.e., the type obtained by omitting all attributes). This is done via the ordering

! ≤ ?

on attributes. E.g.

(σv × τw)u ≤ (σv′ × τw′

)u
′

iff u ≤ u′, v ≤ v′, w ≤ w′.

(iv) Let S, S′ be strictness types with the same underlying standard type. Then S ⊓ S′

denotes the type obtained by componentwise taking the minimum of the attributes in S

and S′.

The function symbols are supplied with a (strictness) type scheme by a function type

environment F , containing declarations of the form

f : (S1, . . . , Sk) → T,

where k is the arity of f . Specific instances of this scheme can be obtained via substitu-

tions replacing type variables with strictness types. In the type scheme itself type variables
will be annotated. These annotations are not affected by the substitution, only the vari-
ables themselves are replaced. This means that the outermost attributes of the substituted
strictness types are in fact ignored. We write

F ⊢ f : (S′

1, . . . , S
′

k) → T ′

if there is a substitution ∗ such that S′

1 = S∗

1 , . . . , S′

k = S∗

k , T ′ = T ∗.

STRICTNESS ANALYSIS VIA RESOURCE TYPING 35

Definition 3.2. Derivation of strictness typing statements B ⊢ E : S is characterized by
the following rules.

x:S ⊢ x : S (Var)

F ⊢ f : ~S → T Bi ⊢ Ei : Si

(App)
~B ⊢ f ~E : T

B ⊢ E : S B′ ⊢ E′ : T u ≤ pSq u ≤ pT q

(×-I)
B, B′ ⊢ 〈E, E′〉 : (S × T)u

B ⊢ E : (S × T)u B′, x:S, y:T ⊢ E′ : R pRq ≤ u

B, B′ ⊢ case E of 〈x, y〉 → E′ : R

B ⊢ E : S u ≤ pSq

(+-I-l)
B ⊢ inl E : (S + T)u

B ⊢ E : T u ≤ pT q

(+-I-r)
B ⊢ inr E : (S + T)u

B ⊢ E : (S + T)u B′, x:S ⊢ P : R B′, y:T ⊢ Q : R pRq ≤ u
(+-E)

B, B′ ⊢ case E of (inl x → P)(inr y → Q) : R

B ⊢ E : S T ≤ S
(Sub)

B ⊢ E : T

B ⊢ E : S
(Wea)

B, x:τ? ⊢ E : S

B, x:S, y:T ⊢ E : U
(Con)

B, z:S ⊓ T ⊢ E[x := z, y := z] : U

In order to express the soundness of the system we refine the notion of definedness (see
Definition 2.2 (i)) by parameterizing the operational semantics by strictness types.

Definition 3.3. Typed evaluation is defined as follows.
(i) For each S, the notion E ⇓S V (E S-evaluates to V) is inductively defined by the

following rules.

E ⇓σ? E � ⇓1! �

E ⇓ 〈E1, E2〉 E1 ⇓S V1 E2 ⇓T V2

E ⇓(S×T)! 〈V1, V2〉

E ⇓ inlE′ E′ ⇓S V

E ⇓(S+T)! inlV

E ⇓ inrE′ E′ ⇓T V

E ⇓(S+T)! inrV

(ii) We say that E is S-defined if E ⇓S V for some V . Otherwise E is S-undefined

(notation E⇑S).

The notion of strictness can now be refined. An expression E, say with one free variable
x, is S-to-T -strict if for every A

A⇑S ⇒ E[x := A]⇑T .

Typing statements can now be interpreted as strictness statements; in fact we have the
following soundness property

x : S ⊢ E : T ⇒ E is S-to-T -strict.

36 ERIK BARENDSEN AND SJAAK SMETSERS

3.3. Soundness. In the remainder of this section we will demonstrate that the type system
is sound, i.e., typing statements are valid with respect to our characterization of strictness.

Definition 3.4. (i) For each type S, the set of S-undefined values (notation [[S]]) is defined
by

[[S]] = {E | E⇑S}.

(ii) Let ρ be a function from variables to expressions. By [[E]]ρ we denote the result of

substituting ρ(x) for x in E, for each free variable x of E.
(iii) We say that ρ satisfies E : T (notation ρ � E : T) if [[E]]ρ ∈ [[T]]. Moreover, ρ satisfies

B (notation ρ � B) if ρ(x) ∈ [[T]] for some x : T in B.
(iv) B satisfies E : T (notation B � E : T) if for all ρ

ρ � B ⇒ ρ � E : T.

Theorem 3.5 (Soundness). B ⊢ E : T ⇒ B � E : T.

4. Decidability

In this section we will discuss how strictness variants of traditional typings can be
computed.

Standard type inference usually takes some syntax directed type system as a starting
point. In a syntax directed system, each syntactic construction has exactly one typing
rule. Typing an expression E boils down to stepwise reconstruction of a type derivation
for E (including type derivations for each subexpression of E). It is convenient to split the
type inference into two phases (see [Wan87]): generating requirements in the form of type

equations and solving these equations by means of some unification. The result is called a
principal typing for E, usually given as a type scheme with type variables as placeholders.
Thus, such type schemes introduce a form of (weak) polymorphism.

Strictness type inference can be done in a similar way. Since strictness typing involves
subtyping, one generates type inequalities rather than type equations. The transformation
of the derivation system into a syntax directed variant is somewhat involved.

4.1. A syntax directed system. The system has three rules not exclusively connected
to a specific syntactic construction: subsumption, weakening and contraction. We will
incorporate the effect of these rules in the other rules.

The effect of the subsumption rule is taken into account by adding subtyping constraints
to the variable, application and constructor-introduction rules.

We compensate for the weakening rule by allowing the bases in the conclusions of the
variable, constant and application rules to be extended with an arbitrary set of declarations
with type attribute ?.

To deal with the contraction rule, we change our administration of declarations in bases.
The base unions B,B′ in our system are not longer regarded as disjoint union. We take
multiple occurrences into account by using ordinary unions, together with an operation
to combine the types of common variables. This operation takes care of ‘simultaneous’
occurrences of variables. Multiple occurrences in the ‘mutually excluding’ branches of a
case construction are dealt with by introducing a new basis consisting of supertypes of the
variable types used in the respective branches.

STRICTNESS ANALYSIS VIA RESOURCE TYPING 37

After formalizing the above auxiliary operations we will be ready to give the syntax
directed version of the strictness typing system.

Definition 4.1. (i) With B? we denote a lazy basis with only declarations of the form
x:σ?.

(ii) The union of B and B′, denoted as B,B′, combines x:S ∈ B with x:S′ ∈ B′ to
x:S ⊓ S′.

(iii) Subtyping for bases is defined as follows. B ≤ B′ if for each x:S′ ∈ B′ there exists S

with x:S ∈ B and S ≤ S′.

Definition 4.2. The syntax directed system looks as follows.

S ≤ S′

(variable)
B?, x:S′ ⊢ x : S

B? ⊢ � : 1u (constant)

F ⊢ f : ~S ⊲ T Bi ⊢ Ei : Si R ≤ T
(application)

B?, ~B ⊢ f ~E : R

B ⊢ E : S B′ ⊢ E′ : T u ≤ pSq u ≤ pT q R ≤ (S × T)u

(×-I)
B, B′ ⊢ 〈E, E′〉 : R

B ⊢ E : (S × T)u B′, x:S, y:T ⊢ E′ : R pRq ≤ u
(×-E)

B, B′ ⊢ case E of 〈x, y〉 → E′ : R

B ⊢ E : S u ≤ pSq R ≤ (S + T)u

(+-I-l)
B ⊢ inl E : R

B ⊢ E : T u ≤ pT q R ≤ (S + T)u

(+-I-r)
B ⊢ inr E : R

B ⊢ E : (S + T)u

B′, x:S ⊢P : R

B′′, y:T⊢Q : R pRq ≤ u

B′ ≤ B′′′

B′′ ≤ B′′′

(+-E)
B, B′′′ ⊢ case E of (inl x → P)(inr y → Q) : R

One can show that the above system is equivalent to the original version, i.e., they have
the same set of provable statements.

4.2. Strictness polymorphism. The type schemes in the strictness system will involve
attribute variables besides the standard type variables. Since subtyping depends on in-
equalities between type attributes, our type schemes will contain dependencies between at-
tributes. We will express these dependencies as (finite) sets of attribute inequalities called
attribute environments. The following example illustrates the use of these environments.
The possible strictness types of the function fst , defined by

fst(p) = case p of 〈x, y〉 → x,

38 ERIK BARENDSEN AND SJAAK SMETSERS

can be expressed by the strictness type scheme

fst : (αa × β?)c → αa | a ≤ c.

The attribute environment denotes restrictions on instantiations. For example, a := !, c := !
and a := !, c := ? are valid instantiations, but a := ?, c := ! is not, since ? � !.

When solving attribute inequalities (viz. in the case of union of bases), one needs the
minimum (or rather the greatest lower bound) of strictness attributes. In the resulting type
schemes, this operation is indicated with u ⊓ v.

In this short paper we will refrain from a formal treatment of attribute environments.
Instead, we give an example. The function

double(x) = 〈x, x〉

can be typed with

double : αa → (αb × αc)d | d ≤ b, d ≤ c, b ⊓ c ≤ a.

To illustrate the power of the resulting system, consider the combination of the above
operation with a projection:

x:αa ⊢ fst(double(x)) : αb | b ≤ a.

Our approach gives more refined results than traditional methods. If one only keeps
track of plain cnf strictness, the dependency between evaluation of fst(double(x)) and of x

would not be visible.
The actual typing algorithm roughly works as follows. First, the syntax directed system

is used to generate strictness type inequalities for a given expression. These inequalities are
then regarded as a set of standard type equations, by ignoring all strictness attributes
and by considering type inequalities and type intersections as equations. These equations
are solved using unification, thus giving a solution of the ‘standard part’. This solution
is substituted in the original strictness type inequalities, lifting the substituted standard
types to strictness types using fresh attribute variables. The resulting inequalities can be
translated into a set of attribute inequalities, which can be solved and simplified. The result
is a principal strictness typing for the original expression.

Theorem 4.3 (Principal Strictness Typing Theorem). Principal strictness typings can be

computed effectively.

5. Recursive data structures

Thus far we have only considered non-recursive data structures. In this section we
will describe an extension of the theory to lists. This example data structure will be
paradigmatic for all recursive data types.

Lists are built up from constructors Nil (the empty list) and Cons (constructing a list
from a head element and a list). A list is typically of the form

Cons

...

Cons

Cons

STRICTNESS ANALYSIS VIA RESOURCE TYPING 39

where the sequence of Cons constructors is called the spine of the list. By List(σ) we denote
the type of lists of σ objects.

There are several possibilities for handling strictness information in lists. We start with
the simplest one. Observing the recursive structure of lists, cnf-evaluation is interpreted as
evaluation of the outermost constructor and (iterated) cnf-evaluation of the tail of the list.
Thus, cnf-evaluation will result in the complete evaluation of the spine.

Nil ⇓List!(S) Nil

E ⇓ Cons(E1, E2) E1 ⇓S V1 E2 ⇓List!(S) V2

E ⇓List!(S) Cons(V1, V2)

The typing rules reflect this uniform treatment.

⊢ Nil : List
u(S) (List-I-Nil)

B ⊢ E : S B′ ⊢ L : List
u(S) u ≤ pSq

(List-I-Cons)
B, B′ ⊢ Cons(E, L) : List

u(S)

B ⊢ E : List
u(S) B′ ⊢ P : R B′, x:S, ℓ:List

u(S) ⊢ Q : R pRq ≤ u
(List-E)

B, B′ ⊢ case E of (Nil → P)(Cons(x, ℓ) → Q) : R

Example 5.1.

reverse : (List
b(αa),List

b(αa)) → List
b(αa)

reverse(l, a) = case l of Nil → a

Cons(h, t) → reverse(t,Cons(h, a))

In some cases, it is useful to distinguish between plain and iterative cnf evaluation, i.e.,
between evaluation of the topmost constructor and evaluation of the spine. A very simple
example is the function hd that takes the head element of a list.

hd(l) = case l of Cons(h, t) → h

A straightforward strictness type would be

hd : List(α?)a → αb | b ≤ a

indicating that the argument of hd will be evaluated if its result is needed. However,
annotating the argument as strict in our extended system would wrongly indicate that the
evaluation of the whole spine is required to determine the result of hd . Hence we are forced
to type the function conservatively as

hd : List
?(α?) → αb

This problem can be solved by extending the list types with an extra attribute that enables
us to distinguish between plain cnf and (complete) spine evaluation. Of course, this also
requires a modification of the evaluation rules. We will not go into these details, but only
illustrate the expressive power of such an extension with an example.

First, hd can now be typed as follows.

hd : List
?(α?)a → αb | b ≤ a

The outermost attribute a indicates that the argument of hd is evaluated whenever its result
is needed (in that case the attribute b becomes ! and hence it is allowed to choose ! for a as

40 ERIK BARENDSEN AND SJAAK SMETSERS

well). And also reverse can be typed more accurately.

reverse : (List
c(αa)c,List

b(αa)b) → List
b(αa)c

In contrast to the previous type of reverse the difference between the first and the second
argument becomes apparent: Even simple cnf-evaluation of an application of reverse will
result in the complete evaluation of the spine of the first argument (the plain and spine
attribute of this argument are the same). For the second argument this is not the case.
This argument will only be evaluated when the whole spine of the reverse’s result is needed.
How strictness properties of functions are combined is illustrated by the following function
last that takes the last element of a list.

last(l) = hd(reverse(l,Nil))

Of course, to get to the last element, the whole spine has to be traversed. This evaluation
property is reflected by the derived strictness type of this function.

last : List
b(αa)b → αc | c ≤ b

It is clear that adding more attributes gives a refinement of characterizations of evaluation
properties. For instance, in the hd function the elements of a list are treated uniformly.
One could think of an extra attribute corresponding to the first element (and the original
attribute to all other elements respectively). In that way we are able to specify that hd not
only evaluates the first constructor of the spine but also the first element.

References

[BHA85] G.L. Burn, C.L. Hankin, and S. Abramsky. The theory of strictness analysis for higher order
functions. In Proc. of Workshop on Programs as Data Objects, pages 42–62. DIKU, Denmark,
Springer Verlag, LNCS 217, 1985.

[BS96] E. Barendsen and J.E.W. Smetsers. Uniqueness typing for functional languages with graph rewrit-
ing semantics. Mathematical Structures in Computer Science, 6:579–612, 1996.

[BS99] E. Barendsen and J.E.W. Smetsers. Graph rewriting aspects of functional programming. In
H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Handbook of Graph Grammars
and Computing by Graph Transformation, volume 2, pages 63–102. World Scientific, 1999.

[CDG02] M. Coppo, F. Damiani, and P. Giannini. Strictness, totality, and non-standard-type inference.
Theoretical Computer Science, 272:69–112, 2002.

[Lau93] J. Launchbury. A natural semantics for lazy evaluation,. In Proc. of POPL’93: Twentieth annual
ACM symposium on Principles of Programming Languages, pages 144–154. Charleston, South
Carolina, 1993.

[Myc81] A Mycroft. Abstract interpretation and optimising transformations for applicative programs. PhD
thesis, University of Edinburgh, 1981.

[Nöc93] E.G.J.M.H. Nöcker. Strictness analysis using abstract reduction. In Proc. of Conference on Func-
tional Programming Languages and Computer Architecture (FPCA ’93), pages 255–266. Kopen-
hagen, ACM Press, 1993.

[Wad87] P. Wadler. Strictness analysis over non-flat domains. In Abstract Interpretation of Declarative
Languages. Ellis Horwood, 1987.

[Wad90] P. Wadler. Linear types can change the world! In Proceedings of the Working Conference on
Programming Concepts and Methods, pages 385–407. Israel, North-Holland, Amsterdam, 1990.

[Wan87] M. Wand. A simple algorithm and proof for type inference. Fundamenta Informaticae, X:115–122,
1987.

