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Static inference of polynom ial size-aware types
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Security of Systems Department 
Institute for Computing and Information Sciences 

Radboud University Nijmegen

A b stra c t. We propose a static size analysis procedure that combines 
term-rewriting and type checking to automatically obtain output-on- 
input size dependencies for first-order functions. Attention is restricted 
to functions for which the size of the result is strictly polynomial, not 
necessarily monotonous, in the sizes of the arguments.
To infer a size dependency, the procedure generates hypotheses for in
creasing degrees of polynomials. For each degree, to define a hypothetical 
polynomial one needs to know its values on a finite collection of points 
(subject to some geometrical condition). To compute the value of a size 
polynomial in a certain point we use a term-rewriting system generated 
by a standard size-annotations inference procedure.
We have proven that if a function with a given input terminates at run
time on a meaningful stack and heap then the static (’compile-time’) 
term rewriting system of the size inference also terminates, on the inte
gers representing the sizes of the corresponding inputs.
The term rewriting system may terminate at compile-time when the 
underlying function definition does not at run-time. This makes the the
oretical applicability of the proposed approach larger than the previous 
state-of-the-art, where run-time testing was used to generate hypothet
ical polynomials. Also, the practical applicability is improved due to 
increased efficiency since the term rewriting system at compile time ab
stracts from many computations that are done at run-time.

1 In trodu ction

Em bedded system s or server applications often have lim ited resources available. 
Therefore, it can be im portan t to  know in advance how much tim e or m em ory 
a com putation is going to  take, for instance to  determ ine how much m em ory 
should a t least be pu t in a system  to  enable all desired operations.

This helps to  prevent ab rup t term ination  for b o th  sorts of hardw are: small 
devices (like mobile phones or Java cards), or powerful com puters on which one 
runs m em ory exhaustive com putation  (G RID , model generation). S tatic  size 
inform ation helps in efficient m em ory m anagem ent, since it allows to  decrease
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fragm entation. From  the point of view of security, size verification is useful in 
avoiding “Denial of Service” a ttacks th a t exploit m em ory exhaustion.

Decisions in these (and related) problem s are based on formally verified upper 
bounds of the resource consum ption. However, an advanced detailed analysis of 
these bounds requires knowledge of the sizes of the d a ta  structures used through
ou t the program  [vESvK+07]. Trivially, the tim e it takes to  ite ra te  over a list 
depends on the size of th a t list. In th is paper we focus on the task  of au tom ati
cally deriving the exact ou tpu t-on-input size dependencies of function definitions 
in a program . The ra tio  behind exactness is explained la ter in th is section.

Size dependencies can be represented in function types. We focus on shapely 
functions, where shapely m eans th a t the  size relations are exactly polynom ial 
(not necessarily m onotonous). The size of a list is its num ber of nodes (its length).

Consider an example. The function d i f f p l u s ,  given two lists of length n  and 
m  respectively

— re tu rns a list w ith the length n  — m, if n  > m .
— non-term inates, otherwise:

d if fp lu s  ( [] , ys) = d if fp lu s  ( [] , ys)
d if fp lu s  ( (x :x s ) , []) = (x:xs) 
d if fp lu s  ( (x :x s ) , (y :y s)) = d if fp lu s (x s , ys)

For instance, on the lists [1 , 2 , 3 ], [5 , 6] it re tu rns [3 ], and  on the lists 
[1 , 2 , 3 ], [5 , 6 , 7] it non-term inates.

The size -a w a re  type  of a function expresses the relation between its argum ent 
and result sizes if term inates:

d if fp lu s  : [ a ]n x [ a ]m ^  [ a ]n-m

In general, all lists a t the  inpu t side,have an associated size variable. At the 
ou tp u t side, all lists have an associated polynom ial th a t determ ines the size of 
the ou tp u t list. These polynom ials are defined in term s of the inpu t size variables.

The size dependencies we study  are not necessarily linear, as in P a re to ’s 
approach [Par98], or m onotonic as in [VH04] and for polynom ial in terp reta tions 
[MP06].

In [SvKvE07a] we in troduced a type system  w ith sta tic  type checking and 
w ith dynam ic type inference based on the fact th a t a polynom ial is defined 
by a finite num ber of points on its graph. Running tests of a given function 
definition on an appropriate set of inputs (see [vKSvE07] for the  principles of 
choice of inputs) one obtains a finite collection of test d a ta  th a t  defines a system  
of linear equations. Its  solution is the vector of coefficients of the  polynom ial 
expressing the hypothetical size dependency. There are several size polynomials 
if the ou tp u t type is a nested list. The polynom ials anno ta te  corresponding 
underlying first-order types and these sized types are checked  by a type-checker. 
If the type-checker rejects the first-order type, one continues the procedure for 
a polynom ial of a higher degree.

The procedure non-term inates in two cases: either a function definition under 
consideration does not term inate  on the proposed test inputs, or it is not well- 
typed.
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In th is paper we “lift” the non-term ination  issue from the level of run-tim e 
execution of full program  code to  the level of compile-time type constraints. This 
makes the approach uniform  and we get more control over term ination . Given 
a first-order function definition, a stan d ard  type-inference procedure ends up 
w ith a set of (recurrent) equational constrain ts for size dependencies. In general, 
constrain ts derived by a stan d ard  type-inference procedure m ay be non-linear 
and  m ultivariate (see [SvKvE07b] for the  exam ple). I t is very unlikely th a t there 
exists a solver th a t solves all types of them . However, once one assumes th a t 
the  solution is a polynomial, one m ay use the constrain ts to  calculate values 
of the  size functions(s), com pute the coefficients and type-check the resulting 
polynomials.

Calculating values of the size functions(s) can be done w ith a rew riting tool 
th a t  perform s breadth-first search. As an illustration  of th a t we will show w hat 
the  results are of using Maude [CDH+07] for a small example.

Note, th a t  both , the old run-tim e test-based annotation-inference procedures, 
and the presented new, sta tic  term -rew riting one, have as advantage th a t  one 
eventually solves a system  of l in ea r  equ a tio n s  avoiding non-linearity.

To illustra te  the new sta tic  approach, continue w ith the d i f f p l u s  example. 
Suppose, its size dependency ?p(n, m) m ust be inferred. Type inference produces 
a system  of equations

n  =  0 h?p(n, m) = ?p (n , m) 
m  =  0 h?p(n, m) =  n

h?p(n, m) = ?p (n  — 1, m  — 1)

th a t  can be easily in terpreted  as a program  (or, formally, a term -rew riting sys
tem ), com puting ?p. Using, for instance, diagonal parsing of the space N 2, we 
see th a t we can com pute ?p (0 ,0) =  0, ?p(1, 0) =  1 ?p(1, 1) =  0. This is sufficient 
to  obtain  a, b, c for ?p(n, m) =  an  +  bm +  c. Solving the corresponding system

0 • a +  0 • b +  c = ?p (0 , 0 ) =  0 
a +  0 • b +  c = ? p (1, 0 ) =  1 
a +  b +  c = ? p (1, 1) =  0

gives a = 1 ,  b =  —1, c =  0. So, ?p(n, m) =  n  — m. Note, th a t due to  diagonal 
search the nodes satisfy the configuration th a t assures the uniqueness of the 
solution of the system  of linear equations for a, b, c.

It is im portan t th a t we analyse s tr ic t , precise size dependencies. In this case 
test values lie exactly  on the graph  of the size function (a hypothetical polyno
m ial). One can calculate the  coefficients of the  hypothetical polynom ial due to  
th is fact.

The rest of th is paper is organized as follows. In section 2 we recapitu late 
the  first-order language over sized lists, its type system  and the  run-tim e test- 
based anno ta tion  inference procedure, given in [SvKvE07a] and in [vKSvE07] 
respectively.

In the section 3 we define a term -rew riting system  com puting size dependen
cies. We prove th a t if a function body term inates on a m eaningful stack and
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heap then  term -rew riting term inates on the integers representing the sizes of 
inputs. At the end of the section we show th a t term -rew riting m ay term inate  
when the underlying function definition does not. This makes the applicability 
of the proposed approach larger th an  its previous version, where we use run-tim e 
testing  to  generate hypothetical polynomials.

B oth  test-based and term -rew riting  inference procedures are sem i-term inating. 
The test-based (term -rew riting-based) inference procedure stops w ith the correct 
anno ta ting  polynom ials if the given function definition (term -rew riting) term i
nates and is typeable. O therwise b o th  procedures work infinitely. One m ay want 
to  find a condition th a t allows to  stop inference, after a certain  polynom ial de
gree is reached, w ith the  negative answer. I t is very unlikely th a t  for any function 
definition (in general, or shapely) using in te g e r  a r i th m e tic  one can find a m ax
imal degree d (a  s to p p in g  c r i te r io n ) such th a t  if the  procedure fails to  give a 
positive answer on polynom ials of degree less or equal to  d, then  one rejects it 
as not typeable for sure. Also, we sketch an extension of the m ethodology to  
function definitions w ith non-strict size dependencies, such as i n s e r t i o n s o r t .

2 T yp e S ystem

This section briefly describes the  existing stric t size-aware type system  for a 
functional language and accom panying type checking procedure [SvKvE07a] th a t 
we use in the inference procedure. This also m otivates our approach to  type 
inference.

2.1  S iz e -a w a re  T y p e s

The zero-order types we consider are integers, s tr ic t ly  sized lists of integers, 
s tr ic tly  sized lists of s tr ic t ly  sized lists, etc. A stric t list of length n  is a list 
exactly of length n  (not of some length up to  n, as, e.g. in s ized  types of P areto  
[Par98]). For lists of lists the elem ent lists have to  be of the same size and in 
fact it would be more precise to  speak about m atrix-like structures, e.g. the type 
[[ I n t  ]3 ]2 is given to  a list which two elements are b o th  lists of exactly three 
integers, such as [ [2 ,5 ,3 ] , [7 ,1 ,6 ]] .

Types  t  ::=  I n t  | a  | [t ] p a  £  T yp eV a r

Here p  denotes a size  expression , i.e. a polynom ial in size variables.

S iz e E x p r  p  ::=  Q | n  | p  +  p  | p  — p  | p  * p  n  £  S iz e V a r

As usual Q denotes the  set of all ra tional num bers. As size expressions we 
consider polynom ials w ith rational coefficients th a t are not necessary integer. 
Only those of them  who m ap non-negative integers into non-negative integers 
have a sem antic in the  type system 1. An exam ple of a size expression w ith non
integer coefficients is the polynom ial for p r o g r e s s io n  function:

1 In the earlier version of the type-system we considered only integer polynomials.
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progression  [] = []
p rogression  (x :xs) = (x:xs) ++ (progression xs)

The type of this function is [ a ] n —>■ [a ]
We do not have p artia l applications and higher-order types. F irst-order types 

are functions from tuples of zero-order types to  zero-order types.

F T y p e s  t f  ::=  t i  . . .  Tfc ^  Tfc+i

For example, the  type of d i f f p l u s ,  [ I n t  ]n x [ a  ]m ^  [ a  ]n -m  is a first-order 
type. In well-formed first-order types, the argum ent types are anno ta ted  only 
by size variables and the result type is anno ta ted  by size expressions in these 
variables. Type and size variables occurring in the result type should also occur 
in the argum ent types. Thus, the  type of d i f f p l u s  is a well-formed type, whereas 
[ a ] n+m ^  [a  ]2*” is not, because the argum ent is anno ta ted  by a size expression 
th a t  is not a variable.

2 .2  T y p in g  s y s te m

Previously, we have developed a sound size-aware type system  and a type check
ing procedure for a first-order functional language w ith call-by-value sem antics 
[SvKvE07a]. The language supports lists and integers and stan d ard  constructs 
for p a tte rn  m atching, if-then-else branching, and let-binding.

The typing rules follow the intu ition  on how sizes are created  and  changed 
during evaluation. The construction  of a list gives a list th a t is one element longer 
th a n  its tail. The th e n  and e l s e  branches of the if-statem ent are required to  
yield the same size. The same holds for the n i l  and  cons branches of p a tte rn  
m atching, bu t th a t rule also takes into account th a t the m atched list is known 
to  be em pty in the n i l  branch: when m atching a list of size s, if the cons branch 
has size n  * 4, the  n i l  branch can have size 0 * 4 =  0 because, there n  =  0.

As in [SvKvE07a] the formal rules are designed conventionally for ML-like 
syntax. Recall th a t an em pty list [] is denoted by nil, a list x :x s  is presented 
as cons(x, xs), and p a tte rn  m atching and case-expressions b o th  correspond to  a 
m atch-construct. B ut, still, everywhere in examples we use Haskell-like syntax.

In the formal rules, a context r  is a m apping from zero-order program  vari
ables to  zero-order types, a signature S  is a m apping from function nam es to  
first-order types, and D  is a set of D iophantine equations th a t keeps track  of 
which lists are empty. A typing judgm ent is a relation of the form D; r  \~ s  e : t  
which m eans th a t if the free program  variables of the expression e have the  types 
defined by r , and the functions called have the types defined by S ,  and the size 
constrain ts D  are satisfied, then  e will be evaluated to  a value of type t , if it 
term inates. For example:

D  h p  =  p ' +  1
--------------------------------------;---------------------------------------  C o n s
D; r ,  h d : t ,  t l : [  t  ]p h ^  cons(hd, t l ) :[  t  ]p
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r ( x ) =  I n t  D; r  h% e t :t  D; r  h % e f  :t
----------------------------------------------------------------------  IfD; r  h s  if x then e t else ef :t

p  =  0, D; r ,  x : [ t ' ]p h% enii:t  
h d , t l  £  d o m ( r ) D; r ,  h d : t ' ,  x : [ t '  ]p, t l : [ t '  ]p-1 h% econs: t

------------------------- — --------------------- -------------— — ---------------------------------------------- M a t c h
D; r ,  x : [t ' ]p h s  match x with | nil ^  eni| :t

| cons(hd, t l ) ^  econs

Size-aware type checking eventually am ounts to  checking entailm ents of the 
form D  h p  =  p ', which m eans th a t  p  =  p ' is derivable from D  in the axiom atics 
of the ring of integers. Because p  and  p ' are known polynom ials of universally 
quantified size variables, com paring them  is straightforw ard. For instance, for 
the d i f f p l u s  function we obtain  m  =  0 h n  — m  =  n  (in the  c o n s , n i l  branch) 
and h n  — m  =  (n — 1) +  (m — 1) (in the c o n s , cons branch).

We form ulated a syntactical condition sufficient to  make type checking decid- 
able for this system  [SvKvE07a]. We allow p a tte r n  m a tc h in g  a n d  case exp ress io n s  
o n ly  fo r  fu n c t io n  p a ra m e te r s  a n d  va ria b les  b o u n d  to  th e m  b y  o th e r  p a t te r n  m a tc h 
in g s a n d  case e x p re ss io n s  For instance, d i f f p l u s  and p r o g r e s s io n  satisfy this 
condition, since here only program  argum ents are m atched. Case expressions on 
tails (of tails of ... ) of function argum ents are allowed as well:

f  (x :xs) = case xs of 
[] -> . . .
(xx:xxs) -> . . .

We prohibit constructs like

f x = case g(x) of 
[] -> . . .
(xx:xxs) -> . . .

This syntactic condition ensures th a t all equations in D  in an inference tree have 
a very simple form n  — c =  0, where c is an integer. In fact D  defines substitu tion  
of size variables by constants of the form n  =  c.

2 .3  R u n - t im e  te s t - b a s e d  in fe re n c e  p r o c e d u r e

In [vKSvE07] we gave a detailed description of the procedure th a t infer polyno
mial size dependencies based on the fact th a t a polynom ial is defined by a finite 
collection of points. The procedure is im plem ented and there is an available 
on-line demo, see www. aha  . c s . r u . n l .

The procedure generates hypotheses for an increasing degree of size poly
nomials. For each degree, hypotheses for all polynom ial size expressions in the 
ou tp u t type are determ ined. The resulting size-aware type is checked using the 
size-aware type checking procedure. Thus:

1. Infer the underlying type (w ithout sizes) using stan d ard  type inference;
2. A nnotate the underlying type w ith size variables;
3. Assume the degree of the  polynomial;
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4. For every ou tp u t size annotation: determ ine which tests are needed, do the 
required series of test runs and com pute the polynom ial coefficients based 
on the test results;

5. A nnotate the type w ith the size expressions found;
6 . Check the  anno ta ted  type;
7. If checking fails, repeat from step  4 assum ing a higher degree.

Below we show the procedure in pseudo-code. The T ryIn crea sin g D eg rees  
function generates G e tS iz e A w a re T y p e  and  checks C h eckS ize A w a reT yp e  hypothe
ses of increasing degrees. A size expression is derived by selecting a node config
ura tion  G e tN o d e C o n f, running the tests for these nodes R u n T e s ts , and deriving 
the size polynom ial from the test results D e riv e P o ly n o m ia l.

Note th a t  if the assum ed degree is lower th an  the true  degree, then  the 
derived polynom ials m ay be wrong. It will be la ter rejected by a type checker, 
or the  nodes where the  size annotations are fully defined cannot be determ ined 
correctly. I t m ay happen  th a t the  node configuration has “too m any” points 
where the  size expression is undefined so the test results do not provide enough 
inform ation to  uniquely infer the inner polynom ial(s). In th a t case one increases 
the degree and continue inference.

Function: T ryI n c r ea sin gD eg rees  
Input: a degree m, a function definition f  
Output: the size-aware type of that function

T r y I n c r e a s i n g D e g r e e s ^ ,  f  ) =
let type  =  lNFERÜNDERLYINGTYpE(f )

atype  =  ANNOTATEWlTHSlZEVARIABLES(type ) 
vs =  G e tO u tp u tS iz e V a r ia b le s (  a type  ) 
s type  =  GETSlZEAwARETYPE(m, f, atype, vs, [ ]) 

in if (CHECKSlZEAwARETYPE(stype, f  )) then  stype  
else TRYlNCREASINGDEGREES(m+l, f  )

Function: G e t S izeAw a r eT y p e

Input: a degree, m  the function definition f  with its annotated type, a list of un
known size annotations, and the polynomials already derived 
Output: the size-aware type of tha t function if the degree is high enough

GETSlZEAwARETYPE(m, f, atype, [ ], p s ) =
A n n o ta te W ith S iz e E x p r e s s io n s ( atype, p s ) / /  The End 

GETSlZEAwARETYPE(m, f, atype, v :vs , p s ) =  
let nodes  =  GETNODECONF(m, a type, p s ) 

resu lts  =  R u n T e s ts ( / ,  n o d e s )
p  =  DERIVEPOLYNOMIAL(m, v, atype, r e s u lts ) 

in G e tS iz e A w a re T y p e (m , f, atype, vs, p :p s )

If a type is rejected, th is can m ean two things. F irst, the assum ed degree 
was too low and  one of the size expressions has a higher degree. T h a t is why 
the procedure continues for a higher degree. A nother possibility is th a t one of
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the  size expressions is not a polynom ial (the function definition is no t shapely) 
or th a t the type cannot be checked due to  incompleteness. In th a t case the pro
cedure w ill  n o t  te r m in a te .  Fortunately, in practice a suitable stopping criterion 
m ay be a reasonable upper bound on the degree of size polynomials. However, 
theoretically, it is very unlikely th a t for any function definition (in general, or 
shapely) using in te g e r  a r i th m e tic  one can find a m axim al degree d (a  s to p p in g  
c r i te r io n ) so th a t if the procedure fails to  give a positive answer on polynomials 
of degree less or equal to  d, then  one rejects it as not typeable for sure.

If the  function is well-typable, the  procedure will eventually find the correct 
size-aware type and term inate.

In th is paper we consider the same schema, w ith procedure R unT ests re
placed by R unT e r m R e w r it in g  using, instead of run-tim e testing, a sta tic  anal
ysis w ith a generated term  rew riting system. Im plem entation of R u nT e r m R e w r it 
ing seems to  be much simpler, th an  for R unT e s t s , especially if one uses an 
external rew riting tool. In particularly, for R u nT ests  we had to  generate input 
lists from given sizes and underlying type.

3 Term  rew ritin g  system  
com p u tin g  values o f h yp oth etica l polynom ials

In this section we show th a t if a function body term inates, then  one can com pute 
values of the  hypothetical size polynom ials using not run-tim e testing  bu t the 
system  of constrain ts generated by the stan d ard  inference procedure.

Informally, one thinks about the  constrain ts as of a term  rew riting  s ystem  
(further, t.r.s .). I t is obtained from the constrain ts ju s t by substitu ting  the sym
bol “= ” by “^ ” . The t.r.s. has a te rm inating  reduction p a th  once the function 
body term inates.

In section 3.1, we define precisely, w hat we m ean by “stan d ard  annotation  
inference” , and construct a t.r.s. com puting size polynomials. In section 3.2, 
we recapitu late  the notion of a meaningful value, using a heap-aw are sem an
tics of types, and operational sem antics of the language. We show, th a t  if an 
operation-sem antics tree is finite then  there is a te rm inating  reduction for the 
term  rew riting system, on the integers representing the sizes of the inputs.

In this way we prove the m ain result of th is section:

T h e o re m  1. I f  a c o m p u ta tio n  o f  th e  w e ll-typ ed  fu n c t io n  te r m in a te s , th e n  there  
ex is ts  a re d u c tio n  sequence fo r  th e  te r m -re w r it in g  s y s te m  th a t te r m in a te s  on  
in teg e rs  th a t re p re se n t th e  s ize s  o f  in p u ts .

Finally, in section 3.3 we show th a t te rm  rew riting m ay term inate  when 
the underlying function definition does not. Thus, in practice term  rew riting 
significantly extends the applicability of the  proposed non-standard  annotation  
inference.
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3 .1  S ta n d a r d  a n n o ta t io n  in fe re n c e  a n d  t e r m  r e w r i t in g  s y s te m

We w ant to  construct a term -rew riting system  th a t com putes a value of size 
polynom ials on given integer argum ents.

For instance, for the  body of d i f f p l u s  function, given an inference tree for 
its underlying type, and the typing judgm ent input:

0 ; x : [ a  ]n , y : [ a  ]m h% e :[ a  ]?p ,

one w ants to  ob tain  the system  of constrain ts

n  =  0 h?p(n, m) = ?p (n , m) 
m  =  0 h?p(n, m) =  n

h?p(n, m) = ?p (n  — 1, m  — 1)

and  the term -rew riting system

?p(0 , m) ——?p(0 , m)
?p(n, 0 ) — n
?p(n, m) —?p(n — 1, m  — 1)

For the p r o g r e s s io n  function one m ay w ant to  ob tain  the following t.r.s.:

?p(0) — 0
?p(n) — n + ?p (n  — 1)

or an equivalent one, for the desugared let-form  of the function body, where an 
auxiliary non-term inal ?q is in troduced to  denote the  annotation  of the  type 
of the bound expression p r o g r e s s io n  xs in the body l e t  z = p ro g re s s io n  xs 
in  (x :x s )+ + (p ro g re s s io n  x s ) :

?p(0) — 0
?p(n) — n + ?q (n  — 1)
?q(n — 1) —?p(n — 1)

G e n e r a t io n  o f  c o n s t r a in ts  a n d  t e r m  r e w r i t in g  s y s te m :
I n p u t :  1) an underlying-type inference tree for a (sub)expression e 

(of the body ef of the function f  
w ith unknown ou tp u t size annotations ?p*) 
w ith the roo t x 1 : [ . . .  [ t 10 ] ] , • • •  h s  e : [ . . .  [ t 0 ] . . .  ], 
where t 0, t 10,... are either I n t  or a size variable a ;
2 ) a typing judgm ent
D; x 1 : [ . . .  [T10 }9lkl . . .  ]g11, . . .  h% e : [ . . .  [to ]?gi . . .  ]?g1 
w ith free size variables n t and arithm etic expressions gj s , 
possibly containing symbols ?p*, and auxiliary non-term inals.
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O u tp u t :  1) the  system  of constrain ts D  w .r.t. ?g1, . . . ,  ?g; ,
formed by conditions of the  form D  h ?g j ( . . . ,  n t , . . . )  =  P*,
where P* some arithm etical expressions,
containing, m aybe, ?p1, . . . ,  ?p; and auxiliary non-term inals,
2 ) the  term  rew riting system  T  w ith rules of the form 
h ? g i ( . . . , n t , . . . ) [ D]  — Pj[D],
where t[D] is a result of substitu ting  of free size variables 
in a te rm  t  by integer constants, determ ined by D.

The set of constrain ts is generated inductively together w ith the annotation- 
inference tree for a given expression. All the type placeholders t  assume canonical 
forms of types. The canonical form of a type [ . . .  [ t 0 ]pi . . .  ]P l, given D , means 
th a t D  h p* = 0 ,  for i >  1, once D  h D  h p 1 =  0. I t is based on an observation 
th a t sem antically all lists [ . . .  [t 0 ]Pl . . .  ]0 represent the  same list [ . . .  [t 0 ]o . . .  ]0.

1. If e is a constan t expression e =  c then  one applies IC o n st  rule

n  r  , ------ r r  I C o n s tD; r h s  c : I n t

Then the “nestedness” of the ou tp u t list is l =  0, t 0 =  I n t  and the set of 
constrain ts is empty: D  =  0.

2 .
DY -  [. . .[r0]?Si ...]?S1 = t '

---------------- ;----------- ;----- ;— ^ ^ — Var
D; r ,  x : T' h s  x : [ . . .  [ to ]‘9! . . .  ]-g1

Then t ' =  [ . . .  [t 0 ]9i . . .  ]91 for some g* and

D  =  {D h ?g 1 =  g1, . . . ,  D  h?g; =  g;}.

3.
D V-lgi = 0

N il
D; r  h s  nil: [ . . .  [to ]?9i . . .  ]?91 

Then
D  =  {D h?g1 =  0; ?g2 = 0  . . . ,  ? g  = 0 } .

4. In the CoNS-rule

D  h ?g1 =  g1 +  1
C ons

D; r ,  h d  : t  ', t l : [  t  ' ]91 h s  cons(hd, t l ) : [ . . .  [ t 0 ]’9i . . .  ] ’91 

t ' =  [ . . .  [ t 0 ]9i . . .  ]92 for some g* and

D  =  {D h ?g 1 =  g 1 +  1, D  h?g2 =  g2, . . . , D  h?g; =  g;}.

5. Recall, th a t  in the function application rule, w ith ^ ( f )  =  t ^  x . . . x t £  — Tk+1 
the symbol * denotes the substitu tion  from the size-variables of (t^  x - ' - x t J ?  ) 
to  size expressions of t 1 ' x ■ ■ ■ x Tk' . I f  t °  =  [ . . .  [ a* ]niii . . .  ]”01 then  t /  m ust 
be of the form [ . . .  [ t "  ]pii  ̂ . . .  ]pi1 for some t " .  We dem and th a t a ll n j  be 
d iffe r e n t s ize  variab le  n a m es.
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In the function application rule

£ ( ƒ )  =  Ti X • • • X T l  ->■ Tk+1 D  I-I t  =  * { r k+1)

D] r i x l -.Tl '1. . .1x k -.Tn' \-jj f { x i , . . .  , x k) :?T F u n A p p

t  =  [ . . .  [t 0 ]?9i . . .  ]?91. Then * ( tk+1) is of the  form [ . . .  [t 0 ]9i . . .  ]91, and 

D  =  {D h?g1 =  g1;?g2 =  g; . . . ,  ?g; =  g;}.

M atch

6 .
r ( x ) =  I n t  D; r  h s  et :?t D; r  h s  e f ? T
------------------------------------------------------------------------ IfD; r  h s  if x then et else ef :t

Then
D  =  D (D ; r  h s  et :? t)U  

D (D ; r  h s  ef :?t)

w ith ? t  for [ . . .  [t 0 ]?9i . . .  ]?91.
7.

g =  0, D; r ,  x : [ t ' ]9 h s  en|| :?t 
h d , tl £  d o m ( r ) D; r ,  h d  : t ', x : [ t ' ]9, t l : [ t ' ]9-1 h s  econs:?T

D; r ,  x : [t ' ]9 h s  match x with | nil ^  en|| :?t
| cons(hd, t l ) ^  econs

Then
D  =  D (D , g =  0; r ,  x : [ t ' ]9 h s  enii :?t) |J

D (D ; r ,  h d : t ', x : [t ' ]9, t l : [t ' ]9-1 h s  econs :?t)

w ith ? t  for [ . . .  [t 0 ]?9i . . .  ]?91. Note th a t  due to  the  syntactical condition g 
is a function of the form n  — c.

8 . In the  LET-rule

X £  d o m ( r )  D ]  r  \ - jj e \  ?.t x D ; r ,  x : t x h x e 2 :? r

_D; P  h x 1 let a; =  e i  in e2 : ? r  ^ ET

we introduce ex tra  nonterm inals ?q* for the annotations of the type t x of the 
bound expression e1 . Then

D =  D (D ; r  h s  e1 :?T x^y  D (D ; r , x : t k h s  e2 :?t).

9. W ithou t loss of generality one m ay th ink  th a t the L e t F un  rule

^ ( f )  =  t 1° x  •••  x  t ° —  Tk+1 
True; x i : i f , . . . ,  x k : i f  h E  ei : r k+1 D ; T  h £ e2 : r '

_D; P  hx 1 letfun f { x i , . . . ,  x k ) =  e \  in e2 \ r '  L e tF u n

the type for bound function is already inferred (otherwise run  the procedure 
for this function independently). So,

D  =  D (D ; r  h s  e2 ?T),

w .r.t. to  a signature, containing the type for f .
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The term -rew riting system  T  is obtained from D  straightforw ardly: for any 
D  h?g =  P  one obtains ?g[D] — P[D ].

The construction of T  for e =  ef defines the term -rew riting  system  for the 
unknow n size annotations ?p* of f .

N o te  the  following. Let one have a family of functions p* : I n t  x  . . .  x  I n t  — 
I n t ,  such th a t if p j(n 1, . . . ,  n ^ .) =  n 0, then  for the integers n 1, . . . ,  n^. there is 
a reduction p a th  in T  term inating  w ith n 0. We will not prove th a t th is family 
satisfies D. It is up  to  type checker to  check if it is indeed the fact (D m ust 
be extended w ith the constrain ts D  h C  from instances of function-application 
rules).

3 .2  O p e r a t io n a l  s e m a n tic s  g e n e ra te s  a  r e d u c t io n  p a th

In our sem antic model, the purpose of the heap is to  store lists. Therefore, it 
essentially is a finite collection of locations l th a t can store list elements. A 
location is the address of a cons-cell each consisting of a hd-field, which stores 
the value of the  list element, and a tl-fie ld , which contains the location of the 
next cons-cell of the  list (or the NULL address). Formally, a program  value is 
either an integer constant, a location, or the null-address and a heap is a finite 
p artia l m apping from locations and fields to  such program  values:

Val v ::=  c | I  | NULL I  £ Loc  c £ I n t  2

H eap  h : Loc  ^  {hd, t l }  ^  Val

We will w rite h[l.hd :=  vh, l . t l  :=  vt] for the heap equal to  h everywhere b u t in
I, which a t the hd-field of I  gets value vh and a t the tl- f ie ld  of I  gets value vt .

The sem antics w of a program  value v is a set-theoretic in terp re ta tions w ith 
respect to  a specific heap h and  a ground type t •, via the four-place relation 
v |=h  ̂ w. Integer constants in terp rets themselves, and locations are in terpreted  
as non-cyclic lists.

i Hint i 
NULL |=|V• jo []
I  |=[T• jn whd :: wt i iff n  >  1,1 £ d o m (h),

h .l.hd  |= i ^ m<h>\il> whd,

h . i . t l  = ¿ 7 - 1̂  w ti

where h |dom(i)\{i} denotes the  heap equal to  h everywhere except for I, where 
it is undefined.

W hen a function body is evaluated, a frame store m aintains the  m apping from 
program  variables to  values. I t only contains the actual function param eters, thus

2 To avoid overhead with notations we treat integer values as integer literals. Ideally, 
one considers integer values i  rather than literals c.
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preventing access beyond the caller’s frame. Formally, a frame store is a finite 
partia l m ap from variables to  values:

S to re  s : E x p V a r  ^  Val

An operational-sem antics judgm ent s; h; C h e ^  v; h ' inform ally means 
th a t a t a store s and a heap h w ith a set of closures C an expression e term inates 
and evaluates to  the value v a t the heap h '. Using heaps and frame stores, 
and m aintaining a m apping C from function nam es to  bodies for the  functions 
definitions encountered, the operational sem antics of expressions is defined by 
rules in the usual way.

In general, say, for a b inary  function definition over integer lists one shows 
the following consistency property: if (x1,v 1), (x2, v2); h; C h ef ^  v; h ', 
where v* points to  the list of length n* in h and  v point to  a list of length m  in 
h', the  corresponding term -rew riting term inates on ?p (n 1 , n 2) —* m.

E x a m p le s  o f  c o n s is te n c y  b e tw e e n  f u n c t io n  e v a lu a t io n  a n d  t e r m  r e w r i t 
in g  We will give two concrete examples of th is general consistency.

Consider as first example the d i f f p l u s  function definition. We will show 
th a t if s(x) and s(y) point to  lists [1, 2] and [3] in a heap h respectively, the  t.r.s. 
for d i f f p l u s  term inates on ?p(2, 1) —* 1.

1. Since [1, 2] is no t em pty  the operational sem antics (a full definition of these 
sem antics is given in [SvKvE07b]) will require us to  construct the reduction 
for the cons-branch sub-expression.

2. Since [3] is non-em pty one constructs the reduction for the second cons- 
branch.

3. The (recursive) function call d if fp lu s ( [2 ] , []) gives ?p(2, 1) —?p(1, 0).
4. Now unfold the body of d i f f p l u s  according to  the  op.sem. rule.
5. Since [2] is not em pty  one constructs the reduction for the cons-branch sub

expression.
6 . Since [] is em pty one constructs the reduction for the  n i l-b ra n c h  sub-expression, 

th a t is [].
7. Thus ?p(1, 0) — 1.

As a second example, illustrating  how th is should work for expressions w ith 
le t-b in d in g s , we consider now p r o g r e s s io n  on the list [1, 2] th a t re tu rns [1, 2, 2].

1. Since [1, 2] is not em pty one constructs the reduction for the  cons-branch 
sub-expression:

l e t  y s = p ro g re s s io n (x s )  
in  x++ys

Let ?q be an auxiliary non-term inal for the size annotation  of bound expres
sion, which is p ro g re s s io n ( [2]).

2. (Recursive) function call p ro g re ss io n [2 ] gives ?q(1) —?p(1).
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3. Call of ++, for which its size anno ta tion  are known, gives ?p(2) — 2+?q(1)
4. Now we need to  continue a reduction p a th  for ?q(1) —?p(1). We unfold the 

body of p r o g r e s s io n  according to  the op.sem. rule.
5. Since [2] is not em pty  one constructs the reduction for the cons-branch sub

expression.
6 . (Recursive) function call p ro g re ss io n []  gives ?q(0) —?p(0).
7. Call of ++ w ith the known size anno ta tion  gives ?p(1) — 1+?q(0)
8 . Now we need to  continue a reduction p a th  for ?q(0) —?p(0). We unfold the 

body of p r o g r e s s io n  according to  the op.sem. rule.
9. One enters the n i l-b ra n c h  th a t re tu rns an em pty list, so we have ?p(0) — 0.

10. Altogether: ?p(2) — 2+?p(1) — 2 +  1+?p(0) — 2 +  1 +  0 — 3.

P r o o f  o f  c o n s is te n c y  o f  t e r m  r e w r i t in g  w i th  r e s p e c t  to  t h e  o p e r a t io n a l  
s e m a n tic s  The c o n s is te n c y  of te rm  rew riting w ith respect to  the operational 
sem antics m eans th a t firstly the  term  rew riting system  term inates when the 
evaluation term inates according to  the operational sem antics and secondly the 
size of the operational result is equal to  the  value of the result of te rm  rewriting.

To be able to  apply formal induction on the height of the  operational- 
sem antics tree for a given expression one needs to  consider a stronger consistency 
sta tem ent, th an  form ulated above.

This general sta tem ent looks as follows:

L e m m a  1. L e t  f  be a fu n c t io n  w ith  u n k n o w n  size  a n n o ta t io n s  a n d  a co llec tion  
o f  free  size  va riab les  {n t}t . L e t  T  be th e  te r m -re w r it in g  sy s te m , c o n s tru c te d  along  
w ith  th e  a n n o ta t io n  in fe re n c e  tree fo r  its  body e f .

L e t ( in d u c tio n  a s s u m p tio n s )

— e be a su b -e x p re ss io n  o f  e f ,
— s; h; C h e ^  v; h ',
— s be a meaningful store: fo r  a n y  x £ d o m (s ) , there  are so m e  in teg ers  m j  

f o r  so m e  se t-th eo re tica l va lue  wx su c h  th a t

s(x) 1= ^ 0 0 wx,
[...[ Int ... ]mX1

— there  e x is t fo r  th e  r e tu r n  va lue  v so m e  in teg ers  m 0i y ie ld in g  a se t-th e o re tic  
va lue  w

v n 1 o 0 w,M  ...[ Int ]ml ... ]m° ’

— a ju d g m e n t  D; r  h ^  e :t ,  be s.t.
•  i t  is  a node in  the  a n n o ta tio n - in fe re n c e  tree fo r  e f ,
•  t  =  [ . . .  [ I n t  ]?gi . . .  ]?g1,
•  r (x) =  [ . . .  [ I n t  ]gxfcx . . . ]gx1,
•  n° are in te g e r  n u m b ers , s .t. th e y  sa tis fy  D  a n d  gxj (. .. ,n°,  . ..) —* m^j

in  T ,

th e n  there  is  a re d u c tio n  sequence  in  T : ?g*(. . ., n°, .. .)
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P roo f. Induction on the height of the  operation-sem antics tree for s; h; C h 
e ^  v; h'.

1. W ith  the rule
— , „c ^  I n t --------r  O S IC onss; h; C h c ^  c; h

one has e =  c, l =  0 and  there are no ?gj-s to  prove their term ination.
2. W ith  the rule

s\ h] C \~ x  ^  s ( x ) ;  h  ^ S V a r

one applies the  corresponding typing rule Va r , w ith

T D { . . . ,  ?gi[D] — gxi[D ],. ..} ,

The last lem m a’s assum ption claims th a t gxj( . . . n 0 . . . )  —* m ^ , from w hat 
follows th a t ? g j ( . . . n 0 . . . )  —* mX =  m 0 as well, and the reduction for 
?gj ( . .. n 0 . . . )  takes one step  more.

3. W ith  the rule

O S N ils; h; C h nil ^  NULL; h

one has T  D { . . . ,  ?gj [D] — 0 , . . . } .  I t m eans th a t for all in stan tia tions of 
variables, satisfying D, ?gj reduces to  zero. Therefore, ?gj ( . .. n 0 . . . )  — 0 =
m 0.

4. W ith  the rule

s (h d ) =  vhd s ( t l) =  vt i I  /  d o m (h)
O S C ons

s; h h cons(hd, tl) ^  I; h[l.hd :=  vhd, l . t l  :=  vt l ]

one has T  D {?gi[D] — gi[D] +  1, ?g2[D] — g2[D] , .. .?g;[D] — g;[D]},
where t l : . . .  [[ I n t  ]gi . . .  ]g1. Therefore, ?gj ( . . . n 0 . . . )  — * g j ( . . . n 0 . . . )  =  m0 
for i >  1 and ?g1( . .. n 0 . . . )  — * g1( . .. n 0 . . . )  +  1 =  mi .

5. Consider the call of a function f ' w ith  known size annotations in t 0 x  . . .  x 
t 0 — Tk+ 1, where Tk+1 =  [ . . .  [Tk+1j0 ]Gl . . .  ]G1 w ith free size variables z js .

s(xi )  =  v1 . . .  s(xm ) =  v„ C ( f ') =  (y1, . . . ,  y„) x  e f /
[y1 := v 1 , . . . , y „  :=  v„]; h; C h e f / ^  v; h '

--------------------  v--------------- :----------- T7----------------  O S F u n A p ps; h; C h f  '( x 1, . . . ,  xn ) ^  v; h

One has T  =  {. .  .?gj[D] — qj [D] , . . .},  where *(Tfc+1) =  [ . . .  [T0 ]q . . .  ]q1. 
Therefore, ?gj ( . .. n0 . . . )  — q<(... n0 . . . )  = def G j ( . . . ,  gjS( . . . ,  n 0 , . . . ) . . . )  —* 
G j ( . . . ,  m j s , . . . ) ,  where G j ( . . . , m j s , . . . )  is a ground term , since G j is a 
known arithm etic expression over zjs :=  gj s ( . . . ,  n 0, . . . ) .  Due to  the sound
ness of the  type system , G j ( . . . ,  m j s , . . . )  = m 0

6 . Consider the  call of the function w ith unknown size annotations ?pj . One 
applies induction (on the heights of e) in this case:

s (x 1) =  v 1 . . .  s(xm ) =  v„ C ( f ) =  (y1, . . . ,  y„) x ef 
[y1 := v1, . . . , y „  :=  v„]; h; C h ef ^  v; h '

-------------------- .---------------:----------- ------------------  O S F unA p p
s; h; C h f  (x 1, . . . ,  xn ) ^  v; h
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Indeed, the  assum ptions of the  lem m a hold for

[y1 :=  v1, . . .  ,y„ := v j ;  h; C h ef ^  v; h'

and
D ; . . .  : [ . . . [Tj 0 P fcj. . . ]gj1. . .  h ^  ef : T.

The reduction  sequence for ?pj ( . . . ,  gj s ( . . . ,  n 0, . . . ) . . . )  —* m 0 is constructed  
on th is pair. Then one needs to  apply one more reduction: ?gj ( . .. n 0 . . . )  —
?pj( . . . , gj s( . . . , n 0 , . . . ) . . . ) .

7. One applies the  induction reasoning in the  case 

s(x) = 0  s; h; C h ei ^  v; h '
O S If T rue

s; h; C h if x then e 1 else e2 ^  v; h '

since the assum ptions of the  lem m a hold for the  operation  sem antics judg
m ent s; h; C h e 1 ^  v; h ' and D; r  h ^  e 1 : t . Thus, the reduction 
sequence is obtained on these data .

8 . The f a l s e  branch is similar:

s(x) = 0  s; h; C h e2 ^  v; h '
O S If False

9.

s; h; C h if x then ei  else e2 ^  v; h '

s; h; C h ei ^  vi; h i s[x :=  vi]; hi; C h  e2 ^  v; h ' 

s; h; C h let x =  ei in e2 ^  v; h '
O S L et

The reduction p a th  is obtained on s[x :=  v1]; h 1; C h e2 ^  v; h ' and 
D; r ,  x :?Tx hx?T . To apply induction assum ption for this pair one needs 
to  show, th a t annotations of ?Tx reduce to  the  integers, representing the 
sizes of the value v 1 . This is done by induction assum ption, on the pair 
s; h; C h e 1 ^  v1; h 1 and  D; r  h ^  e1 :?Tx .

10.

s(x) =  NULL s; h; C h ei w; h!

s; h; C h match x with | nil ^  e i ^  v; h '
| cons(hd, t l ) ^  e2

O SM a tch -N il

The reduction sequence is obtained for the pair s; h; C h e 1 ^  v; h ', where 
s(x) =  NULL, and D, gx1 =  0; r  h ^  e 1 :?t, since they  satisfy the conditions 
of the  lemma.

11.

h .s(x).hd  =  vhd h .s (x ) . t l  =  vt l  
s[hd :=  vhd, tl  :=  vt l ]; h h e2 ^  v; h '

O SM a tch -C ons
s; h; C h match x with | nil ^  e i ^  v; h '

| cons(hd, t l ) ^  e2

The reduction  sequence is obtained for the pair s; h; C h e2 ^  v; h ' 
and D; r ,  hd  : t ' ,  x : [ t '  ]gx1, tl  : [ t '  ]gx1 - i  h ^  e2 :?t, since they  satisfy the 
conditions of the  lemma.
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s; h; C [ƒ :=  ( ( x i , . . . ,  x„)  x ei)] h e2 ^  v; h '
—   777 ---------------------------------- t t ---------------------:---------------------------------------7 7  O SL e t F un
s; h; C h letfun ƒ ( ( x i , . . . ,  x n )) =  e 1 in e2 ^  v; h'

The reduction sequence is ob tained for the pair s; h; C [f :=  ( ( x i , . . . ,  xn ) x e 1)] h 
e2 ^  v; h ', and D; r  h ^  e2 :?t, since they  satisfy the conditions of the 
lemma.

Q .E .D .

12.

3 .3  T e rm  r e w r i t in g  b e a ts  r u n - t im e  te s t in g

In [vKSvE07], for te r m in a tin g  function definitions, we have shown th a t to  in
fer polynom ials ? p  of degree m  over size variables n 1, . . . , n k, for an ou tpu t 
type [ . . .  [ a  ]?pi . . .  ]?P1, one can find enough test d a ta  in k-ary cube w ith side 
[0 , .. ., 1m]

Recall, th a t the  vector of inpu t sizes should satisfy certain, nontrivial for 
k >  1 condition th a t ensures th a t the corresponding system  of linear equation 
has a unique solution. For instance, for 2-variate case, k =  2, and a linear 
dependency, m  = 1, a n 1 +  bn2 +  c it means th a t one needs three  test nodes, th a t 
do not lie on the same line on the plane.

It is easy to  see, th a t due to  non-term ination  d i f f p l u s  does not provide 
enough points on the square [0, 1] x [0 , 1]:

Testing Rew riting

However, the  t.r.s . does term inate  on all nodes in th is cube. Thus, term  
rew riting instead of run-tim e testing provides a good im provem ent for the  in
ference algorithm , increasing its applicability. Moreover, annotation  inference 
becomes now co m p le te ly  s ta tic .

We have earlier im plem ented a run-tim e test-based version of the  inference 
procedure. To adap t it for s ta tic  term -rew riting one should use any rew riting 
system  th a t provides a search of all te rm inating  paths on given data . We have 
chosen to  use Maude [CDH+07].

The Maude inpu t file for d i f f p l u s  example looks as follows:

mod DIFFPLUS i s  
p r o t e c t in g  INT .
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op diffplus : Int Int -> Int

v a r s  N M Z : I n t  .
r l  d i f f p l u s ( 0 ,  M) => d i f f p l u s ( 0 ,  M) . 
r l  d i f f p l u s ( N ,  0) => N .
r l  d i f f p l u s ( N ,  M) => d i f f p l u s ( ( N  -  1 ) ,  (M -  1) )  . 
endm

The M aude-output on d i f f p l u s  for (0, 0), (1, 0), (1, 1) gives the following 
inform ation, respectively:

s e a rc h  [1 , 100] in  DIFFPLUS : d i f f p l u s ( 0 ,  0) =>! Z .

S o lu t io n  1 ( s t a t e  1)
s t a t e s :  3 r e w r i t e s :  5 in  0ms cpu (0ms r e a l )  (~ r e w r i te s /s e c o n d )
Z - -  > 0

s e a rc h  [3 , 10] in  DIFFPLUS : d i f f p l u s ( 1 ,  0) =>! Z .

S o lu t io n  1 ( s t a t e  1)
s t a t e s :  3 r e w r i t e s :  4 in  0ms cpu (0ms r e a l )  (~ r e w r i te s /s e c o n d )
Z - ->  1

No more s o lu t io n s .
s t a t e s :  13 r e w r i t e s :  35 in  0ms cpu (0ms r e a l )  (~ r e w r i te s /s e c o n d )

s e a rc h  [5 , 100] in  DIFFPLUS : d i f f p l u s ( 1 ,  1) =>! Z .

S o lu t io n  1 ( s t a t e  2)
s t a t e s :  4 r e w r i t e s :  8 in  0ms cpu (0ms r e a l )  (~ r e w r i te s /s e c o n d )
Z - -  > 0

No more s o lu t io n s .
s t a t e s :  103 r e w r i t e s :  305 in  4ms cpu (1ms r e a l )  (76230 r e w r i te s /s e c o n d )

The param eters [x, y] behind the s e a rc h  com m and define the m axim um  
am ount of solutions and the m axim al dep th  of the search respectively.

4 Future work

B o u n d  fo r d e g re e  o f  a  s ize  p o ly n o m ia l  The presented annotation-inference 
procedure term inates when an analyzed function is well-typed and  the term - 
rew riting system  calculates enough values of th is polynom ial for generating the 
hypothesis.
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One m ay be in terested  to  solve the following problem  (which we call a s to p 
p in g  c r ite r io n  for the  procedure). Given a function definition find a degree d, 
such th a t if the function is shapely, then  the degree of its size polynomial(s) 
is less or equal to  d. We do not know the answer on this question yet, if one 
discusses the decidability in integer arithm etic.

N o n -s h a p e ly  p ro g ra m s  The current hypothesis generation procedure relies on 
the lim itation  to  shapely program s; ou tp u t sizes need to  be exactly polynom ial 
in the  input size. In practice m any program s are not shapely, bu t still have a 
polynom ial upper bound. Consider inserting an elem ent in a set. This increases 
the set size by one only if the element was not in it. Its  actual upper bound is:

i n s e r t i o n s o r t  : [a  ]n x a  ^  [a ]”+1

To extend our approach to  such upper bounds, we are studying program  
transform ations th a t transform  an unshapely function into a shapely function 
w ith the stric t size dependency corresponding to  an upper bound of the size 
dependency of the  original function. For instance, the i n s e r t i o n s o r t  function 
would be transform ed into a shapely function th a t always inserts the element. 
We believe th a t in m any practical cases the  testing  approach combined w ith 
program  transform ations will succeed in providing good upper bounds.

G e n e ra l  d a t a  s t r u c tu r e s  In th is paper, we presented the procedure for a 
simple functional language over lists. We plan to  extend and im plem ent the 
procedure for an existing language w ith more general d a ta  structures. Good 
candidates are XML transform ation  languages. This is a necessary step  tow ards 
size analysis of object-oriented program s.

5 C onclusion

We presented for the  first tim e a sta tic  type inference m ethod for non-linear 
non-m onotonous polynom ial size-aware types. This sta tic  type inference m ethod 
uses a term -rew riting system  to  solve the type constrain ts th a t are derived from 
the function definitions.

In th is paper it is proven th a t the sta tic  type inference m ethod term inates 
a t least a t those cases where the existing run-tim e type inference m ethod term i
nated. It is furtherm ore shown th a t there are cases where sta tic  type inference 
does term inate  while the corresponding run-tim e inference did not.

The proposed sta tic  type inference m ethod is not only theoretically  more 
powerful due to  b e tte r te rm ination  properties bu t also more efficient in practice 
since it abstrac ts  from a great deal of run-tim e com putation.
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