-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Radboud Repository

Radboud Repository Radboud University Nijmegen ;@r

N\

PDF hosted at the Radboud Repository of the Radboud University
Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/36493

Please be advised that this information was generated on 2017-12-06 and may be subject to
change.

https://core.ac.uk/display/16123624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/36493

Static inference of polynomial size-aware types

Olha Shkaravska*, Marko van Eekelen
{O.Shkaravska, M.vanEekelen}@cs.ru.nl

Security of Systems Department
Institute for Computing and Information Sciences
Radboud University Nijmegen

Abstract. We propose a static size analysis procedure that combines
term-rewriting and type checking to automatically obtain output-on-
input size dependencies for first-order functions. Attention is restricted
to functions for which the size of the result is strictly polynomial, not
necessarily monotonous, in the sizes of the arguments.

To infer a size dependency, the procedure generates hypotheses for in-
creasing degrees of polynomials. For each degree, to define a hypothetical
polynomial one needs to know its values on a finite collection of points
(subject to some geometrical condition). To compute the value of a size
polynomial in a certain point we use a term-rewriting system generated
by a standard size-annotations inference procedure.

We have proven that if a function with a given input terminates at run-
time on a meaningful stack and heap then the static (’compile-time’)
term rewriting system of the size inference also terminates, on the inte-
gers representing the sizes of the corresponding inputs.

The term rewriting system may terminate at compile-time when the
underlying function definition does not at run-time. This makes the the-
oretical applicability of the proposed approach larger than the previous
state-of-the-art, where run-time testing was used to generate hypothet-
ical polynomials. Also, the practical applicability is improved due to
increased efficiency since the term rewriting system at compile time ab-
stracts from many computations that are done at run-time.

1 Introduction

Embedded systems or server applications often have limited resources available.
Therefore, it can be important to know in advance how much time or memory
a computation is going to take, for instance to determine how much memory
should at least be put in a system to enable all desired operations.

This helps to prevent abrupt termination for both sorts of hardware: small
devices (like mobile phones or Java cards), or powerful computers on which one
runs memory exhaustive computation (GRID, model generation). Static size
information helps in efficient memory management, since it allows to decrease

* This research is sponsored by the Netherlands Organisation for Scientific Research
(NWO), project Amortized Heap Space Usage Analysis (AHA), grantnr. 612.063.511.

fragmentation. From the point of view of security, size verification is useful in
avoiding “Denial of Service” attacks that exploit memory exhaustion.

Decisions in these (and related) problems are based on formally verified upper
bounds of the resource consumption. However, an advanced detailed analysis of
these bounds requires knowledge of the sizes of the data structures used through-
out the program [vESvKT07|. Trivially, the time it takes to iterate over a list
depends on the size of that list. In this paper we focus on the task of automati-
cally deriving the exact output-on-input size dependencies of function definitions
in a program. The ratio behind exactness is explained later in this section.

Size dependencies can be represented in function types. We focus on shapely
functions, where shapely means that the size relations are exactly polynomial
(not necessarily monotonous). The size of a list is its number of nodes (its length).

Consider an example. The function diffplus, given two lists of length » and
m respectively

— returns a list with the length n — m, if n > m.
— non-terminates, otherwise:

diffplus ([, ys) =diffplus ([1, ys)
diffplus ((x:xs), [1) = (x:xs8)
diffplus ((x:xs), (y:ys)) =diffplus(xs, ys)

For instance, on the lists [1, 2, 3], [5, 6] it returns [3], and on the lists
[1, 2, 3], [6, 6, 7] it non-terminates.

The size-aware type of a function expresses the relation between its argument
and result sizes if terminates:

diffplus : [a]™ X [a]™ — [a]"™™

In general, all lists at the input side,have an associated size variable. At the
output side, all lists have an associated polynomial that determines the size of
the output list. These polynomials are defined in terms of the input size variables.

The size dependencies we study are not necessarily linear, as in Pareto’s
approach [Par98], or monotonic as in [VH04] and for polynomial interpretations
[MPO06].

In [SvKvEOQT7a] we introduced a type system with static type checking and
with dynamic type inference based on the fact that a polynomial is defined
by a finite number of points on its graph. Running tests of a given function
definition on an appropriate set of inputs (see [vKSvEOQ7] for the principles of
choice of inputs) one obtains a finite collection of test data that defines a system
of linear equations. Its solution is the vector of coefficients of the polynomial
expressing the hypothetical size dependency. There are several size polynomials
if the output type is a nested list. The polynomials annotate corresponding
underlying first-order types and these sized types are checked by a type-checker.
If the type-checker rejects the first-order type, one continues the procedure for
a polynomial of a higher degree.

The procedure non-terminates in two cases: either a function definition under
consideration does not terminate on the proposed test inputs, or it is not well-
typed.

In this paper we “lift” the non-termination issue from the level of run-time
execution of full program code to the level of compile-time type constraints. This
makes the approach uniform and we get more control over termination. Given
a first-order function definition, a standard type-inference procedure ends up
with a set of (recurrent) equational constraints for size dependencies. In general,
constraints derived by a standard type-inference procedure may be non-linear
and multivariate (see [SVKvEO7b] for the example). It is very unlikely that there
exists a solver that solves all types of them. However, once one assumes that
the solution is a polynomial, one may use the constraints to calculate values
of the size functions(s), compute the coefficients and type-check the resulting
polynomials.

Calculating values of the size functions(s) can be done with a rewriting tool
that performs breadth-first search. As an illustration of that we will show what
the results are of using Maude [CDHT07] for a small example.

Note, that both, the old run-time test-based annotation-inference procedures,
and the presented new, static term-rewriting one, have as advantage that one
eventually solves a system of linear equations avoiding non-linearity.

To illustrate the new static approach, continue with the diffplus example.
Suppose, its size dependency ?p(n, m) must be inferred. Type inference produces
a system of equations

n =0 F?(n, m) ="p(n, m)
m=0F7(n, m)=n
Frp(n, m) =7p(n — 1, m — 1)

that can be easily interpreted as a program (or, formally, a term-rewriting sys-
tem), computing 7p. Using, for instance, diagonal parsing of the space N2, we
see that we can compute 7p(0,0) = 0, 7p(1, 0) = 1 7p(1, 1) = 0. This is sufficient
to obtain a, b, ¢ for 7p(n, m) = an + bm + ¢. Solving the corresponding system

0-a+0-b+c=7p(0,0)=0
a+0-b+c =7(1,0)=1
atb+tec =7p(1,1)=0

givesa=1, b= —1, ¢ = 0. So, 7p(n, m) = n — m. Note, that due to diagonal
search the nodes satisfy the configuration that assures the uniqueness of the
solution of the system of linear equations for a, b, c.

It is important that we analyse strict, precise size dependencies. In this case
test values lie exactly on the graph of the size function (a hypothetical polyno-
mial). One can calculate the coefficients of the hypothetical polynomial due to
this fact.

The rest of this paper is organized as follows. In section 2 we recapitulate
the first-order language over sized lists, its type system and the run-time test-
based annotation inference procedure, given in [SvKvEO07a] and in [vKSvEQ07]
respectively.

In the section 3 we define a term-rewriting system computing size dependen-
cies. We prove that if a function body terminates on a meaningful stack and

heap then term-rewriting terminates on the integers representing the sizes of
inputs. At the end of the section we show that term-rewriting may terminate
when the underlying function definition does not. This makes the applicability
of the proposed approach larger than its previous version, where we use run-time
testing to generate hypothetical polynomials.

Both test-based and term-rewriting inference procedures are semi-terminating.
The test-based (term-rewriting-based) inference procedure stops with the correct
annotating polynomials if the given function definition (term-rewriting) termi-
nates and is typeable. Otherwise both procedures work infinitely. One may want
to find a condition that allows to stop inference, after a certain polynomial de-
gree is reached, with the negative answer. It is very unlikely that for any function
definition (in general, or shapely) using integer arithmetic one can find a max-
imal degree d (a stopping crilerion) such that if the procedure fails to give a
positive answer on polynomials of degree less or equal to d, then one rejects it
as not typeable for sure. Also, we sketch an extension of the methodology to
function definitions with non-strict size dependencies, such as insertionsort.

2 Type System

This section briefly describes the existing strict size-aware type system for a
functional language and accompanying type checking procedure [SvKvE07a] that
we use in the inference procedure. This also motivates our approach to type
inference.

2.1 Size-aware Types

The zero-order types we consider are integers, strictly sized lists of integers,
strictly sized lists of strictly sized lists, etc. A strict list of length n is a list
exactly of length n (not of some length up to n, as, e.g. in sized types of Pareto
[Par98]). For lists of lists the element lists have to be of the same size and in
fact it would be more precise to speak about matrix-like structures, e.g. the type
[[Int]?]? is given to a list which two elements are both lists of exactly three
integers, such as [[2,5,3], [7,1,6]1].

Types 7 :=1Int | a|[7]? o € TypeVar
Here p denotes a size expression, i.e. a polynomial in size variables.
Sizekxzprp =@ |n|p+p|lp—plp*p n € SizeVar

As usual Q denotes the set of all rational numbers. As size expressions we
consider polynomials with rational coefficients that are not necessary integer.
Only those of them who map non-negative integers into non-negative integers
have a semantic in the type system®. An example of a size expression with non-
integer coefficients is the polynomial for progression function:

! In the earlier version of the type-system we considered only integer polynomials.

progression [] =11
progression (x:xs) = (x:xs) ++ (progression xs)
‘V‘L2 i3
The type of this function is [a]” — [«] e
We do not have partial applications and higher-order types. First-order types
are functions from tuples of zero-order types to zero-order types.

Flypes 71 v=7 ... 7 — Thii

For example, the type of diffplus, [Int]|" X [a]™ — [a]*™™ is a first-order
type. In well-formed first-order types, the argument types are annotated only
by size variables and the result type is annotated by size expressions in these
variables. Type and size variables occurring in the result type should also occur
in the argument types. Thus, the type of diffplus is a well-formed type, whereas
[a]™F™ — [«]?*™ is not, because the argument is annotated by a size expression
that is not a variable.

2.2 Typing system

Previously, we have developed a sound size-aware type system and a type check-
ing procedure for a first-order functional language with call-by-value semantics
[SvKvEO0T7a]. The language supports lists and integers and standard constructs
for pattern matching, if-then-else branching, and let-binding.

The typing rules follow the intuition on how sizes are created and changed
during evaluation. The construction of a list gives a list that is one element longer
than its tail. The then and else branches of the if-statement are required to
yield the same size. The same holds for the nil and cons branches of pattern
matching, but that rule also takes into account that the matched list is known
to be empty in the nil branch: when matching a list of size s, if the cons branch
has size n x 4, the nil branch can have size 0 x 4 = 0 because, there n = 0.

As in [SvKvE07a] the formal rules are designed conventionally for ML-like
syntax. Recall that an empty list [] is denoted by nil, a list x:xs is presented
as cons(z, xs), and pattern matching and case-expressions both correspond to a
match-construct. But, still, everywhere in examples we use Haskell-like syntax.

In the formal rules, a context I is a mapping from zero-order program vari-
ables to zero-order types, a signature 2’ is a mapping from function names to
first-order types, and D is a set of Diophantine equations that keeps track of
which lists are empty. A typing judgment is a relation of the form D; I k5 e:7
which means that if the free program variables of the expression e have the types
defined by I', and the functions called have the types defined by }J, and the size
constraints D are satisfied, then e will be evaluated to a value of type 7, if it
terminates. For example:

DEp=9p +1
D; I, hd: 7, tl:[7]P by cons(hd, tl):[7]P

CoONSs

I'(z) = Int D: I bFxe:T D; I Fxepir
D; I' Fyif x then ¢; else ¢y :7
p=0, D; T, z: [7']P Fxen:T
hd, tl & dom(I") D; Tohd: 7', z: [7']P, th: [7']P7 Fx econs: T

D;Iz:|[7'|P k5 match z with | nil = ey o
| Cons(hd? tl) = €cons

IF

MarcH

Size-aware type checking eventually amounts to checking entailments of the
form D+ p = p/, which means that p = p’ is derivable from D in the axiomatics
of the ring of integers. Because p and p’ are known polynomials of universally
quantified size variables, comparing them is straightforward. For instance, for
the diffplus function we obtain m = 0 F n —m = n (in the cons, nil branch)
and Fn—m=(n—1)+4 (m —1) (in the cons, cons branch).

We formulated a syntactical condition sufficient to make type checking decid-
able for this system [SVKvEO7a]. We allow patiern matching and case expressions
only for function parameters and variables bound to them by other pattern match-
ings and case expressions For instance, diffplus and progression satisfy this
condition, since here only program arguments are matched. Case expressions on
tails (of tails of ...) of function arguments are allowed as well:

f (x:x8) = case xs of
1 -> ...

(xx:xx8) > ...
We prohibit constructs like

f x =case g(x) of
onb-> ...

(xx:xx8) -> ...

This syntactic condition ensures that all equations in D in an inference tree have
a very simple form n—c¢ = 0, where ¢ is an integer. In fact D defines substitution
of size variables by constants of the form n = c.

2.3 Run-time test-based inference procedure

In [vKSvEQ7] we gave a detailed description of the procedure that infer polyno-
mial size dependencies based on the fact that a polynomial is defined by a finite
collection of points. The procedure is implemented and there is an available
on-line demo, see www.aha.cs.ru.nl.

The procedure generates hypotheses for an increasing degree of size poly-
nomials. For each degree, hypotheses for all polynomial size expressions in the
output type are determined. The resulting size-aware type is checked using the
size-aware type checking procedure. Thus:

1. Infer the underlying type (without sizes) using standard type inference;
2. Annotate the underlying type with size variables;
3. Assume the degree of the polynomial;

4. For every output size annotation: determine which tests are needed, do the
required series of test runs and compute the polynomial coefficients based
on the test results;

5. Annotate the type with the size expressions found,

. Check the annotated type;

7. If checking fails, repeat from step 4 assuming a higher degree.

D

Below we show the procedure in pseudo-code. The TrylncreasingDegrees
function generates GetSize AwareType and checks CheckSize Aware Type hypothe-
ses of increasing degrees. A size expression is derived by selecting a node config-
uration GetNodeConf, running the tests for these nodes RunTests, and deriving
the size polynomial from the test results DerivePolynomial.

Note that if the assumed degree is lower than the true degree, then the
derived polynomials may be wrong. It will be later rejected by a type checker,
or the nodes where the size annotations are fully defined cannot be determined
correctly. It may happen that the node configuration has “too many” points
where the size expression is undefined so the test results do not provide enough
information to uniquely infer the inner polynomial(s). In that case one increases
the degree and continue inference.

Function: TRYINCREASINGDEGREES
Input: a degree m, a function definition £
Output: the size-aware type of that function

TRYINCREASINGDEGREES(m, f) =
let type = INFERUNDERLYINGTYPE(f)
atype = ANNOTATEWITHSIZEVARIABLES({ype)
vs = GETOUTPUTSIZE VARIABLES atype)
stype = GETSIZEAWARETYPE(m, f, alype, vs, [])
in if (CHECKSIZEAWARETYPE(stype, f)) then stype
else TRYINCREASINGDEGREES(m+1, f)

Function: GETSIZEAWARETYPE

Input: a degree, m the function definition £ with its annotated type, a list of un-
known size annotations, and the polynomials already derived

Output: the size-aware type of that function if the degree is high enough

GETSIZEAWARETYPE(m, f, atype, [], ps) =
ANNOTATEWITHSIZEEXPRESSIONS (atype, ps) // The End
GETSIZEAWARETYPE(m, f, alype, vivs, ps) =
let nodes = GETNODECONF(m, atype, ps)
results = RUNTESTS(f, nodes)
p = DERIVEPOLYNOMIAL(m, v, alype, results)
in GETSIZEAWARETYPE(m, f, atype, vs, p:ps)

If a type is rejected, this can mean two things. First, the assumed degree
was too low and one of the size expressions has a higher degree. That is why
the procedure continues for a higher degree. Another possibility is that one of

the size expressions is not a polynomial (the function definition is not shapely)
or that the type cannot be checked due to incompleteness. In that case the pro-
cedure will not terminate. Fortunately, in practice a suitable stopping criterion
may be a reasonable upper bound on the degree of size polynomials. However,
theoretically, it is very unlikely that for any function definition (in general, or
shapely) using integer arithmetic one can find a maximal degree d (a stopping
eriterion) so that if the procedure fails to give a positive answer on polynomials
of degree less or equal to d, then one rejects it as not typeable for sure.

If the function is well-typable, the procedure will eventually find the correct
size-aware type and terminate.

In this paper we consider the same schema, with procedure RUNTESTS re-
placed by RUNTERMREWRITING using, instead of run-time testing, a static anal-
ysis with a generated term rewriting system. Implementation of RUNTERMREWRIT-
ING seems to be much simpler, than for RUNTESTS, especially if one uses an
external rewriting tool. In particularly, for RUNTESTS we had to generate input
lists from given sizes and underlying type.

3 Term rewriting system
computing values of hypothetical polynomials

In this section we show that if a function body terminates, then one can compute
values of the hypothetical size polynomials using not run-time testing but the
system of constraints generated by the standard inference procedure.

Informally, one thinks about the constraints as of a term rewriting system
(further, t.r.s.). It is obtained from the constraints just by substituting the sym-
bol “=" by “—”. The t.r.s. has a terminating reduction path once the function
body terminates.

In section 3.1, we define precisely, what we mean by “standard annotation
inference”, and construct a t.r.s. computing size polynomials. In section 3.2,
we recapitulate the notion of a meaningful value, using a heap-aware seman-
tics of types, and operational semantics of the language. We show, that if an
operation-semantics tree is finite then there is a terminating reduction for the
term rewriting system, on the integers representing the sizes of the inputs.

In this way we prove the main result of this section:

Theorem 1. If a computation of the well-typed function terminates, then there
erists a reduction sequence for the term-rewriting system that terminates on
integers that represent the sizes of inputs.

Finally, in section 3.3 we show that term rewriting may terminate when
the underlying function definition does not. Thus, in practice term rewriting
significantly extends the applicability of the proposed non-standard annotation
inference.

3.1 Standard annotation inference and term rewriting system

We want to construct a term-rewriting system that computes a value of size
polynomials on given integer arguments.

For instance, for the body of diffplus function, given an inference tree for
its underlying type, and the typing judgment input:

0; x: [a]™, y: [a]™ Fxe[a]®,
one wants to obtain the system of constraints

n=0 F7p(n, m) ="p(n, m)
m=0F?(n, m)=n
Fp(n, m) =7p(n—1, m — 1)

and the term-rewriting system

7p(0, m) —=7p(0, m)
(n, 0) —n
p(n, m) =Tp(n —1, m —1)

For the progression function one may want to obtain the following t.r.s.:

7p(0) — 0
2pln) — nt 2p(n — 1)

or an equivalent one, for the desugared let-form of the function body, where an
auxiliary non-terminal ?7¢ is introduced to denote the annotation of the type
of the bound expression progression xs in the body let z=progression xs
in (x:xs)++(progression xs):

7p(0) —0
pln) i 7a(n —1)
7q(n —1) =7p(n —1)

Generation of constraints and term rewriting system:
Input: 1) an underlying-type inference tree for a (sub)expression e

(of the body e of the function f
with unknown output size annotations 7p;)
with the root z1: [...[70]],... Fxe:[...[7]...],
where 9, 710, ... are either Int or a size variable «;
2) a typing judgment
D;xy: [...[Tlo]glkl ...]9117... Fs 61[...[7’0]791 ”.]791
with free size variables n; and arithmetic expressions g;s,
possibly containing symbols 7p;, and auxiliary non-terminals.

Output: 1) the system of constraints D w.r.t. 7gq,..., 7gi,
formed by conditions of the form D F?g;(...,ns,...) = F;
where P; some arithmetical expressions,
containing, maybe, 7py, ..., 7p; and auxiliary non-terminals,
2) the term rewriting system 7 with rules of the form
F?g:(...,n, ..)[D] — P[D],
where ¢[D] is a result of substituting of free size variables
in a term ¢ by integer constants, determined by D.
The set of constraints is generated inductively together with the annotation-
inference tree for a given expression. All the type placeholders 7 assume canonical

forms of types. The canonical form of a type [...[70]"*...]Pt, given D, means
that D p; =0, fori > 1, once D+ D | p; = 0. It is based on an observation
that semantically all lists [...[70] ...]" represent the same list [...[70]"...]°

1. If e is a constant expression e = ¢ then one applies ICONST rule

D; I' b c:Int IConsT

Then the “nestedness” of the output list is [= 0, 70 = Int and the set of
constraints is empty: D = (.

2.
DF[.. . [m]9. .]9 =7
= -— VAR
D; a7 bxa]. [n]9.. .]"
Then 7" =1[...[70]% ...]9* for some g; and
D:{Dl—?gl:gl7...7D|—?gl:gl}.
3.
DF?g1=0 N
IL
D; I Fsnil:[... [m]9 ...
Then

D= {D I—?gl :O;?gg :O...7?gl :O}
4. In the CoNs-rule

DFgr=g1+1
D; T, hd: 7', tl: [7']9 Fx cons(hd, tl):[...[T0]"% ...]"%

CONS

7' =[...[10]9...]9 for some g; and
D={DFlg1=91+1 DF?92 =g, ..., D79 = gi}.

5. Recall, that in the function application rule, with X(f) = 77 x.. . X7 — Tr11
the symbol * denotes the substitution from the size-variables of (77 x---x77)
to size expressions of 7/ x - x 7 70 =[. .. [oy] . .]" then 7/ must
be of the form [...[7/[Pit: .. [P for some 7;". We demand that all ng; be
different size variable names.

10

In the function application rule

X(f)=710 X .. X TE = Thy D2 = %(7Tp41) FUNA
D; Dz oo by flay, . zg) 27 UNAPP
T=[...[70]%9 ...]"91. Then (7. 1) is of the form [...[70]% ...]9, and

D={DF?g1=g1;792=91...,791 = g1}

I'(z) = Int D; I bxe T D; I' bxep?r
D; I' by if x then e; else ¢f:7

IF

Then
D=DWD; I Fxe 1)
,D(D7 r I—E efZ?T)

with 77 for [...[70]"9 ...]791.

g=0, D; I, z:[7]9 bxem?r

?

hd, tl & dom(I') D; Tohd: 7',z [7]9, t: [7']97) Fx econs T

MATCH
D; I' x: [7']9 k5 match 2 with | nil = ey 77
| cons(hd, tl) = econs
Then
D=D(D,g=0; I, z:[7')9 Fxem?r)U
DD; I, hd: 7', z: [719,t: [7')97 Fx econs 7)
with 77 for [...[70]7% ...]%9*. Note that due to the syntactical condition g
is a function of the form n — c.
. In the LET-rule
z & dom(I") D;: I b e 771, D: I z:7 Fse?r
LT

D; I' Fsletz=e1iney?7

we introduce extra nonterminals 7g; for the annotations of the type 7, of the
bound expression e;. Then

D=D(D; I Fye?n)|D(D; Na:7 by e?r).
. Without loss of generality one may think that the LETFUN rule

E(f):TfX~~~XTS—>Tk+1
True; @107, ..., x5 T Fxer: T D; I' bxe: 7

D; I' by letfun f(zq,...,25) =e1in eg:7’

LETFUN

the type for bound function is already inferred (otherwise run the procedure
for this function independently). So,

,D:,D(D7 r I—E 621?7’)7

w.r.t. to a signature, containing the type for f.

11

The term-rewriting system 7 is obtained from D straightforwardly: for any
D ?g = P one obtains 7g[D] — P[D].

The construction of 7 for e = e; defines the term-rewriting system for the
unknown size annotations 7p; of f.

Note the following. Let one have a family of functions p; : Int X ... x Int —
Int, such that if p;(n{, .. .7n2i) = n" then for the integers n{, ..., ngz, there is
a reduction path in 7 terminating with n”. We will not prove that this family
satisfies D. It is up to type checker to check if it is indeed the fact (D must
be extended with the constraints D C from instances of function-application
rules).

3.2 Operational semantics generates a reduction path

In our semantic model, the purpose of the heap is to store lists. Therefore, it
essentially is a finite collection of locations [that can store list elements. A
location is the address of a cons-cell each consisting of a hd-field, which stores
the value of the list element, and a tl-field, which contains the location of the
next cons-cell of the list (or the NULL address). Formally, a program value is
either an integer constant, a location, or the null-address and a heap is a finite
partial mapping from locations and fields to such program values:

Val v ::= ¢ | ¢ | NULL £ ¢ Loc c€Int?

Heap h : Loc — {hd,t1} — Val

We will write h[€.hd := vy, £.t1 := v;] for the heap equal to h everywhere but in
¢, which at the hd-field of ¢ gets value v and at the tl-field of ¢ gets value v,.

The semantics w of a program value v is a set-theoretic interpretations with
respect to a specific heap h and a ground type 7°, via the four-place relation
v P w. Integer constants interprets themselves, and locations are interpreted
as non-cyclic lists.

i ’I;nt i

NULL |, 0 [
/ |:[T.]n wpa o wyy iff > 1,4 € dom(h),

hldom
h.£.hd ':T‘.d (WAL Wha

I dom
hxl OO oy

?

where h|gom(n)\{¢y denotes the heap equal to h everywhere except for £, where
it is undefined.

When a function body is evaluated, a frame store maintains the mapping from
program variables to values. It only contains the actual function parameters, thus

2 To avoid overhead with notations we treat integer values as integer literals. Ideally,
one considers integer values ¢ rather than literals c.

12

preventing access beyond the caller’s frame. Formally, a frame store is a finite
partial map from variables to values:

Store s : FrpVar — Val

An operational-semantics judgment s; h; C F e ~» v; b/ informally means
that at a store s and a heap h with a set of closures C an expression e terminates
and evaluates to the value v at the heap h/. Using heaps and frame stores,
and maintaining a mapping C from function names to bodies for the functions
definitions encountered, the operational semantics of expressions is defined by
rules in the usual way.

In general, say, for a binary function definition over integer lists one shows
the following consistency property: if (@1, v1), (@2, v2); h; C F ef ~» v; I,
where v; points to the list of length n; in A and v point to a list of length m in
B/, the corresponding term-rewriting terminates on 7p(ni,ny) —* m.

Examples of consistency between function evaluation and term rewrit-
ing We will give two concrete examples of this general consistency.

Consider as first example the diffplus function definition. We will show
that if s(z) and s(y) point to lists [1, 2] and [3] in a heap h respectively, the t.r.s.
for diffplus terminates on 7p(2,1) —* 1.

1. Since [1, 2] is not empty the operational semantics (a full definition of these
semantics is given in [SvKvEO7b]) will require us to construct the reduction
for the cons-branch sub-expression.

2. Since [3] is non-empty one constructs the reduction for the second cons-

branch.

. The (recursive) function call diffplus([2], []) gives 7p(2, 1) —7p(1,0).

. Now unfold the body of diffplus according to the op.sem. rule.

5. Since [2] is not empty one constructs the reduction for the cons-branch sub-
expression.

6. Since [] is empty one constructs the reduction for the nil-branch sub-expression,
that is [].

7. Thus 7p(1,0) — 1.

=~ w

As a second example, illustrating how this should work for expressions with
let-bindings, we consider now progression on the list [1, 2] that returns [1, 2, 2].

1. Since [1,2] is not empty one constructs the reduction for the cons-branch
sub-expression:

let ys=progression(xs)
in x++ys

Let 7¢ be an auxiliary non-terminal for the size annotation of bound expres-
sion, which is progression([2]).
2. (Recursive) function call progression[2] gives 7¢(1) —7p(1).

13

w

Call of ++, for which its size annotation are known, gives 7p(2) — 2+7¢(1)
4. Now we need to continue a reduction path for 7¢(1) —7p(1). We unfold the
body of progression according to the op.sem. rule.
5. Since [2] is not empty one constructs the reduction for the cons-branch sub-
expression.
6. (Recursive) function call progressionl| gives 7¢(0) —7p(0).
7. Call of ++ with the known size annotation gives 7p(1) — 1+47¢(0)
8. Now we need to continue a reduction path for 7¢(0) —7p(0). We unfold the
body of progression according to the op.sem. rule.
9. One enters the nil-branch that returns an empty list, so we have 7p(0) — 0.
10. Altogether: 7p(2) — 24+7p(1) — 24+ 1+7p(0) - 24140 — 3.

Proof of consistency of term rewriting with respect to the operational
semantics The consistency of term rewriting with respect to the operational
semantics means that firstly the term rewriting system terminates when the
evaluation terminates according to the operational semantics and secondly the
size of the operational result is equal to the value of the result of term rewriting.

To be able to apply formal induction on the height of the operational-
semantics tree for a given expression one needs to consider a stronger consistency
statement, than formulated above.

This general statement looks as follows:

Lemma 1. Let f be a function with unknown size annotations and a collection
of free size variables {n,},. Let T be the term-rewriting system, constructed along
with the annotation inference tree for its body ey.

Let (induction assumptions)

— € be a sub-expression of ey,

—s5h CF e ~u b,

— s be a meaningful store: for any z € dom(s), there are some integers m
for some set-theoretical value w, such that

0
zj’

h
(@) ':[...[Int]mgkm...]mg:l o

— there exist for the return value v some integers m% yielding a set-theoretic

value w
h/
v ':[...[Int]m?...]m? w0
— a judgment D; I' bx e:r, be s.t.
o it is a node in the annotation-inference tree for ey,

o 7= [...[Int]9 . |91,
o I'(z)=1[...[Int]9=ke .. .]9=1,
o nY are integer numbers, s.t. they satisfy D and gaj(. .. ol) =t mgj
n T,
then there is a reduction sequence in T : 7g;(...,nY,...) —* m{.

14

Proof. Induction on the height of the operation-semantics tree for s; h; C +
e ~ v h.

1.

With the rule
c € Int

s;hi CF c~ch

one has e = ¢, [= 0 and there are no 7g;-s to prove their termination.
With the rule

OSIConNs

s;h; CF z o~ s(z); h OSVaRr

one applies the corresponding typing rule VAR, with
T 2{...,%7[D] — gu[D], .. .},

The last lemma’s assumption claims that g.;(...n¢...) —=* mZ,, from what
follows that 7g;(...n?...) —* m2, = m as well, and the reduction for

zi [

?g:(...nY...) takes one step more.
With the rule

s; h; C + nil ~ NULL; h OSNIL
one has 7 D {...,7¢;[D] — 0,...}. It means that for all instantiations of
variables, satisfying D, ?g; reduces to zero. Therefore, 7g;(...nY...) = 0 =

m?

VV?th the rule

s(hd) = vpg s(tl) = vy ¢ dom(h)
s; b cons(hd, tl) ~~» £; h[€.hd := vpg, .31 = vy]
one has 7 2 {?q1[D] — g1[D] + 1,792[D] — ¢2[D],.. e[D] — a[D]},
where t1: ... [[Int]9 ...]9t. Therefore, 7g;(...n%...) =* g;(...nY ..)
fori>1and ?g1(...nY ..) =% gi(...n} ..)+ 1=m.
Consider the call of a function f’ with known size annotations in 7§ x ... x
190 .. .19 with free size variables z;;.

OSCons

0 _
Ty — Tk+1, where Tk+1 — [...[Tk+170

s{z1)=wv1 ... s(zm) = v, C(f)=, ..., un) X eps
[yi :=v1,.. . yn =onl; b C F oep o v B

s$;hy C B fl(z1,...,2n) ~ v; B

One has 7 = {.. 7¢;[D] — ¢[D),...}, where x(7p11) = [...[70]%...]".
Therefore, 7g;(...nY...) = q;i(...n? ..) =T G (..., gjs(... 0D, ...) =F
Gi(...,mjs,...), where G;(...,mjs,...) is a ground term, since G; is a
known arithmetic expression over z;, 1= g,.(. .. ,n?,...). Due to the sound-
ness of the type system, G;(...,mjs,...) =m;.

Consider the call of the function with unknown size annotations 7p;. One
applies induction (on the heights of) in this case:

OSFunAPP

s{z1) =01 ... s(zy) = v, C(f)="(y1,-..,yn) X €y
[y :=v1,..,yn = onl; h; C ey~ o5 B

s;h; C B flxy,...,2n) ~ vy B

OSFuNAPP

15

10.

11.

Indeed, the assumptions of the lemma hold for

[y1 =01, yyn = onls By C b ep s 0 B
and

Dy.ooxy [o)9 L EaeprT

The reduction sequence for 7p;(. .., gjs(...,nY,...)...) =* m is constructed
on this pair. Then one needs to apply one more reduction: ?g;(...nY...) —
il g5s(comg,)).
One applies the induction reasoning in the case

s(z) #£0 s;h; CF ey ~ v b

s; h; C F if xthen ey else eq ~» w3 A/

OSIFTRUE

since the assumptions of the lemma hold for the operation semantics judg-
ment s; h; C F e ~ wv;h and D;I" kg ey : 7. Thus, the reduction
sequence is obtained on these data.

. The false branch is similar:

s(z) =0 s$;h; C F ey ~ vy B

s; h; C = if x then ey else eq ~» v, B/

OSIFFALSE

s;h; CF oeg ~ v by sz :=wv1]; h1; C F eq ~ vy B

s;h; C Fletz=egines ~ v, b

OSLET

The reduction path is obtained on s[z :=w1]; hy; C + ey ~» wv; b/ and
D: I, z 71, bx?7. To apply induction assumption for this pair one needs
to show, that annotations of 77, reduce to the integers, representing the
sizes of the value vy. This is done by induction assumption, on the pair
s;hy C F e ~ vy hyand DTN By oeg 77,

s(z) = NULL s;h; C B ey ~ v B
s; by C F match z with | nil = ¢4 ~ v; b
| cons(hd, tl) = e

OSMATCH-NIL

The reduction sequence is obtained for the pair s; h; C + e; ~» v; I/, where
s(z) = NULL, and D, g,1 = 0;I" k5 ey 77, since they satisfy the conditions
of the lemma.

h.s(xz).hd = vy h.s(z).tl = vy
slhd :== vpg, tl:=ve1|; B F €9 ~» vy I
s; by C F match z with | nil = ¢4 ~ v; b/
| cons(hd, tl) = e

OSMATcH-CONS

The reduction sequence is obtained for the pair s; h; C F ey ~ v W
and D; I hd: 7', x: [7/]9=1, t: [7/]9=17! Fx ey 77, since they satisfy the
conditions of the lemma.

16

12.
s; by CIf = (21, .. zn) X e1)] B €2~ v I

s; by C & letfun f((z1,...,2,)) = €1 ineq ~ v; B/

OSLETFUN

The reduction sequence is obtained for the pair s; h; C[f := ((z1,...,2n) X €1)] F
es ~ v, b/, and D;I' Fx ey 77, since they satisfy the conditions of the
lemma.

Q.E.D.

3.3 Term rewriting beats run-time testing

In [vKSvEOQT7], for terminating function definitions, we have shown that to in-

fer polynomials 7p; of degree m over size variables nq,...,ng, for an output
type [...[«]’Pt...]"P) one can find enough test data in k-ary cube with side
[0,...,lm)]

Recall, that the vector of input sizes should satisfy certain, nontrivial for
k > 1 condition that ensures that the corresponding system of linear equation
has a unique solution. For instance, for 2-variate case, k = 2, and a linear
dependency, m = 1, ani + bny + ¢ it means that one needs three test nodes, that
do not lie on the same line on the plane.

It is easy to see, that due to non-termination diffplus does not provide
enough points on the square [0, 1] x [0, 1]:

0.0) (1.0) 0.0) (1.0)
Testing Rewriting

However, the t.r.s. does terminate on all nodes in this cube. Thus, term
rewriting instead of run-time testing provides a good improvement for the in-
ference algorithm, increasing its applicability. Moreover, annotation inference
becomes now completely static.

We have earlier implemented a run-time test-based version of the inference
procedure. To adapt it for static term-rewriting one should use any rewriting
system that provides a search of all terminating paths on given data. We have
chosen to use Maude [CDHT07].

The Maude input file for diffplus example looks as follows:

mod DIFFPLUS is
protecting INT .

17

op diffplus : Int Int -> Int .

vars N M Z : Int .

rl diffplus(0, M) => diffplus(0, M)

rl diffplus(N, 0) => N .

rl diffplus(N, M) => diffplus((N - 1), M - 1))
endm

The Maude-output on diffplus for (0, 0), (1, 0), (1, 1) gives the following
information, respectively:

search [1, 100] in DIFFPLUS : diffplus(0, 0) =>! Z .

Solution 1 (state 1)
states: 3 rewrites: 5 in Oms cpu (Oms real) (~ rewrites/second)
Z-->0

search [3, 10] in DIFFPLUS : diffplus(l, 0) =>! Z .

Solution 1 (state 1)
states: 3 rewrites: 4 in Oms cpu (Oms real) (° rewrites/second)
Z-->1

No more solutions.
states: 13 rewrites: 35 in Oms cpu (Oms real) (" rewrites/second)

search [5, 100] in DIFFPLUS : diffplus(l, 1) =>! Z .

Solution 1 (state 2)
states: 4 rewrites: 8 in Oms cpu (Oms real) (° rewrites/second)
Z-->0

No more solutions.
states: 103 rewrites: 305 in 4ms cpu (1ms real) (76230 rewrites/second)

The parameters [z, y| behind the search command define the maximum
amount of solutions and the maximal depth of the search respectively.

4 Future work

Bound for degree of a size polynomial The presented annotation-inference
procedure terminates when an analyzed function is well-typed and the term-
rewriting system calculates enough values of this polynomial for generating the
hypothesis.

18

One may be interested to solve the following problem (which we call a stop-
ping criterion for the procedure). Given a function definition find a degree d,
such that if the function is shapely, then the degree of its size polynomial(s)
is less or equal to d. We do not know the answer on this question yet, if one
discusses the decidability in integer arithmetic.

Non-shapely programs The current hypothesis generation procedure relies on
the limitation to shapely programs; output sizes need to be exactly polynomial
in the input size. In practice many programs are not shapely, but still have a
polynomial upper bound. Consider inserting an element in a set. This increases
the set size by one only if the element was not in it. Its actual upper bound is:

insertionsort: [a|" x a — [a|"T!

To extend our approach to such upper bounds, we are studying program
transformations that transform an unshapely function into a shapely function
with the strict size dependency corresponding to an upper bound of the size
dependency of the original function. For instance, the insertionsort function
would be transformed into a shapely function that always inserts the element.
We believe that in many practical cases the testing approach combined with
program transformations will succeed in providing good upper bounds.

General data structures In this paper, we presented the procedure for a
simple functional language over lists. We plan to extend and implement the
procedure for an existing language with more general data structures. Good
candidates are XML transformation languages. This is a necessary step towards
size analysis of object-oriented programs.

5 Conclusion

We presented for the first time a static type inference method for non-linear
non-monotonous polynomial size-aware types. This static type inference method
uses a term-rewriting system to solve the type constraints that are derived from
the function definitions.

In this paper it is proven that the static type inference method terminates
at least at those cases where the existing run-time type inference method termi-
nated. It is furthermore shown that there are cases where static type inference
does terminate while the corresponding run-time inference did not.

The proposed static type inference method is not only theoretically more
powerful due to better termination properties but also more efficient in practice
since it abstracts from a great deal of run-time computation.

19

References

[CDHT07]

[MPO§]

[Par9g]

[SYKvEO07a]

[SVKVEOQOTb]

Manuel Clavel, Francisco Duran, Joe Hendrix, Salvador Lucas, José
Meseguer, and Peter Csaba Olveczky. The maude formal tool environ-
ment. In Till Mossakowski, Ugo Montanari, and Magne Haveraaen, edi-
tors, CALCO, volume 4624 of Lecture Notes in Computer Science, pages
173-178. Springer, 2007.

J-Y Marion and R. Péchoux. Resource analysis by sup-interpretation. In
FLOPS, volume 3945 of Lecture Notes in Computer Science, pages 163—
176. Springer, 2006.

L. Pareto. Sized Types. Chalmers University of Technology, 1998. Disser-
tation for the Licentiate Degree in Computing Science.

O. Shkaravska, R. van Kesteren, and M. van Eekelen. Polynomial size
analysis for first-order functions. In S. Ronchi Della Rocca, editor, Typed
Lambda Calculi and Applications (TLCA’2007), Paris, France, volume
4583 of LNCS, pages 351 — 366. Springer, 2007.

O. Shkaravska, R. van Kesteren, and M. van Eekelen. Polynomial size
analysis of first-order functions. Technical Report ICIS-R07004, Radboud
University Nijmegen, December 2007.

[VESYKT07] M. van Eekelen, O. Shkaravska, R. van Kesteren, B. Jacobs, E. Poll, and

[VHO04]

[VKSvEOQT]

S. Smetsers. AHA: Amortized Heap Space Usage Analysis. In Marco
Morazéan, editor, Trends in Functional Programming 8: Selected Papers of
the 8" International Symposium on Trends in Functional Programming
(TFP07), New York, USA. Intellect Publishers, UK, 2007. to appear.

P. B. Vasconcelos and K. Hammond. Inferring cost equations for recur-
sive, polymorphic and higher-order functional programs. In P. Trinder,
G. Michaelson, and R. Pefia, editors, Implementation of Functional Lan-
guages: 15th International Workshop, IFL 2003, Edinburgh, UK, Septem-
ber 8-11, 2003. Revised Papers, volume 3145 of Lecture Notes in Computer
Science, pages 86—101. Springer-Verlag, Berlin, 2004.

R. van Kesteren, O. Shkaravska, and M. van Eekelen. Inferring static
non-monotonically sized types through testing. In Rachid Echahed, ed-
itor, 16" International Workshop on Functional and (Constraint) Logic
Programming (WFLP07), Paris, France, pages 123 — 139. CNAM, France,
2007.

20

