
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/36493

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16123624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/36493

Static inference of polynom ial size-aware types

O lha Shkaravska*, M arko van Eekelen
{O .Shkaravska, M .vanEekelen}@ cs.ru.nl

Security of Systems Department
Institute for Computing and Information Sciences

Radboud University Nijmegen

A b stra c t. We propose a static size analysis procedure that combines
term-rewriting and type checking to automatically obtain output-on-
input size dependencies for first-order functions. Attention is restricted
to functions for which the size of the result is strictly polynomial, not
necessarily monotonous, in the sizes of the arguments.
To infer a size dependency, the procedure generates hypotheses for in
creasing degrees of polynomials. For each degree, to define a hypothetical
polynomial one needs to know its values on a finite collection of points
(subject to some geometrical condition). To compute the value of a size
polynomial in a certain point we use a term-rewriting system generated
by a standard size-annotations inference procedure.
We have proven that if a function with a given input terminates at run
time on a meaningful stack and heap then the static (’compile-time’)
term rewriting system of the size inference also terminates, on the inte
gers representing the sizes of the corresponding inputs.
The term rewriting system may terminate at compile-time when the
underlying function definition does not at run-time. This makes the the
oretical applicability of the proposed approach larger than the previous
state-of-the-art, where run-time testing was used to generate hypothet
ical polynomials. Also, the practical applicability is improved due to
increased efficiency since the term rewriting system at compile time ab
stracts from many computations that are done at run-time.

1 In trodu ction

Em bedded system s or server applications often have lim ited resources available.
Therefore, it can be im portan t to know in advance how much tim e or m em ory
a com putation is going to take, for instance to determ ine how much m em ory
should a t least be pu t in a system to enable all desired operations.

This helps to prevent ab rup t term ination for b o th sorts of hardw are: small
devices (like mobile phones or Java cards), or powerful com puters on which one
runs m em ory exhaustive com putation (G RID , model generation). S tatic size
inform ation helps in efficient m em ory m anagem ent, since it allows to decrease

* This research is sponsored by the Netherlands Organisation for Scientific Research
(NWO), project Amortized Heap Space Usage Analysis (AHA), grantnr. 612.063.511.

fragm entation. From the point of view of security, size verification is useful in
avoiding “Denial of Service” a ttacks th a t exploit m em ory exhaustion.

Decisions in these (and related) problem s are based on formally verified upper
bounds of the resource consum ption. However, an advanced detailed analysis of
these bounds requires knowledge of the sizes of the d a ta structures used through
ou t the program [vESvK+07]. Trivially, the tim e it takes to ite ra te over a list
depends on the size of th a t list. In th is paper we focus on the task of au tom ati
cally deriving the exact ou tpu t-on-input size dependencies of function definitions
in a program . The ra tio behind exactness is explained la ter in th is section.

Size dependencies can be represented in function types. We focus on shapely
functions, where shapely m eans th a t the size relations are exactly polynom ial
(not necessarily m onotonous). The size of a list is its num ber of nodes (its length).

Consider an example. The function d i f f p l u s , given two lists of length n and
m respectively

— re tu rns a list w ith the length n — m, if n > m .
— non-term inates, otherwise:

d if fp lu s ([] , ys) = d if fp lu s ([] , ys)
d if fp lu s ((x :x s) , []) = (x:xs)
d if fp lu s ((x :x s) , (y :y s)) = d if fp lu s (x s , ys)

For instance, on the lists [1 , 2 , 3], [5 , 6] it re tu rns [3], and on the lists
[1 , 2 , 3], [5 , 6 , 7] it non-term inates.

The size -a w a re type of a function expresses the relation between its argum ent
and result sizes if term inates:

d if fp lu s : [a]n x [a]m ^ [a]n-m

In general, all lists a t the inpu t side,have an associated size variable. At the
ou tp u t side, all lists have an associated polynom ial th a t determ ines the size of
the ou tp u t list. These polynom ials are defined in term s of the inpu t size variables.

The size dependencies we study are not necessarily linear, as in P a re to ’s
approach [Par98], or m onotonic as in [VH04] and for polynom ial in terp reta tions
[MP06].

In [SvKvE07a] we in troduced a type system w ith sta tic type checking and
w ith dynam ic type inference based on the fact th a t a polynom ial is defined
by a finite num ber of points on its graph. Running tests of a given function
definition on an appropriate set of inputs (see [vKSvE07] for the principles of
choice of inputs) one obtains a finite collection of test d a ta th a t defines a system
of linear equations. Its solution is the vector of coefficients of the polynom ial
expressing the hypothetical size dependency. There are several size polynomials
if the ou tp u t type is a nested list. The polynom ials anno ta te corresponding
underlying first-order types and these sized types are checked by a type-checker.
If the type-checker rejects the first-order type, one continues the procedure for
a polynom ial of a higher degree.

The procedure non-term inates in two cases: either a function definition under
consideration does not term inate on the proposed test inputs, or it is not well-
typed.

2

In th is paper we “lift” the non-term ination issue from the level of run-tim e
execution of full program code to the level of compile-time type constraints. This
makes the approach uniform and we get more control over term ination . Given
a first-order function definition, a stan d ard type-inference procedure ends up
w ith a set of (recurrent) equational constrain ts for size dependencies. In general,
constrain ts derived by a stan d ard type-inference procedure m ay be non-linear
and m ultivariate (see [SvKvE07b] for the exam ple). I t is very unlikely th a t there
exists a solver th a t solves all types of them . However, once one assumes th a t
the solution is a polynomial, one m ay use the constrain ts to calculate values
of the size functions(s), com pute the coefficients and type-check the resulting
polynomials.

Calculating values of the size functions(s) can be done w ith a rew riting tool
th a t perform s breadth-first search. As an illustration of th a t we will show w hat
the results are of using Maude [CDH+07] for a small example.

Note, th a t both , the old run-tim e test-based annotation-inference procedures,
and the presented new, sta tic term -rew riting one, have as advantage th a t one
eventually solves a system of l in ea r equ a tio n s avoiding non-linearity.

To illustra te the new sta tic approach, continue w ith the d i f f p l u s example.
Suppose, its size dependency ?p(n, m) m ust be inferred. Type inference produces
a system of equations

n = 0 h?p(n, m) = ?p (n , m)
m = 0 h?p(n, m) = n

h?p(n, m) = ?p (n — 1, m — 1)

th a t can be easily in terpreted as a program (or, formally, a term -rew riting sys
tem), com puting ?p. Using, for instance, diagonal parsing of the space N 2, we
see th a t we can com pute ?p (0 ,0) = 0, ?p(1, 0) = 1 ?p(1, 1) = 0. This is sufficient
to obtain a, b, c for ?p(n, m) = an + bm + c. Solving the corresponding system

0 • a + 0 • b + c = ?p (0 , 0) = 0
a + 0 • b + c = ? p (1, 0) = 1
a + b + c = ? p (1, 1) = 0

gives a = 1 , b = —1, c = 0. So, ?p(n, m) = n — m. Note, th a t due to diagonal
search the nodes satisfy the configuration th a t assures the uniqueness of the
solution of the system of linear equations for a, b, c.

It is im portan t th a t we analyse s tr ic t , precise size dependencies. In this case
test values lie exactly on the graph of the size function (a hypothetical polyno
m ial). One can calculate the coefficients of the hypothetical polynom ial due to
th is fact.

The rest of th is paper is organized as follows. In section 2 we recapitu late
the first-order language over sized lists, its type system and the run-tim e test-
based anno ta tion inference procedure, given in [SvKvE07a] and in [vKSvE07]
respectively.

In the section 3 we define a term -rew riting system com puting size dependen
cies. We prove th a t if a function body term inates on a m eaningful stack and

3

heap then term -rew riting term inates on the integers representing the sizes of
inputs. At the end of the section we show th a t term -rew riting m ay term inate
when the underlying function definition does not. This makes the applicability
of the proposed approach larger th an its previous version, where we use run-tim e
testing to generate hypothetical polynomials.

B oth test-based and term -rew riting inference procedures are sem i-term inating.
The test-based (term -rew riting-based) inference procedure stops w ith the correct
anno ta ting polynom ials if the given function definition (term -rew riting) term i
nates and is typeable. O therwise b o th procedures work infinitely. One m ay want
to find a condition th a t allows to stop inference, after a certain polynom ial de
gree is reached, w ith the negative answer. I t is very unlikely th a t for any function
definition (in general, or shapely) using in te g e r a r i th m e tic one can find a m ax
imal degree d (a s to p p in g c r i te r io n) such th a t if the procedure fails to give a
positive answer on polynom ials of degree less or equal to d, then one rejects it
as not typeable for sure. Also, we sketch an extension of the m ethodology to
function definitions w ith non-strict size dependencies, such as i n s e r t i o n s o r t .

2 T yp e S ystem

This section briefly describes the existing stric t size-aware type system for a
functional language and accom panying type checking procedure [SvKvE07a] th a t
we use in the inference procedure. This also m otivates our approach to type
inference.

2.1 S iz e -a w a re T y p e s

The zero-order types we consider are integers, s tr ic t ly sized lists of integers,
s tr ic tly sized lists of s tr ic t ly sized lists, etc. A stric t list of length n is a list
exactly of length n (not of some length up to n, as, e.g. in s ized types of P areto
[Par98]). For lists of lists the elem ent lists have to be of the same size and in
fact it would be more precise to speak about m atrix-like structures, e.g. the type
[[I n t]3]2 is given to a list which two elements are b o th lists of exactly three
integers, such as [[2 ,5 ,3] , [7 ,1 ,6]] .

Types t ::= I n t | a | [t] p a £ T yp eV a r

Here p denotes a size expression , i.e. a polynom ial in size variables.

S iz e E x p r p ::= Q | n | p + p | p — p | p * p n £ S iz e V a r

As usual Q denotes the set of all ra tional num bers. As size expressions we
consider polynom ials w ith rational coefficients th a t are not necessary integer.
Only those of them who m ap non-negative integers into non-negative integers
have a sem antic in the type system 1. An exam ple of a size expression w ith non
integer coefficients is the polynom ial for p r o g r e s s io n function:

1 In the earlier version of the type-system we considered only integer polynomials.

4

progression [] = []
p rogression (x :xs) = (x:xs) ++ (progression xs)

The type of this function is [a] n —>■ [a]
We do not have p artia l applications and higher-order types. F irst-order types

are functions from tuples of zero-order types to zero-order types.

F T y p e s t f ::= t i . . . Tfc ^ Tfc+i

For example, the type of d i f f p l u s , [I n t]n x [a]m ^ [a]n -m is a first-order
type. In well-formed first-order types, the argum ent types are anno ta ted only
by size variables and the result type is anno ta ted by size expressions in these
variables. Type and size variables occurring in the result type should also occur
in the argum ent types. Thus, the type of d i f f p l u s is a well-formed type, whereas
[a] n+m ^ [a]2*” is not, because the argum ent is anno ta ted by a size expression
th a t is not a variable.

2 .2 T y p in g s y s te m

Previously, we have developed a sound size-aware type system and a type check
ing procedure for a first-order functional language w ith call-by-value sem antics
[SvKvE07a]. The language supports lists and integers and stan d ard constructs
for p a tte rn m atching, if-then-else branching, and let-binding.

The typing rules follow the intu ition on how sizes are created and changed
during evaluation. The construction of a list gives a list th a t is one element longer
th a n its tail. The th e n and e l s e branches of the if-statem ent are required to
yield the same size. The same holds for the n i l and cons branches of p a tte rn
m atching, bu t th a t rule also takes into account th a t the m atched list is known
to be em pty in the n i l branch: when m atching a list of size s, if the cons branch
has size n * 4, the n i l branch can have size 0 * 4 = 0 because, there n = 0.

As in [SvKvE07a] the formal rules are designed conventionally for ML-like
syntax. Recall th a t an em pty list [] is denoted by nil, a list x :x s is presented
as cons(x, xs), and p a tte rn m atching and case-expressions b o th correspond to a
m atch-construct. B ut, still, everywhere in examples we use Haskell-like syntax.

In the formal rules, a context r is a m apping from zero-order program vari
ables to zero-order types, a signature S is a m apping from function nam es to
first-order types, and D is a set of D iophantine equations th a t keeps track of
which lists are empty. A typing judgm ent is a relation of the form D; r \~ s e : t
which m eans th a t if the free program variables of the expression e have the types
defined by r , and the functions called have the types defined by S , and the size
constrain ts D are satisfied, then e will be evaluated to a value of type t , if it
term inates. For example:

D h p = p ' + 1
--------------------------------------;--------------------------------------- C o n s
D; r , h d : t , t l : [t]p h ^ cons(hd, t l) :[t]p

5

r (x) = I n t D; r h% e t :t D; r h % e f :t
-- IfD; r h s if x then e t else ef :t

p = 0, D; r , x : [t ']p h% enii:t
h d , t l £ d o m (r) D; r , h d : t ' , x : [t ']p, t l : [t ']p-1 h% econs: t

------------------------- — --------------------- -------------— — -- M a t c h
D; r , x : [t ']p h s match x with | nil ^ eni| :t

| cons(hd, t l) ^ econs

Size-aware type checking eventually am ounts to checking entailm ents of the
form D h p = p ', which m eans th a t p = p ' is derivable from D in the axiom atics
of the ring of integers. Because p and p ' are known polynom ials of universally
quantified size variables, com paring them is straightforw ard. For instance, for
the d i f f p l u s function we obtain m = 0 h n — m = n (in the c o n s , n i l branch)
and h n — m = (n — 1) + (m — 1) (in the c o n s , cons branch).

We form ulated a syntactical condition sufficient to make type checking decid-
able for this system [SvKvE07a]. We allow p a tte r n m a tc h in g a n d case exp ress io n s
o n ly fo r fu n c t io n p a ra m e te r s a n d va ria b les b o u n d to th e m b y o th e r p a t te r n m a tc h
in g s a n d case e x p re ss io n s For instance, d i f f p l u s and p r o g r e s s io n satisfy this
condition, since here only program argum ents are m atched. Case expressions on
tails (of tails of ...) of function argum ents are allowed as well:

f (x :xs) = case xs of
[] -> . . .
(xx:xxs) -> . . .

We prohibit constructs like

f x = case g(x) of
[] -> . . .
(xx:xxs) -> . . .

This syntactic condition ensures th a t all equations in D in an inference tree have
a very simple form n — c = 0, where c is an integer. In fact D defines substitu tion
of size variables by constants of the form n = c.

2 .3 R u n - t im e te s t - b a s e d in fe re n c e p r o c e d u r e

In [vKSvE07] we gave a detailed description of the procedure th a t infer polyno
mial size dependencies based on the fact th a t a polynom ial is defined by a finite
collection of points. The procedure is im plem ented and there is an available
on-line demo, see www. aha . c s . r u . n l .

The procedure generates hypotheses for an increasing degree of size poly
nomials. For each degree, hypotheses for all polynom ial size expressions in the
ou tp u t type are determ ined. The resulting size-aware type is checked using the
size-aware type checking procedure. Thus:

1. Infer the underlying type (w ithout sizes) using stan d ard type inference;
2. A nnotate the underlying type w ith size variables;
3. Assume the degree of the polynomial;

6

4. For every ou tp u t size annotation: determ ine which tests are needed, do the
required series of test runs and com pute the polynom ial coefficients based
on the test results;

5. A nnotate the type w ith the size expressions found;
6 . Check the anno ta ted type;
7. If checking fails, repeat from step 4 assum ing a higher degree.

Below we show the procedure in pseudo-code. The T ryIn crea sin g D eg rees
function generates G e tS iz e A w a re T y p e and checks C h eckS ize A w a reT yp e hypothe
ses of increasing degrees. A size expression is derived by selecting a node config
ura tion G e tN o d e C o n f, running the tests for these nodes R u n T e s ts , and deriving
the size polynom ial from the test results D e riv e P o ly n o m ia l.

Note th a t if the assum ed degree is lower th an the true degree, then the
derived polynom ials m ay be wrong. It will be la ter rejected by a type checker,
or the nodes where the size annotations are fully defined cannot be determ ined
correctly. I t m ay happen th a t the node configuration has “too m any” points
where the size expression is undefined so the test results do not provide enough
inform ation to uniquely infer the inner polynom ial(s). In th a t case one increases
the degree and continue inference.

Function: T ryI n c r ea sin gD eg rees
Input: a degree m, a function definition f
Output: the size-aware type of that function

T r y I n c r e a s i n g D e g r e e s ^ , f) =
let type = lNFERÜNDERLYINGTYpE(f)

atype = ANNOTATEWlTHSlZEVARIABLES(type)
vs = G e tO u tp u tS iz e V a r ia b le s (a type)
s type = GETSlZEAwARETYPE(m, f, atype, vs, [])

in if (CHECKSlZEAwARETYPE(stype, f)) then stype
else TRYlNCREASINGDEGREES(m+l, f)

Function: G e t S izeAw a r eT y p e

Input: a degree, m the function definition f with its annotated type, a list of un
known size annotations, and the polynomials already derived
Output: the size-aware type of tha t function if the degree is high enough

GETSlZEAwARETYPE(m, f, atype, [], p s) =
A n n o ta te W ith S iz e E x p r e s s io n s (atype, p s) / / The End

GETSlZEAwARETYPE(m, f, atype, v :vs , p s) =
let nodes = GETNODECONF(m, a type, p s)

resu lts = R u n T e s ts (/ , n o d e s)
p = DERIVEPOLYNOMIAL(m, v, atype, r e s u lts)

in G e tS iz e A w a re T y p e (m , f, atype, vs, p :p s)

If a type is rejected, th is can m ean two things. F irst, the assum ed degree
was too low and one of the size expressions has a higher degree. T h a t is why
the procedure continues for a higher degree. A nother possibility is th a t one of

7

the size expressions is not a polynom ial (the function definition is no t shapely)
or th a t the type cannot be checked due to incompleteness. In th a t case the pro
cedure w ill n o t te r m in a te . Fortunately, in practice a suitable stopping criterion
m ay be a reasonable upper bound on the degree of size polynomials. However,
theoretically, it is very unlikely th a t for any function definition (in general, or
shapely) using in te g e r a r i th m e tic one can find a m axim al degree d (a s to p p in g
c r i te r io n) so th a t if the procedure fails to give a positive answer on polynomials
of degree less or equal to d, then one rejects it as not typeable for sure.

If the function is well-typable, the procedure will eventually find the correct
size-aware type and term inate.

In th is paper we consider the same schema, w ith procedure R unT ests re
placed by R unT e r m R e w r it in g using, instead of run-tim e testing, a sta tic anal
ysis w ith a generated term rew riting system. Im plem entation of R u nT e r m R e w r it
ing seems to be much simpler, th an for R unT e s t s , especially if one uses an
external rew riting tool. In particularly, for R u nT ests we had to generate input
lists from given sizes and underlying type.

3 Term rew ritin g system
com p u tin g values o f h yp oth etica l polynom ials

In this section we show th a t if a function body term inates, then one can com pute
values of the hypothetical size polynom ials using not run-tim e testing bu t the
system of constrain ts generated by the stan d ard inference procedure.

Informally, one thinks about the constrain ts as of a term rew riting s ystem
(further, t.r.s .). I t is obtained from the constrain ts ju s t by substitu ting the sym
bol “= ” by “^ ” . The t.r.s. has a te rm inating reduction p a th once the function
body term inates.

In section 3.1, we define precisely, w hat we m ean by “stan d ard annotation
inference” , and construct a t.r.s. com puting size polynomials. In section 3.2,
we recapitu late the notion of a meaningful value, using a heap-aw are sem an
tics of types, and operational sem antics of the language. We show, th a t if an
operation-sem antics tree is finite then there is a te rm inating reduction for the
term rew riting system, on the integers representing the sizes of the inputs.

In this way we prove the m ain result of th is section:

T h e o re m 1. I f a c o m p u ta tio n o f th e w e ll-typ ed fu n c t io n te r m in a te s , th e n there
ex is ts a re d u c tio n sequence fo r th e te r m -re w r it in g s y s te m th a t te r m in a te s on
in teg e rs th a t re p re se n t th e s ize s o f in p u ts .

Finally, in section 3.3 we show th a t te rm rew riting m ay term inate when
the underlying function definition does not. Thus, in practice term rew riting
significantly extends the applicability of the proposed non-standard annotation
inference.

8

3 .1 S ta n d a r d a n n o ta t io n in fe re n c e a n d t e r m r e w r i t in g s y s te m

We w ant to construct a term -rew riting system th a t com putes a value of size
polynom ials on given integer argum ents.

For instance, for the body of d i f f p l u s function, given an inference tree for
its underlying type, and the typing judgm ent input:

0 ; x : [a]n , y : [a]m h% e :[a]?p ,

one w ants to ob tain the system of constrain ts

n = 0 h?p(n, m) = ?p (n , m)
m = 0 h?p(n, m) = n

h?p(n, m) = ?p (n — 1, m — 1)

and the term -rew riting system

?p(0 , m) ——?p(0 , m)
?p(n, 0) — n
?p(n, m) —?p(n — 1, m — 1)

For the p r o g r e s s io n function one m ay w ant to ob tain the following t.r.s.:

?p(0) — 0
?p(n) — n + ?p (n — 1)

or an equivalent one, for the desugared let-form of the function body, where an
auxiliary non-term inal ?q is in troduced to denote the annotation of the type
of the bound expression p r o g r e s s io n xs in the body l e t z = p ro g re s s io n xs
in (x :x s)+ + (p ro g re s s io n x s) :

?p(0) — 0
?p(n) — n + ?q (n — 1)
?q(n — 1) —?p(n — 1)

G e n e r a t io n o f c o n s t r a in ts a n d t e r m r e w r i t in g s y s te m :
I n p u t : 1) an underlying-type inference tree for a (sub)expression e

(of the body ef of the function f
w ith unknown ou tp u t size annotations ?p*)
w ith the roo t x 1 : [. . . [t 10]] , • • • h s e : [. . . [t 0] . . .],
where t 0, t 10,... are either I n t or a size variable a ;
2) a typing judgm ent
D; x 1 : [. . . [T10 }9lkl . . .]g11, . . . h% e : [. . . [to]?gi . . .]?g1
w ith free size variables n t and arithm etic expressions gj s ,
possibly containing symbols ?p*, and auxiliary non-term inals.

9

O u tp u t : 1) the system of constrain ts D w .r.t. ?g1, . . . , ?g; ,
formed by conditions of the form D h ?g j (. . . , n t , . . .) = P*,
where P* some arithm etical expressions,
containing, m aybe, ?p1, . . . , ?p; and auxiliary non-term inals,
2) the term rew riting system T w ith rules of the form
h ? g i (. . . , n t , . . .) [D] — Pj[D],
where t[D] is a result of substitu ting of free size variables
in a te rm t by integer constants, determ ined by D.

The set of constrain ts is generated inductively together w ith the annotation-
inference tree for a given expression. All the type placeholders t assume canonical
forms of types. The canonical form of a type [. . . [t 0]pi . . .]P l, given D , means
th a t D h p* = 0 , for i > 1, once D h D h p 1 = 0. I t is based on an observation
th a t sem antically all lists [. . . [t 0]Pl . . .]0 represent the same list [. . . [t 0]o . . .]0.

1. If e is a constan t expression e = c then one applies IC o n st rule

n r , ------ r r I C o n s tD; r h s c : I n t

Then the “nestedness” of the ou tp u t list is l = 0, t 0 = I n t and the set of
constrain ts is empty: D = 0.

2 .
DY - [. . .[r0]?Si ...]?S1 = t '

---------------- ;----------- ;----- ;— ^ ^ — Var
D; r , x : T' h s x : [. . . [to]‘9! . . .]-g1

Then t ' = [. . . [t 0]9i . . .]91 for some g* and

D = {D h ?g 1 = g1, . . . , D h?g; = g;}.

3.
D V-lgi = 0

N il
D; r h s nil: [. . . [to]?9i . . .]?91

Then
D = {D h?g1 = 0; ?g2 = 0 . . . , ? g = 0 } .

4. In the CoNS-rule

D h ?g1 = g1 + 1
C ons

D; r , h d : t ', t l : [t ']91 h s cons(hd, t l) : [. . . [t 0]’9i . . .] ’91

t ' = [. . . [t 0]9i . . .]92 for some g* and

D = {D h ?g 1 = g 1 + 1, D h?g2 = g2, . . . , D h?g; = g;}.

5. Recall, th a t in the function application rule, w ith ^ (f) = t ^ x . . . x t £ — Tk+1
the symbol * denotes the substitu tion from the size-variables of (t^ x - ' - x t J ?)
to size expressions of t 1 ' x ■ ■ ■ x Tk' . I f t ° = [. . . [a*]niii . . .]”01 then t / m ust
be of the form [. . . [t "]pii ̂ . . .]pi1 for some t " . We dem and th a t a ll n j be
d iffe r e n t s ize variab le n a m es.

10

In the function application rule

£ (ƒ) = Ti X • • • X T l ->■ Tk+1 D I-I t = * { r k+1)

D] r i x l -.Tl '1. . .1x k -.Tn' \-jj f { x i , . . . , x k) :?T F u n A p p

t = [. . . [t 0]?9i . . .]?91. Then * (tk+1) is of the form [. . . [t 0]9i . . .]91, and

D = {D h?g1 = g1;?g2 = g; . . . , ?g; = g;}.

M atch

6 .
r (x) = I n t D; r h s et :?t D; r h s e f ? T
-- IfD; r h s if x then et else ef :t

Then
D = D (D ; r h s et :? t)U

D (D ; r h s ef :?t)

w ith ? t for [. . . [t 0]?9i . . .]?91.
7.

g = 0, D; r , x : [t ']9 h s en|| :?t
h d , tl £ d o m (r) D; r , h d : t ', x : [t ']9, t l : [t ']9-1 h s econs:?T

D; r , x : [t ']9 h s match x with | nil ^ en|| :?t
| cons(hd, t l) ^ econs

Then
D = D (D , g = 0; r , x : [t ']9 h s enii :?t) |J

D (D ; r , h d : t ', x : [t ']9, t l : [t ']9-1 h s econs :?t)

w ith ? t for [. . . [t 0]?9i . . .]?91. Note th a t due to the syntactical condition g
is a function of the form n — c.

8 . In the LET-rule

X £ d o m (r) D] r \ - jj e \ ?.t x D ; r , x : t x h x e 2 :? r

_D; P h x 1 let a; = e i in e2 : ? r ^ ET

we introduce ex tra nonterm inals ?q* for the annotations of the type t x of the
bound expression e1 . Then

D = D (D ; r h s e1 :?T x^y D (D ; r , x : t k h s e2 :?t).

9. W ithou t loss of generality one m ay th ink th a t the L e t F un rule

^ (f) = t 1° x ••• x t ° — Tk+1
True; x i : i f , . . . , x k : i f h E ei : r k+1 D ; T h £ e2 : r '

_D; P hx 1 letfun f { x i , . . . , x k) = e \ in e2 \ r ' L e tF u n

the type for bound function is already inferred (otherwise run the procedure
for this function independently). So,

D = D (D ; r h s e2 ?T),

w .r.t. to a signature, containing the type for f .

11

The term -rew riting system T is obtained from D straightforw ardly: for any
D h?g = P one obtains ?g[D] — P[D].

The construction of T for e = ef defines the term -rew riting system for the
unknow n size annotations ?p* of f .

N o te the following. Let one have a family of functions p* : I n t x . . . x I n t —
I n t , such th a t if p j(n 1, . . . , n ^ .) = n 0, then for the integers n 1, . . . , n^. there is
a reduction p a th in T term inating w ith n 0. We will not prove th a t th is family
satisfies D. It is up to type checker to check if it is indeed the fact (D m ust
be extended w ith the constrain ts D h C from instances of function-application
rules).

3 .2 O p e r a t io n a l s e m a n tic s g e n e ra te s a r e d u c t io n p a th

In our sem antic model, the purpose of the heap is to store lists. Therefore, it
essentially is a finite collection of locations l th a t can store list elements. A
location is the address of a cons-cell each consisting of a hd-field, which stores
the value of the list element, and a tl-fie ld , which contains the location of the
next cons-cell of the list (or the NULL address). Formally, a program value is
either an integer constant, a location, or the null-address and a heap is a finite
p artia l m apping from locations and fields to such program values:

Val v ::= c | I | NULL I £ Loc c £ I n t 2

H eap h : Loc ^ {hd, t l } ^ Val

We will w rite h[l.hd := vh, l . t l := vt] for the heap equal to h everywhere b u t in
I, which a t the hd-field of I gets value vh and a t the tl- f ie ld of I gets value vt .

The sem antics w of a program value v is a set-theoretic in terp re ta tions w ith
respect to a specific heap h and a ground type t •, via the four-place relation
v |=h ̂ w. Integer constants in terp rets themselves, and locations are in terpreted
as non-cyclic lists.

i Hint i
NULL |=|V• jo []
I |=[T• jn whd :: wt i iff n > 1,1 £ d o m (h),

h .l.hd |= i ^ m<h>\il> whd,

h . i . t l = ¿ 7 - 1̂ w ti

where h |dom(i)\{i} denotes the heap equal to h everywhere except for I, where
it is undefined.

W hen a function body is evaluated, a frame store m aintains the m apping from
program variables to values. I t only contains the actual function param eters, thus

2 To avoid overhead with notations we treat integer values as integer literals. Ideally,
one considers integer values i rather than literals c.

12

preventing access beyond the caller’s frame. Formally, a frame store is a finite
partia l m ap from variables to values:

S to re s : E x p V a r ^ Val

An operational-sem antics judgm ent s; h; C h e ^ v; h ' inform ally means
th a t a t a store s and a heap h w ith a set of closures C an expression e term inates
and evaluates to the value v a t the heap h '. Using heaps and frame stores,
and m aintaining a m apping C from function nam es to bodies for the functions
definitions encountered, the operational sem antics of expressions is defined by
rules in the usual way.

In general, say, for a b inary function definition over integer lists one shows
the following consistency property: if (x1,v 1), (x2, v2); h; C h ef ^ v; h ',
where v* points to the list of length n* in h and v point to a list of length m in
h', the corresponding term -rew riting term inates on ?p (n 1 , n 2) —* m.

E x a m p le s o f c o n s is te n c y b e tw e e n f u n c t io n e v a lu a t io n a n d t e r m r e w r i t
in g We will give two concrete examples of th is general consistency.

Consider as first example the d i f f p l u s function definition. We will show
th a t if s(x) and s(y) point to lists [1, 2] and [3] in a heap h respectively, the t.r.s.
for d i f f p l u s term inates on ?p(2, 1) —* 1.

1. Since [1, 2] is no t em pty the operational sem antics (a full definition of these
sem antics is given in [SvKvE07b]) will require us to construct the reduction
for the cons-branch sub-expression.

2. Since [3] is non-em pty one constructs the reduction for the second cons-
branch.

3. The (recursive) function call d if fp lu s ([2] , []) gives ?p(2, 1) —?p(1, 0).
4. Now unfold the body of d i f f p l u s according to the op.sem. rule.
5. Since [2] is not em pty one constructs the reduction for the cons-branch sub

expression.
6 . Since [] is em pty one constructs the reduction for the n i l-b ra n c h sub-expression,

th a t is [].
7. Thus ?p(1, 0) — 1.

As a second example, illustrating how th is should work for expressions w ith
le t-b in d in g s , we consider now p r o g r e s s io n on the list [1, 2] th a t re tu rns [1, 2, 2].

1. Since [1, 2] is not em pty one constructs the reduction for the cons-branch
sub-expression:

l e t y s = p ro g re s s io n (x s)
in x++ys

Let ?q be an auxiliary non-term inal for the size annotation of bound expres
sion, which is p ro g re s s io n ([2]).

2. (Recursive) function call p ro g re ss io n [2] gives ?q(1) —?p(1).

13

3. Call of ++, for which its size anno ta tion are known, gives ?p(2) — 2+?q(1)
4. Now we need to continue a reduction p a th for ?q(1) —?p(1). We unfold the

body of p r o g r e s s io n according to the op.sem. rule.
5. Since [2] is not em pty one constructs the reduction for the cons-branch sub

expression.
6 . (Recursive) function call p ro g re ss io n [] gives ?q(0) —?p(0).
7. Call of ++ w ith the known size anno ta tion gives ?p(1) — 1+?q(0)
8 . Now we need to continue a reduction p a th for ?q(0) —?p(0). We unfold the

body of p r o g r e s s io n according to the op.sem. rule.
9. One enters the n i l-b ra n c h th a t re tu rns an em pty list, so we have ?p(0) — 0.

10. Altogether: ?p(2) — 2+?p(1) — 2 + 1+?p(0) — 2 + 1 + 0 — 3.

P r o o f o f c o n s is te n c y o f t e r m r e w r i t in g w i th r e s p e c t to t h e o p e r a t io n a l
s e m a n tic s The c o n s is te n c y of te rm rew riting w ith respect to the operational
sem antics m eans th a t firstly the term rew riting system term inates when the
evaluation term inates according to the operational sem antics and secondly the
size of the operational result is equal to the value of the result of te rm rewriting.

To be able to apply formal induction on the height of the operational-
sem antics tree for a given expression one needs to consider a stronger consistency
sta tem ent, th an form ulated above.

This general sta tem ent looks as follows:

L e m m a 1. L e t f be a fu n c t io n w ith u n k n o w n size a n n o ta t io n s a n d a co llec tion
o f free size va riab les {n t}t . L e t T be th e te r m -re w r it in g sy s te m , c o n s tru c te d along
w ith th e a n n o ta t io n in fe re n c e tree fo r its body e f .

L e t (in d u c tio n a s s u m p tio n s)

— e be a su b -e x p re ss io n o f e f ,
— s; h; C h e ^ v; h ',
— s be a meaningful store: fo r a n y x £ d o m (s) , there are so m e in teg ers m j

f o r so m e se t-th eo re tica l va lue wx su c h th a t

s(x) 1= ^ 0 0 wx,
[...[Int ...]mX1

— there e x is t fo r th e r e tu r n va lue v so m e in teg ers m 0i y ie ld in g a se t-th e o re tic
va lue w

v n 1 o 0 w,M ...[Int]ml ...]m° ’

— a ju d g m e n t D; r h ^ e :t , be s.t.
• i t is a node in the a n n o ta tio n - in fe re n c e tree fo r e f ,
• t = [. . . [I n t]?gi . . .]?g1,
• r (x) = [. . . [I n t]gxfcx . . .]gx1,
• n° are in te g e r n u m b ers , s .t. th e y sa tis fy D a n d gxj (. .. ,n°, . ..) —* m^j

in T ,

th e n there is a re d u c tio n sequence in T : ?g*(. . ., n°, .. .)

14

P roo f. Induction on the height of the operation-sem antics tree for s; h; C h
e ^ v; h'.

1. W ith the rule
— , „c ^ I n t --------r O S IC onss; h; C h c ^ c; h

one has e = c, l = 0 and there are no ?gj-s to prove their term ination.
2. W ith the rule

s\ h] C \~ x ^ s (x) ; h ^ S V a r

one applies the corresponding typing rule Va r , w ith

T D { . . . , ?gi[D] — gxi[D],. ..} ,

The last lem m a’s assum ption claims th a t gxj(. . . n 0 . . .) —* m ^ , from w hat
follows th a t ? g j (. . . n 0 . . .) —* mX = m 0 as well, and the reduction for
?gj (. .. n 0 . . .) takes one step more.

3. W ith the rule

O S N ils; h; C h nil ^ NULL; h

one has T D { . . . , ?gj [D] — 0 , . . . } . I t m eans th a t for all in stan tia tions of
variables, satisfying D, ?gj reduces to zero. Therefore, ?gj (. .. n 0 . . .) — 0 =
m 0.

4. W ith the rule

s (h d) = vhd s (t l) = vt i I / d o m (h)
O S C ons

s; h h cons(hd, tl) ^ I; h[l.hd := vhd, l . t l := vt l]

one has T D {?gi[D] — gi[D] + 1, ?g2[D] — g2[D] , .. .?g;[D] — g;[D]},
where t l : . . . [[I n t]gi . . .]g1. Therefore, ?gj (. . . n 0 . . .) — * g j (. . . n 0 . . .) = m0
for i > 1 and ?g1(. .. n 0 . . .) — * g1(. .. n 0 . . .) + 1 = mi .

5. Consider the call of a function f ' w ith known size annotations in t 0 x . . . x
t 0 — Tk+ 1, where Tk+1 = [. . . [Tk+1j0]Gl . . .]G1 w ith free size variables z js .

s(xi) = v1 . . . s(xm) = v„ C (f ') = (y1, . . . , y„) x e f /
[y1 := v 1 , . . . , y „ := v„]; h; C h e f / ^ v; h '

-------------------- v--------------- :----------- T7---------------- O S F u n A p ps; h; C h f '(x 1, . . . , xn) ^ v; h

One has T = {. . .?gj[D] — qj [D] , . . .}, where *(Tfc+1) = [. . . [T0]q . . .]q1.
Therefore, ?gj (. .. n0 . . .) — q<(... n0 . . .) = def G j (. . . , gjS(. . . , n 0 , . . .) . . .) —*
G j (. . . , m j s , . . .) , where G j (. . . , m j s , . . .) is a ground term , since G j is a
known arithm etic expression over zjs := gj s (. . . , n 0, . . .) . Due to the sound
ness of the type system , G j (. . . , m j s , . . .) = m 0

6 . Consider the call of the function w ith unknown size annotations ?pj . One
applies induction (on the heights of e) in this case:

s (x 1) = v 1 . . . s(xm) = v„ C (f) = (y1, . . . , y„) x ef
[y1 := v1, . . . , y „ := v„]; h; C h ef ^ v; h '

-------------------- .---------------:----------- ------------------ O S F unA p p
s; h; C h f (x 1, . . . , xn) ^ v; h

15

Indeed, the assum ptions of the lem m a hold for

[y1 := v1, . . . ,y„ := v j ; h; C h ef ^ v; h'

and
D ; . . . : [. . . [Tj 0 P fcj. . .]gj1. . . h ^ ef : T.

The reduction sequence for ?pj (. . . , gj s (. . . , n 0, . . .) . . .) —* m 0 is constructed
on th is pair. Then one needs to apply one more reduction: ?gj (. .. n 0 . . .) —
?pj(. . . , gj s(. . . , n 0 , . . .) . . .) .

7. One applies the induction reasoning in the case

s(x) = 0 s; h; C h ei ^ v; h '
O S If T rue

s; h; C h if x then e 1 else e2 ^ v; h '

since the assum ptions of the lem m a hold for the operation sem antics judg
m ent s; h; C h e 1 ^ v; h ' and D; r h ^ e 1 : t . Thus, the reduction
sequence is obtained on these data .

8 . The f a l s e branch is similar:

s(x) = 0 s; h; C h e2 ^ v; h '
O S If False

9.

s; h; C h if x then ei else e2 ^ v; h '

s; h; C h ei ^ vi; h i s[x := vi]; hi; C h e2 ^ v; h '

s; h; C h let x = ei in e2 ^ v; h '
O S L et

The reduction p a th is obtained on s[x := v1]; h 1; C h e2 ^ v; h ' and
D; r , x :?Tx hx?T . To apply induction assum ption for this pair one needs
to show, th a t annotations of ?Tx reduce to the integers, representing the
sizes of the value v 1 . This is done by induction assum ption, on the pair
s; h; C h e 1 ^ v1; h 1 and D; r h ^ e1 :?Tx .

10.

s(x) = NULL s; h; C h ei w; h!

s; h; C h match x with | nil ^ e i ^ v; h '
| cons(hd, t l) ^ e2

O SM a tch -N il

The reduction sequence is obtained for the pair s; h; C h e 1 ^ v; h ', where
s(x) = NULL, and D, gx1 = 0; r h ^ e 1 :?t, since they satisfy the conditions
of the lemma.

11.

h .s(x).hd = vhd h .s (x) . t l = vt l
s[hd := vhd, tl := vt l]; h h e2 ^ v; h '

O SM a tch -C ons
s; h; C h match x with | nil ^ e i ^ v; h '

| cons(hd, t l) ^ e2

The reduction sequence is obtained for the pair s; h; C h e2 ^ v; h '
and D; r , hd : t ' , x : [t ']gx1, tl : [t ']gx1 - i h ^ e2 :?t, since they satisfy the
conditions of the lemma.

16

s; h; C [ƒ := ((x i , . . . , x„) x ei)] h e2 ^ v; h '
— 777 ---------------------------------- t t ---------------------:---------------------------------------7 7 O SL e t F un
s; h; C h letfun ƒ ((x i , . . . , x n)) = e 1 in e2 ^ v; h'

The reduction sequence is ob tained for the pair s; h; C [f := ((x i , . . . , xn) x e 1)] h
e2 ^ v; h ', and D; r h ^ e2 :?t, since they satisfy the conditions of the
lemma.

Q .E .D .

12.

3 .3 T e rm r e w r i t in g b e a ts r u n - t im e te s t in g

In [vKSvE07], for te r m in a tin g function definitions, we have shown th a t to in
fer polynom ials ? p of degree m over size variables n 1, . . . , n k, for an ou tpu t
type [. . . [a]?pi . . .]?P1, one can find enough test d a ta in k-ary cube w ith side
[0 , .. ., 1m]

Recall, th a t the vector of inpu t sizes should satisfy certain, nontrivial for
k > 1 condition th a t ensures th a t the corresponding system of linear equation
has a unique solution. For instance, for 2-variate case, k = 2, and a linear
dependency, m = 1, a n 1 + bn2 + c it means th a t one needs three test nodes, th a t
do not lie on the same line on the plane.

It is easy to see, th a t due to non-term ination d i f f p l u s does not provide
enough points on the square [0, 1] x [0 , 1]:

Testing Rew riting

However, the t.r.s . does term inate on all nodes in th is cube. Thus, term
rew riting instead of run-tim e testing provides a good im provem ent for the in
ference algorithm , increasing its applicability. Moreover, annotation inference
becomes now co m p le te ly s ta tic .

We have earlier im plem ented a run-tim e test-based version of the inference
procedure. To adap t it for s ta tic term -rew riting one should use any rew riting
system th a t provides a search of all te rm inating paths on given data . We have
chosen to use Maude [CDH+07].

The Maude inpu t file for d i f f p l u s example looks as follows:

mod DIFFPLUS i s
p r o t e c t in g INT .

17

op diffplus : Int Int -> Int

v a r s N M Z : I n t .
r l d i f f p l u s (0 , M) => d i f f p l u s (0 , M) .
r l d i f f p l u s (N , 0) => N .
r l d i f f p l u s (N , M) => d i f f p l u s ((N - 1) , (M - 1)) .
endm

The M aude-output on d i f f p l u s for (0, 0), (1, 0), (1, 1) gives the following
inform ation, respectively:

s e a rc h [1 , 100] in DIFFPLUS : d i f f p l u s (0 , 0) =>! Z .

S o lu t io n 1 (s t a t e 1)
s t a t e s : 3 r e w r i t e s : 5 in 0ms cpu (0ms r e a l) (~ r e w r i te s /s e c o n d)
Z - - > 0

s e a rc h [3 , 10] in DIFFPLUS : d i f f p l u s (1 , 0) =>! Z .

S o lu t io n 1 (s t a t e 1)
s t a t e s : 3 r e w r i t e s : 4 in 0ms cpu (0ms r e a l) (~ r e w r i te s /s e c o n d)
Z - -> 1

No more s o lu t io n s .
s t a t e s : 13 r e w r i t e s : 35 in 0ms cpu (0ms r e a l) (~ r e w r i te s /s e c o n d)

s e a rc h [5 , 100] in DIFFPLUS : d i f f p l u s (1 , 1) =>! Z .

S o lu t io n 1 (s t a t e 2)
s t a t e s : 4 r e w r i t e s : 8 in 0ms cpu (0ms r e a l) (~ r e w r i te s /s e c o n d)
Z - - > 0

No more s o lu t io n s .
s t a t e s : 103 r e w r i t e s : 305 in 4ms cpu (1ms r e a l) (76230 r e w r i te s /s e c o n d)

The param eters [x, y] behind the s e a rc h com m and define the m axim um
am ount of solutions and the m axim al dep th of the search respectively.

4 Future work

B o u n d fo r d e g re e o f a s ize p o ly n o m ia l The presented annotation-inference
procedure term inates when an analyzed function is well-typed and the term -
rew riting system calculates enough values of th is polynom ial for generating the
hypothesis.

18

One m ay be in terested to solve the following problem (which we call a s to p
p in g c r ite r io n for the procedure). Given a function definition find a degree d,
such th a t if the function is shapely, then the degree of its size polynomial(s)
is less or equal to d. We do not know the answer on this question yet, if one
discusses the decidability in integer arithm etic.

N o n -s h a p e ly p ro g ra m s The current hypothesis generation procedure relies on
the lim itation to shapely program s; ou tp u t sizes need to be exactly polynom ial
in the input size. In practice m any program s are not shapely, bu t still have a
polynom ial upper bound. Consider inserting an elem ent in a set. This increases
the set size by one only if the element was not in it. Its actual upper bound is:

i n s e r t i o n s o r t : [a]n x a ^ [a]”+1

To extend our approach to such upper bounds, we are studying program
transform ations th a t transform an unshapely function into a shapely function
w ith the stric t size dependency corresponding to an upper bound of the size
dependency of the original function. For instance, the i n s e r t i o n s o r t function
would be transform ed into a shapely function th a t always inserts the element.
We believe th a t in m any practical cases the testing approach combined w ith
program transform ations will succeed in providing good upper bounds.

G e n e ra l d a t a s t r u c tu r e s In th is paper, we presented the procedure for a
simple functional language over lists. We plan to extend and im plem ent the
procedure for an existing language w ith more general d a ta structures. Good
candidates are XML transform ation languages. This is a necessary step tow ards
size analysis of object-oriented program s.

5 C onclusion

We presented for the first tim e a sta tic type inference m ethod for non-linear
non-m onotonous polynom ial size-aware types. This sta tic type inference m ethod
uses a term -rew riting system to solve the type constrain ts th a t are derived from
the function definitions.

In th is paper it is proven th a t the sta tic type inference m ethod term inates
a t least a t those cases where the existing run-tim e type inference m ethod term i
nated. It is furtherm ore shown th a t there are cases where sta tic type inference
does term inate while the corresponding run-tim e inference did not.

The proposed sta tic type inference m ethod is not only theoretically more
powerful due to b e tte r te rm ination properties bu t also more efficient in practice
since it abstrac ts from a great deal of run-tim e com putation.

19

R eferences

[CDH+ 07]

[MP06]

[Par98]

[SvKvE07a]

[SvKvE07b]

[vESvK+07]

[VH04]

[vKSvE07]

Manuel Clavel, Francisco Duran, Joe Hendrix, Salvador Lucas, Jose
Meseguer, and Peter Csaba Olveczky. The maude formal tool environ
ment. In Till Mossakowski, Ugo Montanari, and Magne Haveraaen, edi
tors, C ALC O , volume 4624 of Lecture N otes in C om puter Science, pages
173-178. Springer, 2007.
J-Y Marion and R. Pechoux. Resource analysis by sup-interpretation. In
F LO P S, volume 3945 of Lecture N otes in C om puter Science, pages 163
176. Springer, 2006.
L. Pareto. Sized Types. Chalmers University of Technology, 1998. Disser
tation for the Licentiate Degree in Computing Science.
O. Shkaravska, R. van Kesteren, and M. van Eekelen. Polynomial size
analysis for first-order functions. In S. Ronchi Della Rocca, editor, Typed
Lam bda Calculi and A pplications (T L C A ’2007), Paris, France, volume
4583 of L N C S , pages 351 - 366. Springer, 2007.
O. Shkaravska, R. van Kesteren, and M. van Eekelen. Polynomial size
analysis of first-order functions. Technical Report ICIS-R07004, Radboud
University Nijmegen, December 2007.
M. van Eekelen, O. Shkaravska, R. van Kesteren, B. Jacobs, E. Poll, and

S. Smetsers. AHA: Amortized Heap Space Usage Analysis. In Marco
Morazan, editor, Trends in F unctional Program m ing 8: Selected Papers o f
the 8th In terna tiona l Sym posium on Trends in F unctional Program ming
(T F P 07), N ew York, USA. Intellect Publishers, UK, 2007. to appear.
P. B. Vasconcelos and K. Hammond. Inferring cost equations for recur
sive, polymorphic and higher-order functional programs. In P. Trinder,
G. Michaelson, and R. Pena, editors, Im p lem en ta tion o f F unctional L an
guages: 15th In terna tiona l W orkshop, IF L 2003, Edinburgh, UK, S ep tem
ber 8-11, 2003. Revised Papers, volume 3145 of Lecture N otes in C om puter
Science, pages 86-101. Springer-Verlag, Berlin, 2004.
R. van Kesteren, O. Shkaravska, and M. van Eekelen. Inferring static
non-monotonically sized types through testing. In Rachid Echahed, ed
itor, 16th In terna tiona l W orkshop on F unctional and (C onstra in t) Logic
Program m ing (W F L P 07), Paris, France, pages 123 - 139. CNAM, France,
2007.

20

