
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/36455

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16123586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/36455

SEM ANTICS OF GRAM M ARS AND ATTRIBUTES VIA INITIALITY

BART JACOBS AND TARMO UUSTALU

Institute for Computing and Information Sciences, Radboud University Nijmegen, RO. Box 9010, 6500 GL
Nijmegen, The Netherlands.
e-mail address: B.Jacobs@cs.ru.nl

Institute of Cybernetics, Tallinn University of Technology, Akadeemia tee 21, EE-12618 Tallinn, Estonia
e-mail address: tarmo@cs.ioc.ee

Dedicated to Henk Barendregt on the occasion o f his 60th birthday

ABSTRACT. This paper uses elementary categorical techniques to systematically describe the se­
mantics of context-free grammars and of attribute evaluation for such grammars. The novelty lies in
capturing inherited attributes and their evaluation via exponents and naturality.

1. Intr o d u ctio n

Context free grammars form a fundamental topic in computer science, as the basis for compiler
construction and language processing. The meaning o f parse trees o f such grammars is usually
captured via attributes and semantic equations. They define the attribute values at any node o f any
given parse tree.

Knuth [7] is a classical paper on such semantics o f context-free languages. A later paper [1],
speaking o f “Knuthian semantics” rephrases the material in terms o f multi-sorted algebras and uses
initiality for interpretation, following Goguen et al. [2, 3]. A complicating factor in this setting is
that attributes come in two flavours, namely ‘synthesised’ (bottom-up) and ‘inherited’ (top-down),
which may lead to circular dependencies. Much research has been devoted to avoiding such circu­
larities via syntactic criteria. The problem is side-stepped in [1] by working in a domain-theoretic
setting [3] in which the necessary fixed points always exist.

Here we ‘modernise’ the multi-sorted algebra approach o f [1] by generalising it to the categor­
ical theory o f algebras o f functors (see [6] for an introduction). This allows us to:

(1) see an attribute grammar built on a context-free grammar simply as an algebra o f the functor
associated with the context-free grammar;

(2) describe attribute evaluation systematically as a special form o f tree relabeling.
Most o f this ‘modernisation’ is straightforward. Nevertheless we spell it out in detail in order to
make it accessible to readers who are less familiar with categorical techniques. The main (novel)
contribution o f the paper comes at the end, where a combination o f exponents and naturality is used
to capture inherited attributes. This is our way o f side-stepping syntactic criteria.

REFLECTIONS ON TYPE THEORY, Essays Dedicated to Henk Barendregt Copyright © 2007 by
À-CALCULUS, AND THE MIND on the Occasion of his 60th Birthday Bart Jacobs and Tarmo Uustalu

181

mailto:B.Jacobs@cs.ru.nl
mailto:tarmo@cs.ioc.ee

182 BART JACOBS AND TARMO UUSTALU

2. From context free g r am m ars to functors

A context free grammar (CFG) is a standard notion in language processing. It consists o f a set
o f production rules, like v ^ a\V\v2a2v3, telling how non-terminals v € V can be replaced by a
string o f both non-terminals v* € V and terminals aj € S . The right hand side is thus an element
o f the set (V + S)* o f words built from letters from either V or S . Here we write + for the disjoint
union o f the two sets V, S . The grammar as a whole can thus be described by a single function of
the form

V ------- -------^ p ((F + X)*) (2.1)

It maps a non-terminal v € V to a set o f right hand sides w € f (v), written as v ^ w. This
description casts CFGs in “coalgebraic” form, following [4], with V as set o f states. It allows for
easy generalisations to stochastic CFGs by taking the distribution monad D instead o f the powerset
monad P in (2.1), or to weighted CFGs by taking the multiset monad M instead o f P . The coal­
gebraic representation leads to a trace semantics for such CFGs in the Kleisli category associated
with the monad. It can be used to describe the associated skeleton parse trees and generated strings,
see [4] for details.

Here we go in a different direction. We show how to associate with a CFG f as in (2.1)
an endofunctor F : S e t s V ^ S e t s V on the category S e t s V o f V-indexed families (X v)veV o f
sets X v. A morphism (X v)veV ^ (Yv)veV in this category consists o f a collection o f functions
(v : X v ^ Yv for v € V . Composition and identities are obtained “componentwise”.

In order to define the functor F associated with f we need some notation. For a word w €
(V + >')' o f both non-terminals and terminals we write w € V* for the word obtained from w by
removing all terminals. Further, for a V-indexed collection (X v)veV and a word (v \ , . . . ,vn) € V *
we write X^vi _ vn ̂ = X vi x ■ ■ ■ x X vn. This Cartesian product is a singleton 1 = {*} in case the
sequence is empty. Now we can define the functor F : S e t s V ^ S e t s V associated with f as:

f (^(Xv)vçy ĵ = ^ L lw e / i» vf-y ' (2-2)

The notation]J is used for indexed disjoint union, as generalisation o f the binary + . It is easy to see
what the functor F does onmorphisms (= ((v : X v ^ Yv)v&V, namely F ((p)((w, x \ , . . . , x n)) =
{w,LpVl{xi), . . . ,LpVn{xn)), where w = {vi , . . . ,vn).

The essence o f this definition is already contained in [2, 1] where a multi-sorted signature is
associated with a CFG. We shall illustrate this functor definition in our two leading examples below.
The next section will show how such functors between categories o f indexed sets will be used for
providing semantics for languages.

2.1. Binary tree grammar. A simple grammar for binary trees is stan- ^ ^ , ,
dardly described via productions as on the right, say with E = {e i , e2, . . . } . _ s S
The associated trees have labels from the set E at the leaves. We can ^
describe this grammar in coalgebraic form (2.1) as follows. The state space is a singleton {S},
since this grammar is “single-sorted”. The associated map g : { S } ^ P (({ S } + E)*) is given as
g (S) = {(e) | e € E } U {(S , S)}, in which the above two productions are recognisable. Since the
category S e t s {S} is isomorphic to S e ts we get an associated functor G : S e ts ^ S e ts given by:

G (X) = E + (X x X).

Again, it reflects the productions in obvious manner.

SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 183

2.2. Binary number grammar. Our next example from [7] is slightly less ß A g | i
trivial. It describes, on the right, a grammar for numbers o f the form ß or ß .7 , ^ A ß | l b
where ß, 7 € {0 ,1}* are bit strings. Now we have a “many-sorted” gram- |
mar with set o f non-terminals {B , L, N } and coalgebra map h : {B , L, N } a A 1 .
P (({B , L, N } + {0 ,1 , .})*) given by three equations: h (B) = {(0), (1)}, h(L) = { (B), (L, B)}
and h (N) = {(L), (L, .,L)} . Notice the role o f the dot (.) as terminal. There is an associated
endofunctor H on the category S e t s {B,L,N} = S e t s 3. It is given, according to (2.2) by:

H (X b ,X l ,X n) = (1 + 1 ,X b + (X l x X b) ,X l + (X l x X l)).

We shall illustrate how for instance the last component X L + (X L x X L) on the right hand side
o f this definition arises. According to the general description (2.2) we have as third component,
indicated by subscript (—)N :

H { X b , X l , X n)n = Ua e h(N) (XB , X L , X N)w

= { X B , X L , X N) ^ + { X B , X L , X N } ^ ^

= (X b , X l , X n) <l> + (X b , X l , X n) <L)L>

= X l + (X l x X l).

Notice how the overline mapping (—) removes the d o t . since it is terminal.
It is not hard to see that categories o f the form S e t s V have arbitrary products H and coproducts

]J given by pointwise constructions. Also, exponents (X v)veV ^ (Yv)vgV are obtained pointwise,
namely as (X v ^ Y„)veV.

3. Pa r se trees a s initial a lg ebr a s

For an arbitrary endofunctor F : C a C on a category C an algebra is a map in C o f the form

a : F (A) a A. A homomorphism (or map) o f algebras, from F (A) A A to F (B) A B is a
morphism f : A a B in C with f o a = b o F (f). This yields a category A lg (F), with obvious
forgetful functor A lg (F) a C which maps an algebra F (A) a A to its carrier A € C.

An initial algebra o f an endofunctor F is an initial object in its category A lg (F) o f algebras. It
is an algebra (F A a A) with the special property that for each algebra (F B a B) there is a unique
homomorphism o f algebras (F A a A) — a (F B a B). We shall often write this homomorphism
via “Scott” or “interpretation” brackets [[— J : A a B , as in the diagram:

F (Œ — J)
F A ----- --— F B

„ I (3-1)

A ------------------

We have labeled the initial algebra map with the isomorphism symbol = since it is by general
reasoning an isomorphism. This fact is often called Lambek’s lemma, see for instance [6].

Initial algebras are typically term algebras, formed by iteratively applying the rules for term
formation. The map [— J obtained by initiality then provides the interpretation o f terms in some
other domain in a “compositional” manner. It corresponds to definition by induction, see [6] for
details. Later on we shall extensively use this homomorphism property (3.1) o f the mapping [— J
for computing interpretations. Commutation o f the diagram captures semantic equations.

184 BART JACOBS AND TARMO UUSTALU

The initial algebra o f a functor F , if it exists, is sometimes written as ^X . F (X), or simply as
^ F . There are general criteria that guarantee existence o f initial algebras, but they do not matter
here. Fundamental for what follows is the following observation.

Fact 3.1. The initial algebra o f the functor F : S e t s V a S e t s V associated as in (2.2) with a CFG
V a P ((V + S)*) is given by the indexed collection (Pv)veV o f sets Pv o f v-rooted parse trees of
the grammar.

We shall illustrate this result, and its application to attribute grammars, for our leading exam­
ples. These attribute grammars will be identified as algebras o f the associated functor.

3.1. Binary trees. Recall the functor =
G { X) = E + (X x X) associated with G{BT) = E + {BT x B T)----------------------- 3- BT
the grammar for binary trees in Subsec- „ , f 'i5'
tion 2.1. We shall write its initial algebra 6 1 ^ I e
as set o f binary (S-rooted) trees BT with / s
algebra map as on the right. This says (^1 ^ 2) 1--------------- (i ^ \
that an e-label goes to an S-rooted tree '
with just this label at its leaf, and that a pair o f trees is combined to a single S-rooted tree. Clearly
this is an isomorphism, because an arbitrary S-rooted tree t € BT has either such a direct leaf or a
binary node with two subtrees.

An attribute grammar extends a CFG with attributes and so-called semantic equations for com­
puting certain values for parse trees. We introduce this concept informally in examples. The at­
tribute grammars o f this section will only have what are called synthesised attributes. Inherited
attributes will be considered later. Purely synthesized attribute grammars can be specified as alge­
bras and initiality is then used to compute the attribute values o f the root node.

A first example, from [8], is about the AVL property o f binary trees. Recall that a tree is called
AVL when it is balanced in the sense that the heights o f each pair o f (adjacent) subtrees differ at
most by one. The AVL attribute grammar is based on the binary tree CFG. The only nonterminal S
has two attributes avl and ht taking values from 2 and N where 2 = {0 ,1 } is the set o f Booleans.
The semantic equations associated to the production rules are

avl(S) = 1 for S a e, e € E
ht(S) = 0

avl(S) = avl(Si) A avl(Sr) A |hf(Si) — ht(Sr)| < 1 for S a S iS r
h t(s) = max(h^(S^), ht(Sr)) + 1

Here, subscripts are used for telling apart different occurrences o f one nonterminal in one production
(S occurs three times in the second production o f the binary tree grammar).

For us, this grammar is an algebra o f the functor G. The carrier set is 2 x N, where the first
component is for values o f avl and the second for values o f ht. The algebra structure is this:

G (2 x N) = E + ((2 x N) x (2 x N)) --------------------------------5» 2 x N

e i--^ (1 ,0) (3.2)

{{bi, hg), {br , h r)) 1--------- 3» {be A br A \he — h r \ < l , m a x{he, hr) + 1)

How to read this? The value (1 ,0) for a leaf e says that such a tree is AVL (value 1) and has height 0.
The second assignment is more complicated: suppose for a left subtree we already have a Boolean
value bi € 2 for AVL-ness and height hl € N, and similarly br € 2 and hr € N for a right subtree.
For the tree combined from these subtrees we can then compute:

SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 185

• the Boolean value for AVL-ness as: bl A br A |hl — hr | < 1. Indeed the combined tree is
AVL requires a conjunction o f tree things: the left subtree is AVL (bl), the right subtree is
AVL (br) and the difference o f heights o f the two subtrees is at most one: |hl — hr | < 1.

• the height as the maximum of the heights o f the subtrees plus one: max(hl , hr) + 1.
Initiality o f BT gives an interpretation map [— J : BT a 2 x N as in (3.1). It consists o f a pair of
maps [— J i : BT a 2 and [[— J 2 : BT a N, where [[— J1 computes whether a tree is AVL and [[— J 2

computes the height. Commutation o f the initiality diagram amounts to two “semantic” equations:

S

e
S

/ \
ti tr 1

= (1 , 0)

= ([ti Ji A [tr Ji A H ti J2 — [tr J21 < 1, max([t i J2 , [tr J2) + 1).

Here is a simple illustration. For convenience we write indices i on tree nodes S i (simply to
distinguish them) and show during the computation only the relevant part o f the tree at that point.

S 2
I

e i

S i
X \

S 4
I

e 2

S3
/ \

S 5
I

e3

S 2
I

e1
A S3

/ \ A

= 1 A S4
I

e 2
A AS5

I
e3 ü

S 4
I

e 2

= 1 A 1 A |0 — 0| < 1 A |0 — (max(0, 0) + 1)| < 1

= 1 .

0 — (m a ^ |4

S 211
e 1 2

S 4
11

1 e2 U2

1 S 5 U11
e3 2

S3
/ \ < 1

S5
I

e3 -U

+ 1)

< 1 A

< 1

Hence this tree is indeed AVL. Notice how the computation proceeds “bottom-up” in the sense that
values computed at subtrees are needed for values higher up in the tree.

3.2. Binary numbers. We will now show that the initial algebra o f the functor H : S e t s 3 a S e t s 3
for the binary number grammar from Subsection 2.2 has the triple BN = (BNb , BNL, BNn) o f
B -, L-, and N-rooted trees as initial algebra. Such an initial algebra consists o f an isomorphism
H (BN) A BN in the category S e t s 3, and thus o f a triple o f isomorphisms H (BN)i A B N for
i € {B , L, N }. They are given in the “obvious” manner by constructing trees, see Figure 1.

The following attribute grammar is from [7]. It gives a way to assign numerical meaning to
parse trees o f the binary numbers CFG. All nonterminals have an attribute val and the nonterminal
L (for bitstrings) has a further attribute len; the val attributes o f B and L and the len attribute are
N-valued, the val attribute for N takes values from Q. The semantic equations are:

val(B) = b
val(L) = val(B)
len(L) = 1
val(L) = 2val(L') + val(B)
len(L) = len(L') + 1
val(N) = val(L)
val(N) = val(L1) + val(L2) /2 len(L2)

for B a b,
for L a B

for L a L'B

for N a L
for N a L 1.L2

b € {0 ,1 }

11

1

186 BART JACOBS AND TARMO UUSTALU

1 + 1 -

b I-

1 h

BNb + (BNl x BNb)

tB I----------

(tL, tß) I---------

BNl + (B N l x B N l)

tL I----------

(t L l , t L2) I-

BNb
B
I
b
B
I
1

BNl
L
I

tB
L

/ \
tL tB
B N n

N

tL
N

tL1 tL2

Figure 1: The initial algebra structure in S e t s 3 o f binary numbers

The presentation as an algebra uses a carrier in S e t s 3 given by the triple o f sets (N, N 2

with algebra/attribute structure H (N, N 2,

1 + 1 ---
0 i--------
1 i--------

N + (N2 x N) ■

b i-------

(N, N 2, Q) given by the three maps in:

-------------------- > N
-----^ 0

----- ► 1

----- ^ N 2

(b, 1)

(2n + b, m + 1)

------ ä»Q

► n

n + 2^-

((n,m) ,b) I-----------------

N 2 + (N2 x N 2) ----------------

(n, m,) I---------------------

((n,m),(p,q)) i------------

These mappings show that:
• the B-value in N gives the value o f a bit;
• the L-value in N 2 consists o f a value o f a bit string together with its length;
• the N-value in Q gives the ordinary bit string value, possibly with a quotient for the string

after the dot.
By initiality o f H (BN) A BN we obtain an interpretation map [[— J : (BNb , BNl , BNn) a

(N, N 2, Q) in S e t s 3. We can write it as three separate maps [— JB : BNb a N, [— JL : BNl a N 2

and [— JN : BNn a Q. The map [— JL can then be split into two separate maps [[— JL;i : BNl a
N, for i = 1, 2. Commutation o f the initiality diagram amounts to the following equations.

= b, for b € {0 , 1 }
N
I
b B

—A

SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 187

L
I
t

N
I
t

= (I t JB , 1)

= I 1 L,1

L
/ \

tL tB 1

N

= (2 [tL J l ,1 + I tB Jb , I tL J l ,2 + 1)

= 111 JL,1 +
p2]l,1
21É2 I I ,2

N H t 1 ■ t2 -UN
These homomorphism equations are the basis o f value calculations, for instance for the word

1101.01. For convenience the nodes in the parse tree below are labeled with subscripts in order to
distinguish them; also, the “sort” subscripts B , N , L on the interpretation function I — J are omitted.
In order to avoid complicated superscripts we write exp (2, n) for 2n .

L 1

z i 2 x
L3 B 2

/ V I

B 1
I
1

L4
I

B4
I
1

= 2

= 4

B3
I
1

0

L 6
I

B 5
I
0

L5
/ \

B 6
I
1

L 1
/ \

L 2
/ \

L3
/ \

+ L5
/ \

+ B 1
I
1

+ 2

/ exp(2

L 6

L5
/ \)

+ B 6
I
1

B 2
1 1 u B5

I+ 2 + 1 + 2
1 0 \ 0

/ exp(2

+ 1) / exp(2 , 2)

L6
+ 1)

8 L4
I + 4 B3

I
1 1

+ 1 + 3 = 8
B4

I
1

+ 5 + 1 = 13.25.

So far we have not said what attribute grammars are in general, but have described them as algebras
for the functor associated with a grammar, as in (2.2). This semantical approach will be continued.

L L

1 2

1 2

1

1

4. Attribute evaluatio n: the purely syn th esised case

Attribute grammars are not only used for computing values for the root nodes o f trees, as in
the previous section, but also for computing values for the inner nodes— which were calculated im­
plicitly in the earlier examples. In this section we show how to do such calculations explicitly. The
attribute grammars that we considered so far are so-called purely synthesised ones, in which calcu­
lations on parse trees are performed “bottom-up”, from children to parents. The general situation,
also involving “top-down” calculations will be studied in Section 6 .

The first step is to describe labeled trees abstractly.

Definition 4.1. For an arbitrary functor F : C — C and an object A € C we write

F @(A) = ^ X .A x F (X).

Assuming that these initial algebras exist, we obtain a new functor F @ : C — C.

188 BART JACOBS AND TARMO UUSTALU

An arbitrary value F @(A) can be under- ̂ idA x F (il — M)
stood as A-labeled F-trees, as the examples A x F (F @(A)) -----------------------> A x F(Y)
below will illustrate. In general, a function Qa \= I

idA x F ([[— J)
^ { A)) -

F®(A) --------------- — --------------^ YF @(A) a F @(B) between such labeled trees
may be called a relabeling function when it suit­
ably preserves the tree structure (see below). We shall be especially interested in the case where
A = 1. The value F @(1) at the final object 1 is the initial algebra ß X . F (X) o f F -trees. Then
it makes sense to talk o f ‘tree labeling’ instead o f ‘relabeling’. Such labelings are also known as
attribute evaluations. The initiality involved in F @(A) amounts to the following. For an arbitrary
algebra A x F (Y) a Y there is a unique map | — J as on the right. It can be shown that the functor
F @ is actually a comonad, but that is not very relevant here. We do however need the counit o f this
comonad structure. It is a special map F @(A) a A, namely:

- 1

eA = (f 9 (A) ^ i x F (F ® (A)) ^ i)

This counit maps an A-labeled tree to the A-value at its root. The other (second) projection yields a
map n 2 o a - 1 : F @(A) a F (F@ (A)) that forms a coalgebra o f the functor F . It is used in [5] to
define the property “bottom-up-ness” for tree transformers, namely as “coalgebra homomorphism”.
This property holds for the relabeling function (— D that we are about to define.

Attribute evaluation as tree (re)labeling is based on the following easy result.

Proposition 4.2. In the above situation with functors F and F @, an algebra F (B) a B induces an
attribute evaluation function (— D : F @(1) a F @(B) such that the following diagram commutes.

—
F @(l) ^ > F @(B)

\ £ ß
B

Proof. The attribute evaluation function (— D is obtained by initiality, in the square on the left below.

F ((— D) F (e B)
F(F&(1)) ------ > F(F&(B)) ------- > F(B)

“ i j — .i i\ \ß ' \ß
_ F @(B) ----------- — — |p B

The algebra ß : F (B) a B is assumed, and ß' : F (F @(B)) a F @(B) is obtained as:

ß' = (f (F®(B)) B x az > _

The square on the right then commutes by construction. By (the uniqueness part of) initiality o f a 1
we obtain that eB o(| — |) = [[— 1 - □

In terms o f the comonad structure on F @, the function (— D is the coKleisli extension o f | — J.
The attribute grammar for AVL-trees from Subsection 3.1 was originally described as an alge­

bra G(2 x N) a 2 x N in (3.2). The associated functor G@ maps a set A to the initial algebra o f the
functor X a A x G (X) = A x (E + (X x X)) = (A x E) + (A x X x X). It consists o f binary
trees with labels from A x E at the leaves and from A at the nodes. Proposition 4.2 associates with

SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 189

the attribute grammar G(2 x N) a 2 x N a relabeling function (— D : G@(1) a G@(2 x N
does so via a map G(G@ (2 x N)) a G@ (2 x N), written as ß' in the above proof. Explicitly:

It

G(G@(2 x N)) = E + (G@(2 x N) x G@(2 x N)) G@(2 x

(te, t r) h

with, as in (3.2),

b
h

be A br A |h — hr | < 1
m a x (h , hr) + 1

where

'S (1 ,0)N

S (b, h)
/ \

te tr

I ,h l) =
- ,h r) =

e (ti)
e(tr)

In the description o f this mapping we use the convention to write the attribute values between
brackets after the non-terminal at a node, as in S (1 ,0). This yields, as example attribute evaluation:

S

S

ei

S
/ \

S S

/ S (1 ,2) \
S(1, 0)

I
ei

S (1 ,1)
/ \

V
S(1, 0) S (1 , 0)

i i
e2 e3e2 e3

In a similar way one may check that the attribute grammar H (N, N 2,
Subsection 3.2 gives rise to a labeling (like in [7, (1.4)]):

(N, N 2 , Q) from

LI
Bi
1

L / \
Bi
1

Bi
0

Bi
1

L
l ' x b
B 1
0

/
L (1 3 ,4)

L (6 , 3^ ^B (1)

L (3 ,2) ^B(0) 1

L (1 , 1) B (1) 0

N (13.25)
\

\
V

^ L (1 , 2)

L (0 , 1) B (1)

B (0)
i
0

1

B (1)
i
1

1

J
The | — J-calculation that we have done in Subsection 3.2 indeed yields the root value 13.25 o f this
labeled tree, obtained via e, as formulated generally in the triangle in Proposition 4.2.

e

—A

5. Inherited attributes

So far we have only given a limited view on attribute grammars, namely one in which only
so-called synthesised attributes occur. Their values are obtained in bottom-up computations, out of
values o f the subtrees. There are also “inherited” attributes whose values depend on other values

190 BART JACOBS AND TARMO UUSTALU

higher up in the tree. Much research in the literature on attribute grammars is concerned with (syn­
tactic) criteria for avoiding circularity between synthesised and inherited attributes. Here we only
look at semantics, and simply claim (without proof) that non-circular attribute grammars with both
synthesised and inherited attributes can be formulated as algebras (like in Section 3), but with ex­
ponents B A as carriers, where the positive part B corresponds to the combined types o f synthesised
attributes, and the negative part A to the inherited ones.

In this section the claim will be illustrated for our leading examples o f binary trees and binary
numbers. How to do attribute evaluation in these cases will be described in the next section.

5.1. Binary trees. Our example comes again from [8] and involves pre-order numbering o f the
nodes o f trees. It is described there via two N-valued attributes numin, numout o f the nonterminal
S , which are given via the following semantic equations.

for S — e, e € E
for S — SeSr

(a) numout(S) = numin(S)
(b) numin(Si) = numin(S) + 1
(c) numin(Sr) = numout(Si) + 1
(d) numout(S) = numout(Sr)

The attribute numout is auxiliary, and only used to compute the value numin that we are interested in.
The inherited aspect appears in equation (b), making the numin-value o f the left subtree dependent
on the numin value o f its parent. This will be made explicit in an algebraic description.

Indeed, we claim that we can capture this attribute grammar as an algebra o f the functor
G (X) = E + (X x X), introduced in Subsection 3.1 for binary trees. As carrier we take the
exponent N n o f inherited-to-synthesised attribute types. The algebra structure G (Nn) a N n is:

G(Nn) = E + (Nn x N n) ------------------------ ^ Nn
e i-------------------------- s- A n e N . n (5.1)

{fe, fr) i---------- > A n € N. f r(fe(n + 1) + 1)

A function in Nn is seen as a mapping that takes the numin value o f a node to its numout value. On
leaves it must be the identity, by equation (a). If we already have two such functions f i , f r for the
left and right subtrees, then the resulting function f for their parent computes a numout value from
a numin value n as:

• the output f r o f the right subtree— by equation (d), . . .
• . . . applied to the the numin value o f the right subtree, which is the numout value f i o f the

left subtree plus one— by equation (c) , . . .
• . . . applied to the numin value n + 1 o f the parent plus one— by equation (b).

Hence we have f (n) = f r(f i(n + 1) + 1) as described in (5.1).
So what does this algebra G (N n) — Nn give us? By initiality it leads to an interpretation map

| — J : BT — N n . The latter yields for a tree t € BT a function 11 J € N n that computes the numout
value o f the root node from a given numin value o f the root. For instance,

,S i

S 2
I

e 1

\
S3

/ \
S 4 S 5

e 2 e 3

(n) = S3 (
/ \ Im

S51 (I
S 411

e3 V 1
e 2

S 2
I

e 1
(n + 1) + 1 =

(n + 3) + 1 = n + 4.

S3
/ \ (n + 2)

SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 191

Section 6 describes how to do attribute evaluation also for the inner nodes.

val(B) = 0 for B a 0

val(B) _ 2scale(B) for B a 1

scale(L) = scale(B) for L a B
val(L) = val(B)
len(L) = 1

scale(L') = scale(L) + 1 for L a L'
scale(B) = scale(L)

= val(L') + val(B)
= len(L') + 1

val(L)
len(L)

scale(L) = 0 for N a L
val(N) = val(L)

scale(L 1) = 0 for N a L
scale(L2) = —len(L2)

val(N))2(Ll(val+(L1l(val

•L 2

5.2. Binary numbers. Knuth [7] describes
a second semantics for binary numbers,
which is “more close to the manner in
which we usually think o f the notation”. It
involves additional integer-valued scale at­
tributes for bits B and bitstrings L, which
are inherited. This scale attribute is used
for a different interpretation for bits (B),
namely not as 0 , 1 values, but as rationals
depending on their position, given by the
scale. The val and len attributes from Sub­
section 3.2 remain, but val is now rational­
valued. The semantic equations are given
on the right, in standard style.

As objects o f the category S e t s 3 in
which we work for this example the types o f the inherited attributes o f the non-terminals (B , L, N)
are given as (Z, Z, 1). Those o f the synthesized ones are given as (Q, Q x N, Q). According to
the claim mentioned in the beginning o f this section we should be able to express Knuth’s attribute
grammar as an H-algebra with as carrier the exponent in the category S e t s 3:

(Q, Q x N, Q)(Z>Z>1) = (QZ, (Q x N)Z, Q 1) = (QZ, Q Z x NZ, Q).

The H-algebra structure on this exponent is given as follows.

-----------------------------3- q z

------------------------ ^ As. 0
------------- ̂ As. 2s

-----------------------^ Q Z x NZ

------------ s» (b, As. 1)
^ (As. ƒ (s + 1) + b(s), As. g (s + 1) + 1)

----------------------------^ Q

-- - ƒ (0)

((f , g) , (h , k)) I------

QZ +

l + l ------------
0 i---------------
l i---------------

f x Nz) x Qz

b i--------------

((f,g),b) I-

Q Z x NZ + (QZ x NZ) x

(f , g) i—

x N Z)

Z ZQZ x

---------------------------- ^ ƒ (0) + h (- k (o)).

By initiality we then get an interpretation map [[— J : BN a (Qz , Q z x NZ, Q) in S e t s 3. It allows
us to compute the root value o f a tree using the algebra homomorphism properties o f [[— J, as in
Figure 2 .

In [1] a slightly simplified version o f this algebra is described, namely with carrier
N, Q). The difference lies in the second component: they use Q Z x N instead o f our Q Z x NZ because
they notice that the (synthesised) len attribute with type N does not depend on the (inherited) scale
with type Z. Here we stick with the general exponent form, which means that we have to pick
an arbitrary value as input for the function k in the last line o f our algebra description. The point
here is that the attribute dependency analysis has to happen in the formulation itself o f an attribute
grammar as an algebra o f a functor: the framework enforces it (which we see as advantage).

192 BART JACOBS AND TARMO UUSTALU

ir
/ L i ^ ^ '

1 =1

_,L5s

, L 2 . B l Lß Bß1 1

12B3L B 5 1

L4 B 3 0 0
B 4 1

1

L i
/ \

L 2
/ \

L3
/ \

--

1

0) +

--

1
J 1 ;

(1) +
1 ;

(2)
1

+

L5 (L5

\

s - / (0)

L4

B 4
I

. 1 JJ

(3) +
B 3

I
1

B l (0) +
1]

B ^ (1) + 20 +
0

(2) + 0 + 1 +

L5 (- L 6|
/

A -
• (1) I 1

Lf

L5
/ \

(I 1) +

(I 2)
i

Bß
I
1

(I 2)

(3) + 22 + 1 + B5
I
0

(—1) + 2- 2 = 23 + 5 + 0 + 4 = 13.25.

Figure 2: Sample calculation for the algebra from Subsection 5.2.

2

2

i i

i i

6 . A t t r ib u t e e v a lu a t io n : th e g e n e r a l c a s e

We have described general attribute grammars with both synthesised and inherited attributes as
algebras with an exponent as carrier. Here we describe attribute evaluation for such grammars, via
an extension o f Proposition 4.2 given below. It requires that the algebra 7 : F (B A) a B a involved
arises from a more general structure, namely a natural transformation with components o f the form:

F ((B x X) a) ------— ---- > (5 x F (X)) A (6.1)

Such a natural transformation r is a collection o f maps (r X), indexed by objects X , which work
“naturally” or “uniformly” in X . This means that for any function f : X a Y one has (idB x
F (f))A o r x = T y o F ((idB x f)A).

We then assume that the algebra 7 : F (B A) a B a arises by taking X = 1. To be precise as:

7 = (f (B a)F- ^ - ^ Ü f ((B x 1)A) -----X F(1))Ä 7Fl > B A) (6.2)

The extra generality given by r is needed to lead the values o f the inherited attributes appropriately
down the subtrees. If the functor F is “strong” and we already have an algebra F (B A) a B a then
one can construct a trivial natural transformation r as in (6 . 1) by passing on the same argument
downwards. But as the examples below will illustrate, r typically adapts the arguments.

We assume that the category in which we work is cartesian closed, so that we have exponent
objects B A, for arbitrary objects A, B , with evaluation maps ev: B A x A a B and abstractions
A (f) : C a B a for f : C x A a B , satisfying the standard equations ev o (A (f) x id) = f ,
A (f) o g = A (f o (g x id)) and A(ev) = id, see any basic text on category theory. Maps o f the
form f A, as already used above, are defined as f A = A (f o ev) : X A a Y a , where f : X a Y .

SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 193

Proposition 6.1. Assume an endofunctor F : C a C on a cartesian closed category C with associ­
ated labeled tree functor F @ as in the beginning o f Section 4. A natural transformation T: F ((B x
—)A) ^ (B x F (—))A as in (6.1) induces an attribute evaluation function (| — D : F @(1) a
F @(A x B)a such that the following diagram commutes.

\ ida \

F @(1)

A a

t(vTl O £A x b) A

F®(A x B) a

\ (t t 2 o £ A x b) A

B a

where \ ida \ is the constant map yielding the identity function on A.

The attribute evaluation map (— D : F @ (1) a F @ (A x B)A takes a parse tree t € F @ (1) and
an initial “inherited” value a € A to a labeled tree (t D(a) € F @(A x B) with combined inherited
and synthesised labels from A x B . O f course we can concentrate on the A-labels or the B-labels
alone, by composing with a suitable projection F @(ni).

Proof. Assuming the natural transformation r with associated algebra y as in (6.2) we construct r '
in the middle o f the diagram below.

F ((— D)
F (F @(1))

CKl| =
F®(1)

, F ((n 2 o s a x B) A) ,
- F(F®(A x B) a) — --------------- F (B a)

| r , 17
- T , (v r2 o £ A x b) \

---------------------------- -B aF @(A x B)

— i

The map r ' is obtained as composite:

F (F@(A x B)a)

\F({tt 2 o e, id)A)
F{{B x FCÛ(A x B))a) ----— - (B x F{FC&{A x B)))A

| A (((7 T 2 ,7Ti o ev),H2 o ei^))

{(A x B) x F (F @(A x B))) A — ^ F r° (A x B) A
a

We show that the right-hand-square above commutes, via a tedious but elementary calculation.

(n2 o e)A o r ' = A (n2 o n 1 o a 1 o ev) o A (a o ((n2, n 1 o ev), n 2 o ev)) o

r o F ((n 2 o e, id)A)

= A (n2 o n 1 o a - 1 o a o ((n2, n 1 o ev), n 2 o ev)) o

r o F ((n 2 o e, id)A)

= A (n 1 o ev) o r o F ((n 2 o e, id)A)

= n A o (id x F (!))a o r o F ((n 2 o e, id)A)

= n A o r o F ((id x !)a) o F ((n 2 o e, id)A) by naturality o f r

= n A o r o F (((id, !) o n 2 o e)A)

= y o F ((n 2 o e)A).

194 BART JACOBS AND TARMO UUSTALU

In a similar, but easier, way one checks that (n 1 o e)A o r ' = A (n2) = \ id \. □

We shall make the general recipe for attribute evaluation from Proposition 6 .1 more concrete
by demonstrating it for our two running examples.

6.1. Binary trees. We first show how the attribute grammar G (Nn) a N n from Subsection 5.1
arises in fact from a natural transformation with components G ((N x X) N) a (N x G (X))N given
as follows.

E + (N x X) N x (N x X) N ----------

e I-

(N x (E + X x X))N

----- 3- An € N. (n, e)

(fe, fr) i-------- > Xn eN.(TTi fr (m + l),(TT2 fe(n + l),TT2f r (m + l)))

where m = n 1 f i (n + 1)

This definition clearly contains the one for the algebra G (N n) a N n from (5.1). But it does
a bit more: the argument n is also passed on to the subtrees via the X-component, in a similar
manner. The arguments are thus not only needed for computing a value at a particular point in
the tree, but also for attribute evaluation in the subtrees. According to Proposition 6 .1 this natural
transformation yields an attribute evaluation map (— D : G@(1) a G@(N x N)n via the algebra
G(G@ (N x N)n) a G@ (N x N)n , called r ' in the above proof. In this case it is:

E + G@(N2)n x G@(N2)2\N 2\N

e h

—> G@(N2)

(S (n , n)N

AnM e

(S (n ,pr)
(fe, fr) I------- ^ An. / \

V f i(n + 1) fr (pi + 1)
with

Pi = n 2e (f i(n + 1))

Pr = n 2e(fr (pi + 1))

These pi and pr are the second components o f the root values o f the subtrees.
Then we can also compute the (numin, numout)-values also for the inner nodes in the example

calculation at the end o f Subsection 5.1: the pre-order numbering starting at n € N is:

S

S

e 1

S
/ \

S S

e 2 e3

(n) =

(S (n , n + 4) \

S (n + 1 ,n + 1) S (n + 2 ,n + 4)

e1 S (n + 3 ,n + 3) S (n + 4, n + 4)
1 1 /e2 e3

6.2. Binary numbers. As before we first notice that the H -algebra structure on the exponent
(Q, Q x N, Q)(Z>Z>1) = (QZ, QZ x NZ, Q) from Subsection 5.2 arises in fact from a natural trans­
formation

X N ,Q) X X)(ZÄ1)) --------------- - ((Q , Q X N,Q) X H (X) f ZA)

By unravelling the definition o f H for X = (X B , X l , X n) and using the componentwise descrip­
tion o f exponents in S e t s 3 we see that this natural transformation consists o f three maps o f the

SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 195

form:

1 + 1

:X b)'

(Q x (1 + 1))Z

x N x (X b + X l x X b))

^ Q x (X l + X l x X l) .

(Q x X B) i + (Q x M x X L) x

(Q x N x X l) 2 + (Q x N x X l) 2 x (Q x N x X l) 2

It is given along the lines o f the algebra definition in Subsection 5.2:

ƒ 0 i— a As. (0,0)

\ 1 I— a As. (2s , 1)

f b -— a As. (61 (s), 1 , 62(s))

\ (f , b) 1— a As. (f 1 (s + 1) + b1 (s) , f 2(s + 1) + 1, (f 3(s + 1) ,b2(s)))

I f —a (f1(0) , f3(0))

1 (f , g) 1----a (f 1(0) + g1(—g ^ 0^ (f 3(0) , g3(—g2(0)))) .

In the proof o f Proposition 6.1 we then see how we get an H-algebra on

H@((Z, Z, 1) x (Q, Q x N, Q))(Z>Z>1) = H @(Z x Q, Z x Q x N,

which we can describe explicitly as:

,Z,1)

0 As.

As.

'B (s , 0) \

, 0 j
'B (s , 2s)N

b

(f, b)

f

(f ,g)

As.

As.

L(s, v, 1) \

b(s) J
L(s, v, l)

f (s + 1) 'b(s)

N (v)N

f (0) /

' N (v) >

f (0)^ . 5 (—s),

where

where

= n 2e(b(s)), the second component o f
the root value o f the subtree b(s)

v = n 2e (f (s + 1)) + n 2 e(b(s))
l = n 3e (f (s + 1)) + 1

where v = n 2e (f (0))

where
s = n 3e(g(0))
v = n 2e (f (0)) + n 2e(g(—s))

Figure 3 illustrates the attribute evaluation function (— D resulting from this algebra for our running
example. It reconstructs equation (1.6) from [7] in a systematic manner via initiality.

7. Fu tu re work

1

v

After these first steps in a categorical reformulation o f classical work in computer science many
issues remain, among which we are particularly interested in the following three.

196 BART JACOBS AND TARMO UUSTALU

L

B 1 i
1

/

Bi
0

Bi
1

L
L v b
B 1
0

N (13.25),

L(0,13, 4)
L (1 , 1 2 ,3) " B (0 , 1)

L (2,12,"2) ~B(1, 0) 1

L (3 , 8,1) B (2 , 4) 0

B (3 , 8) 1
i

\ 1

L (—2, t , 2)

L (—1 , 0 , 1) 5 (- 2 , i)

B (- 1 , 0) 1
i
0

Figure 3: Attribute evaluation for the binary number example from Subsection 5.2

Investigation o f the generality obtained by a natural transformation r : F ((B x —)A) ^
(B x F (—))A as in the beginning o f Section 6 . In this paper, we required no conditions on
such r . Is this appropriate, also in examples?
Formulation o f a natural transformation from a given set o f semantical equations: is there a
canonical way to do so?
Implementation, for instance in the programming language Haskell, o f attribute evaluation
as described above.

R eferences

[1] L.M. Chirica and D.F. Martin. An order-algebraic definition of knuthian semantics. Math. Syst. Theory, 13:1-27,
1979.

[2] J.A. Goguen and J. Thatcher. Initial algebra semantics. In Symposium on Switching and Automata Theory, pages
63-77. IEEE, 1974.

[3] J.A. Goguen, J. Thatcher, E. Wagner, and J. Wright. Initial algebra semantics and continuous algebras. Journ. ACM,
24(1):68-95, 1977.

[4] I. Hasuo and B. Jacobs. Context-free languages via coalgebraic trace semantics. In J.L. Fiadeiro, N. Harman,
M. Roggenbach, and J. Rutten, eds., Algebra and Coalgebra in Computer Science, CALCO 2005, v. 3629 in Lect.
Notes in Comput. Sci., pages 213-231. Springer, 2005.

[5] I. Hasuo, B. Jacobs, and T. Uustalu. Categorical views on computations on trees. In L. Arge, C. Cachin, T. Jurdzinski,
and A. Tarlecki, eds., Int. Coll. on Automata, Languages and Programming, ICALP 2007, v. 4596 in Lect. Notes in
Comput. Sci., pp. 619-630. Springer, 2007.

[6] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCSBulletin, 62:222-259, 1997.
[7] D.E. Knuth. Semantics of context-free languages. Math. Syst. Theory, 2:127-145, 1968.
[8] T. Uustalu and V. Vene. Comonadic functional attribute evaluation. In M. van Eekelen, ed., Trends in Functional

Programming 6, pp. 145-162. Intellect, 2007.

