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Abstract

Most natural objects contain multiple regions within complex volumetric struc-
tures. These structures are usually organized in complicated geometric configu-
rations. Such objects are referred to as natural heterogeneous objects or simply
heterogeneous objects. In medicine and other related fields when an natural het-
erogeneous object is studied, computed tomography exposures are taken through
several parallel slices. These slices are then stacked in volume data and recon-
structed into three-dimensional computer models in order to study the object
structure and functionality.

To be able to successfully build three-dimensional computer models of natural
heterogeneous objects, accurate identification and extraction of all regions com-
prising the natural heterogeneous object is important. However, building three-
dimensional computer models of natural heterogeneous objects based on medical
images is still a challenging problem and pose two inherent issues related to the
inaccuracies which arise from and are inherent to the data acquisition process.

The first issue is the appearance of aliasing artifacts in the boundary between
regions, a common issue in mesh generation from medical images, also known
as stair-stepped artifacts. These jagged edges, caused by image voxelisation, are
visually unappealing and are unsuited for engineering applications. A computer-
aided reverse-engineering method (CAREM) for generating consistent smooth
models for specific regions based on medical images is proposed to address this
issue. The goal of this method is to construct three-dimensional computer models
from a given three-dimensional domain (medical image) representing anatomical
regions or organs.

The second issue is the extraction of smooth three-dimensional multi-region meshes
that conform to the region boundaries of natural heterogeneous objects described

10



in medical images. To solve this issue, a region-aware method (RAM) for natu-
ral object modeling is proposed. This method uses a vector implicit function
structure for organizing all regions comprising the natural heterogeneous object.
The goal of this method is to generate three-dimensional computer models with
smooth interfaces conforming to different regions of the natural heterogeneous
object needed for many computer simulation applications.

Although constructing consistent and coherent three-dimensional computer mod-
els is far more from a trivial task specially for natural heterogeneous objects,
experimental results demonstrate that the proposed CAREM method and RAM
method are effective and powerful tools to model natural heterogeneous objects
as well as constituent regions. Furthermore, the scheme of representation used
in this dissertation reduces the amount of information needed to represent vol-
ume data.

Hence, this dissertation contributes to the framework of heterogeneous object
modeling, as well as to the popular and intricate study of implicit object rep-
resentation, however, the emphasis of this research is placed on accuracy and
shape fidelity needed for biomedical applications.
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Chapter 1

Introduction

M ODELING natural heterogeneous objects, their properties and internal re-
lations is an important research topic in computer vision and computer

graphics with broad application in different engineering fields. The process of
modeling natural objects normally includes a mathematical representation and
a discrete computer-oriented modeling. In computer graphics, for instance, most
objects are represented as manifold surfaces embedded in three-dimensional Eu-
clidean space. The result of such a modeling process is a three-dimensional
computer model called surface model that can be displayed as two-dimensional
images through a rendering process, or be used in a computer simulations of
physical phenomena. Thus, the aim of development such computer models is to
provide a set of tools through which the properties of represented objects can be
studied in a manner which will facilitate simulating the real object manipulation
using the computational model.

Although in many engineering fields surface modeling in general and finite-
element modeling in particular are powerful tools of understanding natural ob-
jects, in other fields, such as manufacturing, medicine, virtual reality or biomedi-
cal engineering, are not enough for several applications where information about
the interior of an object is necessary and the generation of volume models is re-
quired. For instance, computer analysis and simulation using volume models can
be performed in an effort to predict and improve the performance of manufactur-
ing products before the designs are finalized and built (bones, artery, organs, etc)
(see Figure 1.1a).
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Volume models are also used to simulate effects of a surgical interventions (see
Figure 1.1c). Thus, volume models of body parts could be used in surgical plan-
ning laboratories as a studying tool before physicians go through with surgeries.

(a) Modeling and visualization
of a human kidney.

(b) Manufacturing of accessories and pa-
tient specific prosthesis.

(c) Surgical simulation and planning.

Figure 1.1: Biomedical applications of volume models.

Another example, from biomedical engineering is to simulate and evaluate the
effects of limb replacement without large number of physical real trials (see Fig-
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ure 1.1b). Once volume models of anatomical structures are available, they can
enable physicians accurately plan the prosthetic manufacturing and increase the
patient comfort.

The idea of modeling anatomical organs and structures for engineering simula-
tion purposes is attractive for several reasons: First, by supplying a base region
material, the locations upon which tissues will integrate with the surrounding
environment are known a priori; Secondly, by controlling the shape, or at least
the surface contour, one can manipulate the mechanical environment in which
tissue exists; Finally, with control over the anatomical domain comes control over
the interfaces between organs. However, the construction of finite element mod-
els for the purpose of analysis is in itself a laborious task especially for biological
objects (e.g. fruits, human body parts etc.) which often have a more complicated
geometry than mechanical components.

This chapter is organized as fallow: the motivation behind this dissertation and
the research objectives are presented in Section 1.1 and Section 1.2 respectively.
Section 1.3 presents the document organization.

1.1 Motivation

The term natural heterogeneous object is defined such that it is a tangible and
visible entity occurring naturally and consisting (composed) of different elements
or parts. There are three classes of natural heterogeneous objects (Kumar and
Dutta, 1998) which are shown in Figure 1.2:

• Multi-material natural objects,

• Natural objects with embedded/nested regions,

• Natural objects without clear region boundary.

Most of the existing heterogeneous object modeling approaches are designed to
model either complex geometries with simple material distributions, that is in
fact a solid modeling approach, or compound material distributions with simple
(regular) geometries, that is a functionally graded material modeling approach.
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In both cases geometry makes reference to objects with a single region avoiding
modeling multi-material objects and objects with embedded regions. Even so,
modeling these heterogeneous objects has attracted enormous attentions in the
last time (Wang et al., 2011), (d’Otreppe et al., 2012), (Yuan et al., 2012), (Ohtake
and Suzuki, 2013).

(a) An object without clear re-
gion boundary.

(b) A multi-region object.

(c) An object with region embedded in it.

Figure 1.2: Examples of natural heterogeneous objects.
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The main goal of this dissertation is to obtain three-dimensional computer mod-
els of any natural heterogeneous object (live or inanimate), However, the efforts
have been concentrated on obtaining three-dimensional models of anatomical
organs and structures. Human anatomy and biological structures consist of a
variety of tissues, organs and structures which are either multi-material natural
objects (see Figure 1.2b), or natural objects with embedded regions (see Figure
1.2c). These objects are called multi-region natural objects to distinguish them
from natural objects composed of only one region (see Figure 1.2a).

Nowadays, medical imaging modalities are being extensively used in fields, such
as medicine, virtual reality, and biomedical engineering, for generating computer
models of natural objects, including their interior (Stytz et al., 1991). The concept
of generating three-dimensional computer models from a stack of 2D images was
first published by Jerry Fram in 1980 (Fram and Deutsch, 1975) and since then
the idea of reproducing human anatomy with a computational model has become
of great research interest.

Although three-dimensional computer modeling can save resources (time and
money), especially when compared with benchmark testing or experimentations,
the extraction of volume models from medical imaging modalities is a nontrivial
problem and pose two inherent issues related to reconstruction errors and low
sampling rates of the acquired dataset (Vivodtzev et al., 2003).

The first issue is the appearance of aliasing artifacts in the mesh generation
process from medical images, also known as stair-stepped artifacts (see Figure
1.3). These meshes generally have jagged edges caused by image voxelisation,
that are visually unappealing and unsuited for finite element simulations (see
Figure 1.3b).

The second issue is the extraction of smooth three-dimensional multi-region meshes
that conform to the region boundaries described in the medical images (see Fig-
ure 1.4). Regardless of the medical imaging modality used, multiple intensity
regions are typically present within such images. It is crucial to accurately iden-
tify and extract these regions in order to successfully build volume models of
natural heterogeneous objects (see Figure 1.4a).
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(a) Aliasing artifacts caused by
image voxelisation.

(b) Stair-stepped artifacts
present in mesh generation.

Figure 1.3: Appearance of stair-stepped artifacts during mesh generation from
medical images.

Additionally, when building three-dimensional computer models it is also impor-
tant to distinguish between computer modeling for visualization purposes and
computer modeling for biomedical simulation purposes because they have differ-
ent goals, even if the global framework is the same. Three-dimensional computer
models for biomedical simulation purposes have stronger requirements: the final
model should be valid for computer aided design (CAD) simulations and undergo
further operations (see Figure 1.4b). From this point of view the major bottle-
neck in the complete modeling–analysis cycle is the definition of the geometry of
the object under consideration.

Such a serious issues overshadow a lot of potential modeling and analysis ap-
plications. This makes necessary in this dissertation to explore new modeling
methods in order to build three-dimensional computer models of natural het-
erogeneous objects such as anatomical organs and structures. The availabil-
ity of such modeling methods remains central to three-dimensional computer
modeling, analysis and fabrication of such objects. The goal is to obtain three-
dimensional computer models that can be efficiently used not only to visualize
internal structures of heterogeneous objects (Sun et al., 2004), but also to gener-
ate three-dimensional bioCAD models for realistic physically-based simulations
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(Zaidi and Tsui, 2009).

(a) Identification of a human liver with some
tumors embedded in it.

(b) 3D multi-region mesh conforming to the
region boundaries described in Figure 1.4a.

Figure 1.4: Extraction of smooth 3D multi-region mesh from medical images.

Three-dimensional bioCAD modeling is a new and exciting interdisciplinary field
that promises to combine the innovations in medical imaging and well tested
and proven reliable tools from engineering design. Indeed, three-dimensional
bioCAD models are prerequisites of the downstream applications in Computer-
aided engineering (CAE) analysis and Computer-aided manufacturing (CAM)
fabrications of natural heterogeneous objects. This has shown to have promise
in practical applications from bio-engineering and medical research to computer
animation, and multi-region modeling for fabrication.

Most recent advances in heterogeneous object modeling focus mainly on manu-
facturing and solid free-form fabrication processes with the purpose of designing
and manufacturing of solids with varying material properties (Schroeder et al.,
2005) (see Figure 1.2a). However, modeling natural heterogeneous objects, such
as anatomical organs and structures, differs vastly from the design of hetero-
geneous engineering components due to the fact that such objects tend to have
more complicated geometries than man-made structures and display a vast vari-
ation of material properties within the regions (Moustakides et al., 2000). For
instance, liver-tumors must be modeled together with and within the liver (see
Figure 1.2c). Such three-dimensional computer models can help us gain a bet-
ter understanding of natural heterogeneous objects in general and of the human
anatomy in particular.
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To address this problem, the research methodology is mainly focused on the fol-
lowing research questions:

• What mathematical representation can accurately and compactly represent
heterogeneous objects composed of multiple regions?

• How to develop a practical modeling method for generating accurate three-
dimensional computer models of specific regions composing natural hetero-
geneous objects?

• How to create a region-aware method for three-dimensional computer model-
ing of natural heterogeneous objects that maintains information of all region
interfaces?

Hence, the hypothesis that drives this dissertation is:

• A region-aware modeling method based on an implicit representa-
tion allows to generate accurate geometric models of natural het-
erogeneous objects composed of multiple regions.

1.2 Research objectives

This research focuses on three-dimensional computer modeling of natural hetero-
geneous objects from which three-dimensional bioCAD models can be generated.
The main objective of this work is:

To develop a general method for three-dimensional modeling of natural
heterogeneous objects using a systemic approach and a compact and con-
sistent representation

In this dissertation, a three-dimensional computer modeling approach based on
reverse engineering is presented. This approach aims at creating smooth three-
dimensional computer models that can be efficiently used for visualization and
simulation purposes. The emphasis of such approach is placed on accuracy, in
terms of geometric quality and low volumetric error, and shape fidelity needed
for biomedical applications.

Additionally, this research involves the following specific objectives:
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• The analysis of state-of-the-art representations that can accurately and com-
pactly represent natural objects composed of multiple regions, in order to
identify the advantages and disadvantages of these representations.

Modeling natural heterogeneous objects is an open problem seldom addressed in
the past. To accomplish such a goal, it is important to review related works on
existing natural object representations and relevant modeling approaches.

• The development of a three-dimensional modeling method based on reverse
engineering for generating accurate three-dimensional computer models from
medical images that are topologically correct and geometrically smooth.

The continuous development in the field of medical imaging modalities, such as
computer tomography (CT) and magnetic resonance imaging (MRI), along with
reverse engineering techniques have made computer aided technologies to be
used extensively in modern medicine and biomedical engineering (Prince and
Links, 2006). Medical images can be considered as special cases of implicit geom-
etry representations, since boundaries of regions in the image are not available
in an explicit form. These region’s boundaries can be detected by edge detec-
tion methods (Gonzalez and Woods, 2002), but these typically work on pixel level
and do not produce smooth boundaries. A more natural approach is to keep the
image-based representation, and to form implicit functions with a level set rep-
resenting region’s boundaries.

• The development of a region-aware modeling method based on implicit func-
tions that maintains information of all region interfaces and generates accu-
rate three-dimensional computer models in terms of geometric quality and
low volumetric error.

Natural heterogeneous objects might be composed of spatially different regions.
A modeling method that represents all regions as well as their incident surfaces
is very important. These models must represent not only the outer object geom-
etry accurately, but also contain information of the inner region interfaces.
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1.3 Document organization

The structure of this document is as follows:

Chapter 2 describes in detail the representation schemes using in geometric
modeling of solid objects that allow, due to their structure, reflecting the lack of
homogeneity within the set of points, which is the key element in the modeling
of natural heterogeneous objects. The advantages and disadvantages of each
scheme are discussed at the end of the chapter. This will help to understand the
subsequent chapters of this dissertation.

Chapter 3 focuses on modeling specific regions composing natural heteroge-
neous objects. This process is addressed by mean of a computer-aided reverse-
engineering based modeling (CAREM) method based on medical images used in
biomedical applications. Since medical images are jaggy, not properly ordered
and contains so much noise, traditional voxel models are not adequate for sim-
ulations and CAD analysis. To tackle this issue the CAREM method builds a
compact analytic representation via an implicit surface reconstruction. As part
of this method, an effective Voxel-To-Point conversion process is proposed. Some
examples are given to illustrate the use of the CAREM method.

Chapter 4 focuses on the problem of modeling natural heterogeneous objects
composed of multiple regions. Here, a region-aware model (RAM) for natural
object modeling is presented. The RAM method is based on a mathematical
model in which the geometry of the natural object is represented by a set of
feature-regions implicitly represented. These feature-regions are organized in a
vector implicit function VIF structure. To demonstrate the ability of the RAM
method to handle complex geometries some examples are shown.

Chapter 5 presents the results from applying both the CAREM method and the
RAM method described in Part II. In the chapter is given a description of the
criteria that can be used to evaluate the model representation. Then capabilities
and limitations of these methods are discussed to make clear what kind of object’s
configurations the methods can and cannot model.

Chapter 6 concludes with a summary of the dissertation, presents the princi-
pal contributions, and outlines several avenues of future research based on the
present work.
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Chapter 2

Three-dimensional object
modeling

2.1 Introduction

I N this chapter a variety of modeling approaches that are considered to be rel-
evant to the general problem of three-dimensional modeling of natural het-

erogeneous objects are reviewed. This survey will by no means be exhaustive,
but it does form the basis for understanding the issues related to the modeling of
natural heterogeneous objects, and it will give the reader a sufficient background
to follow the rest of this dissertation.

Several mathematical models have been developed to model natural objects; all
of them have their own strengths and weaknesses and depend on the field of
application. Three fundamental approaches can be taken at the moment of mod-
eling natural objects: express the object including its interior and boundary that
is a solid modeling approach (see Section 2.2), or use only an expression of its
boundary that is a surface modeling approach (see Section 2.3). In both cases an
explicit representation or an implicit representation of the natural object can be
used.

Additionally, based on the idea of partitioning the natural heterogeneous object
into homogeneous regions an approach called composite models is reviewed in
Section 2.4. Finally, a discussion on the advantages and disadvantages of the
examined representations is presented in Section 2.5.
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(a) A tetrahedron node with material information.

(b) A n×n×n volume and a voxel with coordinates
(Xv, Yv, Zv).

Figure 2.1: Examples of Cells for solid and volume modeling.

2.2 Solid modeling

Due to the fact that it is impossible to store in the computer the whole set of
points that can constitute a continuous natural solid object, normally, the space
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occupied by it is discretized. Thus, the natural object is represented by decom-
posing the occupied space using a set of cells and maintaining information con-
cerning to each one of them (Mantyla, 1988). The kind of cells used and the way
in which these are combined determines the different strategies carried out on
this basis idea (see Figure 2.1).

However, the different strategies have a common requirement: cells must be
disjoint or have only faces and / or edges and / or vertices in common. That is,
they must form a solid covering without spatial overlap between cells, or what is
the same, a space partition. Below both concepts are formally defined.

Definition 1. (Covering): Let “I” be an index set of the form I = {1, . . . , n}. It
is said that a family of subsets Ai ⊆ A | i ∈ I of a set A is a covering of A if the
following conditions are met:

Ai 6= Ø, ∀i ∈ I⋃
i∈I Ai = A

(2.1)

Definition 2. (Partition): Let “I” be an index set of the form I = {1, . . . , n}. It
is said that a family of subsets Ai ⊆ A | i ∈ I is a partition of A if the family is a
covering and it is true that:

Ai ∩ Aj = Ø, ∀i, j ∈ I, i 6= j (2.2)

In other words, the different strategies have in common that space, represent-
ing the natural object, is divided into cells that do not overlap and, therefore,
any point belonging to it can be identified as being within a particular cell (or
cells if fall on the border between neighboring cells). Exhaustive enumeration
(see Subsection 2.2.1) and hierarchical spatial partitioning schemes (see Subsec-
tion 2.2.2) are two explicit strategies that allow, due to its structure, reflecting
the lack of homogeneity within the set of points, which is the key element for
modeling natural solid objects. Additionally, an object can be defined by a scalar
function defined on d-dimensional Euclidean spaces through an implicit solid
modeling (see Subsection 2.2.3).
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2.2.1 Exhaustive enumeration scheme

In this scheme the interior of a solid object is discretized into smaller elements,
such as voxels models, and tetrahedrons (Kou and Tan, 2007).

Voxel Models

One of the ways of representing a natural object is to store its occupied volume
by a set of data samples called voxels (volume elements) (Kaufman et al., 1993)
(see Figure 2.1b). The voxel-based representation can be generalized as (Kou and
Tan, 2007):

O = {Vi} = {(xi, yi, zi,mi), 1 ≤ i ≤ n} (2.3)

where Vi is a voxel element in the collection of n voxels that constitute the nat-
ural object O, (xi, yi, zi) represents the geometric location of the voxel Vi and mi

represents the composition of the material inside the volume.

(a) A voxel-based solid model of a
heart image.

Coordinates
(x,y,z)

position:
0-outside,
1-inside

(0,0,0) 0
(0,0,1) 0

... ...
(50,25,8) 1
(50,25,9) 0
(50,25,10) 1

... ...
(512,512,129) 0

(b) Binary data table indicating the po-
sition of each voxel in the image.

Figure 2.2: A voxel-based solid model and its data table of a heart image.

Typically, each discrete sample can store a specific object property. In the sim-
plest case, each sample stores a binary value of "0", indicating that the sample is
outside the object, or "1",indicating that the sample is inside the it. For example,
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Figure 2.2a illustrates a voxel-based model and its corresponding data table of a
heart image depicted in Figure 2.2b.

In a general case, samples can store more general information. For example,
three-dimensional scenes depicted in such a way can be captured from natural
objects through different voxel techniques, such as computed tomography, mag-
netic resonance imaging, ultrasound, geophysical measurements, etc. (Nielson,
2000).

Material property at a point can be evaluated only by identifying the voxel in
which is located. The material properties can be estimated in several ways: by
scanning techniques, such as MRI and CT, or by using various functions and
distances (Angenent et al., 2006).

Finite element-based representation

In this representation, the interior of solid objects are discretized using volume
meshes (see Figure 2.3).

Figure 2.3: A finite element-based representation of a human liver.

A collection of subvolumes or polyhedra is used to represent both the geometry
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and the material properties with parameters specified over the nodes (tetrahe-
drons) of the mesh ck ∈ C (see Figure 2.4). The vertices store their geometric po-
sition as well as the material compositions, which can be symbolically described
as:

C = {c1, c2, ..., cn}
ck = {G(ck),M(ck), 1 ≤ k ≤ n}
M(ck) = F (xk1,xk2, ...,xkng)

(2.4)

where ck denotes a representative polyhedron, G(ck) and M(ck) denotes the ge-
ometries and material distributions of ck, where xk1(x1, y1, z1,m1) is a representa-
tive vertex of ck, n is the number of polyhedrons that compose the whole natural
object, and the function F indicates that the material composition of the points
in each sub-volume. The material composition of the model is represented by a
vector-valued function of m(x), where each componentmi represents the relevant
material volume fraction at a point x within the model.

Figure 2.4: Material blending with the barycentric Bernstein polynomial.

The modeling space is divided into subdomains that are topologically simple
enough to represent analytically the shape of the object and the material func-
tion. For each tetrahedron domain ck (see Figure 2.3), the shape and composition
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are formulated in terms of control points {xk,i , | i |= ng} and control composi-
tions {mk,i , | i |= nm} which are blended by barycentric Bernstein polynomials
(Jackson et al., 1999):

[xk(u),mk(u)] =

∑
|i|=ng

B
ng

i (u)xk,i,
∑
|i|=nm

Bnm
i (u)mk.i

 (2.5)

where ng and nm are the degrees of variation in shape and composition. | i |=
i0 + i1 + ...+ ik and k is the dimension of cell k in this case 4 (see Figure 2.4).

The proposed representation is able to represent objects with a complex compo-
sition distribution.

2.2.2 Hierarchical spatial partitioning scheme

The idea of hierarchical spatial partitioning schemes is based on subdividing the
space’s region into several subregions, and this same subdivision is recursively
applied to each of the newly oriented regions, until a stopping criterion is met.
Whereas the initial region, usually a cubic shape, includes all the object, the
stopping criterion is used to classify the region whether it contains only a por-
tion of the natural object or only space outside the it. Generated regions using
the recursive procedure are kept in a tree called spatial partitioning tree. Most
of these schemes use planes for the subdivision of the regions. The choice of
these planes determines the different variants in such schemes. The best known
variants are: Bintrees (Samet and Tamminen, 1985), (Diehl, 1988), BSP-trees
(Thibault and Naylor, 1987), (Naylor, 1990), (Paterson and Frances Yao, 1992),
Kd-trees (Bentley, 1975), (Greß and Klein, 2004) and Octress (Meagher, 1982),
(Yamaguchi et al., 1984), (Samet and Webber, 1988). Next, the Octree and Kd-
tree representations are briefly described.

Octree representation

Octree representation was independently developed by Jackings and Tanimoto
(Jackins and Tanimoto, 1980), and Reddy and Rubin (Reddy and Rubin, 1978).
In octree representation, the tree-dimensional space surrounding the object is
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called a universe. The universe is divided into cubes (octants). Each cube may be
labeled as in Figure 2.5a. Cubes partially occupied by the object are subdivided
and labeled in the same way recursively until they are of the minimum allowed
size.

(a) The octree enumeration
Jackins and Tanimoto (1980).

(b) An octree representation and its tree structure defining
subdivision.

(c) The octree representation of the Stanford bunny model.

Figure 2.5: Octree representation.

In this case, an octree is a tree that hierarchically defines the object’s shape start-
ing with a root node that covers the entire universe. Each cube represented by
a node in the tree is then successively subdivided into 8 smaller cubes (depen-
dent on the contour information) with the cube’s edge lengths halved. Further
subdivision of a cube is stopped if it either lies completely inside or outside the
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object.

Figure 2.5b shows an example for such an octree subdivision. The volumetric
object on the left is defined by the tree on the right. Each node in this tree
specifies if one of its subcubes lies completely inside (black), completely outside
(white), or on the object’s surface (gray). In the latter case, the corresponding
voxel is further subdivided until a maximum layer defining the highest resolu-
tion is reached. This way, it is assured that the object’s surface is accurately
modeled while regions outside or inside the object can be efficiently described by
large cubes.

Thus, the result from the recursive subdivision process is represented by a 8-
degree tree (see Figure 2.5b). Each node of the octree is assigned the same label
as that of the corresponding octant. Essentially, the octree representation is an
approximate representation of the three-dimensional object. As an example, the
octree representation of the Stanford bunny is depicted in Figure 2.5c.

Kd-tree representation

A kd-tree is a generalization of a binary search tree that stores a collection of
points in k-dimensional space (Bentley, 1975). The root node of the kd-tree is a
box which contains all data points P and the whole domain Ω.

Building a kd-tree starts from the root-node, defined as discriminator 0, and
bisect recursively the cells through their longest axis, so that an equal number of
particles lie in each subvolume (see Figure 2.6a). This bisection is accomplished
using Hoare’s median finding algorithm, which is an average time operation per
level of the tree, making the tree building process an operation. The depth of the
tree can be chosen so that it ends up with at most one particle in the leaf cells
(buckets). A kd-tree representation of the Stanford bunny is depicted in Figure
2.6b.

Several factors motivated the use of kd-tree structure over the classical octree.
The simplicity of the structure and the availability of fast median finding al-
gorithms allow for a very efficient tree-construction. Pointers are unnecessary
since each node in the tree can be indexed so that the finding of children, parent
and sibling nodes are simple bit-shift operations. The use of buckets, by which
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only nodes are required, makes the tree structure memory-efficient. Most sig-
nificantly, it can be extended to a parallel, distributed tree structure in a very
natural way.

(a) The kd-tree structure (Bentley, 1975).

(b) A kd-tree representation of the Stanford bunny
model.

Figure 2.6: kd-tree representation.

2.2.3 Implicit solid modeling

As seen in the previous Section, spatial decomposition schemes have the com-
mon feature that the cells form an abstract solid partition defined as sets of
continuous points. Another way of representing natural objects in Rd is through
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a scalar function defined on d-dimensional Euclidean space with the inequal-
ity(Bajaj, 1997):

F (p) = f(p) ≤ T ; T ∈ R, p ∈ Rd, f(p) : Rd → R (2.6)

where T is a threshold value. The subset p ∈ Rd : f(p) ≤ T is called nat-
ural solid object, and the subset p ∈ Rd : f(p) = T is called iso-surface (see
Subsection 2.3.2).

(a) A 2D disk of radius 2 defined by the function f(x, y) = x2 +
y2 − 22.

f(p) < T, p is inside the object

f(p) = T, p is on the object′s boundary

f(p) > T, p is outside the object

(b) Conditions to classify any point p in the space Rd.

Figure 2.7: Implicit solid modeling.

It might be easier to understand how an implicit function is defined making ref-
erence to Section 2.2.1. Since the voxel representation allows storing discrete
samples of the object’s volume, then, it could be known that a sample is within
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the object if the representation stores a positive nonzero value. The same ap-
proach can be extended to any point in space rather than just discrete voxels
(Menon et al., 1996).

An implicit function can be defined using Euclidean coordinates as input param-
eters and returning the scalar value associated to the function (see Figure 2.7b).
Such scalar value can be interpreted in a similar way as if it was stored in a
voxel, just inverting the sign. If the value returned by the implicit scalar func-
tion for the given point is less than a threshold value, this point is inside the
object (see Figure 2.7a). If the scalar value returned is equal to the threshold
value, the point is on object’s surface. If the scalar value is greater than the
threshold value, the point is outside the object.

The scalar value returned by the function can be interpreted as a distance to
the object’s surface described by the function. For example, the implicit function
f(x, y) = x2 +y2−22 defines a disk of radius 2 centered at the origin of coordinates
(see Figure 2.7a). In this particular case, the interest is placed in a disc with a
threshold value equal to zero, i.e., values less or equal to T = 0 are sought. Figure
2.7a shows a series of scalar values returned by this function for different points
in a 2D plane.

The gray area is a subset of 2D plane where values returned by the function
f(x, y) are negative (f(0, 0) = −4). The dashed contour is a set of points where
the functionf(x, y) returns 0 (point (2,0) belongs to the periphery of a circle as
f(2, 0) = 0). For any other point in a 2D plane f(x, y) returns positive values
(f(3,−3) = 14). Hence any point on a 2D plane can be classified unambiguously.
A set of points for which the functionf(x, y) returns any less than or equal to
0 describes a set of points that belong to the volumetric object (see Figure 2.7a).
Complex functions describing arbitrary objects in d-dimensional space can define
in the same way. For instance, In the constructive representations, primitives
are defined by implicit surfaces, F (x, y, z) = 0 (see Subsection 2.3.2). Thus, the
surface divides the space into two parts: F (x, y, z) ≥ 0 and F (x, y, z) < 0.

Ricci (Ricci, 1973) organized multiple implicit surfaces into binary constructive
solid geometry trees to construct complex solid geometries from simpler prim-
itives (see Figure 2.8). In particular, constructive solid geometry is supported
by boolean algebra and a set of well-understood regularized set operators, al-
lowing complicated objects to be represented as combinations of various ordered
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union, intersection and difference operations on simpler solid objects, which may
be bounded primitives (Requicha, 1977).

Requicha (Requicha, 1977) proposed r-sets (regular sets) as appropriate models
for representing abstract solids.

Definition 3. (R-set): An r-set is any bounded, closed, regular and semi-analytic
subset of E3 (Kumar et al., 1999), (Requicha, 1980).

An r-set model may be viewed as the limit of a certain sequence of manifold
solids (see Definition 3)), or more intuitively, as a generalized manifold solid
(Desaulniers and Stewart, 1992). However, r-sets are not algebraically closed
under the traditional set of boolean operations. To fulfill the property of closing
against rigid transformations and certain boolean operations, the set of regular-
ized boolean operations was established (Requicha and Tilove, 1978), (Voelcker
and Requicha, 1977). This provides a correct result by performing a closing of
the interior of the set resulting from the classic boolean operation. For instance,
the 2D object depicted in the left part of Figure 2.8 is built from three 2D simple
primitives: two rectangles (A and C), and one circle (B). The constructive solid
geometry model is C+(A−B), where C(x, y) = max(| x−(1.5)∗2 | −3, | y−(2.5)∗2 |
−2), A(x, y) = max(| x | −6, | y | −3), and B(x, y) = (x− 1)2 + y2 − 1).

Figure 2.8: Constructive solid geometry based model (Ricci, 1973)

Similarly, Pasko (Pasko et al., 1995) generalized the representation of implicit
surfaces in a system which uses blending, warping and boolean operations to
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combine different forms of implicit models, and denoted it as function represen-
tation (Frep).

However, traditional boolean operations assume objects of interest are homoge-
neous in material compositions and the major concern is focused on boundary
evaluation algorithms (Mortenson, 1997), (Qian and Dutta, 2003). More specifi-
cally, the task of boolean operation is to construct the new boundary representa-
tion for the output object, from input objects A, B and C (operands) and boolean
operators (difference (-) and union (+)) (see Figure 2.8).

2.3 Surface modeling

Most natural objects can be modeled as surfaces. In order to be able to build
three-dimensional surface models at least two-manifold surfaces have to be ob-
tained. A two-manifold can be interpreted intuitively as a surface that does not
intersect itself (Massey, 1991).

Definition 4. (Manifold): A d-dimensional manifold with boundary is a Haus-
dorff space such that each point has an open neighborhood homeomorphic to Rd

or to Rd
+ = {(x1, ..., xn) ∈ Rd|xn ≥ 0}. A two-manifold with boundary is an d-

dimensional manifold with d=2.

In a manifold representation (see Figure 2.9), every point on a surface is two-
dimensional, i.e., every point has a neighborhood which is homeomorphic to a
two-dimensional disk (Weiler, 1988). To better understand such manifold condi-
tions, an example of a two-manifold solid object is shown in Figure 2.9a. Intu-
itively, for any point on the boundary surface of a manifold object, its neighboring
region is homeomorphic to a 2D disk.

Definition 5. (Homeomorphism): A homeomorphism is defined as a continu-
ous invertible map f : K → H whose inverse f−1 : K → H is also continuous.

As seen from Figure 2.9b, even though the region R1 exists in three dimensional
space, it is still topologically flat when the surface is examined closely enough
in a small area around any given point (Weiler, 1988). The same observation
can also be derived for the region R2 in Figure 2.9b and such objects are said
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to be two manifold objects. However, in Figure 2.9c, the point of interest P is
at the intersection of more than two topologically two-dimensional surfaces and
the region R around P is not topologically flat, no matter how close the region is
examined around the point.

(a) A two-manifold solid object. (b) Homeomorphism with a 2D disk.

(c) Non-manifold faces.

Figure 2.9: Manifold surface representation.

Although a wide range of surface representations have been developed, only two
of them will be presented: boundary representation (see Subsection 2.3.1), and
implicit surface representation (see Subsection 2.3.2).
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2.3.1 The boundary representation

The boundary representation model (BRep) is used to define object’s shapes as
sets of connected surface elements (Braid, 1974). BRep models consist of geo-
metric and topological information. While geometric information includes a de-
scription of points belonging to the surface of an object, topological information
specifies the connections between points on the object’s surface (Braid, 1974).

(a) A BRep model.

Vertex Coordinates
V1 x1, y1, z1

V2 x2, y2, z2

V3 x3, y3, z3

V4 x4, y4, z4

Edge Vertices
E1 V1, V 2

E2 V2, V 4

E3 V1, V 4

E4 V2, V 3

E5 V3, V 4

E6 V1, V 3

Face Edges
F1 E1, E2, E3

F2 E3, E4, E5, E6

(b) Data table for vertices, edges, and faces.

Figure 2.10: A BRep model and its data tables

The most common type of BRep is polygonal representation (see Figure 2.10).
Thus, the model of a surface (S) consists of a set of vertices (V), edges (E) and
faces (F) (Van Dam et al., 2013).
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S = {V,E, F}
V = {v1, . . . , vn}

E = {e1, . . . , el}; ei = {j, k}; 0 < j, k ≤ n

F = {f1, . . . , fm}; fi = {ej, ek, . . . , ep}; 0 < j, k, p ≤ l

(2.7)

For example, Figure 2.10 illustrates a Brep model and its corresponding data
tables for vertices, edges, and faces.

2.3.2 Implicit surface modeling

In Subsection 2.2.3 a natural object was expressed implicitly including its inte-
rior and boundary. However, such a natural object can also be modeled using only
an expression of its surface through a function that satisfies a specified condition,
such as:

S = {(x1, . . . , xn) : F (x1, . . . , xn) == true} (2.8)

Thus, an implicit surface S in Rd can be defined as the zero-level set of some
function f : Rd → R:

S = {x ∈ Rd : f(x) = 0} (2.9)

There are some ways to define f . On the one hand, it can have a closed analytical
form, for example, the zero level-set of the function f(x, y, z) = x2 +y2 +z2−12 = 0

defines a unit sphere, classifying the space into two half-spaces f > 0 and f<0.
On the other hand, an implicit function f can also be defined through data-driven
methods taking the form of a signed distance field (Hoppe et al., 1992), or an
indicator function (Kazhdan et al., 2006).

Signed distance fields

Hoppe (Hoppe et al., 1992) proposed an innovative method that approximates a
signed distance field f : R3 → R by assigning each point p ∈ R3, in the point cloud
P, a signed projection onto the tangent plane of its closest point to S, denoted pi:

f(q) = (q− pi) · ni (2.10)
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(a) Point cloud with 2900 points generated from a cow model.

(b) Distance map of Figure 2.11a over a grid
x={0,...,12}, y={0,...8}, z={0,...,5} with a step of
0.1.

(c) Surface extraction from Figure 2.11b using
the Marching Cubes algorithm.

Figure 2.11: Surface reconstruction using signed distance fields

In Figure 2.11c a point cloud P containing 2900 points scanned from the surface
of a cow. The normal field N can be estimated from the point cloud P by a local
principal component analysis of all points pi ∈ P, in a k−neighborhood of pi.
More precisely, for every point pi, the covariance matrix Ci is computed on the
k−neighborhood and the eigenvector corresponding to the smallest eigenvalue is
considered as the normal to point pi.
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Ci =
k∑
j=0

(pj − oi)(pj − oi)
T (2.11)

Note that normal field N must be oriented in order to obtain a good estimation
of the signed distance field (see Figure 2.11b).

The orientation of the normal field N can be modified in order to ensure consis-
tency of the surface orientation, i.e. two close points {pi,pj} ∈ P have a simi-
lar orientation. Ideally, when the point set P is dense, the sampled surface is
smooth. The surface is then defined by the zero level set of the signed distance
function f (see Figure 2.11c).

Radial basis functions

Another option to define f is to interpolate a set of irregularly distributed points
using various forms of radial basis functions (RBF), such as thin-plate splines or
Gaussian (Carr et al., 2001), (Turk and O’brien, 2002).

The method presented in (Carr et al., 2001) constructs the surface by finding an
implicit function defined via RBFs whose zero level-set represents the surface
(see Figure 2.12a). More specifically, the authors use globally-supported basis
functions of the form φ(r) =‖ r ‖2. The implicit function f may be expressed as:

f(p) = P (p) +
n∑
i=1

λiφ(ri), ri =‖ p− pi ‖ (2.12)

where P (p) denotes a low-degree polynomial and the basis functions are shifted
by the evaluation point p. Coefficients λi are found by prescribing, as interpola-
tion constraints, a function value of 0 for pi ∈ P.

Coefficients λi are calculated so that a set of interpolation conditions of the form
f(pj) = dj, j = 1, . . . , n are satisfied. This leads to a linear system of equations
of the form

Ac = d (2.13)
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where A is a symmetric N × N matrix with components Aij = φ(‖ pi − pj ‖),
c = [c1, . . . , cn]Tis the unknown vector of coefficients and d = [d1, . . . , dn]T. The
interpolated surface is arbitrarily taken to be the zero iso-contour of the implicit
function, i.e. we set f(p) = 0 if pi is on the surface.

This system has a solution if A is non-singular and a non-trivial solution may
be obtained only if d = 0. This requires that, at least, one interpolation point
must lay away from the iso-surface. These points are often referred to as off-
surface points. Off-surface constraints are necessary to avoid the trivial solution
of f(p) = 0 for p ∈ R3. Positively and negatively valued constraints are set for
points displaced at pi along ni in the positive (negative) direction (see Figure
2.12b).

(a) Point cloud and surface reconstruction of a dragon model.

(b) Off-surface constraints points.

Figure 2.12: Radial basis functions (Carr et al., 2001).

Displaced points are selected such that each one’s closest point in P is pi. How-
ever, when the input contains some noise, determining the proper placement
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of off-surface points can become challenging. Coefficients λi are found via a
dense linear system in n, however, by exploiting the structure of the radial basis
function φ, fast multipole methods are used to reduce complexity from O(n3) to
O(n log n) (Carr et al., 2001).

Alternatively, f can be defined in a piecewise manner using an adaptive space
subdivision scheme (Frisken et al., 2000), (Ohtake et al., 2005). Given a set of
points P = {p1,p2, . . . ,pn} sampled from a surface equipped with unit normals
N = {n1,n2, . . . ,nn}, the multi-level partition of unity (MPU) approach defines
an implicit function f(x) that is an approximation of the signed distance from
P. This function divides the space into the interior f(x) < 0 and the exterior
f(x) > 0 of the object. The boundary surface corresponds to the zero-level of the
distance function f(x).

Globally, a MPU function is composed of overlapping local approximation func-
tions Qi(p) that are blended together using nonnegative compactly supported
functions φi(p) that sum up to 1 everywhere on a bounded Euclidean domain Ω.

f(p) =
n∑
i=1

φi(p)Qi(p), (2.14)

where each φi(x) is computed as:

φi(p) =
wi(p)∑n
j=1 wj(p)

∑
i

φi(p) ≡ 1 ∀p ∈ Ω (2.15)

Indicator functions

The function f can also be defined in the form of an indicator function χ. The
indicator or characteristic function of a subset A of some set X, maps elements of
X to the range {0,1} (Folland, 2013) (see Figure 2.13), i.e.

χA(x) :=

 1

0

if x ∈ A

if x /∈ A
(2.16)
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Figure 2.13: Indicator function χA of a subset A belonging to a Domain X

The (smoothed) gradient of χ corresponds to a vector field V formed by an in-
tegral over the (unknown) surface, which can be approximated by a summation
over the oriented points (Kazhdan et al., 2006) (see Figure 2.14).

Figure 2.14: Four-stage illustration for Poisson surface reconstruction process.
Taken from (Kazhdan et al., 2006)

To obtain a least-squares solution of 4χ = V, the divergence operator is applied
to both sides, i.e. ∇ · ∇χ = ∇ ·V, resulting in a Poisson equation:

4χ = ∇ ·V (2.17)

In order to scale to larger resolutions, Kazhdan (Kazhdan et al., 2006) directly
solves for χ in the spatial domain via a multi-grid approach, hierarchically solv-
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ing for χ in a coarse-to-fine resolution manner using an octree representation.
This method is called Poisson surface reconstruction (PSR) (Kazhdan et al., 2006)
and uses the Euler-Lagrange formulation, where the minimum is obtained by
solving the Poisson equation:

4χ = ∇ · ∇χ = ∇ ·V (2.18)

The approach of Kazhdan (Kazhdan, 2005) transforms the problem into the fre-
quency domain, where the Fourier transformation of 4χ and ∇ · V results in a
simple algebraic form for obtaining the Fourier representation of χ.

2.4 Composite model representation

Despite the diversity of model representations, natural objects are represented
with only one region that is in fact a solid modeling approach or solid modeling
with functionally graded materials. However, most objects (either natural or
man-made) contain multiple regions within complex volumetric structures. Such
objects can be modeled using a composite model representation.

Intuitively, a composite model can be seen as a collection or group of regions
with an interface separating them (see Figure 2.15), and each region belongs to
a generic "material class" (Wang and Wang, 2005), which may be represented by
any of volume models or surface models.

Mathematically, composite models can be described as:

O = {O1, O2, . . . , On}
Oi = {P = (P

(i)
g , P

(i)
m ) | F (i)(P

(i)
g ) = P

(i)
m , P

(i)
g ∈ Ω

(i)
m , 1 ≤ i ≤ n}

(2.19)

where O is a heterogeneous composite object, Oi is the i-th region belonging to O,
F (i)(·) is the i-th mapping function defined in the geometric subdomain Ω

(i)
g , Ω

(i)
m

is the i-th material subdomain, and n is the number of regions.
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(a) An object with complex material dis-
tributions.

(b) A manifold assembly model of (a). (c) A non-manifold cellular model of
(a)

Figure 2.15: Composite model representation of heterogeneous objects. Taken
from (Kou and Tan, 2007).

Based on the idea of space partitions some researchers (Kumar et al., 1999),
(Chen and Feng, 2004), (Shin and Dutta, 2001), (Kou et al., 2006), (Cheng and
Lin, 2005) propose three strategies to model heterogeneous objects: assembly
models, cell models and constructive models.

Assembly models are a natural and intuitive way to represent heterogeneous
objects. The whole object is modeled as a set of components and each component
is a region with a unique material distribution. Figure 2.15b shows an assembly
model of the object in Figure 2.15a, which is decomposed into a homogeneous
solid part, and a functionally graded material part. Kumar and Dutta (Kumar
and Dutta, 1998), and Hu and Sun (Sun and Hu, 2002) proposed regularized
operators (difference, intersection and union) and other operators to model the
geometry of the assembly.

To represent heterogeneous composite objects using the assembly model, spa-
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tial partitions must be properly established. There are at least two methods
for accomplishing this. The constructive approach (see Subsection 2.2.3), which
generates spatial divisions of the boundaries of existing primitives, and the rm-
set representation. Kumar and Dutta (Kumar and Dutta, 1997) introduced the
rm−set and rm−object for the representation of heterogeneous solid objects. The
rm − set representation is a direct extension of the r − set model (see Definition
3), with additional material distributions included.

Thus, multi-region objects are represented as multiple rm−set, and each rm−set
is assumed to be homogeneous, however, different rm − sets have different (ho-
mogeneous) material compositions. Such objects are compact in geometry repre-
sentation (manifold representation) and the material distribution is assumed to
be homogeneous.

Although manifold surfaces that usually enclosed volumes are appropriate for
many natural forms, certain natural objects, such as hair, feathers, or leaves, are
not easily representable as volumes. Unlike assembly representations, cell mod-
els use non-manifold cell representations for modeling space partitions, i.e. the
geometry is modeled essentially with non-manifold boundary representations.
For a non-manifold object the homeomorphic condition is not necessarily satis-
fied (see Figure 2.9c). In Figure 2.15c, non-manifold conditions occurring around
the edge (border) AB, because the neighborhood of a point on the border AB is
not homeomorphic to a disk in two-dimensions (Weiler, 1988), whereas for an
assembly model all regions are topologically manifold.

In cell representation a topological element (for instance, a face) differs from the
reference sides, i.e., the use of a face is actually the use of one of two sides of
the face, and each side is oriented with respect to the same geometry of the face.
Either of two sides of the face that share the same border element are called
co-boundary (Weiler, 1988).

Some researchers believe that constructive modeling is an elegant way to build
natural solid objects using a tree data structure with operations in the nodes
and primitives in the leaves (Pasko et al., 2001), (Wang et al., 2011). How-
ever, traditional boolean operations are based on the premise that objects are
homogeneous in material compositions and they are not directly applicable to
heterogeneous object modeling tasks. To model heterogeneous composite objects
traditional boolean operations need to be further extended.
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Figure 2.16: Extended boolean operations. (a) Input primitives A and B. (b) Ma

dominant union. (c) Mb dominant union.

Most of the extended boolean operations represent composite objects through
spatial decompositions. Complex objects are first decomposed into regions and
different modeling strategies are then applied to such regions. For example, to
model a heterogeneous composite object C = A ∪∗ B, which is joined from two
input homogeneous objects A(Ga,Ma), and B(Gb,Mb), where G and M represent
geometry and material information for the heterogeneous composite object, the
resultant object C is usually decomposed into 3 subsets (three-set-decomposition)
(Sun and Hu, 2002), (Siu and Tan, 2002)

S1(Ga/
∗(Ga ∩∗ Gb),M1)

S2(Ga ∩∗ Gb,M2)

S3(Gb/
∗(Ga ∩∗ Gb),M3)

(2.20)

where
⋃

*,
⋂

* and /* denote regularized boolean union, intersection and differ-
ence operator (Requicha, 1977).

Most of the extended boolean operations directly represent the material distri-
butions of point set S1 and S3 with the same material distributions as Ma and
Mb, and blend the material compositions with certain weighting ratios for point
set S2. General material definitions for each subset can be defined as:

Mi = W
(i)
a Ma +W

(i)
b Mb

W
(i)
a +W

(i)
b = 1, i = 1, 2, 3

(2.21)

where W (i)
a and W (i)

b are material blending weights for Ma and Mb in subset i.
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Sun and Hu (Sun and Hu, 2002) proposedMa dominant andMb dominant boolean
operators, and apply constant blending weights on each decomposed subset (see
Figure 2.16). For all Ma dominant operators, Wa = 1, Wb = 0; and for all Mb

dominant operators, Wa = 1, Wb = 0. Siu and Tan (Siu and Tan, 2002) proposed
similar heterogeneous insertion and immersion operators in their source-based
scheme.

2.5 Summary

In this chapter, three fundamental approaches for three-dimensional modeling
of natural heterogeneous objects was reviewed. The approaches were mainly
focused on solid modeling, surface modeling, and composite modeling. In gen-
eral way, existing heterogeneous object modelings extend traditional solid mod-
els with a two-step or a sequential scheme (Park et al., 2001), (Cavalcanti et al.,
1997), (Siu and Tan, 2002), (Sun and Hu, 2002), (Kumar and Dutta, 1997). In
the first step, only geometric information is defined which is typically a solid
modeling process. In the second step, material information is incorporated and
mapped onto the three-dimensional modeled geometries.

Exhaustive enumeration and hierarchical spatial partitioning schemes are two
volume modeling strategies that allow explicitly representing just about any ar-
bitrarily natural object; whether it is convex, concave or has interior holes. The
precision is determined only by the size of smallest cells. However, a key limita-
tion of such schemes is the large amount of memory used for the representation.
This is because as a better approximation to represent a natural object is wanted,
gradually a reduction in size of the base cell is needed and therefore an increase
in number of cells is obtained.

Additionally, solid objects can be modeled through implicit functions Blinn (1982),
Wyvill et al. (1986). Implicit functions are usually independent with resolution,
i.e., they can generate a model at any given precision. Implicit solid modeling
uses a sign Euclidean distance function that defines the natural object by as-
signing each point in space the shortest distance between the current point and
any point belonging to the object surface. Although a set of implicit functions
can be organized in a constructive solid geometry tree for generating shapes of
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natural objects, the sign is used to distinguish between inside and outside when
it is considered that the natural object has only one internal region (Pasko et al.,
1995), (Ricci, 1973). However, this is not the case for most natural objects which
are composed of different regions and complex structures.

Instead of modeling natural objects including their interior and boundary, only
modeling their boundary can be useful. In fact, boundary representation (BRep)
plays an important role in modern computer graphics since individual polygons,
such as triangles, provide a reasonable approximation of surfaces of real world
objects. When BRep representation is used, a high degree of realism is gener-
ally achieved by significant increasing the number of constituting polygons, and
by increasing the complexity and sophistication of the algorithms involved in
the rendering process. Unfortunately, BRep models are not very suitable when
boolean and relational operations need to be applied on them. Besides, BRep
often introduces additional restrictions if object’s topology needs to be modified.
Moreover, they are unable to represent the internal structure of the objects be-
ing modeled. This means that modeled objects are actually hollow, so there is no
easy way to represent and explore its internal properties.

Unlike Brep representation implicit surface based approaches construct implicit
functions from which the surface can be extracted as a level set. These meth-
ods can be broadly classified as global or local. Global implicit function methods
commonly define the implicit function as the sum of radial basis functions cen-
tered at each of the input samples (Carr et al., 2001), (Turk and O’brien, 2002).
Despite the fact that traditional methods based on radial basis function are ele-
gant for solving the reconstruction problem, in practice they are difficult to use
in large problems (Dense point clouds). The ideal basis functions are globally
supported and non-decaying, so the solution matrix is dense and ill-conditioned.
Local implicit function methods consider subsets of nearby points at a time. But,
a blending scheme has to be considered for function continuity Ohtake et al.
(2005). An alternative option is to use an implicit function approach based on
indicator functions that combines benefits from both global and local methods.
This approach was proposed by Kazhdan (Kazhdan et al., 2006) in the Poisson
Surface Reconstruction method.

Approaches based on composite modeling tend to utilize manifold BRep and part-
assembly representation to model heterogeneous engineering components. As-
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sembly modeling is an approach used by CAD and product visualization com-
puter software systems to handle multiple files that represent components within
a product. Regions within an assembly are represented as solid models or sur-
face models. While this is clearly a useful capability that follows naturally from
part-based representations of man-made objects, it is not so clear how this capa-
bility can be extended to model natural objects, such as anatomical organs and
structures.

In summary, implicit representations are more compact and exact in data rep-
resentations, resolution independent, and can provide specific accuracy to effi-
cient geometry queries (Kou and Tan, 2007). Moreover, recent studies have been
shown more and more interest in heterogeneous object modeling using compo-
nents implicitly represented (Pasko et al., 2001), (Adzhiev et al., 2002),(Biswas
et al., 2004), (Wang and Wang, 2005), Yuan et al. (2012), whereas explicit repre-
sentations are more efficient in material composition querying, but in practice
explicit representations are very inefficient because the more precise the ob-
ject is defined the more points or voxels should be set and the amount of data
can be prohibited in this case. Furthermore, it is a common practice in solid
modeling to decompose complex models into assemblies, which are collections of
parts. Often this assembly relationship can be nested, so that assemblies contain
other assemblies as parts, and so on. After an initial conceptual stage involving
a top-down division of the natural object into assembly parts, such parts can
be modeled independently, and then integrated into the final three-dimensional
computer model.
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Part II

Methods
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Chapter 3

Modeling regions composing
natural heterogeneous objects

3.1 Introduction

N OWADAYS, the basic and most widely used data structure to generate vol-
ume models from medical images is the voxel model (Sun et al., 2004),

which is considered to be the most accurate representation of natural objects, in-
cluding the human anatomy (Caon, 2004). Due to the fact that voxel models lack
geometric representation, a meshing process is necessary for obtaining an ob-
ject representation suitable for engineering design and analysis. However, such
meshes generally have jagged edges caused by image voxelisation, that are un-
suited for finite element simulations (see Figure 3.1). In this chapter, this issue
is addressed as a reverse-engineering process along with an implicit surface re-
construction process for reconstructing regions composing natural heterogeneous
objects.

In Section 3.2 the computer-aided reverse-engineering based method (CAREM)
is introduced. This method takes as input a voxel model generated from med-
ical images using a segmentation method (see Section 3.3). The voxel model is
converted into a point cloud data through a Voxel-To-Point conversion process
(see Section 3.4). Instead of directly triangulate the point cloud to form a faceted
model (Starly et al., 2004), this point cloud is converted to an implicit surface
representation applying an implicit surface reconstruction approach previous to
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the meshing process (see Section 3.5). Some examples of modeling anatomical
organs and structures using the CAREM method are presented in Section 3.6.
Finally the chapter is summarized in Section 3.7.

Figure 3.1: Bad shaped triangles generated by using the Marching Cubes algo-
rithm.

3.2 CAREM: A computer-aided reverse-engineering
based modeling method

Modeling specific regions composing natural heterogeneous objects often starts
from acquisition of volumetric data using an appropriate medical imaging modal-
ity such as computer tomography. The volumetric domain (CT image) D (see
figure 3.6), expressed by a trivariate function as

f : D ⊂ R3 → R
(xi, yj, zk)→ f(xi, yj, zk), i, j, k = 1, ..., n

(3.1)

is partitioned into a set of regions of interest Ω1, Ω2, ..., Ωn. The goal is to con-
struct three-dimensional computer models of such regions of interest that must
be topologically correct, and geometrically smooth
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Currently, there are two techniques used to generate surface models from medi-
cal images (Moustakides et al., 2000): The first approach builds the surface from
serial parallel contours extracted from sequential medical images (see Figure
3.2).

(a) Liver. (b) Left kidney. (c) Right kidney.

Figure 3.2: Surface mesh from serial parallel contours.

The medical images are segmented into regions of interest (see Figure 3.2a), and
edge points around the boundary are extracted and ordered (Knopf and Al-Naji,
2001) (see Figure 3.2b). Finally, points from different layers are connected to
build the surface triangulation (see Figure 3.2c). Accuracy of the fitted surface
model depends largely on extracted edge points and the the function used to fit
curves to those contours.

The second option is to convert the initial description of the voxel model to a
boundary surface triangulation by using the Marching Cubes algorithm (Lorensen
and Cline, 1987). This algorithm takes eight neighbor locations from adjacent
segmented images at corners of each cube within the base mesh, and determines
the triangles needed to represent the part of the isosurface that passes through
each cube (see Figure 3.3).

Material information related to the vertex inside the cube is obtained directly
from two segmented slices. If a vertex has a different identification (ID) from
neighboring vertices, a boundary surface must exist between this vertex and the
others in order to separate different region materials. There are 256 different
combinations of region materials a cube might have. These combinations can be
reduced to 15 patterns using symmetry (see Figure 3.3). Individual triangles are
then merged into the desired surface. However, as segmented data from medical
images is, in general, huge, jaggy, not properly ordered and noisy, the Marching
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cubes triangulation reflects these defects (see Figure 3.1), which strongly impede
the computational efficiency if it is used directly for simulation purposes (Lin
et al., 2001).

Figure 3.3: Marching Cubes combinations reduced to 15 patterns using symme-
try. Taken from (Lorensen and Cline, 1987)

3.2.1 Algorithm

To overcome these issues a computer-aided reverse-engineering based modeling
(CAREM) method is proposed along with an implicit surface reconstruction pro-
cess for modeling different regions composing natural heterogeneous objects (see
Algorithm 3.1).

Algorithm 3.1 The CAREM method
Input: A medical image containing the region of interest Ωi.
Output: A closed manifold three- dimensional model of the region Ωi.

1: Create V oxelModel ← ExtractRegion(Ωi).
2: Generate point cloud V← V oxelToPointCovertion(V oxelModel).
3: Compute χ← ImplicitSurfaceReconstruction(V).
4: Extract closed manifold surface model SurfaceMesh(χ).
5: Extract closed manifold volume model V olumeMesh(χ).

Reverse engineering is an important method in constructing CAD models from
existing physical objects or devices to determine its structure or function (Wang,
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2010). However, reverse engineering in CAD applications has stronger require-
ments than reverse engineering with applications in computer graphics: it aims
at providing valid, accurate and consistent models. Moreover, modeling of natu-
ral objects differs vastly from modeling of engineering components. Natural ob-
jects tend to have more complicated geometries than mechanical objects (Mous-
takides et al., 2000).

Figure 3.4 shows a flow chart of the CAREM algorithm for computing a closed
manifold triangular mesh as a boundary surface of specific regions of interest Ωi.
The CAREM method consists of three mayor processes (see Figure 3.4): voxel
model generation from medical imaging data (see Section 3.3), voxel to point
conversion (see Section 3.4), and three-dimensional reconstruction (see Section
3.5).

Figure 3.4: Flow chart for applying the CAREM method for region modeling

Next, these three processes are described in details.

3.3 Voxel model generation process

In the first process anatomical organs and structures are measured using med-
ical imaging scanners (see subsection 3.3.1). Medical acquisition modalities are
the most important source of anatomical and functional information, which is
indispensable for today’s clinical research, diagnosis and treatment, and is an
integral part of modern health care. Current imaging modalities provide large
amount of data which are capable of generating representations of natural ob-
jects, including their interior (Stytz et al., 1991).
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With the availability of medical data came the need to improve and automate
medical image processing techniques. Due to noise and lots of irrelevant infor-
mation in medical data, image processing is necessary. Filtering and smoothing
techniques are usually used to improve and simplify images through reducing
noise and keeping important features (Schroeder et al., 2006). Additionally, it is
also necessary to identify which type of organs and structures are present in the
data space, and the precise location of edges between different tissue types. This
process called image segmentation yields as result voxel models (see subsection
3.3.2).

3.3.1 Three-dimensional image acquisition

An ideal three-dimensional computer model would provide an accurate and effi-
cient approximation for huge data sets, as well as the exact evaluation of func-
tion values and gradients which are required for high-quality visualization and
physical simulation. When building models based on medical image data, there
are two main components related to accuracy: data collection and data post-
processing.

Data collection is the field where a radiologist is concerned with and reliable data
acquisition depends on variables, such as choice of appropriate medical image
modality, a choice of a 2D image reconstruction algorithm and patient’s dosage.
While computer scientists have little control over data they receive for post pro-
cessing, their research can greatly improve medical data processing and enhance
accuracy of obtained medical data through a wealth of medical image processing
and reconstruction techniques.

Computer tomography (CT) and magnetic resonance imaging (MRI) are two types
of medical imaging scanners. CT is more effective in modeling hard tissues and
sharply defined density changes, such as interface between bones and soft tis-
sues, whereas MRI is better in differentiating soft tissues of similar density.
However, the resolution of MRI is consistently worse than CT. Next, computer
tomography is briefly described.
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Computed tomography

Computer tomography was the first imaging modality to offer detailed view of the
internal anatomy in three-dimensions (Caon, 2004). The foundation of CT image
generation is the measurement of x-ray attenuation along a line between an x-
ray source and an x-ray detector (Prince and Links, 2006). A 2D cross-sectional
image is then reconstructed following the collection x-ray attenuation coefficients
along all lines within the cross-section. In fact the term computed tomography
alone CT is often used to refer to X-ray CT, although other tomography types
exist, such as positron emission tomography (PET) and single-photon emission
computed tomography (SPECT).

Seven generations of basic CT scanners have been introduced, with each con-
sequent model introducing faster acquisition of data and higher image quality.
For instance, helical CT was developed in the 1980s to address the growing need
for fast volume data acquisition (Evans, 2008). In such scanners, x-ray source
and detectors rotate continuously. The patient’s table is set into forward motion
sliding the patient through the source-detector plane (see Figure 3.5). As result,
as the name of the scanner implies, the position of the source carves out a helix
with respect to the patient (Evans, 2008).

In CT, a number of 2D radiographies (slices) are acquired by rotating the X-Ray
tube around the patient’s body (see Figure 3.5). The x-ray tube makes a short
burst of x-rays that propagate through a cross-section of a patient. The detector
detects the exit beam intensity which is integrated along a line between the x-
ray source and each detector (Evans, 2008). Thus, the integrated x-ray intensity
at any given detector is given by (Evans, 2008):

Id =

Emaxˆ

0

S0(E)Eexp

− dˆ

0

µ(s;E)ds

 dE (3.2)

where S0(E) is the x-ray spectrum and µ(s;E) is the linear attenuation coefficient
along the line between the source and the detector.

Full three-dimensional image is built using image reconstruction algorithms (see
Figure 3.6b), which depends on the scanner’s geometry. The most commonly re-
construction algorithms used are parallel-beam, fan-beam, helical-scan, or cone-
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Figure 3.5: Schematic representation of the process involved in 3D computed
tomography.

beam, and filtered back-projection (Evans, 2008). Three-dimensional objects are
traditionally reconstructed as a stack of 2D slices. Figure 3.6 illustrates the re-
lationship between 3D and 2D.

(a) A 2D projection taken from multiple
views around the object (see Figure 3.5).

(b) A 3D image reconstruction of an object
from a series of 120 2D axial projections.

Figure 3.6: Relation between 2D and 3D projections.
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Hounsfield scale

Effective energy varies between different CT scanners and is dependent on the
type of x-ray tube used. This in turn means that the same object will produce
a different value of µ on different scanners. Thus, to compare medical data pro-
duced from different CT scanners, numbers are calibrated and expressed as CT
values (see Table 3.1).

Table 3.1: Hounsfield units of various tissues (Webster, 1988).

Tissue CT number
(HU)

Bone 1000+
Hemorrhage 60-110

Liver 50-80
Muscle 44-59
Blood 42-58

Gray matter 32-44
White
matter

24-36

Heart 24
Cerebrospinal

Fluid
0-22

Water 0
Fat -20 to -100

Lung -300
Air -1000

A CT scanner measures and reconstructs the value of coefficient µ at each pixel.
CT value of a region material, given the effective energy of the source beam, is
computed from the linear attenuation coefficient of the region material and is
calculated using the following relation:

CT number h =

[
µm− µw

µw

]
∗ a (3.3)

where µm and µw are linear attenuation coefficients for the region material and
water, respectively, and a is a scaling factor.

CT values are expressed in Hounsfield units (HU) (see Table 3.1). Hence, Hounsfield
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scale is a linear transformation of original coefficient measurement where radio-
density of distilled water at standard pressure and temperature is defined as
zero. Since µ = 0 for air, it is h = -1000 HU for air. Typically, largest Hounsfield
values are found in the bone, where h ≈ 1000 HU (see Table 3.1).

(a) Raw data of a chest CT

(b) Liver segmentation from Figure 3.7a, located
in the image domain.

(c) Volume visualization of the seg-
mented human liver.

Figure 3.7: Image segmentation of a human liver.
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3.3.2 Image segmentation

In order to successfully build a three-dimensional computer model of specific
regions composing natural objects, it is crucial to accurately identify and extract
such regions from medical images. In the context of medical imaging, raw data
has no structural descriptions beyond intensity values (see Figure 3.7a). So data
have to be segmented into homogeneous regions in order to distinguish objects
of interest against their surroundings within a process called segmentation (see
Figure 3.7b).

Image segmentation is the process of identifying separation of different objects
within the data set. Anatomical organs and structures can be extracted by man-
ual or partially automated segmentation methods. However, segmentations have
to be anatomically meaningful to be used in further applications, such as quanti-
tative shape analysis, visualization and subsequent model building (Prince and
Links, 2006) (see Figure 3.7c).

Thresholding

Thresholding is a simple technique for images that contain regions of interest on
a background of different, but uniform, brightness. Each pixel is compared to a
threshold T: if its value is higher than T, the pixel is considered to be foreground
and is set to white, and if it is less than or equal to T it is considered background
and set to black. Thus, the success of thresholding depends critically on the
selection of an appropriate threshold (see Figure 3.8).

In some situations an upper and a lower threshold can be defined, separating the
image into structures of interest and background. This method works well, for
instance, for bone segmentation from CT scans since bone tissue attenuated sig-
nificantly more during image acquisition and is therefore represented by much
higher values on the Hounsfield scale compared to soft tissues.
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(a) An original lung CT image. (b) Result from applying a threshold equal to
-300 to Figure 3.8a.

Figure 3.8: Threshold applyed on a lung CT image.

Region-based methods

Region-based methods find connected regions based on some similarity of pixels
within them. The objective is to produce connected regions that are as large as
possible. Region growing is a button-up procedure that starts with seed pixels,
and then grows regions by adding neighboring pixels that have similar properties
to the seed. Connectivity (4- or 8-) is used to define what are the neighboring
pixels. Figure 3.9 shows the segmentation of a three-dimensional CT image. The
image was segmented using two seed points placed in different lungs.

Although medical image segmentation is an established and mature field, au-
tomating this task remains a difficult issue due to the sheer size of datasets
and the inherent complexity and variability of the anatomical shapes of interest
(Kass et al., 1988), (De Santis et al., 2007). However, manual segmentation is
a laborious and time consuming process that is subject to error. Thus, a semi-
automatic approach is used in the CAREM method for the voxel model genera-
tion process. Indeed, all voxel models of anatomical organs and biological struc-
tures used in this research work were segmented using a region-growing method
based on an trial and error calculated threshold from the Insight Segmentation
and Registration Toolkit (ITK) (www.itk.org).
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Figure 3.9: Result from applying the region-growing method to Figure 3.8a

For example, Figure 3.10 depicts voxel models of three human organs: a liver
(see Figure 3.10a), a left kidney (see Figure 3.10b), and a right kidney (see Figure
3.10c), all of them obtained from a patient image provided by IRCAD (IRCAD,
2015). To segment these organs a threshold T shown in Table 3.1 and a region
growing algorithm were applied.

(a) Liver. (b) Left kidney. (c) Right kidney.

Figure 3.10: Some voxel models obtained using the CAREM method.
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3.4 Voxel-To-Point conversion process

In Subsection 3.3.2 the medical image from a given natural heterogeneous object
Ω is segmented into n regions with uniform material. The result from applying
the segmentation process are voxel models. Although voxel models are currently
considered to be the most accurate representation of the human anatomy, such
volume descriptions tend to impose high demands on memory due to their three
dimensions. Additionally, voxel models lack geometric representation, which
would make them unsuitable for bioengineering analysis and simulation. There-
fore, efficient representations of large voxel volumes are essential for recovering
the object’s geometry.

In Section 3.5 an implicit surface reconstruction approach is proposed previous
to the meshing process. However, the main requirement of all implicit surface
reconstruction methods is a set of three-dimensional points P that sample the
surface of the physical object. In the field of computer graphics the set of points
P is usually obtained by laser range-finders, mechanical touch probes and com-
puter vision techniques, such as depth from stereo (Ohtake et al., 2005). As the
result of the first step of the CAREM method is a set of voxel models, a process
for extracting boundary points and surface normals from these models has to be
developed. This process is called Voxel-To-Point conversion process (see Figure
3.4).

The Voxel-To-Point conversion process starts with the boundary surface trian-
gulation produced by the Marching Cubes algorithm (Lorensen and Cline, 1987)
(see Subsection 3.4.1). Then the information related to the position of each vertex
is taken along with the normal vector calculated using a 6-point central differ-
ence gradient operator (see Subsection 3.4.2).

3.4.1 Point cloud generation

The voxel model obtained in the previous section is considered to extract the
required boundary points Pi. The voxel model is processed by taking each voxel
cell in turn. If the eight voxel values evaluated at the voxel cell corners are
identical, the cell is located inside or outside the region.
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(a) Voxel model considered for extracting boundary points.

(b) Point cloud generated from 3.11a.

Figure 3.11: Extraction of boundary points (only a 10% is shown).

However, if one or more values are different from their neighbors, the cell crosses
the object boundary. In that case, a boundary point is created at the center of
the voxel cell indicating that the region surface runs near this point (see Figure
3.11b).

In Chapter 5 is shown the number of points generated by this procedure. As
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this number tends to be rather large, a decimation procedure is frequently used.
However, experiments were carried out without this decimation in order to high-
light the robustness of the CAREM method.

3.4.2 Surface-normal computation

In some occasions, knowing where a surface is heading towards might be use-
ful information. Indeed, the three-dimensional reconstruction process of the
CAREM method assumes a set of normal vectors N along with the point cloud
P, i.e., for each pi ∈ P there is an accompanying normal ni ∈ N. In fact, the
implicit surface reconstruction process requires as input data a set of points
P = {p1,p2, . . . ,pn} sampled from the three-dimensional segmented image with
corresponding normals N = {n1,n2, . . . ,nn}.

Surface normals are typically computed directly from the point cloud. A popular
and simple method for computing the normal at a given point p is to perform
principal component analysis (PCA) in a local neighborhood of p (Hoppe et al.,
1992). More specifically, if a local neighborhood of p is denoted by Np then the
most basic way to apply PCA is by an Eigen analysis of the covariance matrix:

Cp =
∑
q∈Np

(p− q)(p− q)T (3.4)

The eigenvector of Cp associated with the smallest eigenvalue defines un-oriented
normals. Note that if the smallest eigenvalue is 0, then the region defined by p

and Np is planar, since eigenvectors associated with the second largest eigen-
values capture all of the variance in the data. However, the issue is to find a
local neighborhood of points, where the neighborhood must be small enough to
accurately represent a point’s tangent space. Likewise, the neighborhood’s scale
must be proportional to the sampling density at the point. This could lead to
bad oriented surface normals that impacts directly in the accuracy of the final
reconstruction (see Figure 3.12b).
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(a) Surface reconstruction of a liver with good
oriented surface normals.

(b) Final surface reconstruction with bad ori-
ented surface normals.

(c) Surface reconstruction
of a kidney with good ori-
ented surface normals.

(d) Two view of the kidney surface reconstruction with
bad oriented surface normals.

Figure 3.12: Effects of oriented surface normals over the surface reconstruction
method.

As the estimation of sampling density is itself a challenging issue, particularly
when faced with nonuniform sampling the information related to normals is di-
rectly calculated from segmented images. However, there are some issues that
makes the estimation of surface normals from segmented data especially diffi-
cult:

• On account of the data’s binary nature, there is always an abrupt change
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in data values at object’s surfaces, resulting in reconstruction artifacts due
to under-sampling.

• Once the volume is segmented, any prior information about the object’s sur-
face is discarded and estimating a new surface from binary samples proves
the best option.

• Additionally, normals must have consistent directions, either pointing in-
side or outside of the surface (see Figure 3.13).

Thus, when the tangential surface of a very specific voxel is wanted, it is neces-
sary to take a look at its surroundings. Hence, a radius r of voxels is defined,
in which surface voxels are specified . Within the defined radius, all first order
surface voxels will be derived.

For the present work, the radius r=1 and the oriented normal n to the surface is
given by (Hartmann, 1999)

n =
∇f
‖ ∇f ‖

, ∇f =
∂

∂x
,
∂

∂y
,
∂

∂z
(3.5)

Thus, the surface normal information is calculated using a 6-point central dif-
ference gradient operator of the form n = (nx, ny, nz) = (d(x + 1, y, z) − d(x −
1, y, z), d(x, y + 1, z)− d(x, y − 1, z), d(x, y, z + 1)− d(x, y, z − 1)).

The sign of the surface normal vector, calculated as above, is not always clear.
So, it is not really known whether the surface normal vector is facing inside or
outside the model. As the result of the segmentation process is a voxel model,
not only a shell, it can be easily solved this ambiguity. Since the only undeter-
mined property is the vector sign, voxels on either side can be checked. On one
side, there should be object’s voxels presented, on the other side, they should be
background voxels. This assumption is valid since only surface voxels are con-
sidered. Figure 3.13a depicts a set of oriented surface normals pointing outside
of the point cloud.
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(a) Outward pointing surface normals.

(b) Inward pointing surface normals.

Figure 3.13: Generation of oriented (outward and inward pointing) surface nor-
mals from MC triangulation of the liver (only a 10% is shown).
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3.5 Three-dimensional reconstruction process

In this section, the set of points P = {s1, s2, . . . , sn} : si = (si,ni) obtained in
Section 3.4 is defined as a continuous real function of point coordinates y = f(p),
where f(p) ≤ 0 define points that belong to the object and f(p) > 0 define points
outside the object (Kou and Tan, 2007) (see Subsection 3.5.1). In a second step
(see Subsection 3.5.2) a meshing algorithm is used to approximate f(p) = 0 by a
surface mesh or a volume mesh.

3.5.1 Implicit surface reconstruction

Even though large amount of research has been done in the past on reconstruc-
tion of smooth surfaces from point clouds, this is still a challenging problem (see
Subsection 2.3.2). However, based on the observation that segmented data con-
sists of one value for points inside the object and a second value for points outside
of the object, the inward pointing normal field of the boundary of a region can be
interpreted as the gradient of the region’s indicator function χΩ. The function χΩ

is often defined to have value 1 inside and value 0 outside the model (see Figure
3.14-left).

Figure 3.14: CAREM surface reconstruction process using the Poisson surface
reconstruction method. Taken from (Kazhdan et al., 2006)

Kazhdan (Kazhdan et al., 2006) showed that the isosurface induced by the indi-
cator function defines the reconstructed surface ∂Ω (see Figure 3.14-right).

75



Algorithm 3.2 Constructing the octree structure
Input: An oriented point set V = {s1, s2, . . . , sn} : si = (pi,ni).
Output: An octree structure.
for all si ∈ V do
o← OctreeRoot
for d = 0 to MaxDepht do
k ← OctantIndex(pi)
o← DetOrCreateChild(o, k)
RefineNeighbors(o)

end for
end for

In Section 3.4 a set of points P = {p1,p2, . . . ,pn} from a segmented voxel model
was obtained along with their corresponding normals N = {n1,n2, . . . ,nn}. These
two vector are combined in a point set V = {s1, s2, . . . , sn}, where si = (pi,ni).
Here, the basic idea is to reconstruct the surface from V, estimating the indicator
function χ by ensuring its gradient as-close- as-possible to the normal field of V
in terms of least-squares using ‖ ∇χ − V ‖2

2. Thus, the smoothed gradient of χ
corresponds to a vector field V formed by an integral over the (unknown) surface,
which can be approximated by a summation over the oriented points (Kazhdan
et al., 2006).

If the divergence operator is applied to this problem, then this is equivalent to
solving the following Poisson equation:

∇ · ∇χ = 4χ = ∇ ·V (3.6)

Since the indicator function (and therefore its gradient) only contains high-frequency
information around the surface of the region, an adaptive, multi-resolution basis
is used to represent the solution. Specifically, an octree O is adapted to the point
samples (see Algorithm 3.2), and then a function space is defined by associating
a tri-variate B-spline Fo to each octree node o ∈ O.

The B-spline Fo is translated to the node center and scaled by the node size, and
the span F of the translated and scaled B-splines defines the function-space over
which the Poisson equation is solved. (see also Szeliski and Lavallée (1996)).
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Expressed in this basis,

χ(p) =
∑
o∈O

χoFo(p) and ~V (p) =
∑
o∈O

VoFo(p) (3.7)

the Poisson equation reduces to the sparse symmetric system

Lx = b (3.8)

where x = {xo} and b = {bo} are |O|-dimensional vectors of octree coefficients,
the matrix entries are the inner products Lo,o′ =< Fo,4Fd >, and the divergence
coefficients are

bo =
∑
d∈O

< Fo,∇ · (Vo, Fd) > (3.9)

The assembly of matrices requires O(M(N/M)2 operations, and to solve all lin-
ear systems requires O(M(N/M)3 operations. Concerning the evaluation, the
number of operations required is in O(M +N/M).

Solving the Poisson equation, the function χ is obtained that approximates the
indicator function. The surface S is then represented by the zero crossing of the
indicator function, or with a suitable isovalue, typically the average or median
value of χ evaluated at all of the input points. However, the function χ can
differ from the true indicator function due to the point sampling density that
is approximated during octree construction. To mitigate errors related to this
step, Kazhdan in (Kazhdan et al., 2006) adjusts the implicit surface by globally
subtracting the average value or median of the function χ at the input samples.

The implicit surface described as the zero level set of the indicator function is
then input to the meshing algorithm. This mesh is either a surface mesh ap-
proximating the boundary of the modeled object or a volume mesh of it.

3.5.2 Mesh generation

Although resulting implicit based model could be rendered directly as a legal
isosurface object in a raytracing engine POV-Ray, it has been chosen to export it
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as a three-dimensional bioCAD mesh in order to obtain firstly a photo-realistic
rendering of the natural object model, and secondly a valid bioCAD model for
simulation purposes. Once the implicit surface is fitted to the discrete point-set,
an unstructured volume mesh MV ol, or an unstructured surface mesh MS can be
obtained for each region of interest in the given heterogeneous object Ω. The first
step, in the mesh generation process, is to introduce the geometry description.
Thus, to generate finite element meshes, either surface or volume, the length
of element edges for each point in space must be specify as a function h(x, y, z).
After the definition of the mesh size, the standard edge length is computed in
a normalized way as in Frey (Frey, 2000) and a range of acceptance is defined,
elements outside the range will be refined or thickened.

The meshing process produces high-quality unstructured meshes for visualiza-
tion purposes and for obtaining an accurate finite-element solution. For simula-
tion purposes one of the most important quality metrics for both surface meshes
and volume meshes is the minimal angle that avoids having flat triangles. This
optimization is solve with the Delaunay triangulation (Bern et al., 1993). In the
experiments both the surface mesh and the volume mesh were constrained to
have triangles with minimum angle above 30 degrees as shown in Figure 3.15b
and Figure 3.16.

Surface meshing

Surface meshes are generated when applications are only interested in the bound-
ary surface of a given region, for example, in computer graphics applications, or
in boundary element methods. Using surface meshes often results in a more
accurate solution due to the efficiency of shell elements, and in a preprocessing
step for generating volume meshes. Therefore, engineers should consider using
surface models of solid models whenever possible. Although, in old days surface
models were visually awkward (since they have zero thickness and occupy zero
volume in the space), nowadays this is eliminated by allowing a rendering of
thickness, so that surface bodies can be visually the same as solid bodies.

For surfaces given as the zero level set of an implicit function φ(x) in R3, a mesh
approximation of the isosurface can be generated by using the Marching Cubes
algorithm (Lorensen and Cline, 1987) by chosen an appropriated isovalue Γ . In
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(a) Marching Cubes mesh contains a huge number of triangles many of them badly shaped.

(b) Surface mesh fitting the implicit surface of the liver with a triangle size adapted
to the curvature.

Figure 3.15: Surface mesh generation from implicit surfaces.
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this case, the isovalue may be set to the average of the reconstructed indicator
function χ at sample positions, weighted by the sample’s area.

This method is really good for producing nice looking triangle meshes to be used
in various applications, such as games, virtual museum and others. But, when
the final surface mesh is produced by the Marching Cubes algorithm, it contains
a huge number of triangles, many of them badly shaped (see Figure 3.15a). This
makes a mesh simplification and a remeshing procedures be usually needed in
order to produce appropriate three-dimensional bioCAD meshes.

There are two types of poor quality triangles: sharp and flat. The first refers to a
triangle that has one angle close to zero and two close to 90 degrees. The second
one has two angles close to zero and one close to 180 degrees. Although the first
issue can be tackle using the edge collapsing technique, which will join the two
nodes opposite to the close to zero angle, there is not a proper solution for the
second issue.

Due to the above, instead of using the Marching Cubes algorithm, the algorithm
proposed by Alliez (Jamin et al., 2015) is used. This algorithm computes a set of
sample points on the implicit surface and extract an interpolating surface mesh
from the three-dimensional triangulation of these sample points. The resulting
mesh is adapted both to physical and geometric features of computational tasks,
i.e, the surface mesh contains only quality triangles, with uniform sized triangles
or triangles with size adapted the curvature, i.e., few triangles where the surface
is flat, and many triangles where the surface has high curvatures (see Figure
3.15b).

Let MS = (V, F ) be a closed triangular mesh, surrounding the interior of a region
of interest Ω. V = {vi : 1 ≤ i ≤ nV } denotes the set of vertices, and F = {fk : 1 ≤
j ≤ nF} the set of oriented triangular faces. The area of a particular face fj with
vertices {v0,v1,v2} ∈ V equals the outer product of the two vectors r1 = (v0,v1)

and r1 = (v0,v2) :

Area(fj) = 1/2(r1 × r2) = 1/2(y1z2 − y2z1, z1x2 − x1z2, x1y2 − x2y1) (3.10)

where r1 = (x1, y1, z1) and r2 = (x2, y2, z2). Here the symbol x denotes the cross
products of two vectors.
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The area of an arbitrary closed triangular mesh MS is

Area(MS) = 1/2

ˆ
∂S

r×dl

= 1/2
n−2∑
i=1

(v1, vi+1)×(v1, vi+2)
(3.11)

where ∂S is the boundary of region Ω and dl is the differential tangent vector of
the boundary (Lien and Kajiya, 1984). Thus, the area of S equals the sum of the
areas of all triangles.

Volume meshing

Given that some finite-element simulations are based on a volume representa-
tion of the region of interest, it is necessary to convert the triangular surface
representation to a tetrahedral volume representation. Let MV ol = {V,C} be a
volume mesh of a region of interest Ωi. V = {vl : 1 ≤ l ≤ nV } denotes the set of
vertices, and C = {ck : 1 ≤ k ≤ nC} the set of tetrahedrons. Each tetrahedron
ck = {ik1, ik2, ik3, ik4} consists of a sequence of exactly four indexes indexes in the
vertex list due to the CAREM method only produces tetrahedral cells.

Suppose a tetrahedron Ck with vertices {v0,v1,v2,v3} ∈ V , and the vertex v0

located at the origin. The coordinates of the vertices are:



v0 =

v1 =

v2 =

v3 =

(0, 0, 0)

(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

(3.12)

Let define a linear transformation T as

T =

 x1 x2 x3

y1 y2 y3

z1 z2 z3

 (3.13)

This matrix relates the old coordinate system (x,y,z) with the new system (X,Y,Z)
by
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(a) Volume mesh generation with homogeneous cell size.

(b) Volume mesh with variable cell size.

Figure 3.16: Volume mesh generation from implicit surfaces.
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x

y

z

=

 x1 x2 x3

y1 y2 y3

z1 z2 z3


 X

Y

Z

 (3.14)

Applying this tranformation to tetrahedron ck = {v0,v1,v2,v3}, an orthogonal
unit tetrahedron Wk = {v′

0,v
′
1,v

′
2,v

′
3} is obtained.

then, the volume of Ck is:

V ol(Ck) =

ˆ ˆ ˆ
Ck

dv =‖ T ‖
ˆ ˆ ˆ

Wk

dv =
‖ T ‖

6
(3.15)

where ‖ T ‖ is the Jacobian equals to the absolute value of the determinant of
matrix T (Lien and Kajiya, 1984).

For finite-element simulations the physical compatibility dictates a close corre-
lation between size and shape of mesh cells (tetrahedrons) and the convergence
of calculations. Thus, it may be necessary to describe appropriate element size
not only on the boundary, but also inside regions.

The Jacobian ratio (JR) is one of the most used quality criterion in finite element
meshes. The quality of an element e can be defined as

JRe :=
| J |min
| J |max

(3.16)

and therefore, if any element presents a JRe ≤ 0, then not only is the element
invalid, but the entire mesh is considered as not suitable for finite-element anal-
ysis.

In Figure 3.16a is shown a volume mesh with a homogeneous cell size discretiza-
tion, whereas in Figure 3.16b a varying cell size of mesh elements is used to
model the human liver with high accuracy. As can be seen from Figure 3.16 a lot
of element nodes are eliminated when an adaptive cell size meshing method is
used.
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3.6 Examples

In this section, several examples using the CAREM method are shown to demon-
strate the ability of this method to handle complex geometries, that anatomical
regions and organs generally have. First, modeling three anatomical organs is
presented in Subsection 3.6.1. Next, in Subsection 3.6.2 is showed the use of
CAREM method for modeling more complicated structures such as the venous
system.

3.6.1 modeling anatomical organs

Next three examples are related to the modeling of three anatomical organs
whose voxel models are shown in Figure 3.10: a liver, a left kidney, and a right
kidney.

First of all, in Figure 3.17 is shown the surface rendering of the implicit surfaces
of the liver (see Figure 3.17a), a left kidney (see Figure 3.17b), and a right kidney
(see Figure 3.17c).

(a) Back view of liver’s surface. (b) Surface rendering
of Left kidney.

(c) Surface render-
ing of right kidney.

Figure 3.17: Surface rendering of some 3D anatomical models obtained using the
CAREM method.

It can be seen that the staircase effect appearing in voxel models has been re-
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moved and instead of it, all organs are shown with smooth closed surfaces.

(a) Surface mesh of the liver. (b) Surface mesh of
the left kidney.

(c) Surface mesh of
the right kidney.

Figure 3.18: BioCAD surface meshes fitting implicit surfaces of some anatomical
organs.

An important feature of the CAREM method is the generation of bioCAD surface
meshes. Figure 3.18 shows these surface meshes fitting the implicit surfaces
of the liver (see Figure 3.18a), the left kidney (see Figure 3.18b), and the right
kidney (see Figure 3.18c).

Another important feature of the CAREM method is the generation of bioCAD
volume meshes (see Figure 3.19).

In Figure 3.19 a cross-section of volume meshes fitting implicit surfaces of two
kidneys is shown: a left kidney (see Figure 3.19a), and a right kidney (see Figure
3.18c). The cell size of each tetrahedron is adapted to the organ size as it was
shown in Figure 3.16.
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(a) Visualization of a cross sec-
tion of the left kidney’s mesh.

(b) Vertical cut of the right
kidney’s mesh.

Figure 3.19: BioCAD volume meshes of some anatomical organs generated by
the CAREM method.

3.6.2 Modeling anatomical structures

Above three examples have shown the ability of the CAREM method to generate
three-dimensional bio-CAD models of any human organ. Next example is moti-
vated to demonstrate the same ability in generating three-dimensional bioCAD
models from more complicated structures, such as the venous system and other
tubular structures. For this purpose, the venous system which interconnects the
liver and the left and right kidneys was chosen in this case (see Figure 3.20).
The voxel model which was segmented from the CT image is shown in Figure
3.20a whereas the surface rendering of the implicit surface of the venous system
is depicted in Figure 3.20b.
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(a) A voxel model generated by the seg-
mentation process.

(b) Surface rendering of the implicit sur-
face representation.

Figure 3.20: Visualization of voxel model obtained from the venous system and
surface mesh from the implicit representation.

Additionally, the bioCAD volume mesh of the venous system is shown in Figure
3.21. The physical compatibility dictates a close correlation between the size and
shape of mesh cells (tetrahedrons) and the behavior of the finite element solu-
tion that is sought so a varying density of mesh elements can be used to model
complex structures with high accuracy. In the CAREM method the appropriate
element size distribution may be prescribed by the user.

Figure 3.21a depicts the surface view of the volume mesh whereas a vertical
cross-section is shown in Figure 3.21b.
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(a) BioCAD volume mesh of the venous sys-
tem obtained from the implicit representa-
tion.

(b) A vertical cross-section of the bioCAD vol-
ume mesh.

Figure 3.21: BioCAD mesh generation from the venous system implicitly repre-
sented by the CAREM method.

3.7 Summary

This chapter was targeted for modeling specific regions composing natural het-
erogeneous objects, obtained using computer tomography scanners. To achieve
this goal, the computer-aided reverse-engineering based modeling method (CAREM)
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was proposed. The main idea is to construct specific three-dimensional com-
puter models of different regions composing natural heterogeneous objects using
a continuous implicit representation previous to the meshing process. In order
to successfully build such three-dimensional models it is important to accurately
identify and extract region of interest from medical images into voxel models
through a process called image segmentation.

Given that the implicit surface reconstruction method takes as input a point
cloud P, the CAREM method is able to take a voxel model and input it into
the Voxel-To-Point conversion process for extracting the boundary points and
surface normals needed by the implicit surface reconstruction algorithm. So,
the region’s surface ∂Ω = S is represented by the zero level-set of an indicator
function χ(P) = 0, which completely replaces the original voxel model during
meshing operations.

The three-dimensional reconstruction process of the CAREM method finishes
generating quality surface meshes approximating the boundary of specific re-
gions. Moreover, volume meshes of such objects are also generated automati-
cally by means of the implicit surface representation. This approach has a broad
appeal to both theoreticians and engineers working in shape modeling and its
application areas.

Some examples are given to demonstrate the ability of this method to produce
quality models for anatomical organs and structures. Indeed, all examples pre-
sented in this chapter do not create a single degenerate triangle. The Poisson
surface reconstruction method is computed using as solver the Eigen3, version
3.2.0. Surface meshing and volume meshing are computed using the Compu-
tational Geometry Algorithms Library (CGAL) library (Fabri et al., 1998). In
Chapter 5 results of applying the CAREM method will be shown and discussed.
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Chapter 4

Modeling natural heterogeneous
objects

4.1 Introduction

M ANY scientific modeling applications require the ability to model natural
objects composed of multiple regions. In order to successfully build three-

dimensional computer models from such objects, it is important to accurately
identify and extract all regions comprising them. In Chapter 3, this is done
by first isolating each region into a separate volume, extracting a point cloud
from each volume, and then constructing smooth implicit representations from
point clouds. However, these regions need to be considered as a whole, rather
than loosely assembled parts. Additionally, the extraction of smooth multi-region
meshes, that conform to the region boundaries comprising the multi-region nat-
ural heterogeneous object, is required.

In this chapter, this issue is tackled through a region-aware method for heteroge-
neous object modeling named RAM method. In this method each region is called
feature-region that makes reference to a closed volume of space represented by
the geometry and the region material. The implicit surface representation is
used to describe the geometry information of each feature-region, and the region
material information is explicitly represented with a label li : 1 ≤ li ≤ m, where
m is the total number of region materials, i.e., for each region material, there
is one feature-region, containing this material (Feng et al., 2010) (Yuan et al.,

90



2012) (see Section 4.2). In Section 4.3 the Vector implicit function VIF structure
is introduced.

Although different feature-regions composing the natural heterogeneous object
can be modeled independently, they must eventually by stitched together. This
stitching process requires a large amount of tedious manual intervention so an
automate procedure is necessary. Based on both the vector implicit function F

and the vector indicator function χ(F ), a number of modeling operations are pro-
posed in Section 4.4. The meshing process to obtain valid three-dimensional
bioCAD models is explained in Section 4.5. In Section 4.6 the space and time
analysis of the whole modeling process to construct three-dimensional computer
models for natural heterogeneous objects is presented. Example of complex nat-
ural heterogeneous objects modeled with the proposed method are presented in
Section 4.7. Finally, this chapter is summarized in Section 4.8.

(a) Abdominal CT image. (b) 3D segmention into regions of interest
from 4.1a.

Figure 4.1: Generation of feature-regions from a CT image.

4.2 RAM: A region-aware method for heteroge-
neous object modeling

In medical images multiple region intensities are typically present. For example,
from a patient’s abdominal CT image (see Figure 4.1a) about seven regions (or-
gans and structures) have been segmented, each region with a specific intensity
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(see Figure 4.1b). Thus, modeling natural heterogeneous objects begins with the
segmentation of medical images into a set of voxel models, and generation of im-
plicit functions that characterize the surface of each feature-region (see Figure
4.1).

4.2.1 Mathematical model

Let Ω be a natural heterogeneous object in a given geometric domain D ∈ R3

defined by a function F (p) with p ∈ D (Wang and Wang, 2005). If there are a
total of n feature-regions involved in Ω (see Figure 4.2), the value of F (p) is an
integral index of region materials between 0 and n (zero represents no material),
which indicates the region material type in D at p.

Figure 4.2: An artificial heterogeneous object composed of 3 regions. Adapted
from (Wang, 2007)

Suppose that a region filled with the material i is denoted by Ωi, then
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Ω =
n⋃
i=1

Ωi (4.1)

is the complement of Ω0 in D. Thus, the natural heterogeneous object is parti-
tioned by regions with unique material i. Additionally, as each feature-region Ωi

has a meaningful closed boundary surface Γi = δΩi, the interface between two
regions Ωi and Ωj can denoted by

Ωi

⋂
i 6=j

Ωj = Γi
⋂

Γj = Γij = Γij (4.2)

meaning that the geometric domain D is a partition. The index i, (i = 1, ..., n) is
referred to as the feature-region id of Ωi.

Now let

χΩi
(p) =

 1,p ∈ Ωi

0,p /∈ Ωi

(4.3)

be the characteristic function of the feature-region Ωi. Suppose that fi(p) is an
implicit function defined in R3 such that:


fi(p) < 0 if p ∈ Ωi

fi(p) = 0 if p ∈ ∂Ωi

fi(p) > 0 otherwise

(4.4)

Then, the result of multiplying function χΩi
(p) by function fi(p) has the following

property:

χΩi
(p)fi(p) =

 fi(p), p ∈ Ωi

0, p /∈ Ωi

(4.5)

For the function fi(p), once it is multiplied by the functionχΩi
(p), the influence of

function fi(p) outside the region Ωi is diminished as the resulting function value
will be zero for p /∈ Ωi, while the value of fi(p) for p inside the region Ωi will not
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be changed. Now, for a feature-region Ωi represented implicitly by the equation
fi(p) = 0, consider the following equation:

χΩi
(p)fi(p) + (1− χΩi

(p))τ = 0 (4.6)

where τ > 0. As can be seen from Equation (4.6), it will have exactly same
solutions as the equation fi(p) = 0 when it is confined on the feature-region Ωi.
However, the part of the original shape defined by fi(p) = 0 outside the region Ωi

has been removed since when p /∈ Ωi

χΩi
(p)fi(p) + (1− χΩi

(p))τ 6= 0 (4.7)

Then if the domainΩ is partitioned into n disjoint feature-regions {Ω1, Ω2, . . . , Ωn},
that is R3 = (

⋃n
i=1 Ωi)

⋃
Ω0, and the geometric shape over the feature-region Ωi

is represented implicitly as fi(p) = 0, then the overall geometric model of the
natural heterogeneous object over R3 can be put in the form

F (p) =
n∑
i=1

χΩi
(p)fi(p) (4.8)

Definition 6. (Partition of a natural object): Let χ = {χΩi
: i = 1, 2, ..., n}

be a set of characteristics functions in a given domain Ω ∈ R3. χ is said to be a
partition of a natural heterogeneous object, if for each p ∈ Ω, then

n∑
i=1

χΩi
(p) = 1 (4.9)

The successive steps are described in the following algorithm 4.1.

4.2.2 Algorithm

Each region composing the heterogeneous object is first segmented and recon-
structed using an implicit based surface reconstruction approach (see Figure
4.3a). Then, a vector implicit function (VIF) is constructed based on the im-
plicit surface fields (see Figure 4.3b). Finally, the three-dimensional model is
constructed based on the VIF and additional user parameters (see Figure 4.3c).
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Algorithm 4.1 The RAM method
Input: A set of regions Ωi composing the natural heterogeneous object Ω.
Output: A closed three-dimensional model of the natural heterogeneous object
Ω.
1: for all Ωi ∈ Ω do

Vi ← V oxelToPointCovertion(Ωi).
χi ← ImplicitSurfaceReconstruction(Vi).
V IF ← AddFunction(χi)

end for
2: Extract closed manifold surface model SurfaceMesh(V IF ).
3: Extract closed manifold volume model V olumeMesh(V IF )

(a) Region segmentation. (b) Vector im-
plicit function.

(c) Model generation.

Figure 4.3: An overview of the three-step algorithm for modeling natural hetero-
geneous objects.

4.3 Vector Implicit Function (VIF)

Following the idea of Vese and Chan (Vese and Chan, 2002) the concept of par-
tition of a natural object (see Definition 6) can be best described with a vector
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implicit function (VIF) F and a vector indicator function χ(F ) corresponding to
F :

F = {fi | fi : D → R}
χ(F ) = [χi(F ), χ2(F ), ..., χn(F )]

(4.10)

Here, the vector indicator function χ(F ) for each implicit function has a value
of only 1 or 0. The derivative of the vector indicator function can be seen as
the inward normal derivative at the boundary of the domain given by the posi-
tive half-line. Thus, feature-regions Ωi (i = 1, ..., n) of n different regions can be
defined in the design domain D (including the background phase) by the vector
indicator function χ(F ) such that

Ωi = {p : χ(F (p)) = constant VIF, p ∈ D} (4.11)

Thus, the set of n implicit functions fi is organized on a vector-valued continuous
function such that:

F (p) = [f 1(p), f2(p), ..., fn(p)], p ∈ Ω (4.12)

where n is the number of regions. A label i is assigned to a point p ∈ Ω if (and
only if) fi(p) > fj(p) ∀ j 6= i. For any single feature-region i, a continuous, inside-
outside function can be constructed as fi(p) = fi(p)−minj 6=i(fj(p)), and the zero
functions of various feature-regions will coincide at shared boundaries.

The VIF must be minimal, i.e. each dimension in F represents a unique feature-
region and so, a component of VIF in a particular dimension would represent a
distinct feature-region made of that corresponding material. The material label
i is assigned to a point p ∈ R3 if (and only if) fi(p) > fj(p), ∀i 6= j. Additionally, if
p belongs to the interior of Ωi, there does not exist j( 6= i) such that fi(p) = fj(p),
that emphasizes that the scalar component must have a unique maximum at the
interior of a feature-region.

For the purpose of illustration, let us consider a case of three regions (n=3). It is
needed three implicit functions as illustrated in Figure 4.2. In this case, the vec-
tor indicator function χ(F ) has three possible vector values: χ(F ) = {[1, 0, 0], [0, 1, 0], [0, 0, 1]},
corresponding to each of the three distinct regions with the background phase (or
void) indicated by [0,0,0].

96



The main purpose of the VIF is to provide a data structure for representing re-
gions of a natural heterogeneous object and the incidence relation between them.
VIF is an organized structure composed of a collection of vector elements, where
each element has the information related to a feature-region. VIF maintains
geometric variation dependencies among all feature-regions. The geometry of
the whole natural heterogeneous object is dependent on (or determined by) its
embedded feature-region geometries.

4.4 Modeling operations

Although a feature-region (component) in the heterogeneous object model could
be considered as a primitive in a constructive solid geometry sense, the result
from an operation does not yield new feature-region, instead of that it drives
specific actions over the geometric model F (p) of the natural heterogeneous ob-
ject.

4.4.1 Boolean operations

The VIF structure may contain implicit surfaces that intersect each other. A
combination of boolean operations such union, difference and subtraction are
used to resolve such surface overlaps. Analytical definitions of the set-theoretical
operations on functions describing objects have been introduced and studied by
Rvachev for solving problems of mathematical physics in areas of complex shapes
(Rvachev et al., 2001). In such definitions fi and fj are implicit functions of
representing feature-regions Ωi and Ωj:

Union_Regions:

Union(Ωi, Ωj) = Union(fi, fj) = Ωi

⋃
Ωj = max(fi, fj) (4.13)

Intersection_Regions:

Intersection(Ωi, Ωj) = Intersection(fi, fj) = Ωi

⋂
Ωj = min(fi, fj) (4.14)
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Difference_Regions:

Difference(Ωi, Ωj) = Subtraction(fi, fj) = Ωi \Ωj = min(fi,−fj) (4.15)

4.4.2 Building operations

Building heterogeneous object models consist in incrementally add and remove
feature-regions to/from the VIF. The order in which operations are executed de-
termines the resulting heterogeneous object model configuration. The feature-
region that is processed first will most likely lose the most of its geometry, and
will have no influence on the other feature-regions. The feature-region that is
processed last will not be influenced at all by other feature-regions.

Add_Feature_Region():

FeatureRegionAddition(Ωi, F ) = Append(Ωi) (4.16)

Delete_Feature_Region:

FeatureRegionRemoving(Ωi, F ) = Delete(Ωi) (4.17)

4.4.3 Querying operations

In many situations, being able to test whether or not a given point belongs to
a given feature-region is a key operation. This is the point decision problem.
Moreover, it is also interesting to determine the volume of a feature-region and
its surface area. For example, one could ask in which region of the natural het-
erogeneous object a particular point of space is located, and what is the distance
from that point to the surface of its enclosed region.

A point p inside a heterogeneous object model is generally represented as

p(x, y, z,M) (4.18)
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where (x,y,z) denotes its location in the three-dimensional space and M repre-
sents its material composition at (x,y,z). In some circumstances, a heterogeneous
point may be also separately represented as (p,M(p)), where p denotes a geomet-
ric point and M(p) refers to the material composition defined at that location.

Distance_Querying:

Distance(p, Ωi) = min(p, Ωi) (4.19)

Material_Querying:

Material(p,Ω) = F [i] (4.20)

Feature_Region_Geometry: Returns the geometry of the feature-region Ωi.

FeatureRegionGeometry(Ωi) = {p : fi ≤ 0} (4.21)

Heterogeneous_Object_Geometry: Returns the geometry of all feature-regions
that form the heterogeneous object model:

HeterogeneousObjectGeometry(Ω) = F =
n⋃
i=1

FeatureRegionGeometry(Ωi) (4.22)

Volume_Feature_Region: Returns the volume of the feature-region Ωi.

FeatureRegionV olume(Ωi) =
k=m∑
k=1

V olume(celli,k) (4.23)

Volume_Heterogeneous_Object: Returns the volume of the whole heterogeneous
object model

HeterogeneousObjectV olume(Ω) =
n∑
i=1

FeatureRegionV olume(Ωi) (4.24)

Feature_Region_Area: Returns the area of the feature-region Ωi.
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FeatureRegionArea(Ωi) =
k=m∑
k=1

Area(faceti,k) (4.25)

Once the implicit heterogeneous object model is available it could be rendered
directly using a raytracing engine POV-Ray. However, In finite element analy-
sis, multiple feature-regions correspond to various material regions of different
physical phenomena. For this purpose, meshes with appropriate quality and
conforming boundaries are required, i.e. interfaces separating different feature-
regions, as well as boundary surfaces should be smooth and conform to tissue
boundaries (see Figure 4.4).

4.5 Meshing process

In the meshing process an appropriate element size needs to be fitted on the
boundary and inside the heterogeneous object. One of the techniques commonly
used for these purposes is based on so-called sources (Löhner, 1997). Here sources
could be considered as feature-regions comprising the heterogeneous object. Typ-
ically, a small element size is desired close to the feature-region surface, and a
large element size is more preferable far from it (see Figure 4.4a). In other cases,
the element size for a feature-region Ωi in the domain Ω is given as a function of
the closest distance to feature-region Ωi (see Figure 4.4b).

Suppose that an attribute A(Ω) is defined everywhere in the domain Ω and an
arbitrary value Ai = A(Ωi) is interpreted as the desired mesh element size at a
point pi of the feature-region Ωi. Geometry of the feature-region is specified by
the implicit function put in the VIF.
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(a) A cross section of a bioCAD volume mesh with same cell size for all
feature-regions.

(b) A cut of a bioCAD volume mesh with different cell size for each
feature-region.

Figure 4.4: 3D bioCAD meshes from a volume model with embedded regions.

A value of the function χi describing the feature-region at a point pi can be used
as a measure of the closest distance from pi to the feature-region Ωi, d(pi) =

d(F (pi)). The element size attribute Ai generated by the ith feature-region is
defined such that:
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Ai(pi) =

 hmin

min(hmax, (Fi(pi) ∗ (ki − 1) + hmin)/ki)

if Fi(pi) ≤ 0

if Fi(pi) > 0
(4.26)

This formula provides the geometrical progression law of the element size in-
crease. Here hmin , and hmax are the minimal and maximal admissible sizes of the
elements and ki is the coefficient of the progression ki ≥ l, Fi(X) is the functional
description of the ith feature-region (see Figure 4.4).

4.6 Space and time analysis

The idea that natural heterogeneous objects Ω can be decomposed into simpler
regions Ωi is fundamental to design a three-dimensional computer approach for
modeling such objects. All the efficient divide-and-conquer algorithms divide the
problems into subproblems, each of which is some fraction of the original prob-
lem, and then perform some additional work to compute the final answer. The
RAM method begins with the generation of implicit functions that characterize
the surface of each region composing the anatomical structure.

To compute the implicit surface reconstruction method the oriented point cloud
V is organized on an full octree structure of cube dimensions 2hx2hx2h. The
total number of cubes in the octree is 23h. the number of nodes in the octree is
23h + 23h/8 + 23h/82 + . . .+ 82 + 8 + 1 < (8/7)23h. Thus the space used by the octree
is O(N) where N = 23his the number of cubes in the octree. The height of the full
octree is h = log8(N). The time to build the octree is proportional to the size of
the octree, i.e, O(N).

The basic idea of the Poisson reconstruction process is to reconstruct the surface
from V, estimating the indicator function χ by ensuring its gradient as-close-
as-possible to the normal field of V in terms of least-squares using ‖ ∇χ −V ‖2

2.
Thus, the solution of the Poisson equation is obtained comparing a finite set of n
distinct points and taking a positive integer k ≤

(
n
2

)
, which reports the smallest

distance between n pairs of points. Each implicit function is then added to the
vector implicit function VIF.

Once the vector implicit function VIF is computed the RAM method outputs a
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set of triangles in the Delaunay tetrahedrization of Ω, that forms a surface that
approximates and is also topologically equivalent to Ω. Since computing the De-
launay tetrahedrization of Ω requires O(N2) time in the worst case, the surface
reconstruction algorithm has also this quadratic worst time behavior.

It can be observed that the overall worst-case running time is O(N2 logN) when
k is O(N2).

4.7 Examples

This section underlines the fact that natural heterogeneous object models can be
made with different configurations based on both the mathematical model and
the vector implicit function VIF structure. First, an example of modeling a nat-
ural heterogeneous object composed of a liver with 2 liver-tumors is considered
(see Subsection 4.7.1). Next, it is showed an example of using the RAM method
for modeling a multi-material heterogeneous object composed of a liver, a left
kidney, a right kidney, and a venous system (see Subsection 4.7.2). Additionally,
a third example with a more complex configuration is shown where the previous
two examples are combined in a general heterogeneous object model (see Subsec-
tion 4.7.3).

4.7.1 Modeling NHOs with embedded feature-regions

This example is related to modeling of natural heterogeneous objects with em-
bedded regions. Figure 4.5 depicts three voxel models generated from an ab-
dominal CT image: a liver (see Figure 4.5a), and two tumors inside the liver
(see Figure 4.5b). From each voxel model a feature-region has been constructed
using the CAREM method described in Chapter 3. Then these feature-regions
are added to the VIF structure from which three-dimensional computer models
of heterogeneous objects are generated. In Figure 4.4 the domain geometry is
described by the VIF F (p) = [f1(p), f2(p), f3(p)], where f1(p) describes the liver,
f2(p) and f3(p) define liver-tumors (1 and 2).

In this case, the overall surface geometry of the heterogeneous object model is
the geometry of the feature-region that embeds other feature-regions. Thus, the
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bioCAD surface mesh of the heterogeneous object model is the same bioCAD
surface mesh of the liver that is shown in Figure 3.15b. But the case is different
when bioCAD volume models need to be generated. As there are various feature-
regions involved in the natural object the cell size is an important feature of the
bioCAD volume mesh.

(a) A top view of a liver voxel model.

(b) Voxel models of two liver-tumors.

Figure 4.5: Voxel models for volume modeling with embedded regions.

Figure 4.4 shows two bioCAD volume models generated with different cell size
strategy. In Figure 4.4a the cell size is the same for all feature-regions forming
the heterogeneous object model, while in Figure 4.4b the cell size is different for
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each feature-region, however this size does not change inside the feature-region.

4.7.2 Modeling NHOs with multiple regions

In this example, a multi-material heterogeneous object composed of four feature-
regions is modeled. In Figure 3.10 and Figure 3.20 voxel models of a liver, a left
kidney, a right kidney, and a venous system are shown generated from another
abdominal CT image.

Figure 4.6: A cross-section of the tetrahedral mesh for all four feature-regions

From each voxel model a feature-region is built using the CAREM method, and
put into a VIF structure. Then a bioCAD surface mesh (see Figure 4.7) or a
bioCAD volume mesh (see Figure 4.6) from the heterogeneous object model is
generated.
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Figure 4.7: Surface modeling of a multi-material natural heterogeneous object.

Unlike previous cases, the surface mesh generated is not exactly the union of the
feature-region surfaces, but the surface mesh of the heterogeneous object model
generated from the VIF structure. A wireframe model of this mesh is shown in
Figure 4.8
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Figure 4.8: Wireframe visualization of a multi-material natural heterogeneous
object

The bioCAD volume mesh from the heterogeneous object model is obtained ap-
plying the same strategy for the cell size as in the previous case, i.e., set up the
cell size equal for all feature-regions or establish a different cell size for each
feature-region. Figure 4.6 shows one cross-section of the bioCAD volume mesh
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where each feature-region was configured with a different cell (tetrahedron) size,
in this case, kidneys=6, venous system = 4, and liver=8.

4.7.3 Modeling general heterogeneous objects

In this example, a more general heterogeneous object model is obtained combin-
ing two previous examples, i.e., a multi-region heterogeneous object with embed-
ded regions is modeled.

(a) Venous system. (b) Left kidney. (c) Right kidney.

Figure 4.9: Voxel models for volume modeling of a natural heterogeneous object.

Figure 4.9 depicts voxel models that form the multi-region part of the heteroge-
neous object model. They are a venous system (see Figure 4.9a), a left kidney
(see Figure 4.9b), and a right kidney (see Figure 4.9c). The embedded part is
taken from Figure 4.5.

As the cell size of liver-tumors is smaller than the cell size of the liver, the geom-
etry of heterogeneous object model reflects this aspect (see Figure 4.10). For in-
stance, Figure 4.10a and Figure 4.10b show the anterior view and posterior view
respectively of the heterogeneous object model of a liver with two liver-tumors
embedded in it.
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(a) An anterior view of the bioCAD volume mesh.

(b) A posterior view.

Figure 4.10: Rendering of 3D bioCAD meshes with embedded regions.

Although the cell size is different for each feature-region (see Figure 4.11), the
size of the surface triangles (faces) is the same for all the heterogeneous object
model (see Figure 4.10). This is consistent with the definition that all feature-
regions form an heterogeneous object model (see Definition 6).
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(a) A cross section of the multi-region volume mesh
with embedded regions.

(b) A cut of a bioCAD volume mesh with different
cell size for each feature-region.

Figure 4.11: Sections of a multi-region 3D bioCAD mesh with embedded regions.

Figure 4.11a shows a cross section of the multi-region bioCAD mesh with embed-
ded regions where tetrahedrons of the heterogeneous object model are depicted.
Figure 4.11b shows a vertical cut of the bioCAD volume mesh where a different
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cell size is evident.

4.8 Summary

In this chapter, a region-aware heterogeneous object modeling method named
RAM method was proposed to achieve such a goal. Due to the flexible and ver-
satile divide-and-conquer approach, the RAM method can handle multi-material
heterogeneous objects as well as heterogeneous objects with embedded feature-
regions. Additionally, modeling operations are defined and implemented, with
which bioCAD models can be constructed from simple feature-regions.

There are two key properties of the proposed RAM method making it suitable
for modeling natural heterogeneous object. First, the independence of feature-
regions. This means that feature-regions are self-contained; they do not depend
on any external geometric information. Second, the ability to organize feature-
regions into a meaningful implicit vector function VIF structure. Such structure
is beneficial because it allows complexity to be encapsulated, which is important
for both usability and computational efficiency.

Thus, natural heterogeneous objects are modeled with a set of implicitly repre-
sented regions assuming to have homogeneous material distributions. Note that
there are no special restrictions on decompositions, as long as they altogether
form an assembly (partition) of the final object model. Although each feature-
region is independently reconstructed and put in an independent VIF element,
the heterogeneous object model is considered as a whole, rather than loosely as-
sembled parts. Furthermore, diverse decompositions can be possible for the same
natural object depending of different possible segmentations.

Some examples are given to demonstrate the ability of this method to model nat-
ural heterogeneous objects composed of regions within different configurations.
This is expected to make RAM method transcend the traditional boundary geo-
metric modeling and be of benefit to data visualization and finite element-based
analysis. In Chapter 5 results of applying the RAM method will be shown and
discussed.
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Part III

Results and conclusions
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Chapter 5

Results and discussion

5.1 Introduction

I N this chapter, the results of evaluating three-dimensional models produced
by applying both the CAREM method and the RAM method described in Part

II are presented. These results were obtained through a modeling framework
implemented in C++ on a PC with a 3.30GHz Pentium-i7 CPU and 16Giga RAM.
However, there is not ground truth from real patient data to compare the results
with.

In the absence of ground truth, some measure of the accuracy can be obtained
in two ways. The first is to compare results to a gold standard, which has been
generated and reviewed by a panel of experts. The drawback of this approach is
that the gold standard could vary depending on the composition of the panel of
experts and the modeling method used to generate the gold standard. Moreover,
creating a panel of experts in the field of three-dimensional modeling of natural
heterogeneous objects is a difficult task due to the small number of those experts
and the limited time they have. A second option is to conduct an evaluation,
in which the accuracy of three-dimensional models depends solely on quality of
input voxel models, i.e. of the segmented images, and of the function used to fit
the implicit surface to extracted point sets.

Two datasets obtained from IRCAD (IRCAD, 2015) are considered for applying
the CAREM method presented in Chapter 3 and the RAM method presented in
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Chapter 4. From the dataset-1 four feature-regions were segmented, and from
dataset-2 were segmented six feature-regions (see Figure 5.1).

Dataset-1 was acquired using a CT scan in Dicom format with dimensions: 512
x 512 x 219; spacing: x=0.96, y=0.96, z (space between slices) =2.39; Data ranges
are between -2048 and 2890. All voxel models (segmented organs and structures)
have same dimensions as the original patient Dicom image, i.e., 57409536 voxels
that are equivalent to 110 MB (see Figure 5.1a).

Dataset-2 was also acquired using a CT scan in Dicom format with dimensions:
512 x 512 x 129; but smaller spacing: x=0.57, y=0.57, z (space between slices)
=1.59. Data ranges are between -1024 and 1023. All voxel models (segmented
organs and structures) have same dimensions as the original patient Dicom im-
age, i.e., 33816576 voxels that are equivalent to 66 MB (see Figure 5.1b).

(a) Dataset-1 in Dicom format containing 21
organs and structures.

(b) Dataset-2 containing 19 organs and
structures including 7 liver tumors.

Figure 5.1: Datasets obtained from IRCAD IRCAD (2015) for testing both the
CAREM method and the RAM method.

The chapter starts presenting the results from modeling anatomical organs and
structures using the CAREM method (see Section 5.2). Then, the results of ap-
plying the RAM method to model natural heterogeneous objects are presented
(see Section 5.3). Finally, some factors that affect the modeling approach are
discussed in Section 5.4.
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5.2 Modeling regions using the CAREM method

The CAREM method can produce three-dimensional bioCAD models both surface
and volume of any region or object composed of only one region. Next, different
processes involved in the CAREM method are brief summarized. As a first step,
regions of interest from each dataset are identified and voxel models of different
organs and structures are extracted (see Section 3.3). In a second step, voxel
models are used as input to the Voxel-To-Point conversion process to obtain from
each voxel model a point cloud along with a set of normal vectors (see Section
3.4). Finally, each point cloud is loaded into the three-dimensional reconstruction
process (see Section 3.5).

In this section, quality of different three-dimensional bioCAD models obtained
when using the CAREM method is evaluated. Accuracy (see Subsection 5.2.1),
efficiency (see Subsection 5.2.2), and volume preservation (see Subsection 5.2.3)
are the three criteria chosen for evaluating the performance of the CAREM
method. Here, each of these terms are defined, and how they can be measured is
described. Finally, a sensitivity analysis is presented in Subsection 5.2.4.

5.2.1 Accuracy

Accuracy is the degree to which the resulting three-dimensional bioCAD model
matches the truth. Dice’s coefficient and Hausdorff distance are two measures
used to evaluated the accuracy of three-dimensional bioCAD models.

Dice’s coefficient

Dice’s coefficient CDice is used to measure the volume of the region shared by
two models as a percentage of the total volume occupied by both models (Dice,
1945). It is calculated as twice the ratio of the number of voxels contained in the
intersection of two models to the total number of voxels contained in each solid
model.

CDice =
2 | A ∩B |
| A | + | B |

(5.1)

Table 5.1 summarizes the results from computing the Dice’s coefficient using
the MeshValmet tool (https://www.nitrc.org/projects/meshvalmet), between the
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known Voxel model (A) and the bioCAD surface mesh (B) obtained from the im-
plicit representation.

Table 5.1: Dice’s coefficient between Voxel models obtained from dataset-1 (left)
and dataset-2 (right), and bioCAD surface meshes obtained applying the CAREM
method.

Dataset-1 Dice
coefficient

liver 0.9918
left kidney 0.9833

right kidney 0.9892
venous system 0.9578

Dataset-2 Dice
coefficient

liver 0.9946
left kidney 0.9884

right kidney 0.9876
venous system 0.9425
liver-tumor1 0.9870
liver-tumor2 0.9519

Figure 5.2: Dice’s coefficient of 3D bioCAD models from Table 5.1.

It can be seen from Table 5.1 that results are more than satisfactory by noting
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that values of the Dice’s coefficient are above 0.94 for all cases. For instance, the
Dice’s coefficient for the dataset-1 is above 0.95 (see Table 5.1) left, while for the
dataset-2 is above 0.94 (see Table 5.1) right.

Lowest values in both datasets corresponds to the venous system (see Figure
5.2), which is a structure with a very complicated geometry due to the number
of branches it has, and the limited number of points each of these branches is
represented by.

Indeed, Figure 5.2 shows how the more irregular the feature-region is, the smaller
the Dice coefficient is. This coefficient is also affected when the feature-region is
represented by a small number of points; see the case of the liver-tumor2 in
Figure 5.2, yellow line. Although this feature-region has a rounded shape the
number of points that represents it is small (see Table 5.4).

Hausdorff distance.

The Hausdorff distance DHausdorff measures the difference between two object
models in terms of the distances between point samples on the surfaces of both
models. Given two finite point sets A = {a1, . . . , an} and B = {b1, . . . , bm}, for each
point on surface A, the distance to surface B is defined as the Euclidean distance
to the nearest point on surface B.

DHausdorff (A,B) = max(d(A,B), d(B,A)) (5.2)

where
d(A,B) = max

a∈A,
min
b∈B
‖ a− b ‖ (5.3)

and ‖ · ‖ is some underlying norm on the points a and b, for instance, the Eu-
clidean norm. Table 5.2 summarizes the results of computing the Hausdorff dis-
tance DHausdorff between the known Voxel model (A) and the bio-CAD surface
model (B), using the standard tool METRO (Cignoni et al., 1998).
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Table 5.2: Hausdorff distance between Voxel models obtained from dataset-
1 (top) and dataset-2 (button), and 3D bioCAD models obtained applying the
CAREM method.

Dataset-1 Forward distance
d(A,B)

Backward
distance d(B,A)

Hausdorff
distance

liver 2.8193 1.5545 2.8193
left kidney 3.5515 1.3670 3.5515

right kidney 2.9204 1.3581 2.9504
venous system 4.3665 4.3143 4.3665

Dataset-2 Forward distance
d(A,B)

Backward
distance d(B,A)

Hausdorff
distance

liver 4.3309 0.9878 4.3309
left kidney 1.5016 0.9024 1.5016

right kidney 1.3785 0.8574 1.3785
venous system 2.0587 8.6911 8.6911
liver-tumor1 1.2365 0.9236 1.2365
liver-tumor2 1.0504 0.7186 1.0504

It is important to note that this distance is in general not symmetrical, i.e.
d(A,B) 6= d(B,A) as shown in Table 5.2. The distance d(A,B) is referred to as
forward distance, and distance d(B,A) as backward distance.

According to Table 5.2-top forward distance is taken as the Hausdorff distance
for bioCAD models obtained from dataset-1 because it is the biggest distance
between both forward distance and backward distance. This is not the case
for three-dimensional bioCAD models obtained from dataset-2 (see Table 5.2-
bottom), where for the venous system the backward distance has been chosen.

Figure 5.3 depicts the tendency of the Hausdorff distance. It shows how the more
irregular the feature-region is, the bigger the Hausdorff distance is. For instance,
the Hausdorff distance of the venous system model is almost the double than the
Hausdorff distance of the second bigger bioCAD model- the liver, as it is shown
in Figure 5.3 yellow line. This seems to be related to the evident lost of surface
area and volume percentage that present each feature-region once the bioCAD
model is generated (see Table 5.4 and Table 5.6) respectively.
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Figure 5.3: Hausdorff distance of 3D bioCAD models from Table Table 5.2.

5.2.2 Efficiency

In this subsection are summarized the temporal and spatial efficiency of the
CAREM method. In Table 5.3 are listed some time statistics for all processes
involved in the CAREM modeling method: point cloud generation, implicit sur-
face reconstruction, surface meshing, and volume meshing for modeling feature-
regions obtained from both datasets.
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Table 5.3: Time statistics (in seconds) for all processes involved in the CAREM
method for modeling feature-regions from dataset-1 (top) and dataset-2 (button).

Dataset-1 Point cloud
generation

Implicit surface
reconstruction

Surface
meshing

Volume
meshing

liver 2.15 9.18 2.0 10.56
venous system 2.14 5.75 3.0 12.40

left kidney 2.08 1.55 0.43 2.10
right kidney 2.12 1.47 0.43 1.9

Dataset-2 Point cloud
generation

Implicit surface
reconstruction

Surface
meshing

Volume
meshing

liver 1.32 18.9 4.52 7.92
venous system 1.28 7.7 5.55 9.43

left kidney 1.26 3.67 0.83 1.73
right kidney 1.26 2.90 0.76 1.45
liver-tumor1 1.27 2.05 0.81 1.63
liver-tumor2 1.23 0.42 0.12 0.35

Figure 5.4a shows the time required for the same process by all feature-regions
belonging to dataset-1 and dataset-2. It can be observed that the time associated
with the point cloud generation from voxel models belonging to the same dataset
is almost the same: 2.10 and 1.27 respectively. This is because the size of voxel
models from each feature-region are the same no matter the size of the feature-
region as long as they come from the same dataset. Due to the fact that Voxel-
To-Point conversion process has to check all voxels in the voxel model to obtain
the cloud point, it takes the same time to generate point clouds no matter which
voxel model is inputed to.

The time for the implicit surface reconstruction process, for dataset-2, is the
greatest value with the exception of the venous system (see Figure 5.4b), whereas
for dataset-1 the volume meshing is the greatest value for all cases (see Figure
5.4a).

It can be inferred that the time for the implicit surface reconstruction process
depends more of the number of points generated in the Voxel-To-Point procedure
than of geometry complexities of feature-regions.
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(a) Time required for all processes involved in the CAREM method by each feature-region
belonging to dataset-1.

(b) Time required for all processes involved in the CAREM method by each feature-region
belonging to dataset-2.

Figure 5.4: Time statistics for all processes involved in modeling feature-regions
applying the CAREM method.
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The second more time consuming process is the volume meshing which in some
times is higher than the implicit surface reconstruction. This is the case of the
venous system of the dataset-1 whose volume meshing takes almost the double
than the implicit surface reconstruction process (see Figure 5.4a). But when the
number of points increases only the time needed for the implicit surface recon-
struction process increases (see Figure 5.4b).

Additionally, in Table 5.4 summarizes some statistics related to the surface mesh-
ing using the MC-based method which makes the triangulation directly from
the voxel models, and the bioCAD surface meshing process using the CAREM
method. This includes surface area in mm2, number of points, and number
of faces (triangles) generated by both the MC-based method and the CAREM
method.

Table 5.4: Some statistics for surface mesh generation from dataset-1 (top) and
dataset-2 (button) using the CAREM method.

Dataset-1 Points
MC

Triangles
(faces)

Surface
area

Points
CAREM

Triangles
(faces)

Surface
area

liver 114026 228052 133799 3687 7374 116039
left kidney 20684 41364 25014 820 1636 21718.4

right kidney 20224 40444 25088 863 1722 21918.5
venous system 63390 126666 83938 5822 11644 73419.5

Dataset-2 Points
MC

Triangles
(faces)

Surface
area

Points
CAREM

Triangles
(faces)

Surface
area

liver 221402 442788 99179.6 7681 15358 85677.6
left kidney 46822 93640 21492 1599 3194 18697.5

right kidney 38582 77160 17121 1466 2928 14620
venous system 93714 186992 41712 10864 21740 35523
liver-tumor1 29510 59016 12919 1531 3058 11048.4
liver-tumor2 5228 10452 2325 291 578 1998.7

An important feature of the CAREM method is the space reduction after the
surface meshing process is performed mantaining a good value of the Dice’s co-
efficient (see Subsection 5.2.4). In all experiments the space reduction is above
88 per cent in comparison with the space needed by the MC triangulation (see
Table 5.5).
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Table 5.5: Space reduction and surface area keeping by the CAREM method.

Dataset-1 Space
reduction

Surface area
keeping

liver 96.77 86.73
left kidney 96.04 86.82

right kidney 95.73 87.37
venous system 90.82 87.47

Dataset-2 Space
reduction

Surface area
keeping

liver 96.53 86.39
left kidney 96.58 87.00

right kidney 96.20 85.39
venous system 88.41 85.16
liver-tumor1 94.81 85.52
liver-tumor2 94.46 85.97

Figure 5.5: Memory space reduction by the CAREM method after the surface
meshing process.

Although the space reduction is very similar for both datasets (see Figure 5.5), it
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should be noted that the area involved in each feature-region is much higher in
dataset-1 than in dataset-2, but the number of initial points is the opposite, i.e.,
point clouds of dataset-1 have fewest points (almost 50%) than those of dataset-2
(see Table 5.4).

Another feature of the CAREM method is the surface area that is kept during the
meshing process in comparison with the surface obtained from the MC method
(see Figure 5.6). This preservation, even in the worst case is over the 85 percent
(see Table 5.4).

Figure 5.6: Surface area preservation by the CAREM method.

The reduction in surface area could be due to the smoothness required in three-
dimensional bioCAD models. It is well known that a simple procedure, such as
Laplacian smoothing shrinks significantly the feature-region domain (Taubin,
1995). Thus, to achieve a smooth surface for different feature-regions, the algo-
rithm for smoothing reduces parts that exhibit large variation.
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Table 5.6: Statistics for volume mesh generation from dataset-1 (top) and
dataset-2 (button) applying the CAREM method.

Dataset-1 Voxels Volume
(mm3)

Points
MC

Volume
(mm3)

Points
3D

mesh

Volume
(mm3)

liver 962705 2133790 114026 2133391 12602 2131250
left kidney 82996 183957 20684 183841 1973 182798

right kidney 82902 183748 20224 183631 1276 181418
venous system 111763 247717 63390 245835 8338 239241

Dataset-2 Voxels Volume
(mm3)

Points
MC

Volume
(mm3)

Points
3D

mesh

Volume
(mm3)

liver 2865131 1489410 221402 1489300 6346 1487060
left kidney 280405 145766 46822 145727 1308 143265

right kidney 215358 111952 38582 111919 1057 110442
venous system 143180 74431 93714 73069 6926 70723.4
liver-tumor1 162337 84389 29510 84337 1144 83745.4
liver-tumor2 14464 7519 5228 7500 172 7108.93

5.2.3 Volume Preservation

A desirable feature of a three-dimensional bioCAD model is the volume preser-
vation. The preservation of volume is an important feature required in different
fields from Computer Graphics for making deformations look more natural, to
dynamic systems for achieving more stable simulations. In this context, volume
preservation has been studied for many jobs in recent years (Zhang et al., 2009),
(Zhou et al., 2005), and several methods were proposed to reduce errors, such as
volume boundaries or vertexes movement constrained to parameterized spaces
(Frey and Borouchaki, 1998). Even with these restrictions, if smoothing is fre-
quently applied within an adaptive process it tends to accumulate errors.

In Table 5.6 are listed some statistics related to the three-dimensional mesh gen-
eration process. These statistics include number of voxels and volume in mm3
of voxel models (medical segmentations) as well as number of points and vol-
ume of both surface meshes using the MC-based method, and three-dimensional
bioCAD meshes obtained using the CAREM method.
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Figure 5.7: Space reduction and volume preservation obtained from voxel models
to 3D bioCAD models of dataset-1 by the CAREM method.

In Figure 5.7 are shown the space reduction of each feature-region from dataset-
1 between the MC model and the voxel model (MC-Voxel), between the three-
dimensional bioCAD mesh and the MC model (3Dmesh-MC), and finally, between
the three-dimensional bioCAD model and the voxel model (3Dmesh-Voxel). It can
be observed from Figure 5.7 that surface reduction increases from the MC model
to the bioCAD model ranging from 43% for the venous system, to 98.69% for the
liver.

Figure 5.8 depicts the volume conservation of each feature-region from dataset-
2 between the MC model and the voxel model (MC-Voxel); between the three-
dimensional bioCAD mesh and the MC model (3Dmesh-MC), and finally, between
the three-dimensional bioCAD model and the voxel model (3Dmesh-Voxel). It has
been taken only dataset-2 because the volume loss ratio is almost the same as
for dataset-1 which can be easily calculated from Table 5.6.
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Figure 5.8: Space reduction and volume preservation obtained from feature-
regions of dataset-2 by the CAREM method.

It can be observed from Figure 5.8 that the difference in volume between the
three-dimensional bioCAD mesh and the MC model (3Dmesh-MC) ranges from
0.15 for the liver to 3.21 for the venous system. However, an remarkable case is
the tumor2 that despite of being the most small object of all analyzed is which
the greatest loss of volume presents, about 5.2%. This could be due to small
number of voxels that represent the liver tumor2 and the size of these voxels.
The same different applies for volume keeping between the three-dimensional
bioCAD model and the voxel model (3Dmesh-Voxel). The only exception is the
venous system which starts with a volume reduction of the 1.9% between the
MC model and the voxel model (MC-Voxel), continues with a 3.2 when the vol-
ume mesh is generated. However, the total of volume keeping is about 95% that
coincides with the space reduction.

Let us remember that the venous system was chosen because it is a structure
with a very complex geometry that makes three-dimensional bioCAD modeling a
challenging task due to multiple bifurcations (branches) that contains this type
of structure. Additionally, the reconstruction algorithm can skip or cut some
branches of the structure due to low number of points presented in those places.
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5.2.4 Sensitivity Analysis

The CAREM method can produce accurate geometric models of anatomical or-
gans and structures, however, parameters such as space reduction and Dice’s co-
efficient are more-or-less uncertain. Moreover, both the Dice’s coefficient and the
Hausdorff distance are affected by complex geometries of feature-regions as well
as by small number of points used to represent such regions. If parameters are
uncertain, sensitivity analysis can give information such as: how accurate the fi-
nal mode is in the face of different parameter values; under what circumstances
the final model would change; and how the final model changes in different cir-
cumstances.

Although the liver of dataset-2 was taken for the sensitivity analysis the same
analysis could be applied to any region. Table 5.7 depicts seven different exper-
iments on the original liver and shows the number of points obtained from each
experiment, the space reduction, and the Dice’s coefficient.

Table 5.7: Sensitivity analysis applied on the liver organ model.

Experiment Number of points Space reduction Dice’s coefficient
Liver-original 221402 0 1

liver-1 138984 37,23 0,9953
liver-2 82903 62,56 0,9931
liver-3 33759 84,75 0,9911

LIVER-4 7681 96,53 0,9946
liver-5 5779 97,39 0,9805
liver-6 2982 98,65 0,9709
liver-7 1814 99,18 0,9578

Figure 5.9 shows the impact of changing the space reduction on the Dice’s coef-
ficient and therefore on the accuracy of the final model. The forth experiment
labeled LIVER-4 is the best result, i.e, the higher space reduction (96,75 %) with
a good Dice’s coefficient value over 0.99 (0,9946). This means that when approx-
imating the surface with fewer points the approximation error increases. This
best result is given directly by the CAREM method (see Table 5.4).

128



Figure 5.9: Graph sensitivity analysis applied between reducing disk space and
the Dice coefficient of the liver organ model.

5.3 Modeling natural heterogeneous objects us-
ing the RAM method

The region-aware modeling method (RAM) lets model any object (live or inan-
imate) as it were a natural heterogeneous object composed of multiple regions.
Once the heterogeneous object model is created three-dimensional bioCAD meshes
are generated not only for visualization purposes, but for accurate finite element-
based solutions. Next, different stages involved in the RAM method are brief
summarized (see Chapter 4).

First of all, each feature-region that is part of the natural heterogeneous ob-
ject is represented with an implicit function by using the CAREM method (see
Chapter 3). Then, the set of implicit functions is organized in the vector im-
plicit function structure through the Add_Featute_Region() operation (see Sec-
tion 4.2.2). Finally, a three-dimensional bioCAD mesh is obtained using the Het-
erogeneous_Object_Geometry() operation.

In this section, quality of three-dimensional bioCAD meshes obtained when us-
ing the RAM method is evaluated. The same three criteria chosen for evalu-
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ating the CAREM method, were taken for evaluating the performance of the
RAM method: Accuracy (see Subsection 5.3.1), efficiency (see Subsection 5.3.2),
and volume preservation (see Subsection 5.3.3). These criteria were applied on
a multi-material volume model composed of four feature-regions created from
dataset-1, and on a heterogeneous object model of the liver with two tumors em-
bedded in it from dataset-2. Additionally, another heterogeneous object model
called general was created as combination of a multi-material heterogeneous
object with a heterogeneous object with embedded regions, also from dataset-2
(see Section 4.7).

5.3.1 Accuracy

Table 5.8 summarizes the results from computing the Dice’s coefficient CDice us-
ing the MeshValmet tool (https://www.nitrc.org/projects/meshvalmet), between
the known Voxel model (A) and the surface mesh (B) obtained from the bioCAD
volume model. Let’s remain that the RAM method does not generate surface
meshes directly but only volume meshes. So two functionalities of the ParaView
software (Ayachit, 2015) have been used for generating both the point cloud, and
the surface mesh from the three-dimensional mesh: AppendGeometry and Ex-
tractSurface.

It can be observed from Table 5.8 that the value of the Dice’s coefficient is over
0.99 for all three cases. This means that the RAM method produces accurate
heterogeneous object models of natural heterogeneous objects.

Table 5.8: Dice’s coefficient between Voxel models obtained from dataset-1 and
dataset-2, and surface meshes obtained with the RAM method.

Heterogeneous
object model

Dice
coefficient

Embedded 0.994090
Multi-material 0.992253

General 0.990395

Additionally, Table 5.9 summarizes the results from computing the Hausdorff
distance DHausdorff between the known Voxel model (A) and the surface recon-
structed (B), using the standard tool METRO (Cignoni et al., 1998).
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Table 5.9: Hausdorff distance between Voxel models obtained from dataset-1 and
dataset-2, and surface model obtained with the RAM method.

Heterogeneous
object model

Forward distance
d(A,B)

Backward
distance d(B,A)

Hausdorff
distance

Embedded 4.432796 4.432796 4.432796
Multi-material 3.880045 3.424728 3.880045

General 13.910194 8.580923 13.910194

It is observed from Table 5.9 that the forward distance is taken as the Hausdorff
distance. Moreover, for the heterogeneous object model with embedded regions
the Hausdorff distance coincides with the Hausdorff distance of the region that
embeds the other regions, that is what was expected. For instance, the Haus-
dorff distance of the embedded heterogeneous object is almost the same than the
Hausdorff distance of the liver from dataset-2 (see Table 5.2-bottom).

5.3.2 Efficiency

In Table 5.10 are listed some time statistics making reference to point cloud
generation, implicit surface reconstruction, and volume meshing of all three het-
erogeneous object models. However, it is important to clarify that the time for
volume meshing is the only statistic that depends on the RAM method. The time
related to the point cloud generation process and the implicit surface reconstruc-
tion process was calculated as the sum of the time required for each individual
feature-region that is part of the heterogeneous object model which depends on
the CAREM method.

Table 5.10: Time statistics (in seconds) for all processes involved in the RAM
method for modeling feature-regions from dataset-1 (top) and dataset-2 (button).

Heterogeneous
object model

Feature
regions

Point
cloud gen-

eration

Implicit
recon-

struction

Volume
meshing

Embedded 3 3.82 21.37 15.91
Multi-material 4 8.49 17.95 29.35

General 6 7.62 35.64 41.75

Additionally, in Table 5.11 are listed some statistics related to the number of
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points, the number of faces (triangles), and surface area in mm2, generated by
both the MC-based method and the RAM method.

Table 5.11: Statistics for surface mesh generation using the RAM method.

Heterogeneous
object model

Points
MC

Triangles
(faces)

Surface
area

Points
RAM

Triangles
(faces)

Surface
area

Embedded 256140 512256 99174 7051 14100 85505
Multi-material 218324 436526 227505 14067 28178 199425

General 435258 870048 151221 13028 26176 130887

Like for the CAREM method space reduction and surface area preservation are
also two important features of the RAM method. Space reduction is in order
97.25%, 93.56% and 97% for the embedded, multi-material, and general hetero-
geneous objects respectively. Additionally, surface area keeping is of 86.22%,
87.66%, and 86.55% respectively.

Figure 5.10: Statistics for surface mesh generation using the RAM method.
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Figure 5.10 shows how the higher space reduction is less surface area preser-
vation is. This is perfectly understandable since area calculation is based on
triangles of the mesh surface, meaning that the less points you have (greater
space reduction) lower surface to be covered from them (less surface area).

5.3.3 Volume preservation

In Table 5.12 are listed some statistics related to volume mesh generation pro-
cess.

Table 5.12: Statistics for volumetric mesh generation from dataset-1 (top) and
dataset-2 (button) using the RAM method..

Heterogeneous
object model

Feature
regions

Points of
MC

Volume
(mm3)

Points of
3D mesh

Volume
(mm3)

Embedded
with different

cell-size

3 256140 1489303 10594 1487120

Embedded
with same

cell-size

3 256140 1489303 9110 1487110

Multi-material 4 218324 2658253 22480 2648500
General 6 435258 1803347 23580 1798760

These statistics include number of points along with the volume of both the MC
model and the three-dimensional mesh obtained from the RAM method. An ad-
ditional embedded heterogeneous object is included - one with different cell-size -
to see differences in number of points and volume generated by the RAM method.
However, those differences are minimal even improving volume conservation of
the natural heterogeneous object.

Figure 5.11 shows how the higher space reduction is less volume preservation is.
This is the same as for the surface preservation (see Figure 5.10), however, here
the percentage of volume preservation is higher than the percentage of surface
preservation.
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Figure 5.11: Volume statistics by the RAM method.

5.4 Discussion

Results presented in this chapter show that the proposed approach can work ef-
fectively in modeling natural heterogeneous objects. However, it can be observed
that both the Dice’s coefficient and the Hausdorff distance are affected by com-
plex geometries of feature-regions as well as by small number of points used
to represent such regions. Additionally, the time associated with the implicit
surface reconstruction, the surface meshing, and the volume meshing, depends
directly on the number of points, obtained from the Voxel model, and on the ge-
ometry complexity of feature-regions to be modeled. For example, the time for
the implicit surface reconstruction of the liver from dataset-2 takes twice the
time than for the liver from dataset-1 (see Figure 5.4), but the amount of points
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used to represent that liver is also almost the double (see Table 5.4). This ten-
dency is also repeated for the surface meshing process which is almost the double
in the case of dataset-2 compared to dataset-1. But this tendency is different for
the volume meshing process where the time needed for obtaining the volume
model from the dataset-2 is higher than that from dataset-1, being the case of
the venous system the most relevant (see Figure 5.4).

Although the overall modeling approach makes emphasis on physical fidelity,
next factors affect accuracy specially of the CAREM method:

• Implicit surface reconstruction algorithm: In Subsection 2.3.2 three differ-
ent algorithms were reviewed. The choice of the algorithm for generating
the implicit surface from the input point cloud makes a difference. Although
all algorithms should produce an implicit surface that partitions space into
inside and outside regions, how points get interpolated or approximated
will vary from one algorithm to the next.

• Meshing algorithm parameters: As for the implicit surface reconstruction
the choice of the meshing algorithm for generating both surface meshes
and volume meshes from the implicit representation makes a difference.
Even if the same meshing algorithm is used, such algorithms often have
input parameters. For example, in the CAREM method, three input pa-
rameters control the surface meshing procedure, and five parameters the
volume meshing procedure. Changing parameter values will alter the re-
sults.

• Boundary coincidences: Boundaries share by more than two regions will
take longer to determine where interfaces should be adjusted (fitted).

• With any choice of a medical image modality, the space is sampled and re-
constructed mathematically, and as a result, accuracy of the reconstructed
image is limited by accuracy of the reconstruction algorithm and the imag-
ing modality resolution, i.e. three-dimensional bioCAD models can be ob-
tained on a data set of higher quality. Higher resolution of CT data with
less noise can be obtained by using a scanner with a small spacing field.
The resulting segmentation would have less artifacts and the resulting fi-
nite element ready meshes would be more accurate.
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Furthermore, next factors affect the efficiency of the RAM method:

• Number of regions: There is an overhead associated with each additional
region that has to be added to the heterogeneous object model. The RAM
method must move through the set of implicit regions and then determine
the location of the boundary on the heterogeneous object model.

• Point cloud length: Longer point clouds require more time to obtain the
implicit surface reconstruction. As the size of the segmented structures
can vary greatly, this translates into a large difference in the number of
acquired slices in which the structure appears.

• Shape complexity: More complex structures require more iterations of the
algorithm to capture the details of the boundary and it will take longer
for the modeler to determine if the generated model matches that three-
dimensional shape. Intuitively, more complex shapes will be more difficult
to contour than simpler ones.

Nevertheless, the modeling approach presented in this dissertation has impor-
tant features which can be summarized as:

• Shape-preserving. The CAREM method minimizes geometric approxima-
tion errors so that resulting details appear similar to their original coun-
terparts. The RAM method also generates a continuous smooth transition
between interior regions and the exterior region. Study of cases for model-
ing feature-regions and heterogeneous objects are proposed in Section 3.6
and Section 4.7. In this chapter quantitative comparisons are given to show
the efficacy of the proposed approach.

• Robustness. The present approach enables the user to model arbitrary
number/shape of multiple and complex feature-regions to effectively dis-
play the entire heterogeneous object for visualization. It also allows the
user to interactively specify geometric metrics for various simulation pur-
poses. One of the most important quality metrics for surface meshes is
the minimal angle that avoids having flat triangles. In all experiments
both surface meshes and volume meshes were constrained to have trian-
gles with minimum angle above 30 degrees as shown in Figure 3.15. The

136



experimental results show that the proposed approach can work effectively
in modeling natural heterogeneous objects in different configurations.

• Efficiency. The computation is very efficient due to the implicit-based rep-
resentation. The experimental results have demonstrated that this ap-
proach has great potentials in many biomedical applications. The present
approach is well adapted to the large datasets encountered in medical imag-
ing as it uses a recursive octree subdivision of the space in order to adapt to
local surface details. Hence, computational time depends on surface com-
plexity rather than image size. Moreover, the geometric approximation er-
ror can be user-controlled and bounded.
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Chapter 6

Conclusions and future work

I N this dissertation the research problem of three-dimensional modeling for
natural heterogeneous objects was tackled applying a three-dimensional mod-

eling approach based on reverse engineering from medical images. Since most
natural heterogeneous objects are composed of many regions it is clearly desir-
able that the modeling approach incorporates this region-related information.
Solid modeling techniques based on set-theoretic volume composition intrinsi-
cally support hierarchical part-based shape descriptions, however, natural ob-
jects such as anatomical organs and structures are more efficiently represented
by surface modeling techniques. Additionally, in many engineering fields such
as biomedical engineering, medicine or virtual reality, surface modeling is not
enough for several applications where information about the interior of such nat-
ural objects is necessary and the generation of volume models is required.

In order to address the above problem, in this dissertation a systematic mod-
eling approach consisting on two methods the CAREM method and the RAM
method has been presented. This modeling approach starts from the base level,
i.e., discrete voxel data, and allows to construct, visualize, and manipulate three-
dimensional computer models using a representation based on implicit functions
based on indicator functions. Experiments show that using a compact and con-
sistent implicit representation greatly reduces the computer memory require-
ment. This is due to the fact that the indicator function is constant almost every-
where, and both the indicator function and its gradient were represented within
an adaptive, hierarchical function space defined over an octree. This adaptive
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representation have a spatial complexity of O(n2) and temporal complexity of
O(n2 log n).

This research has focused on modeling natural heterogeneous objects making
emphasis on Accuracy (geometric quality and shape fidelity), Efficiency in terms
of time involved from the beginning of the modeling process until the final three-
dimensional model is obtained, and surface area preservation and volume preser-
vation of feature-regions and of the whole natural heterogeneous object. In ad-
dition, quality surface meshes and tetrahedral meshes are generated automati-
cally with conforming boundaries. These successful results suggest the validity
of the CAREM method as well as of the RAM method, and of the whole approach
in general for modeling natural heterogeneous objects.

It can be concluded that using a reverse engineering approach for modeling nat-
ural heterogeneous objects from segmented images through an implicit approxi-
mation seems preferable than reconstructing triangle meshes directly from such
images. It has been shown that three-dimensional computer models defined this
way enjoy a number of properties:

• Shape preserving so that resulting details of final three-dimensional models
appear similar to their original counterparts.

• Robustness in modeling natural heterogeneous objects with arbitrary num-
ber of complex feature-regions.

• Computational efficiency due to the representation based on a vector im-
plicit function.

Such three-dimensional models are capable of depicting accurately the interior
of selecting organs and structures. Additionally, these models are suitable for
significant data reduction and have potential applications in different fields of fi-
nite element analysis of natural heterogeneous objects. These features will make
three-dimensional bioCAD models of natural heterogeneous objects be of great
demand in practical applications from bio-engineering and medical research to
multi-region modeling for fabrication. .

In Section 6.1 the principal contributions are presented. Section 6.2 outlines
several avenues of future research based on the present work.
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6.1 Major contributions

In this dissertation a systematic bottom-up modeling approach was proposed. In
this approach, natural heterogeneous objects are decompose into separate region
models and then integrates them into a global continuous implicit formulation.
Two methods were designed to guarantee accuracy of region’s representation
while keeping quality of final bioCAD models. Some of the major contributions
of this research include:

6.1.1 A computer-aided reverse-engineering based model-
ing method

Over the course of this research, different methods have been explored for con-
verting discrete medical data into a fitting continuous counterpart that can be
used later as a valid model representation. As a contribution, in Chapter 3 The
computer-aided reverse-engineering based modeling method (CAREM) was pro-
posed for three-dimensional computer modeling of anatomical organs and struc-
tures focusing on speed, precision and smoothness of the final bioCAD model.
These models are able to represent hard and soft tissues. It has been shown that
an implicit surface representation defined in terms of indicator functions repre-
sents a viable tool for surface reconstruction when segmented medical images
are available.

6.1.2 A region-aware modeling method

Most of the existing modeling approaches target for modeling natural objects
with simple geometries, but natural heterogeneous objects with multiple re-
gions have been hardly modeled. As a contribution, in Chapter 4 a region-aware
method (RAM) was proposed through which the natural heterogeneous object to
be modeled is converted into a set of feature-regions. The RAM method takes
advantages of a divide-and-conquer approach to model natural heterogeneous
objects through a mathematical model that combines effects of the boundary set
Γi together with the set of partitioned feature-regions Ωi. Thus, geometry infor-
mation of individual regions as well as of the whole natural object is incorporated
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in the mathematical model. As a result, such models are resolution independent,
more concise and mathematically rigorous.

6.1.3 A region-based decomposition approach

In this dissertation, an assembly modeling approach is used to build three-dimensional
computer models of natural heterogeneous object using a region-aware structure.
To convert the implicit represented heterogeneous object model into a set of two-
manifold mesh surfaces (CAD model) that can be utilized in computational engi-
neering applications, a vector implicit function (VIF) structure is proposed. This
VIF keeps information about different parts of the heterogeneous object model
allowing three-dimensional computer models to be generated with higher data
consistencies and lower redundancies. The consistency is preserved on the inter-
face of adjacent feature-regions, which cannot be solved by directly applying iso-
surface extraction algorithms. In addition, by choosing different cell size and dif-
ferent refinement accuracy, mesh elements with different level-of-details can be
easily determined. This is an important step towards creating three-dimensional
bioCAD models of natural heterogeneous objects, obtaining adaptive and high-
quality volume meshes.

6.1.4 A modeling framework

In this research, a three-dimensional anatomical modelling framework entirely
written in C++ programing language was developed to generate three-dimensional
models of anatomy from patient datasets. The generated models are suitable
for use in virtual reality simulations, and CADx systems. Modern algorithms
were employed and improved to allow the visualization, extraction, and mesh-
ing of these structures by building upon the functionality provided by several
toolkits and libraries. ITK (http://www.itk.org/) is used for input and output of
the volumetric data sets and for some image filtering and segmentation algo-
rithms. VTK (http://www.vtk.org/) provides visualization of the data through
direct volume rendering and polygonal mesh rendering (Schroeder et al., 2006);
it also includes a wide variety of useful geometric algorithms. Finally, CGAL
(http://www.cgal.org/) provides more advanced geometric algorithms, including
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surface mesh generation (Project, 2016). The building of the application, toolkits,
and libraries on different platforms is managed with CMake (http://www.cmake.org/)
(Martin and Hoffman, 2004). This modeling framework helped to prove the valid-
ity of the presented modeling approach, and can be used in practical downstream
applications for modeling and analysis of natural heterogeneous objects.

6.2 Future work

Research and development work on bioCAD modeling of natural heterogeneous
objects is far from mature. The approach presented in this dissertation demon-
strated only an alternative for three-dimensional bioCAD modeling of such ob-
jects. Towards practical applications, functionalities provided by the presented
modeling approach is still too limited. Such applications include surgical sim-
ulation, virtual body exploring, as well as manufacturing and design of patient
specific prosthetic devices. So, there is still much room for function improve-
ments, and practical and theoretic developments. The studies conducted in this
research can be further extended in a few important directions.

6.2.1 A GPU implementation

Modern graphics processing units (GPUs) are among the most powerful process-
ing chips that exist today. State of the art GPUs are capable of over 12 teraflops
of single precision floating-point arithmetic and have in excess of 250 GB/s of
memory bandwidth – orders of magnitude more than current multi-core CPUs.
We believe that the CAREM method and the RAM method have sufficient inher-
ent data parallelism to perform well on GPUs. For future work, , a GPU imple-
mentation is to be proposed with performance speed-ups enough to reconstruct
models of natural heterogeneous objects in real-time.

6.2.2 An integrated CAD-CAE system

Although bioCAD models, presented in this dissertation, can be measured, mod-
ified, and used in the design of biomedical devices, they cannot record the local
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material compositions. This can be done by computer-aided engineering (CAE)
models, but CAE models lack the capability of geometry manipulation. There-
fore, CAD and CAE models in combination can realize a most complete hetero-
geneous object modeling process. For future work, a prototyping system is to be
developed in order to conveniently implement an integrating CAD-CAE model-
ing of natural heterogeneous objects. To make the system really working, further
research should be carried out to make full use of the capabilities of both bioCAD
models and CAE models, and to build the tight connection in-between.

6.2.3 A mesh-free finite element analysis system

With recent developments of finite element analysis in various active research
fields, such as computational medicine and computational biology, geometric
modeling and mesh generation become more and more important for the sim-
ulation of the behavior of anatomical organs and biological structures. Implicit
models of natural heterogeneous objects, obtained with the CAREM method and
the RAM method, can be used to generate meshes adapted to requirements of
finite element methods. However, the meshing process is time consuming as
Subsection 5.3.2 has shown. For future work, a mesh-free modeling method is to
be proposed. Such a method will rely on the implicit representation, presented
in this dissertation, to satisfy all boundary conditions as accurately as desired.

6.2.4 A virtual-reality based simulation system

This dissertation has been focused on building three-dimensional computer mod-
els of natural heterogeneous objects while letting users browse them by simply
rendering. However, techniques for interacting with three-dimensional computer
models are also equally important for providing users with more rich and intu-
itive experiences. For future work a virtual-reality based simulation system is
to be create in which users can realistically interact with three-dimensional bio-
CAD models. The system will take preprocessed CT image data for building
bioCAD models using volume and surface modeling methods. These models need
to be continuously updated during the virtual simulation.

143



Bibliography

Adzhiev, V., Kartasheva, E., Kunii, T., Pasko, A., and Schmitt, B. (2002). Cellular-
functional modeling of heterogeneous objects. In Proceedings of the seventh
ACM symposium on Solid modeling and applications, pages 192–203. ACM.
54

Angenent, S., Pichon, E., and Tannenbaum, A. (2006). Mathematical methods
in medical image processing. Bulletin of the American Mathematical Society,
43(3):365–396. 30

Ayachit, U. (2015). The ParaView Guide: A Parallel Visualization Application.
Kitware, Inc., USA. 130

Bajaj, C. (1997). Introduction to implicit surfaces. Morgan Kaufmann. 36

Bentley, J. L. (1975). Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517. 32, 34, 35

Bern, M., Edelsbrunner, H., Eppstein, D., Mitchell, S., and Tan, T. S. (1993).
Edge insertion for optimal triangulations. Discrete & Computational Geometry,
10(1):47–65. 78

Biswas, A., Shapiro, V., and Tsukanov, I. (2004). Heterogeneous material mod-
eling with distance fields. Computer Aided Geometric Design, 21(3):215–242.
54

Blinn, J. F. (1982). A generalization of algebraic surface drawing. ACM Transac-
tions on Graphics (TOG), 1(3):235–256. 52

Braid, I. C. (1974). Designing with volumes. Cantab Press, 2nd revised edition.
41

144



Caon, M. (2004). Voxel-based computational models of real human anatomy: a
review. Radiation and environmental biophysics, 42(4):229–235. 56, 62

Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum,
B. C., and Evans, T. R. (2001). Reconstruction and representation of 3d objects
with radial basis functions. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 67–76. ACM. 44, 45, 46,
53

Cavalcanti, P. R., Carvalho, P. C. P., and Martha, L. F. (1997). Non-manifold
modelling: an approach based on spatial subdivision. Computer-Aided Design,
29(3):209–220. 52

Chen, K.-Z. and Feng, X.-A. (2004). Cad modeling for the components made of
multi heterogeneous materials and smart materials. Computer-Aided Design,
36(1):51–63. 49

Cheng, J. and Lin, F. (2005). Approach of heterogeneous bio-modeling based on
material features. Computer-Aided Design, 37(11):1115–1126. 49

Cignoni, P., Rocchini, C., and Scopigno, R. (1998). Metro: measuring error on
simplified surfaces. In Computer Graphics Forum, volume 17, pages 167–174.
Wiley Online Library. 117, 130

De Santis, R., Ambrosio, L., Mollica, F., Netti, P., and Nicolais, L. (2007). Me-
chanical properties of human mineralized connective tissues. In Modeling of
Biological Materials, pages 211–261. Springer. 67

Desaulniers, H. and Stewart, N. F. (1992). An extension of manifold boundary
representations to the r-sets. ACM Transactions on Graphics (TOG), 11(1):40–
60. 38

Dice, L. R. (1945). Measures of the amount of ecologic association between
species. Ecology, 26(3):297–302. 115

Diehl, R. (1988). Conversion of boundary representations to bintrees. In Euro-
graphics’ 88: proceedings of the European Computer Graphics Conference and
Exhibition, Nice, France, 12-16 September, 1988, page 117. North Holland. 32

145



d’Otreppe, V., Boman, R., and Ponthot, J.-P. (2012). Generating smooth surface
meshes from multi-region medical images. International Journal for Numeri-
cal Methods in Biomedical Engineering, 28(6-7):642–660. 18

Evans, P. M. (2008). Anatomical imaging for radiotherapy. Physics in medicine
and biology, 53(12):R151. 62, 63

Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., and Schönherr, S. (1998).
On the design of CGAL, the computational geometry algorithms library. PhD
thesis, INRIA. France. 89

Feng, P., Ju, T., and Warren, J. (2010). Piecewise tri-linear contouring for multi-
material volumes. In Advances in Geometric Modeling and Processing, pages
43–56. Springer. 90

Folland, G. B. (2013). Real analysis: modern techniques and their applications.
John Wiley & Sons, 2nd edition. 46

Fram, J. R. and Deutsch, E. S. (1975). On the quantitative evaluation of edge
detection schemes and their comparison with human performance. Computers,
IEEE Transactions on, 100(6):616–628. 19

Frey, P. J. (2000). About surface remeshing. In Proceedings of the 9th Int. Mesh-
ing Roundtable, pages 123–136. 78

Frey, P. J. and Borouchaki, H. (1998). Geometric surface mesh optimization.
Computing and visualization in science, 1(3):113–121. 125

Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R. (2000). Adaptively
sampled distance fields: a general representation of shape for computer graph-
ics. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 249–254. ACM Press/Addison-Wesley Publishing
Co. 46

Gonzalez, R. C. and Woods, R. E. (2002). Digital image processing, vol. 2.
Prentice-Hall Inc, New Jersey. 23

Greß, A. and Klein, R. (2004). Efficient representation and extraction of 2-
manifold isosurfaces using kd-trees. Graphical Models, 66(6):370–397. 32

146



Hartmann, E. (1999). On the curvature of curves and surfaces defined by normal
forms. Computer Aided Geometric Design, 16(5):355–376. 73

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. (1992). Sur-
face reconstruction from unorganized points, volume 26. ACM. 42, 71

IRCAD (2015). http://www.ircad.fr/research/3d-ircadb-01/. 68, 113, 114

Jackins, C. L. and Tanimoto, S. L. (1980). Octrees and their use in repre-
senting three-dimensional objects. Computer Graphics and Image Processing,
14(3):249–270. 32, 33

Jackson, T., Liu, H., Patrikalakis, N., Sachs, E., and Cima, M. (1999). Modeling
and designing functionally graded material components for fabrication with
local composition control. Materials & Design, 20(2):63–75. 32

Jamin, C., Alliez, P., Yvinec, M., and Boissonnat, J.-D. (2015). Cgalmesh: a
generic framework for delaunay mesh generation. ACM Transactions on Math-
ematical Software, 41(4):24. 80

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models.
International journal of computer vision, 1(4):321–331. 67

Kaufman, A., Cohen, D., and Yagel, R. (1993). Volume graphics. Computer,
26(7):51–64. 29

Kazhdan, M. (2005). Reconstruction of solid models from oriented point sets.
In Proceedings of the third Eurographics symposium on Geometry processing,
page 73. Eurographics Association. 48

Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson surface reconstruction.
In Proceedings of the fourth Eurographics symposium on Geometry processing,
volume 7. 42, 47, 48, 53, 75, 76, 77

Knopf, G. K. and Al-Naji, R. (2001). Adaptive reconstruction of bone geometry
from serial cross-sections. Artificial Intelligence in Engineering, 15(3):227–239.
58

Kou, X. and Tan, S. (2007). Heterogeneous object modeling: A review. Computer-
Aided Design, 39(4):284–301. 29, 49, 54, 75

147



Kou, X., Tan, S., and Sze, W. (2006). Modeling complex heterogeneous objects
with non-manifold heterogeneous cells. Computer-Aided Design, 38(5):457–
474. 49

Kumar, V., Burns, D., Dutta, D., and Hoffmann, C. (1999). A framework for object
modeling. Computer-Aided Design, 31(9):541–556. 38, 49

Kumar, V. and Dutta, D. (1997). An approach to modeling multi-material objects.
In Proceedings of the fourth ACM symposium on Solid modeling and applica-
tions, pages 336–345. ACM. 50, 52

Kumar, V. and Dutta, D. (1998). An approach to modeling & representation of
heterogeneous objects. Journal of Mechanical Design, 120(4):659–667. 17, 49

Lien, S.-l. and Kajiya, J. T. (1984). A symbolic method for calculating the in-
tegral properties of arbitrary nonconvex polyhedra. Computer Graphics and
Applications, IEEE, 4(10):35–42. 81, 83

Lin, C.-F., Yang, D.-L., and Chung, Y.-C. (2001). A marching voxels method for
surface rendering of volume data. In Computer Graphics International 2001.
Proceedings, pages 306–313. IEEE. 59

Löhner, R. (1997). Automatic unstructured grid generators. Finite Elements in
Analysis and Design, 25(1):111–134. 100

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution
3d surface construction algorithm. In ACM siggraph computer graphics, vol-
ume 21, pages 163–169. ACM. 58, 59, 69, 78

Mantyla, M. (1988). An introduction to solid modeling. Principles of Computer
Science Series, pages 161–174. 28

Martin, K. and Hoffman, B. (2004). Mastering cmake: A cross-platform build
system. Kitware, Inc., 2nd edition. 142

Massey, W. S. (1991). A basic course in algebraic topology, volume 127. Springer
Science & Business Media. 39

Meagher, D. (1982). Geometric modeling using octree encoding. Computer graph-
ics and image processing, 19(2):129–147. 32

148



Menon, J., Wyvill, B., Bajaj, C., Bloomenthal, J., Guo, B., Hart, J., Wyvill, G.,
and Bajaj, C. (1996). Implicit surfaces for geometric modeling and computer
graphics. ACM SIGGRAPH-96 Course Notes, pages 4–9. 37

Mortenson, M. E. (1997). Geometric modeling. Wiley Computer Publishing, New
York, 2nd edition. 39

Moustakides, G., Briassoulis, D., Psarakis, E., and Dimas, E. (2000). 3d image
acquisition and nurbs based geometry modelling of natural objects. Advances
in Engineering Software, 31(12):955–969. 21, 58, 60

Naylor, B. (1990). Binary space partitioning trees as an alternative representa-
tion of polytopes. Computer-Aided Design, 22(4):250–252. 32

Nielson, G. M. (2000). Volume modelling. In Volume Graphics, pages 29–48.
Springer. 30

Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H.-P. (2005). Multi-level
partition of unity implicits. In ACM SIGGRAPH 2005 Courses, page 173. ACM.
46, 53, 69

Ohtake, Y. and Suzuki, H. (2013). Edge detection based multi-material inter-
face extraction on industrial ct volumes. Science China Information Sciences,
56(9):1–9. 18

Park, S.-M., Crawford, R. H., and Beaman, J. J. (2001). Volumetric multi-
texturing for functionally gradient material representation. In Proceedings of
the sixth ACM symposium on Solid modeling and applications, pages 216–224.
ACM. 52

Pasko, A., Adzhiev, V., Schmitt, B., and Schlick, C. (2001). Constructive hyper-
volume modeling. Graphical models, 63(6):413–442. 50, 54

Pasko, A., Adzhiev, V., Sourin, A., and Savchenko, V. (1995). Function represen-
tation in geometric modeling: concepts, implementation and applications. The
Visual Computer, 11(8):429–446. 38, 53

Paterson, M. S. and Frances Yao, F. (1992). Optimal binary space partitions for
orthogonal objects. Journal of Algorithms, 13(1):99–113. 32

149



Prince, J. L. and Links, J. M. (2006). Medical imaging signals and systems. Pear-
son Prentice Hall Upper Saddle River, NJ. 23, 62, 66

Project, T. C. (2016). CGAL:User and Reference Manual. CGAL Editorial Board,
4.8.1 edition. 142

Qian, X. and Dutta, D. (2003). Heterogeneous object modeling through direct
face neighborhood alteration. Computers & Graphics, 27(6):943–961. 39

Reddy, D. R. and Rubin, S. (1978). Representation of three-dimensional ob-
jects. Computer Science Department CMU-CS. Carnegie–Mellon University,
Pittsburgh, pages 79–113. 32

Requicha, A. (1977). Mathematical models of rigid solid objects. Technical Report
Memo 28, University of Rochester, Production Automation Project. 38, 51

Requicha, A. and Tilove, R. (1978). Mathematical foundations of constructive
solid geometry: General topology of closed regular sets. 38

Requicha, A. G. (1980). Representations for rigid solids: Theory, methods, and
systems. ACM Computing Surveys (CSUR), 12(4):437–464. 38

Ricci, A. (1973). A constructive geometry for computer graphics. The Computer
Journal, 16(2):157–160. 37, 38, 53

Rvachev, V. L., Sheiko, T. I., Shapiro, V., and Tsukanov, I. (2001). Transfinite
interpolation over implicitly defined sets. Computer aided geometric design,
18(3):195–220. 97

Samet, H. and Tamminen, M. (1985). Bintrees, csg trees, and time. In ACM
SIGGRAPH Computer Graphics, volume 19, pages 121–130. ACM. 32

Samet, H. and Webber, R. E. (1988). Hierarchical data structures and algorithms
for computer graphics. i. fundamentals. Computer Graphics and Applications,
IEEE, 8(3):48–68. 32

Schroeder, C., Regli, W. C., Shokoufandeh, A., and Sun, W. (2005). Computer-
aided design of porous artifacts. Computer-Aided Design, 37(3):339–353. 21

Schroeder, W., Martin, K., and Lorensen, B. (2006). Visualization Tollkit: An
Object-Oriented Approach To 3D Graphics. 4th edition. 61, 141

150



Shin, K.-H. and Dutta, D. (2001). Constructive representation of heteroge-
neous objects. Journal of Computing and Information Science in Engineering,
1(3):205–217. 49

Siu, Y. and Tan, S. (2002). Source-based heterogeneous solid modeling.
Computer-Aided Design, 34(1):41–55. 51, 52

Starly, B., Darling, A., Gomez, C., Nam, J., Sun, W., Shokoufandeh, A., and Regli,
W. (2004). Image based bio-cad modeling and its applications to biomedical
and tissue engineering. In Proceedings of the ninth ACM symposium on Solid
modeling and applications, pages 273–278. Eurographics Association. 56

Stytz, M. R., Frieder, G., and Frieder, O. (1991). Three-dimensional medical
imaging: algorithms and computer systems. ACM Computing Surveys (CSUR),
23(4):421–499. 19, 60

Sun, W., Darling, A., Starly, B., and Nam, J. (2004). Computer-aided tissue engi-
neering: overview, scope and challenges. Biotechnology and Applied Biochem-
istry, 39(1):29–47. 20, 56

Sun, W. and Hu, X. (2002). Reasoning boolean operation based modeling for
heterogeneous objects. Computer-Aided Design, 34(6):481–488. 49, 51, 52

Szeliski, R. and Lavallée, S. (1996). Matching 3-d anatomical surfaces with non-
rigid deformations using octree-splines. International Journal of Computer
Vision, 18(2):171–186. 76

Taubin, G. (1995). Estimating the tensor of curvature of a surface from a poly-
hedral approximation. In Computer Vision, 1995. Proceedings., Fifth Interna-
tional Conference on, pages 902–907. IEEE. 124

Thibault, W. C. and Naylor, B. F. (1987). Set operations on polyhedra using binary
space partitioning trees. In ACM SIGGRAPH computer graphics, volume 21,
pages 153–162. ACM. 32

Turk, G. and O’brien, J. F. (2002). Modelling with implicit surfaces that interpo-
late. ACM Transactions on Graphics (TOG), 21(4):855–873. 44, 53

Van Dam, A., Feiner, S. K., McGuire, M., and Sklar, D. F. (2013). Computer
graphics: principles and practice. Pearson Education. 41

151



Vese, L. A. and Chan, T. F. (2002). A multiphase level set framework for image
segmentation using the mumford and shah model. International Journal of
Computer Vision, 50(3):271–293. 95

Vivodtzev, F., Linsen, L., Bonneau, G.-P., Hamann, B., Joy, K. I., and Olshausen,
B. A. (2003). Hierarchical isosurface segmentation based on discrete curva-
ture. In 5th Joint Eurographics-IEEE TCVG Symposium on Visualizationf
(VisSym’03), pages 249–258. ACM Siggraph. 19

Voelcker, H. and Requicha, A. (1977). Constructive solid geometry. Technical
Memorandum no. 25, Production Automation Project, University of Rochester,
Rochester, NY. 38

Wang, C. C. (2007). Direct extraction of surface meshes from implicitly repre-
sented heterogeneous volumes. Computer-Aided Design, 39(1):35–50. 92

Wang, L., Yu, Y., Zhou, K., and Guo, B. (2011). Multiscale vector volumes. ACM
Transactions on Graphics (TOG), 30(6):167. 18, 50

Wang, M. Y. and Wang, X. (2005). A level-set based variational method for design
and optimization of heterogeneous objects. Computer-Aided Design, 37(3):321–
337. 48, 54, 92

Wang, W. (2010). Reverse engineering: technology of reinvention. CRC Press. 59

Webster, J. G. (1988). Medical Devices and Instrumentation. New York: Wiley.
64

Weiler, K. (1988). The radial edge structure: a topological representation for
non-manifold geometric boundary modeling. Geometric modeling for CAD ap-
plications, 1988:3–36. 39, 50

Wyvill, G., McPheeters, C., and Wyvill, B. (1986). Soft objects. In Advanced
Computer Graphics, pages 113–128. Springer. 52

Yamaguchi, K., Kunii, T., Fujimura, K., and Toriya, H. (1984). Octree-related
data structures and algorithms. IEEE Computer Graphics and Applications,
4(1):53–59. 32

152



Yuan, Z., Yu, Y., and Wang, W. (2012). Object-space multiphase implicit func-
tions. ACM Transactions on Graphics (TOG), 31(4):114. 18, 54, 90

Zaidi, H. and Tsui, B. M. (2009). Review of computational anthropomorphic
anatomical and physiological models. Proceedings of the IEEE, 97(12):1938–
1953. 21

Zhang, Y., Bajaj, C., and Xu, G. (2009). Surface smoothing and quality improve-
ment of quadrilateral/hexahedral meshes with geometric flow. Communica-
tions in Numerical Methods in Engineering, 25(1):1–18. 125

Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. (2005).
Large mesh deformation using the volumetric graph laplacian. In ACM Trans-
actions on Graphics (TOG), volume 24, pages 496–503. ACM. 125

153


