
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/36375

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16123506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/36375


Quadratic effects in the nonlinear magneto-optical response of perovskite manganites studied
with magnetization-induced second harmonic generation
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The crystallographic and magnetic symmetry of centrosymmetric perovskite manganite epitaxial films is
studied by magnetization-induced optical second harmonic generation �MSHG�. It is shown that not only linear
but also quadratic terms in the magnetization affect the nonlinear-optical response, the latter being even
dominant for special geometries. In that case MSHG allows to simultaneously probe the crystallographic
structure, the net magnetization �zero in demagnetized material�, and magnetization squared �nonzero in de-
magnetized material�.

DOI: 10.1103/PhysRevB.75.064401 PACS number�s�: 75.47.Lx, 78.20.Ls

I. INTRODUCTION

Perovskite manganites like La1−xCaxMnO3 �LCMO� rep-
resent a class of colossal magnetoresistive �CMR� materials,
which are at the focus of fundamental and applied research.
These strongly correlated systems possess unusual coupled
magnetic, transport and optical properties, which have poten-
tial for different applications like bolometric detectors,1 spin-
valve structures,2 or magnetic field sensors.3 The interplay
between spin, charge, lattice, and orbital degrees of freedom
may lead to very complex and spatially inhomogeneous
structures with an enormous diversity of phases and proper-
ties to explore, increasing the potential for novel behavior.4

Magneto-optical effects linear in magnetization are
widely used for investigation of thin film magnetism. In par-
ticular, the linear magneto-optical Kerr effect �MOKE� is
applied to study magnetic anisotropy and magnetization re-
versal. It was shown5,6 that those measurements can be sig-
nificantly affected by quadratic contributions in the magneti-
zation, analogously to the Voigt or Cotton-Mouton effect.
Since higher-order optical tensors are involved, new effects
were found via these terms. For example, for a cubic crystal,
which is normally isotropic for linear optics, anisotropy in
reflectivity was found as a result of higher order
contributions.5,6

Nonlinear magneto-optical effects �in particular,
magnetization-induced second harmonic generation
�MSHG�� are intrinsically described by higher order optical
tensors in comparison with MOKE.7 This gives several ad-
vantages: most of all, because of its surface/interface sensi-
tivity, the nonlinear magneto-optical response provides infor-
mation on the magnetization of surfaces and buried
interfaces separately from the bulk.8 Due to different selec-
tion rules and higher-order optical tensors, also new
magneto-optical effects may arise in MSHG, that allow the
magneto-optical observation of antiferromagnetic domains9

and of complicated domain patterns in strained films of, for
example, yttrium-iron-garnet.10 As MSHG is sensitive to the
arrangement of both charge and spin, their contributions al-
low to probe local or hidden phase transitions, interacting
magnetized and polarized sublattices and domain walls.

In this paper we report the results of a nonlinear-optical
study of the A-site ordered LCMO thin film. From a symme-
try analysis, based on the nature of the nonlinear optical
sources, and experimental temperature and magnetic field
dependences of the SHG intensity and magnetization below
magnetic phase transition we found along usual
magnetization- and crystallographic-induced SHG compo-
nents, an additional strong contribution to crystallographic
SHG, which is proportional to the square of local magneti-
zation. Moreover, the magnitude of this crystallographic cor-
rection is found to be unexpectedly high.

II. EXPERIMENT AND RESULTS

Epitaxial La0.75Ca0.25MnO3 �LCMO� film was prepared
by a metalorganic aerosol deposition �MAD� technique11 on
MgO�100� substrates �crystal GmbH, miscut less than 0.3�.
The thickness of the film as measured by small angle x-ray
scattering was 90 nm; and the Curie temperature, TC
=263 K. X-ray diffraction analysis shows “cube-on-cube”
epitaxy of LCMO on MgO�100� and indicates a stress-free
state of the film: the out-of plane lattice parameter, c
=0.3877 nm, is very close to the bulk value.12 Remarkably,
LCMO film shows a unique perovskite superstructure due to
CE-type ordering of La and Ca, accompanied by the forma-
tion of a pseudocubic or rhombohedral �R-3c� �3-m� crystal-
line structure, observed by transmission electron microscopy
and electron diffraction analysis.12 The obtained structure is
different from the orthorhombic one, which is generally ob-
served for LCMO bulk crystals and thin films.13

Optical SHG was excited by the output of a Ti:sapphire
laser ���=780 nm, �tpulse=100 fs, repetition rate 82 MHz,
pulse power density up to 5�109 W/cm2�. Polarization of
the fundamental wave was controlled by a Berek compensa-
tor and of the SH waves by a Glan prism �in the following,
p-, s-, and m- polarization of the electric field vector indicate
orientations parallel, perpendicular, and at 45° to the plane of
incidence, respectively�. For all SHG measurements except
for the azimuthal dependences, the transmission geometry
was used at an angle of incidence of 30°. The samples were
oriented with the �001� axis of the substrate perpendicular to
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the plane of incidence. Azimuthal dependences of SHG were
measured in the reflection geometry at an angle of incidence
of 45° the samples were rotated around their normal. The
SHG signal was discriminated spectroscopically by means of
appropriate color and band-pass filters and then detected by a
photon counting system. The temperature dependences of
SHG were measured for T=10–300 K on heating by using a
He cryostat. All temperature dependent measurements were
performed during heating. Both ZFC �zero field cooling� and
FC �cooling under a magnetic field of H= ±1 kGs� samples
were used for these temperature scans. The magnetic field
was aligned in the film plane �longitudinal Kerr geometry�.
Optical constants �n and k� were measured in the temperature
range of 100–300 K by spectroscopic ellipsometry �J. A.
Woollam Co., Inc.�. They show linear temperature depen-
dences above TC and critical behavior in the vicinity of the
phase transition.

The most intriguing result is that the magnetic field de-
pendence of MSHG �Fig. 1� changes essentially with the
polarization combinations of fundamental and SHG waves,
whereas the temperature dependence of the MSHG �Fig. 2�
does not. The most straightforward results were observed for
the m-s polarization combination: �i� an MSHG loop �Fig. 1�
that is symmetric with regards to the center of the loop

�“centro-symmetric loop”�, very similar to the magnetization
curve or MOKE loop;14 and �ii� temperature dependences
�Fig. 2�b�� for positively and negatively oriented magnetic
fields that are very similar and differ from each other only by
the absolute value of the signal in the ferromagnetic state,
T�TC. Remarkably, the ZFC data do not lie in the middle
between those for oppositely magnetized samples, but is al-
most coincident with one of them.

For the s-s polarization combination the MSHG data
show a hysteresis behavior around zero field that is distinctly
different from a normal magnetization loop but instead
shows a symmetric minimum on either side �“axis-
symmetric loop”�. The corresponding temperature depen-
dences �Fig. 2�a�� for oppositely directed magnetic fields are
coincident within the error bar.

The p-p polarization combination shows no magnetic
field dependence at all �Fig. 1� and consequently the tem-
perature �Fig. 2�a�� dependences of the MSHG signals for
H=0 or H= ±1 kG practically coincide except near some
sharp dips.

In addition to the temperature and magnetic field depen-
dences, standard azimuthal �I2����� and polarization
�I2����� dependences of the MSHG intensity were measured,
which allow one to perform a complete analysis of the
MSHG signal.

The MSHG intensity dependencies on azimuthal angle
I2����, measured at room temperature in the reflection ge-
ometry, possesses slightly deformed eightfold symmetry in
both p-s and s-s polarization combinations �Fig. 3�.

For I2���� �Fig. 4�, the output polarization was kept con-
stant, either p or s, and �=0 corresponds to s input polariza-
tion �see inset in Fig. 4�. For these measurements the sample
was kept in a cryostat at fixed azimuthal angle �=0, which
corresponded to the �001� axis of the substrate being parallel
to the electric field vector of s-polarized light �oriented ver-
tically�.

III. DISCUSSION

A. Theoretical description of magnetization-induced SHG

A fundamental electromagnetic wave with wave vector k�,

electric field strength E� ���, and magnetic field strength H� ���
incident on a material induces an electric polarization P� and

magnetization M� . To describe the response of the medium

these excitations are expanded in terms of powers of E� ���
and also in terms of multipole momenta.15 In order to de-
scribe the medium response at the SHG frequency 2�, the
standard wave equation should be solved with the following
source term:

S��2�� = �0
�2P�

�t2 + �0��� �
�M�

�t
� − �0���

�2Q̂

�t2 � , �1�

where P� , �� Q̂, and M� are induced electric dipole polarization,
magnetization, and electric quadrupole polarization, respec-
tively.

FIG. 1. Hysteresis loops of SHG intensity in LCMO for differ-
ent polarization combinations measured at 10 K.

FIG. 2. Temperature dependences of SHG intensity in LCMO
for p-p and s-s �a� and m-s �b� polarization combinations for zero
field cooled sample and also with magnetic field applied.
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In centrosymmetric media in the absence of a net magne-
tization three types of nonlinear sources may contribute to
the SHG signal:15

�i� an electric polarization of quadrupole type �Q�, which

after taking the gradient of Q̂ yields

Pi
Q�2�� 	 i
0ijkl

Q Ej���kkEl��� , �2�

�ii� a magnetization of dipole type:

Mi
MDM�2�� 	 
0ijk

MDMEj���Ek��� , �3�

�iii� an electric polarization of magnetic-dipole type:

Pi
MDP�2�� 	 
0ijk

MDPEj���Hk��� , �4�

where the 
̂ are nonlinear susceptibility tensors of different
nature, which are generally determined by spatial and time-
reversal symmetry.16 The magnetic-dipole tensors 
̂0

MDM and

̂0

MDP have identical nonzero tensor components but their
values are different, because of the absence of the j-k ex-
change symmetry for 
̂0

MDP. Terms �2�–�4� are of the same
order of magnitude. In the following they will be called crys-
tallographic, because they do not depend on net magnetiza-
tion. However, in some cases they may be separated either
by spectroscopic measurements �as in Ref. 15�, or by azi-
muthal anisotropic measurements �as in this work�.

In the presence of a local magnetization �i, the
magnetization-induced contributions �MI� are added to the
crystallographic contributions; the local MI contributions
�local polarization pi

PMI,loc�2�� and local magnetization
mi

MMI,loc�2��� are expressed in terms of local magnetization:

pi
PMI,loc�2�� 	 
ijkl

PMI� jEk���Hl��� , �5�

FIG. 3. �Color online� Rota-
tional anisotropic dependences of
SHG intensity in LCMO at room
temperature p-s �a� and s-s �b� po-
larization combinations: experi-
ment �circles�, fits to data using
orthorhombic �solid line� and cu-
bic �dashed line� symmetry.
Inset—geometry of experiment:
XCr, YCr, ZCr crystallographic qua-
sicubic frame, XLab, YLab, ZLab

laboratory frame. Azimuthal angle
� is measured between XCr and
XLab.

FIG. 4. �Color online� Polarization dependences of SHG inten-
sity I2���� in LCMO films at room temperature and 10 K for p-out
�a� and s-out �b� SHG polarization. In ferromagnetic phase mag-
netic field was applied parallel to crystallographic a axis. Lines—
fits to data within the model described in the text. Inset—geometry
of experiment.
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mi
MMI,loc�2�� 	 
ijkl

MMI� jEk���El��� . �6�

Note that �5� and �6� represent the first terms in a Tailor
expansion in the magnetization; therefore the tensors 
̂P�M�MI

are taken at �i=0, i.e., in the high temperature �paramag-
netic� phase. They are generally of the same order of mag-
nitude and relativistically small in comparison with electric-
dipole term of the type

pi
MI 	 
ijkl

MI � jEkEl �7�

because both vectors H� in �5� and m� in �6� are of v /c smaller

in comparison with E� and p� , respectively �v is characteristic
velocity of electron in the system�. However in the case of
space-inversion symmetry the electric-dipole term �7� is ab-
sent and terms �5� and �6� are the only contributing to
MSHG.

For a multidomain sample the polarization �5� and mag-
netization �6� should be averaged over the probing light spot

Pi
PMI�2�� 	 
ijkl

PMIMjEk���Hl��� , �8�

Mi
MMI�2�� 	 
ijkl

MMIMjEk���El��� , �9�

where Mj =���F+� j
++�F−� j

−� is the macroscopic �net� mag-
netization, �F+ and �F− are the fractions of domains oppo-
sitely oriented along the direction j. Symmetry, including
time-inversion, determines the type of susceptibility tensors

̂ in �2�–�6�.

In the absence of absorption the quadrupole tensor 
ijkl
Q is

polar and independent on time-reversion.16 The magnetic-
dipole tensors 
ijk

MDM and 
ijk
MDP are axial and change sign

with time reversal. The 
ijk
MI tensors in �7� and �8� are of the

same type as the quadrupole tensor, i.e., polar and indepen-
dent on time reversion. In the presence of absorption all
terms have both real and imaginary parts providing interfer-
ence between all of them.

For any centrosymmetric medium, the surface dipole-type
polarization due to the symmetry breaking surfaces is gener-
ally of the same order of magnitude as the bulk �quadrupole
in this case� polarization. It can be written as

Pi
S�2�� 	 
ijk

S Ej���Ek��� . �10�

Nonzero components of the 
̂S tensor are determined by the
4 mm surface symmetry.

Generally, the anisotropic and polarization dependence of
the SHG signal from a single crystal can be expressed as a
truncated Fourier expansion:17

E2���� = � f0 + �
n=1

4

�cn cos�n�� + sn sin�n����E2��� ,

�11�

E2���� = �F0 + C2 cos 2� + S2 sin 2��E2��� . �12�

In Eqs. �11� and �12� the Fourier coefficients f0, ci, si, and
F0, Ci, Si are determined by the sum of the products of the
Fresnel factors depending on the polarization angle � and on
the azimuthal angle � and appropriate tensor components.17

The symmetry of the hysteresis loop may show which
components are responsible for the SHG field. A “centrosym-
metric loop” corresponds to a dependence, in which both
crystallographic and magnetization induced terms are
present: Im−s

2� �M�	 �const+M�2. An “axisymmetric loop”
means that the crystallographic contribution is absent and the
signal is purely magnetic Is−s

2� �M�	 �Ps−s
MI �2	M2. The nonzero

MSHG intensity in the minima arises due to the complex
values of the nonlinear susceptibility. Very small dependence
on magnetization of p-p polarized SHG means that the crys-
tallographic contribution is dominant for this case.

Analysis of the azimuthal and polarization dependences
of the SHG intensity allows to separate the crystallographic
and magnetization induced terms. Analysis was performed
�see Appendix A� for rhombohedral and cubic crystals which
show that according to the SHG measurements the deviation
of the bulk crystal symmetry from the cubic is very small.
Based on this conclusion in the following the obtained ex-
perimental temperature dependences were analyzed for the
case of cubic symmetry.

From symmetry analysis it also follows that under the
experimental conditions MDM and MDP terms do not con-
tribute to SHG in most polarization combinations �see Ap-
pendix A�.

It is necessary to carefully analyze possible surface con-
tributions. For cubic bulk symmetry, the surface point group
symmetry is 4mm, which gives in s-s and p-s polarization
combinations E2�

S ����0. For rhombohedral bulk symmetry,
the surface point group symmetry is 2mm, which gives
E2�

S ����0 in s-s polarization combinations. Therefore in
the following the obtained experimental temperature depen-
dences were analyzed with the bulk contribution only taken
into account.

B. Temperature dependences

From the polarization dependences at different tempera-
tures �Fig. 4� it follows that both the magnetization induced
and the crystallographic contributions are temperature de-
pendent. For the MI contribution, the temperature depen-
dence arises from the temperature dependence of the net
magnetization M�T�. For the crystallographic contribution
the nature of the temperature dependence has to be clarified.

Additional information can be obtained from an analysis
of the MSHG temperature dependences for different polar-
ization combinations. Generally for our samples, decreasing
the temperature down from TC results in a significant in-
crease of the MSHG intensity for all polarization combina-
tions �Fig. 2�. Qualitatively, all dependences do not show a
significant difference between ZFC and FC. The continuous
growth of intensity with decreasing temperature is inter-
rupted by quite deep equidistant dips. These are the result of
multiple reflections and interference of light in the film/
substrate system, due to the change of optical path with tem-
perature. This is analogous to the effect observed in Ref. 18,
where multiple reflection of fundamental and SHG waves at
all interfaces gives corrections �additional fine interference
patterns� for the SHG dependence on a the angle of inci-
dence, so-called Maker-fringes. The varying depth of the
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dips is due to different positions of the laser spot on the film
surface.

For the m-s polarization combination, a clear difference in
temperature dependence �up to 20–30 % at 40 K, see Figs. 1
and 2� is observed for the two opposite directions of mag-
netic field. Interestingly, I2��T� for ZFC conditions is almost
coincident with the dependence for MSHG for negatively
oriented field. The difference in temperature dependences for
positively and negatively oriented magnetic field agrees also
with the SHG hysteresis loop �significantly different SHG
intensity for ±1 kGs, Fig. 1�.

For the p-p polarization combination, the temperature de-
pendences for positively and negatively oriented magnetic
field coincide within the error bar �Fig. 2�. This is in agree-
ment with the absence of hysteresis �Fig. 1� and also with the
complete coincidence of the polarization dependences for
p-out SHG intensity for the two directions of magnetic field
�not shown here�. The ZFC temperature dependence is dif-
ferent from the field induced ones only in the areas of the
interference dips, and is very similar elsewhere.

For the s-s polarization combination, the MSHG intensity
temperature dependences are in agreement with the s-s hys-
teresis loop.

The different shapes of hysteresis loops for different po-
larization combinations follow directly from the analysis of
the various contributing components.

The shape of the hysteresis loop for the m-s polarization
combination is determined by the interference of Q, MDP
and MI contributions: I2�	 �Q+MDP+MI�M��2, which
gives a centrosymmetric shape for MI�M��Q ,MDP. Inter-
ference between these contributions explains also the asym-
metry of the temperature dependence with respect to the
magnetic field direction. For the s-s polarization combination
I2�	 �PMI�2	M2, which yields a loop symmetric with re-
gards to the vertical axis and a coincidence of temperature
dependences for opposite directions of magnetic field. For
the p-p polarization combination generally both MI and crys-
tallographic terms should contribute to the MSHG. However
the absence of magnetic field dependence means that
MI�Q ,MDP and hence I2�	 �PQ,MDP�2.

Thus, the observed temperature dependences and hyster-
esis loops of the SHG intensity allow us to conclude: the
crystallographic contribution depends strongly on tempera-
ture �for the p-p polarization combination the total signal
mostly comes from the crystallographic contributions, for the
s-s polarization combination, the ZFC temperature depen-
dence is also due to the crystallographic contribution�; com-
parison of crystallographic and magnetization-induced con-
tributions �for p-p and s-s polarization combinations� shows
the similarity of their critical behavior: both increase signifi-
cantly with decreasing temperature below TC.

There are three possible reasons for the observed tempera-
ture dependence of the MI contribution �including its critical
behavior�: �i� critical behavior of the nonlinear polarization
via magnetization M�T� �and MSHG through Eqs. �7� and
�8��; �ii� critical behavior of the film linear optical constants
via magnetization M�T� �and MSHG through the Fresnel fac-
tors�, �iii� noncritical temperature dependences of the film
and the substrate optical constants and the substrate thick-
ness.

In more details:
�i� The temperature dependence of the magnetization as

measured by SQUID magnetometer is shown in Fig. 5�c�.
The type of magnetic phase transition for optimally doped
�0.2�x�0.4� La1−xCaxMnO3 is known to be of the first or-
der and becomes the second order phase transition for x
�0.4.19,20 It is quite difficult sometimes to determine the
order of a transition from experimental results; attempts to
describe such phase transitions by scaling behavior21 resulted
in anomalously low values for the critical exponent �
=0.13� which may be an indication that it is really a first-
order PT. For our sample the best fit of the temperature de-
pendence of the magnetization data to a power law M =�

gave a critical exponent =0.11 �Fig. 5�c�, line�. This also
indicates a first order phase transition. From a theoretical
point of view it is quite important whether M displays a
discontinuous jump or is described by a power law. How-
ever, for practical purposes of fitting the MSHG data almost
no difference appears between substituting to ISHG�T� of
M�T� experimental data numerically or using the analytical
function M =�.

FIG. 5. Model calculations of polarization �a� and temperature
�b� dependences of SHG intensity in cubic approximation. Azi-
muthal angle �=0. For polarization dependence T=0, SHG is s
polarized. For temperature dependence s-s and m-s polarization
combination is considered. Magnetization is given in arbitrary units.
�c� Experimental �circles� and calculated �line� temperature depen-
dences of magnetization.
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�ii� From ellipsometric data we obtained sharp changes in
the refractive index and absorption coefficient in the vicinity
of TC for both the fundamental and SHG wavelengths.

�iii� The temperature dependences of SHG reveal several
dip features below TC. Simulations show that these dips
mainly arise due to the thermal expansion of the MgO sub-
strate. Concluding from �i�–�iii�: For the MI contribution,
which is linear in the net magnetization, the main increase of
the MSHG intensity below TC arises from �i� and �ii� via the
M�T� dependence, the observed dips in the ISHG�T� depen-
dence are Maker-like fringes due to the thermal expansion of
the substrate.

For the crystallographic contribution only �ii� and �iii� are
relevant, but they are not able to explain the strong increase
of ISHG�T� below TC, particularly for demagnetized sample.

We suggest here an alternative mechanism that may give
rise to the observed temperature dependence of the MSHG,
namely a magnetization-induced correction to the crystallo-
graphic contributions. The quadrupole contribution can be
described as


ijkl
Q ��� = 
ijkl

Q �0� + 
ijklmn
Q �m�n. �13�

Here, the linear term in � vanishes due to the symmetry
rules �
ijklm

Q =0 for 3−m�. Since these corrections are qua-
dratic in local magnetization �, no hysteresis can be gener-
ated by this term, in agreement with experiment �p-p polar-
ization, see Fig. 1� and the assumption that the temperature
dependence of the local magnetization ��T� is similar to that
of the net magnetization. Analogous corrections should be
added to terms �3� and �4� as well and appropriate contribu-
tions will be referred to as “corrected crystallographic” con-
tributions.

Using this, the polarization I2���� and temperature I2��T�
dependences of the MSHG intensity were simulated �Figs.
5�a� and 5�b��. Qualitatively they strongly resemble the ex-
perimental dependences I2���� and I2��T� shown in Figs.
2�b� and 4�b�. The calculated polarization dependences for
the s-out MSHG show the magnetization-induced shift of
about 18° �experimental value is 13°�. Thus, excluding oscil-
lations due to interference, the MSHG temperature depen-
dences are the result of a strong dependence of the nonlinear
optical susceptibility of LCMO on the magnetization �local
and net�.

Based on the symmetry analysis for the experimental po-
larization configuration we can neglect MDM contribution
�3�. Some arguments can be advanced in favor of quadrupole
contribution �2� against MDP contribution �4�.

A reason for a high value of quadrupole contribution may
be a cation order induced charge/orbital ordering �COO� and
correspondent static electric quadrupole momentum arising
due to the existence of long range A-site ordering of CE-type
in LCMO film.12 It is known22 that doubly degenerated eg
orbitals of Mn ions correspond to a quadrupolar distribution
of the electronic density: elongated electron ellipsoid for an
electron occupying �3z2−r2� orbital, and the flattened �com-
pressed� ellipsoid for the �x2−y2� orbital. The �La,Ca� or-
dered superstructure results in a stripe-like distribution of
lattice strain with alternating stripes of compressive- and

tensile-like lattice strain.12 Providing a stress compensational
mechanism and, thus, electronically homogenous ground
state for the mesoscopic scale, i.e., much larger than super-
lattice cell, aS=4aPer	1.55 nm, the lattice strain stripes on
the microscopic scale lead to the formation of charge/orbital
stripes in close agreement with quadrupolar elastic interac-
tion proposed in.22 Very recently these stripe features were
visualized by high resolution scanning tunneling microscopy
�STM� and scanning tunneling spectroscopy �STS�
measurements.23 Moreover the appearance of spontaneous
magnetization for T�TC and observed change of the align-
ment of COO stripes from the diagonal for T�TC to that
parallel to �Mn-O-Mn� bonds �T�TC� are both intimately
coupled to the change of the sign of quadrupolar elastic
interaction, quantified by the value d=c11−c12−2c44 �Ref.
22� �cij are elastic moduli of the crystal�. For nonlinear optics
this means a strong quadrupolar unharmonicity of the oscil-
lator, which may result in a strong increase of the quadrupole
term across the phase transition. However, in order to con-
firm the large value of the quadrupole susceptibility, the first-
principle calculations are necessary in the way it was re-
cently done for NiO.24

The high value of the quadratic in magnetization term
�which is the second term in a Taylor expansion and there-
fore should be much smaller than previous terms� is quite
intriguing. It can be explained in terms of quantum mechani-
cal perturbation theory. In the absence of relativistic spin-
orbital and dipole-dipole interaction in the paramagnetic
phase, spin and coordinate parts of the wave function are
independent. Then, the electron dispersion relation is twice
degenerate in the spin projection �Kramer’s degeneration�. If

ferromagnetic ordering occurs, the exchange field H� e influ-

ences the spins: H� e	�� .

Since the appropriate perturbation operator V̂ in Hamil-

tonian is proportional to an electron spin projection Ŝz and
contribution of electrons of opposite signs into linear and
nonlinear susceptibilities are additive and opposite due to
Kramer’s degeneration, linear on perturbation operator �and

hence on Ŝz� corrections to susceptibility equal to zero �for
details see Appendix B�.

Quadratic on electric spin correction to susceptibility can
be obtained in two ways:

First order on V̂ and first order on spin-orbital interaction

operator Ĥ.

Second order on V̂.
In the first case the linear in magnetization contribution to

nonlinear susceptibility 
̂ijk contains relativistically small pa-
rameter �v /c�2 �v is electron velocity�. In the second case
one obtains quadratic in magnetization contribution, which
does not contain relativistic small parameter. Since spin and
coordinate spaces are not connected, this contribution does
not depend on magnetization direction and should be propor-
tional to �� 2. Contribution containing �i� j �i� j� could ap-
pear only as relativistically small. Far form phase transition
in ferromagnetic phase, where expansion in series over mag-
netization may be not valid, pure exchange contribution �sec-

ond order on V̂� should become dominant
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IV. CONCLUSIONS

We studied magnetization induced SHG �MSHG� in epi-
taxial A-site ordered LCMO film. In agreement with struc-
tural studies, in nonlinear optics the films possess themselves
as quasicubic, i.e., more symmetrical in comparison with the
bulk crystal and the films fabricated by different techniques.

The observed MSHG is essentially affected by the M2

contribution to the quadrupole susceptibility tensor, which
temperature behavior, governed by the phase transition, de-
termines mainly the observed temperature dependence of
SHG in special polarization geometries. It can be completely
omitted by the appropriate choice of polarization geometry.
However, for general case of arbitrary geometry it also has to
be taken into account. In the case of LCMO films the high
value of quadrupole contribution is believed to be the result
of quadrupole COO ordering, its quadratic behavior in tem-
perature could be understood in terms of perturbation theory,
but specification of the two discussed mechanisms �linear
and quadratic in perturbation� cannot be made based on the
presented experiments.

From the practical point of view quadrupole correction
may be useful in order to analyze additional magneto-optical
effects, which appear from higher order tensor components.
As an example, deviation of the crystallographic symmetry
owing to magnetization in ferro- and antiferromagnets
should be possible on this basis. Another application is to
investigate magnetization squared in demagnetized ferro-
magnets, which is useful in cases when magnetization
switching is impossible.
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APPENDIX A: AZIMUTHAL AND POLARIZATION
DEPENDENCES OF THE SHG INTENSITY

FOR RHOMBOHEDRAL AND CUBIC CRYSTAL

For pure cubic symmetry �m3m� the SHG field is induced
by the quadrupole term �2� which for both p-s and s-s polar-
ization combinations can be written as

E2�
Q ��� 	 �
xxxx + 
xxyy − 2
xyxy�sin�4��E2��� , �A1�

i.e., the intensity dependence contains eight equal maxima.
The magnetic-dipole MDM term �3� is identical to zero, be-
cause for the m3m symmetry group, the axial tensor 
0ijk

MDM

contains only one independent component which must meet
the condition: 
xyz

MDM =−
xzy
MDM. Because from Eq. �3� it fol-

lows that 
xyz
MDM =
xzy

MDM �for a single input beam, the indices
j ,k can be exchanged� one gets 
0ijk

MDM �0. For the magnetic-
dipole MDP term �4� the latter condition does not hold, but
nevertheless for s-s and p-s polarization combinations
E2�

MDP����0.

In the absence of a net magnetization, the polarization
dependences of s-polarized SHG for the azimuthal angle �
=0 contain quadrupole and MDP contributions which are
both twofold symmetric in the field and thus fourfold in the
SHG intensity:

E2�,Q��� 	 �
xxyy
Q + 
xyxy

Q �sin 2� , �A2�

E2�,MDP��� 	 
xyz
MDP sin 2� . �A3�

For p-polarized SHG polarization dependences also con-
tain quadrupole and MDP contributions both containing the
constant and twofold terms:

E2�,Q��� 	 3�1 + 
3��
xxxx
Q + 
xxyy

Q ��1 + cos 2�� + 8�1

+ 
3�
xyxy
Q , �A4�

E2�,MDP��� 	 4
xyz
MDP��1 + 3
3� − 3�1 + 
3�cos 2�� .

�A5�

When the net magnetization is nonzero both magnetiza-
tion induced terms �7� and �8� contribute to the nonlinear
optical signal:

E2�,PMI��� 	 M�
xxxx
PMI − 
xyyx

PMI�sin 2� , �A6�

E2�,MMI��� 	 M��
xxxx
MMI + 
xyxy

MMI� + �
xxxx
MMI − 
xyxy

MMI�cos 2�� .

�A7�

A structural analysis by transmission electron microscopy
shows that the symmetry of the film is rhombohedral �qua-
sicubic� with 3-m point group. For this symmetry, the situa-
tion is more complicated. The quadrupole tensor is deter-
mined for the rhombohedral symmetry �C3 � z, C2 � y� by ten
independent tensor components: 
zzzz

Q , 
xxyy
Q , 
xxxz

Q , 
xxxx
Q

=2
xxyy
Q +
xyxy

Q , 
zxxx
Q ,
xxzx

Q , 
xyxy
Q , 
xxzz

Q ,
zxxz
Q , 
xzxz

Q ,
zxzx
Q .

For s-s and p-s polarization combinations, the azimuthal
dependence of the SHG field produced by the quadrupole
terms contains one-, two-, and threefold dependences in �,
in addition to the fourfold:

E2���� � c1 cos � + s1 sin � + c2 cos 2� + c3 cos 3�

+ s3 sin 3� + s4 sin 4� , �A8�

where as an example c1=2
zzzz+
2
xxzx−2�2
xxyy +
xyxy

−2
yyzz+
yzyz+2
zzxx−
zxzx�.
For s-s and p-s polarization combinations, the MDM term

equals zero, while the MDP term is nonzero and contains
first, second, and third harmonics and does not contain the
fourth harmonic in �:

E2���� � �
2
yyy − 4
xyz + 4
zxy��cos � + sin �� + �
2
yyy

− 
xyz + 
zxy�cos 2� + 
yyy�cos 3� − sin 3�� .

�A9�
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The polarization dependences for both p- and s-out SHG can
be written as in Eq. �12� where the coefficients F0, C0, S0

contain contributions �2�, �4�, �8�, and �9�, i.e., all contribu-
tions except the MDM term.

Azimuthal dependences I2���� were fitted based on two
point symmetry groups: cubic, using Eq. �A1�, and rhombo-
hedral, using Eq. �A8�. At room temperature the LCMO film
is in the paramagnetic state, therefore only crystallographic
contributions were taken into account. Dashed and solid lines
in Fig. 3�a� and 3�b� show the fits based on m3m and 3-m
point symmetry groups, respectively. It can be seen from the
figures that the deviation from the perfect eightfold symme-
try is quite small. Quantitatively we can estimate these de-
viations from the ratios of the Fourier components for rhom-
bohedral symmetry to the ones of the cubic symmetry:

c1:s1:c2:c3:s3:�s4:s4 = 0.04:0.03:0.07:0.01:0.01:0.002:1
and

c1:s1:c2:c3:s3:�s4:s4 = 0.03:0.01:0.02:0.05:0.03:0.001:1
for s-s and for p-s polarization combinations, respectively.
Thus, the average deviation of the crystal symmetry from
cubic in terms of nonlinear susceptibilities does not exceed
7% and from the point of view of nonlinear optics the system
can be considered as cubic �m3m�.

The polarization dependences are also fitted for both sym-
metries, using Eqs. �A2�–�A5� for cubic and Eq. �12� for
rhombohedral symmetry. It is not possible to distinguish be-
tween these two symmetries for a magnetized sample, but for
a demagnetized �ZFC� one they are different. The best fit for
a demagnetized sample was obtained for the cubic model
�Fig. 4�.

Thus, both the azimuthal and polarization dependences of
the SHG intensity in LCMO film confirm the symmetry of
the sample to be very close to cubic, and this symmetry is
used in the following to analyze all other dependences.
Based on the azimuthal and polarization dependences it is
shown as well that for the demagnetized sample the main
contribution for s-out polarization, which is mainly discussed
in the following, is of quadrupole origin.

APPENDIX B: CALCULATIONS OF MAGNETIZATION-
INDUCED CORRECTIONS TO NONLINEAR
SUSCEPTIBILITY FOR DIFFERENT ORDERS

OF PERTURBATION

The perturbation operator in Hamiltonian defining the in-

teraction of conductive electron with exchange field H� e can
be written as

V̂ = − H� eS�̂ = − ��r���� S�̂ , �B1�

where S�̂ is conductivity electron spin operator. In particular,

in the case of s-d interaction ��r��	�i��r�−R� i� �R� i is the ion

coordinate�. Since the coordinate and spin spaces are inde-
pendent, one can choose the spin quantization direction
along the magnetization direction. In this case

V̂ = − ��r��Ŝ�z� � D̂Ŝ�z�, �B2�

where D̂ is the coordinate part of perturbation operator V̂.

The perturbation V̂ influences the m, n, and p energy elec-
tron states, and also the wave functions for these states in
assumption of inhomogeneity of the exchange field within
the unit cell. This results in admixing to the unperturbed
wave function the ones of the states with the same wave
vector but from different electron bands.

Microscopic expression for nonlinear susceptibility 
ijk of
any type can be written as25


̂ijk 	 �
Sz

�
m,n,p

 �Ai�mn�Bj�np�Ck�pm

�2� − �nm��� − �pm�
+ ¯ � , �B3�

where A� ,B� ,C� =M� , P� ,Q� are the MD, ED, and Q momentum
operators �not containing spin operator�, ��ng and ��n�g are
the energy differences between the ground and the excited
state and between the ground and intermediate states, respec-
tively. Since m, n, and p relate to the same value of Sz,
contributions from electrons with opposite spins are additive.

Linear in V̂ correction to nonlinear susceptibility can be
written as


̂ijk
�1� 	 �

Sz

Sz �
m,n,p,q

 Dmn�Ai�np�Bj�pq�Ck�qm

�mn�2� − �qm��� − �pm�
+ ¯ � ,

�B4�

where the states m, n, p, and q correspond to the same value
of Sz.

After summation over Sz the value of 
̂ijk
�1� �and of all cor-

rections odd in V̂ as well� equals zero because the second
sum in �B4� does not depend on Sz due to Kramer’s degen-
eration.

The second order in V̂ correction to nonlinear susceptibil-
ity can be written as


̂ijk
�2� 	 �

SZ

Sz
2 �

m,n,p,q,r
 Dmn�Ai�np�D�pq�Bj�qr�Ck�rm

�mn�2� − �rm��� − �pm��� − �qm�

+ ¯ � 	 �2. �B5�

For all corrections to 
̂ijk even in V̂ contributions from elec-
trons with opposite spins Sz are equal and do not compensate
each other.
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Quadratic in Sz but linear in magnetization correction to

̂ijk can be obtained with relativistic spin-orbital interaction
being taken into account with the Hamiltonian

ĤS0 = I��W�r��,p�̂�S�̂ , �B6�

where I is the constant, W�r�� and p�̂ are electron potential
energy and momentum operator, respectively. This correction
can be written as


̂ijk
�3� 	 �

SZ

Sz
2 �

m,n,p,q,r
 Dmn�Ai�np�E�pq�Bj�qr�Ck�rm

�mn�2� − �rm��� − �pm��� − �qm�

+ ¯ � 	 � , �B7�

where Ê=I��W�r�� , p�̂ �z is the z projection of the vector prod-
uct.

All corrections odd in magnetization are relativistic small,
because they can be obtained only if the relativistic spin-
orbital interaction is taken into account.
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