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The self-controlled case series method assumes that adverse outcomes arise according to a non-homogeneous
Poisson process. This implies that it is applicable to independent recurrent outcomes. However, the self-
controlled case series method may also be applied to unique, non-recurrent outcomes or first outcomes only,
in the limit where these become rare. We investigate this rare outcome assumption when the self-controlled
case series method is applied to non-recurrent outcomes. We study this requirement analytically and by sim-
ulation, and quantify what is meant by ‘rare’ in this context. In simulations we also apply the self-controlled
risk interval design, a special case of the self-controlled case series design. To illustrate, we extract data
on the incidence rate of some recurrent and non-recurrent outcomes within a defined study population to
check whether outcomes are sufficiently rare for the rare outcome assumption to hold when applying the
self-controlled case series method to first or unique outcomes.

The main findings are that the relative bias should be no more than 5% when the cumulative incidence
over total time observed is less than 0.1 per individual. Inclusion of age (or calendar time) effects will
further reduce bias. Designs that begin observation with exposure maximise bias, whereas little or no bias
will be apparent when there is no time trend in the distribution of exposures, or when exposure is central
within time observed.
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1 Introduction

The self-controlled case series (SCCS) method is a epidemiological study design for investigating the

temporal association between a time-varying exposure and an adverse health outcome (Farrington, 1995;

Whitaker et al., 2006; Petersen et al., 2016). Clearly defined dates must be available for both outcomes

and windows of time that are hypothesized to be at increased risk due to exposure, thus the SCCS method

is best suited to abrupt-onset outcomes and transient exposures, though it can also be used for progres-

sive conditions and indefinite exposures in some circumstances. Its main area of application to date has

been in the study of adverse outcomes following vaccination (Weldeselassie et al., 2011), though it has

also been applied more widely, for example to study the safety of prescription medications (Gault et al.,

2017; Nordmann et al., 2012; Ryan et al., 2012), and to investigate infections as triggers of cardiovascular

outcomes.

The main advantages are that it requires only cases, those who have experienced the outcome of interest,

and is self-controlled, so that any fixed confounders such as sex and ethnicity are automatically controlled

for. However, the SCCS method makes some strong assumptions (Whitaker et al., 2018). The SCCS
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2 Whitaker et al.: Self-controlled case series studies with common non-recurrent outcomes.

method is unusual amongst epidemiological study designs in that it uses time after an adverse outcome has

occurred. The main limiting assumption is that outcomes must not influence subsequent exposure during

time under observation in the study, nor must outcomes influence time under observation. Further assump-

tions are that time-varying covariates act mutliplicatively on the baseline incidence and that outcomes arise

according a non-homogeneous Poisson process or are non-recurrent and rare. It is this last assumption that

we investigate further here, though other assumptions do bear some influence on our findings.

The SCCS method is derived from a model similar to a cohort study in which outcomes arise according

to a non-homogeneous Poisson process, by conditioning on the total number of outcomes experienced by

each individual. The Poisson assumption implies that the outcomes are potentially recurrent. However, the

method also applies to non-recurrent outcomes, in the limit where these become rare (Farrington, 1995;

Farrington and Whitaker, 2006). The aim of this paper is to quantify what is meant by ‘rare’ in this context,

which we investigate both analytically in a simple scenario and by simulation.

In simulations we apply both the self-controlled case series (SCCS) and self-controlled risk interval

(SCRI) designs. The self-controlled risk interval design is a special case of the SCCS design in which

the total time under observation is cut down to a narrower interval defined in relation to exposure times.

In Section 2 we present the key features of the SCCS method, including the SCCS likelihood and design

choices, including the SCRI design. Section 3 contains some analytical results in simple scenarios to

quantify the asymptotic bias involved when the SCCS method is applied to non-recurrent outcomes. In

Section 4 we present simulations. Section 5 contains some examples of outcome incidence rates.

2 Self-controlled case series (SCCS) method and designs

In this section, we begin by introducing the likelihood for the SCCS model with categorical exposure and

age effects, which we refer to as the ‘standard’ SCCS model. We then distinguish the self-controlled risk

interval (SCRI) design as a special case within the broader class of SCCS designs. We outline a simple

adaptation of SCCS designs to circumvent issues with outcomes changing the probability of exposure. We

then end this section by briefly outlining how bias arises when non-recurrent outcomes are not sufficiently

rare, and how this depends upon the distribution of exposures within the time under observation.

2.1 The standard SCCS likelihood

Suppose that individuals in a given cohort are followed up during observation periods (ai, bi], for the

occurrence of an adverse health outcome of interest. Each individual i included in a case series experiences

ni ≥ 1 outcomes over this observation period, i = 1, ..., N . In a standard SCCS design, exposure status is

categorical and assigned to time windows of hypothesized excess risk due to exposure known as exposure

risk windows, of which there may be several to capture dose, washout periods or varying risk with time

since first exposure, denoted k = 1, ...,K . All other time within an observation period, but outside an

exposure risk window, constitute baseline or reference windows, denoted k = 0.

During their observation period, individual i’s outcome incidence rate is modified by age (or calendar

time) group, exposure risk group, and fixed factors specific to him or her. In a standard SCCS design, age

(or time / season) is divided into categories j = 1, 2, ..., J . We assume that these influences are captured

by the following multiplicative incidence model:

λijk = exp(φi + αj + βk),

where φi represents the combined effect of individual-specific factors, αj is the effect of age in age group

j (or calendar time, as required), assumed to be common to all individuals in the cohort, and βk is the log

relative incidence associated with exposure risk window k, the parameters of interest.

The SCCS method bases estimation of β on a likelihood that involves only the cases within that cohort,

that is, those individuals that experience one or more outcomes during the observation period. Case i might
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experience ni ≥ 1 outcomes, so the total number of outcomes is M =
∑N

i=1
ni. The SCCS likelihood may

be derived from a model for the underlying cohort by conditioning, for each case, on the observation period

(ai, bi], the exposure history up to bi, and the number of outcomes ni experienced within the observation

period. The outcomes nijk for case i occur within age group j and exposure risk window k. The SCCS

likelihood is then

L =

n
∏

i=1

∏

jk

(

eijk exp(αj + βk)
∑

rs eirs exp(αr + βs)

)nijk

.

Note that the individual-specific term φi has factored out: the method adjusts automatically for time-

invariant random and fixed effects that act multiplicatively on the outcome incidence rate.

Here we focus on the standard model for which piecewise constant age and exposure effects are mod-

elled. The likelihood can be generalised and alternative modelling approaches for both age and exposure

effects are available (Ghebremichael-Weldeselassie et al., 2014; Lee and Carlin, 2014; Farrington and

Whitaker, 2006).

The SCCS method is also valid for non-recurrent outcomes (so ni = 1), in the limit where the baseline

incidence rate for individual i, exp(φi) → 0. In practice this requires outcomes to be uncommon: this

is the rare disease assumption. For further details of this derivation see Farrington (1995); Farrington and

Whitaker (2006).

2.2 Standard SCCS and SCRI designs

Originally, the self-controlled case series design was conceptualized with an observation period defined by

age and/or calendar time boundaries (Farrington, 1995). For vaccine safety studies these will be periods

during which vaccines were in current use and at ages that they are usually administered within the popula-

tion, such as the second year of life for mumps, measles, rubella (MMR) vaccine or an influenza season for

seasonal influenza vaccines. Alternatively, observation periods may reflect the length of a database record.

Observation periods can be long, and to account for the fact that the baseline hazard may change it is often

important to include age effects in the model. Thus, a set up for an SCCS model with an age-defined

observation period is illustrated in figure 1, panel (a)

An alternative is to ascertain exposure histories, and define observation periods in relation to exposure,

thus cutting down observation time used and altogether dropping cases whose outcomes arose further in

time from exposure. This approach is taken for the self-controlled risk interval (SCRI) design (Tse et al.,

2012; Baker et al., 2015), a special case of an SCCS design. In a typical SCRI design, a single exposure

risk window is defined, along with either one or two reference or control windows, before and after the

exposure risk window or following the exposure risk window. Reference windows are not necessarily

contiguous to exposure risk windows, as for example, allowance may need to be made for washout periods

(whereas washout periods would be modelled in the original SCCS design, SCRI simply leaves gaps in

observation time). This is illustrated in figure 1, panel (c).

Age may be dropped from the SCRI model under the assumption that age effects are constant over the

relatively short observation period, though this may not always be reasonable and strategies for control of

age effects in the SCRI model have been outlined by Li et al. (2015).

Much consideration has been given to the main limiting assumption in the family of SCCS designs that

outcomes must not influence subsequent exposure (Whitaker et al., 2006; Petersen et al., 2016; Farrington

et al., 2009; Kuhnert et al., 2011). Short-term influence is often accounted for by including a pre-exposure

window in a SCCS modelling approach, or by including a gap in observation prior to exposure in the

SCRI approach. Long-term or permanent influence is usually more complicated to account for (Farrington

et al., 2009), except when there can only be a single exposure within an observation period, where a

simple strategy is to use only post-exposure time as illustrated in figure 1, panel (b) for SCCS and panel

(d) for SCRI. For example, this design set up can be used when the outcome of interest is death, after

c© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



4 Whitaker et al.: Self-controlled case series studies with common non-recurrent outcomes.

which exposure is impossible, post-death time is included until the planned end of observation (Hubbard

et al., 2005; Petersen et al., 2016). That there should be only a single exposure within each observation

period is more easily met using the SCRI approach which shortens observation time, for example there is

often some minimum interval between vaccine doses. The SCRI approach using a single post-exposure

reference window roughly matches the adapted SCCS method formulated to study the association between

multi-dose vaccinations and death outlined by Kuhnert et al. (2011). Note that only a risk gradient can be

estimated using a design that use post-exposure time only, such as those illustrated in figure 1 (b) and (d).

It is necessary to assume that the risk returns to baseline in the post-exposure control period for the relative

incidence to retain the same definition.

SCCS

SCCS
post

exposure

SCRI two
reference
windows

SCRI one
reference
window

exposure

risk

risk

risk

risk

age group 1 age group 2 age group 3 age group 4

age group 2 age group 3 age group 4

ref ref

ref

(a)

(b)

(c)

(d)

start end

washout

washout

Figure 1 Example time lines for standard SCCS and SCRI designs with one exposure. The exposure

risk window is labelled ‘risk’ and washout window is labelled ‘washout’. Panel (a) SCCS with observation

period defined by age boundaries and four age groups. Panel (b) SCCS with observation period starting

at exposure. Panel (c) SCRI with two reference windows (labelled ‘ref’) either side of the exposure risk

window. Panel (d) SCRI with one reference window after the exposure risk window.

2.3 Bias related to non-recurrent outcomes

It is assumed that outcomes arise according to a non-homogeneous Poisson process. Under any standard

SCCS model (including SCRI), the Poisson rate is assumed to be constant within each window of time

defined by age and exposure categories. Outcomes are counts within each time window. Naturally, such a

model allows outcomes to be recurrent, but outcomes must arise in time independently of one another. Such

independence is frequently not present in practice, for example the timing of a second myocardial infarction

will often not be independent of the timing of the first myocardial infarction. A simple work-around is to

include only first outcomes in a study. In considering how bias arises it is conceptually easier to think of a

non-recurrent outcome as the first of a potentially recurrent outcome, even if recurrence is impossible. The

shape of the distribution of first outcomes over age or time will be shifted toward lower ages or earlier dates

in the observation period than the distribution of all outcomes. In other words, if second and subsequent

outcomes are omitted, an increasing deficit of outcomes is created as time progresses. If this shift in

temporal distribution of common outcomes is not (or insufficiently) taken into account, estimates of the

exposure-related relative incidence may become biased. The extent of the bias will depend heavily upon

the distribution of exposures throughout observation periods. Where exposures tend to come toward the
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beginning of observation, exposures will coincide more often with first outcomes and the estimates of the

exposure-related relative incidence exp(βk) may become biased upward. Conversely, where exposures

tend to come toward the end of observation, estimates of exp(βk) may become biased toward 0. Little or

no bias should result when the probability of exposure is roughly constant throughout observation periods,

or when there is an equal distribution of reference time either side of an exposure risk window. Thus,

any SCCS design set-up where observation starts with a single exposure represents an extreme where the

potential for upward bias in exp(βk) is maximised (i.e. for no other SCCS design set up can bias be

greater). Whereas little or no bias should be present for an SCRI design with two reference windows of

equal length either side of the exposure risk window.

3 Analytic evaluation for a simple scenario

The rare outcome assumption cannot be investigated from case series data alone: it requires external infor-

mation. Such information is usually not difficult to obtain, especially since the precise disease frequency is

not required. However, it helps to know what is meant by ‘rare’ in this context. To this end, we undertake

some calculations in a special, but extreme, scenario.

Assume that the outcome hazard λ is constant and that outcome times T are exponentially distributed,

T ∼ M(λ). Suppose that the observation period is (0, b] and that there is a single exposure risk window

(c, c+ d] of length d with 0 ≤ c ≤ b− d. We investigate the asymptotic (large sample) bias in the relative

incidence ρ associated with this exposure risk window, in an SCCS analysis that makes no allowance for

age. Including age effects would be expected to reduce the bias in ρ. Note that investigating large sample

bias allows us to distinguish systematic bias relating to unique outcomes from bias relating to small samples

(Musonda et al., 2008).

Let Λ denote the cumulative incidence over the entire observation period (0, b], including the effect of

exposure. Thus,

Λ = ρλd+ λ(b − d).

The probability that an outcome occurs in the exposure risk window (c, c+ d], conditional on it occurring

in (0, b], is

P1 = P (c < T ≤ c+ d|T ≤ b) =
exp(−λc)(1 − exp(−ρλd))

1− exp(−Λ)
.

Similarly, the conditional probability that an outcome does not occur in the exposure risk window is

P0 = P (T ≤ c or T ≥ c+d|T ≤ b) =
1− exp(−λ(b − d)− ρλd)− exp(−λc)(1 − exp(−ρλd))

1− exp(−Λ)
.

The likelihood for an SCCS model with common observation period (0, b], common exposure risk window

(c, c + d] and no age effects is binomial. If N is the total number of cases (and therefore of unique

outcomes), N1 is the number of outcomes in the exposure risk window, and N0 the number of outcomes in

the reference windows, then the maximum likelihood estimator of ρ is

ρ̂ =
N1

N0

×
b− d

d
.

Asymptotically as N → ∞,

ρ̂ → ρ̄ =
P1

P0

×
b − d

d
in probability.

c© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



6 Whitaker et al.: Self-controlled case series studies with common non-recurrent outcomes.

We consider the limit in which λ, and hence Λ, are small. Using standard Taylor approximations,

ρ̄ =
exp(−λc)(1 − exp(−ρλd))

1− exp(−λ(b − d)− ρλd)− exp(−λc)(1 − exp(−ρλd))
×

b− d

d

≃
(1 − λc)[ρλd− 1

2
(ρλd)2]

λ(b − d) + ρλd− 1

2
[λ(b − d) + ρλd]2 − (1 − λc)[ρλd− 1

2
(ρλd)2]

×
b− d

d

≃ ρ(1 − λc)(1 −
1

2
ρλd)[1 +

1

2
λ(b − d) + ρλd− ρλ

dc

b − d
]

≃ ρ[1 +
1

2
Λ(1− 2

c

b− d
)],

to first order in Λ. Thus, the relative bias is of order Λ/2 if c = 0, −Λ/2 if c = b−d, and 0 if c = (b−d)/2.

To put this in context, recall subsection 2.3; if outcome events arise according to a non-homogeneous

Poisson process and unique outcomes are thought of as the first event only, an excess of outcomes will

occur in exposure risk windows that fall at the beginning of the observation period (c = 0) resulting

in upward bias, which is of order Λ/2. Vice versa, there will be a dearth of outcomes in exposure risk

windows that fall at the end of the observation period (c = b− d) resulting in downward bias, which is of

order −Λ/2. In general, to first order,

|
ρ̄− ρ

ρ
| ≤

1

2
Λ.

Thus the relative bias in this setting is at most 1

2
Λ in absolute value.

For example, if the cumulative incidence over the observation period is about 0.1, the relative bias is of

the order of 5% or less. The additional inclusion of age effects will correct this bias to some degree, by

allowing for the shift in age effects produced by the absence of second or subsequent outcome events.

4 Simulations

Simulation choices using a single exposure risk period were made to demonstrate minimal, intermediate

and maximal bias when applying SCCS and SCRI models to the first of multiple outcomes.

4.1 Method

A study period was fixed at (0, 100] days for 1000 individuals i = 1, ..., 1000. The start of the exposure

risk period ci for individual was simulated within the period (0, 90] days and had fixed length 10 days, so

exposure risk periods were (ci, ci+10]. Exposure status is denoted k = 1 inside the exposure risk window

and k = 0 otherwise. Two scenarios for the distribution of exposure starts were explored, uniformly dis-

tributed throughout the observation period (to produce no bias using a standard SCCS approach) and linear

decreasing over the observation period (to produce some bias using a standard SCCS approach). SCRI ref-

erence windows were fixed at (max(0, ci−10), ci] (before exposure) and (ci+10,min(ci+20, 100)] (after

exposure), within the study period boundaries. Four age groups j = 1, 2, 3, 4 of length 25 days were fixed.

For each individual, nine boundaries at 0, (max(0, ci − 10), ci], (ci, ci +10], (ci +10,min(ci +20, 100)],
25, 50, 75 and 100 were ordered to form eight segments, indexed ijk, of length eijk ≥ 0. Segments

are illustrated in figure 2. Scenarios were simulated for three true exposure-related relative incidences

exp(β1), either exp(β1) = 1, 2, 5 (always with exp(β0) = 1). No effect of age was simulated, the true

age-related relative incidence for multiple outcomes exp(αj) = 1, j = 1, 2, 3, 4. Let Λ denote the cu-

mulative outcome rate over the entire observation period, excluding the effect of exposure (note that this

differs from section 3 in which Λ included the effect of exposure). Scenarios were simulated with six

choices of outcome rate Λ = 0.02, 0.05, 0.1, 0.2, 0.5, 1. An outcome hazard was determined for each seg-

ment λijk = eijk × Λ/100× exp(βk) and an overall outcome count simulated nijk ∼ Poisson(λijk). If

c© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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Σinijk = 0 for an individual, outcomes were re-simulated for that individual; this was repeated until all

1000 individuals had least one outcome Σinijk ≥ 1. The segment during which the first outcome occurred

was identified.

risk, k=1
SCCS age group 1 SCCS age group 2 SCCS age group 3 SCCS age group 4

SCRI ref SCRI ref

ci c+10i c+20i
c-10i

0 25 50 75 100

Figure 2 Segments for an example simulated individual. The exposure risk window k = 1 is represented

by the black window, outside this window k = 0.

Segments were then restricted and/or combined to fit six models to the simulated data on each of the

recurrent outcome counts and first outcomes only (12 models total). The six models were: SCCS over

the full study period (0, 100] both with no age effect and with 4 age groups, SCCS starting from exposure

(ci, 100] both with no age effect and with 4 age groups, SCRI with two reference windows either side

of the exposure risk window (ci − 10, ci + 20] and SCRI with one reference window after the exposure

risk window (ci, ci+20]. Only SCCS models over the full study period included all 1000 simulated cases.

Restrictions on the observation periods for other models resulted in the exclusion of cases outside the given

boundaries.

Simulations were carried out using R, and models were fitted by conditional Poisson regression using

the package gnm (Turner and Firth, 2015). Simulations were replicated 5000 times. A relative bias was

calculated as

relative bias =
| exp(mean β̂)− exp(true β)|

exp(true β̂)
.

4.2 Results

Simulation results (mean β̂) for the six models applied to first outcomes only and linear decreasing expo-

sure start times over the observation period are shown in Table 1. Results for the same model applied to all

outcomes is available in the supporting information, all displayed very little bias. Table 2 contains mean

relative biases for the same scenario, along with an approximate cumulative incidence for each model.

When reference periods are included both before and after exposure, SCCS with no age effect becomes

increasingly biased as the baseline cumulative outcome rate increases. Bias in the SCCS model is greatly

reduced by the inclusion of age effects. As expected, the SCRI model with two reference windows either

side of the exposure risk window showed very little bias.

As expected, bias was greater for the models with observation starting from exposure. The relative

bias should be approximately 1

2
Λ for post-exposure reference only models without age effects, and this

represents the maximum possible relative bias. From Table 2 it can be seen that simulation results are

roughly, albeit not exactly, in line with this. When no age effects were fitted in the SCCS model, bias

became very large when the cumulative outcome rate rose above 0.1. The simulation results demonstrate

that inclusion of age effects reduces bias considerably for the SCCS model, though where the baseline

outcome rate within an age group remains above 0.1, relative bias remains greater than 5%. The SCRI

model, with observation length of only 20 days, displays greater bias than the SCCS model with age groups

of length 25-days, though bias is considerably less than the SCCS model with no age effects. However, the

proportion of exposure risk time over the observation period is greater for the SCRI model, which pushes

up the overall cumulative outcome rate over the 20-day period relative to the average cumulative outcome

rate within a 25-day SCCS age group.

c© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



8 Whitaker et al.: Self-controlled case series studies with common non-recurrent outcomes.

Table 1 Simulation results, 5000 replications. Exposure start day linear decreasing over observation

period. Analyses of first outcomes only. Base rate is the baseline cumulative outcome rate over 100 days.

True β is the true natural logarithm of the relative incidence associated with the exposure risk window.

Results are the means of the estimated log relative incidences β̂. ∗Starred results show > 5% relative bias.

Means of s.e.(β̂) are also given.

reference before and after exposure post-exposure reference only

SCCS SCCS + age SCRI, 2 ref SCCS SCCS + age SCRI, 1 ref

base true β mean β̂ mean β̂ mean β̂ mean β̂ mean β̂ mean β̂

rate (mean s.e.β̂) (mean s.e.β̂) (mean s.e.β̂) (mean s.e.β̂) (mean s.e.β̂) (mean s.e.β̂)

0.02 0.000 0.000(0.106) -0.004(0.107) 0.000(0.124) 0.004(0.110) -0.003(0.135) 0.005(0.142)

0.05 0.000 0.005(0.105) -0.003(0.107) -0.002(0.124) 0.015(0.110) 0.001(0.135) 0.005(0.142)

0.1 0.000 0.012(0.105) -0.004(0.107) -0.002(0.123) 0.031(0.109) 0.002(0.134) 0.007(0.141)

0.2 0.000 0.028(0.104) -0.004(0.106) -0.001(0.123) ∗0.069(0.109) 0.008(0.134) 0.021(0.141)

0.5 0.000 ∗0.071(0.103) -0.005(0.104) 0.001(0.120) ∗0.175(0.107) 0.023(0.133) ∗0.050(0.139)

1 0.000 ∗0.137(0.100) -0.007(0.102) 0.002(0.117) ∗0.353(0.106) ∗0.053(0.133) ∗0.102(0.137)

0.02 0.693 0.694(0.082) 0.691(0.084) 0.693(0.107) 0.699(0.087) 0.695(0.117) 0.700(0.129)

0.05 0.693 0.700(0.082) 0.692(0.084) 0.696(0.106) 0.713(0.087) 0.699(0.117) 0.707(0.129)

0.1 0.693 0.710(0.082) 0.693(0.084) 0.697(0.106) ∗0.735(0.087) 0.706(0.117) 0.714(0.129)

0.2 0.693 0.725(0.081) 0.691(0.083) 0.694(0.105) ∗0.773(0.087) 0.713(0.117) 0.726(0.129)

0.5 0.693 ∗0.772(0.080) 0.691(0.082) 0.698(0.104) ∗0.897(0.087) ∗0.746(0.118) ∗0.772(0.128)

1 0.693 ∗0.840(0.078) 0.688(0.080) 0.699(0.101) ∗1.106(0.086) ∗0.803(0.119) ∗0.849(0.128)

0.02 1.609 1.615(0.066) 1.611(0.069) 1.614(0.101) 1.622(0.073) 1.617(0.111) 1.625(0.131)

0.05 1.609 1.620(0.066) 1.610(0.069) 1.614(0.101) 1.638(0.073) 1.627(0.111) 1.633(0.131)

0.1 1.609 1.633(0.066) 1.613(0.069) 1.616(0.101) 1.668(0.074) 1.636(0.111) 1.647(0.131)

0.2 1.609 1.651(0.066) 1.610(0.069) 1.614(0.100) ∗1.723(0.074) 1.662(0.112) 1.677(0.132)

0.5 1.609 ∗1.706(0.065) 1.609(0.068) 1.614(0.098) ∗1.899(0.076) ∗1.738(0.115) ∗1.770(0.135)

1 1.609 ∗1.762(0.065) 1.597(0.067) 1.598(0.096) ∗2.187(0.079) ∗1.867(0.123) ∗1.926(0.142)

The mean standard errors (s.e.) in the table reflect the number of cases and observation time included

in each analysis. Age effects will be estimated with much less precision for the SCCS analyses starting

observation with exposure, which affects the precision of the exposure estimates.

Simulation results with a uniform distribution of first exposure over the 100 day study period are given

in the supporting information. Results are similar, except that for the full SCCS model with reference

before and after exposure with no age effect, results are very close to unbiased, as expected.

4.3 Evaluation

For SCCS models, it appears to be key that the cumulative outcome rate over the observation period is less

than 0.1 to ensure bias is less than 5%, and that inclusion of age effects clearly reduces bias further. The

same rule of thumb appears to apply for the SCRI model with 1 reference, that the cumulative outcome

rate over all windows should be less than 0.1 to ensure relative bias below 5%. Bias is considerably less

for any bi-directional design choice, which should also apply for standard SCCS models where there are

multiple intermittent exposures.

The SCRI model with 2 equal length reference periods either side of the exposure risk window min-

imises bias due to common unique events by design and can sometimes be convenient in terms of data

collection. Potential disadvantages of SCRI over SCCS to be mindful of when designing a study are that

reference windows need to be carefully chosen, age or season effects if present will be more difficult to al-

low for, and reduced power, which not only depends on case sample size (as cases whose outcome occurred
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Table 2 Relative bias calculated from simulation results, 5000 replications. Exposure start day linear

decreasing over observation period. Analyses of first outcomes only. The column labelled ‘base rate’ gives

the baseline cumulative outcome rate over 100 days, not taking the exposure effect into account. Columns

labelled ‘approx Λ’ give an approximate cumulative incidence, this has been calculated for each of full

SCCS, SCRI with two reference windows, SCCS post exposure only and SCRI with one post exposure

reference only. Columns labelled ‘relative bias’ contain the mean relative bias defined at the end of section

4.1.

reference before and after exposure post-exposure reference only

SCCS SCRI (2 reference) SCCS SCRI (1 reference)

no age age no age age

base true β approx relative relative approx relative approx relative relative approx relative

rate Λ bias bias Λ bias Λ bias bias Λ bias

0.02 0.000 0.020 0.000 0.004 0.006 0.000 0.014 0.004 0.003 0.004 0.005

0.05 0.000 0.050 0.005 0.003 0.015 0.002 0.035 0.016 0.001 0.010 0.005

0.1 0.000 0.100 0.012 0.004 0.030 0.002 0.070 0.032 0.002 0.020 0.007

0.2 0.000 0.200 0.028 0.004 0.060 0.001 0.140 0.072 0.008 0.040 0.021

0.5 0.000 0.500 0.074 0.005 0.150 0.001 0.350 0.191 0.023 0.100 0.051

1 0.000 1.000 0.147 0.007 0.300 0.002 0.700 0.424 0.055 0.200 0.108

0.02 0.693 0.022 0.001 0.002 0.008 0.000 0.016 0.006 0.002 0.006 0.007

0.05 0.693 0.055 0.007 0.001 0.020 0.003 0.040 0.020 0.006 0.015 0.013

0.1 0.693 0.110 0.017 0.000 0.040 0.004 0.080 0.043 0.013 0.030 0.021

0.2 0.693 0.220 0.032 0.002 0.080 0.001 0.160 0.083 0.020 0.060 0.033

0.5 0.693 0.550 0.082 0.002 0.200 0.005 0.400 0.227 0.054 0.150 0.082

1 0.693 1.100 0.158 0.005 0.400 0.006 0.800 0.511 0.116 0.300 0.169

0.02 1.609 0.028 0.005 0.001 0.014 0.004 0.022 0.013 0.007 0.012 0.016

0.05 1.609 0.070 0.010 0.001 0.035 0.005 0.055 0.029 0.017 0.030 0.024

0.1 1.609 0.140 0.024 0.003 0.070 0.007 0.110 0.060 0.027 0.060 0.039

0.2 1.609 0.280 0.043 0.001 0.140 0.005 0.220 0.120 0.054 0.120 0.070

0.5 1.609 0.700 0.102 0.000 0.350 0.005 0.550 0.336 0.137 0.300 0.174

1 1.609 1.400 0.165 0.012 0.700 0.011 1.100 0.781 0.294 0.600 0.372

far in time from exposure are dropped), but also on the ratio of the length of exposure risk windows to ref-

erence windows (with optimal efficiency when the ratio of the total length of all exposure risk windows to

the total length of all reference windows is small). Further, use of defined reference windows in relation

to exposure rather than use of all available baseline time will in practice subtlety change interpretation

of results; relative incidences gained from a full SCCS analysis with baseline time both before and after

exposure should target the relative risk of a cohort study, whereas relative incidences gained from SCRI

models and SCCS including only reference time after exposure can be thought of as a risk gradient.

5 Examples

The information required to assess the potential for bias relating to unique events are incidence rates in the

study population. Unfortunately, this cannot be quantified from a case series alone. Sometimes information

on a full cohort will be available, but where it is not, information on incidence rates is readily available in

the literature and a rough idea of cumulative incidence should be sufficient to assess the potential for bias

relating to unique events.
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5.1 Febrile convulsions at ages 0-24 months

Febrile convulsions after childhood vaccinations have been studied using SCCS (Weldeselassie et al., 2011;

Hanf et al., 2013; Huang et al., 2010). Most studies have included recurrent convulsions, such as Hanf et

al. (2013) in a study with mumps, measles, rubella (MMR) vaccination as the exposure; re-admissions

within 72 hours were counted as the same episode. Observation periods span the period during which

vaccinations are normally given. For example, MMR is often given during the second year of life, so Hanf

et al. (2013) included children between 240 and 730 days of age. Diphtheria-tetanus-acellular pertussis

(DTaP) is given during the first two years of life, so Huang et al. (2010) included children aged 6 weeks

to 23 months. There is a strong age trend in febrile convulsions, with incidence peaking during the second

year of life, so studies include age in the SCCS model.

A British cohort study followed 13,135 children from birth to age 5 (Verity et al., 1985). Excluding 13

children with a prior condition and 97 with missing information, it was estimated that 197 children expe-

rienced a febrile convulsion before the age of 2 years, of which 82 experienced more than one convulsion

at some point before the age of 5 years. Exact numbers of total febrile convulsions by age are not given,

but assuming that all recurrences occurred before age 2 (so as to over-estimate incidence), the cumulative

incidence of first and recurrent convulsions is approximately 0.034 for the first two years of life. This is

under 0.05, febrile convulsions are sufficiently rare such that little or no bias should be present in studies

of first events only (most studies include multiple events).

5.2 Myocardial infarction

SCCS has been used to study the association between prescription medicines and first myocardial infarction

(Gault et al., 2017). For example, Wong et al. (2016) studied cardiovascular outcomes associated with use

of clarithromycin. The study period spanned 10 years from 2003 to 2012, and included age bands of length

1 year. Thus, observation periods can be relatively long.

ARIC surveillance (USA) provide data on the number of coronary events per year per 1000 persons in

the population, by age, race and sex (Benjamin et al., 2017). Events are defined as definite or probable

myocardial infarctions (new or recurrent) and definite coronary heart disease deaths. The average incidence

of events is highest for black males aged 75-84 years, at approximately 19 per year per 1000 persons for

the period 2005-2013. The cumulative incidence over, say, 10 years, for an individual in this group would

be 0.19. Depending on design choices, two or more age bands (of length 5 years or less) may be needed in

an SCCS study to ensure relative bias is less than 5%. However, populations studied are likely to be mixed

in terms of age, sex and race, and overall cumulative incidence will likely be lower. For example, average

incidence of events at ages 55-64 is reported to be between 2 and 8 per year per 1000 persons depending

on race and sex, thus cumulative incidence over 10 years for this age group is clearly less than 0.1.

5.3 Death within population of opioid drug abusers

SCCS methods have recently been applied to all cause mortality amongst drug abusers being treated in UK

primary care (Steer et al. , 2018).

In total, 11,033 patients were identified who had received methadone or buprenorphine treatment for

opioid drug abuse between 1998 and 2014. For this cohort, the average time of follow-up was 2.76 years

with 587 deaths being observed. This suggested an overall incidence rate per patient of 0.053. The analyses

adjusted for age (roughly using age bands of length 10 years, which were constant within many individ-

uals with shorter observation periods), calendar year and an index of comorbidity based upon 17 chronic

illnesses (which could vary with time).

Much care was taken to reduce bias in analyses by use of extended SCCS methods for death outcomes

(Farrington et al., 2009; Kuhnert et al., 2011) with additional modification of the treatment end during

the planned follow-up period. However, these extended methods use post-exposure time only to estimate

exposure-related effects, which should maximise systematic bias relating to unique outcomes.
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Within this cohort of drug abusers, it was observed that death is more common within certain population

subgroups. For example, for age, the incidence rate rose to 0.176 for those patients aged 50+ years while,

for comorbidity, the incidence rate was 0.439 for the highest category.

6 Final remarks

We have offered some guidance about how rare a rare unique adverse health outcome is required to be in

order that relative bias is less than about 5%, or that relative bias should be to the order of no more than 1

2
Λ,

where Λ is the cumulative incidence over the entire observation period. We acknowledge that our choice

of 5% here is arbitrary, and that what is acceptable within a particular epidemiological study setting may

vary. However, it may be useful to acknowledge the potential for bias in SCCS studies of non-rare unique

outcomes, particularly when results are borderline statistically significant. Evaluation of the potential order

of bias can be approximate, using information external to a study if necessary. In our examples, we saw

that incidence rates vary between subgroups based on age, ethnicity and comorbidity. We acknowledge that

it is a limitation of this work that differing incidence between subgroups has not been evaluated, although

we believe that a rough assessment can be based upon average incidence over observation periods.

The direction of bias due to common unique outcomes is fairly predictable, with upward bias created

when exposures tend to fall toward the beginning of observation and downward bias when exposures tend

to fall toward the end of observation periods. Regardless of how common unique outcomes are, little bias

will arise when exposures are randomly scattered throughout, or fall toward the middle of observation

periods.

Our findings highlight the importance of including age (and/or calendar time) effects in SCCS studies.

This is particularly important for non-rare unique outcomes to allow for the shift in age effects produced by

the absence of second or subsequent outcome events that would be present according the assumption that

events arise according to a non-homogeneous Poisson process. When unique outcomes are not rare, fine

control of age effects is preferable. This can be achieved by including sufficiently narrow age categories,

or by modelling age effects using splines, fractional polynomials or the semi-parametric SCCS model

(Ghebremichael-Weldeselassie et al., 2014; Lee and Carlin, 2014; Farrington and Whitaker, 2006). Note

that sample size plays no role in bias related to common unique events, but increasing sample size can help

estimates age effects more reliably. Age is frequently ignored in SCRI studies under the assumption that

incidence changes very little over the time observed. Study of common unique outcomes coupled with the

use of only one reference window may give reason to take age effects into account, and Li et al. (2015)

outline some strategies for controlling for age in SCRI studies, by either including unexposed cases or by

using external information on outcome incidence rates.

There are several potential sources of bias that researchers should be mindful of when conducting SCCS

or SCRI studies, including time-varying confounders, small sample estimation bias (Musonda et al., 2008),

systematic bias resulting from outcomes that prohibit or precipitate subsequent exposure (Farrington et al.,

2009; Kuhnert et al., 2011), systematic bias resulting from outcomes that censor subsequent observation

(Farrington et al., 2011), and bias resulting from outcomes that reasonably do not arise according to a non-

homogeneous Poisson process (Simpson , 2013), which includes common unique outcomes. Outcomes that

potentially censor the observation period, such as myocardial infarction or stroke that carry high mortality

risk, have not been mentioned in the present paper, but similar to bias relating to unique common outcomes,

the magnitude and direction of bias depends on the distribution of exposure risk windows over observation

periods. Simple sensitivity analyses can be carried out to check whether results are robust to such bias

(Whitaker et al., 2018). In our experience, bias resulting from outcomes that permanently prohibit or

precipitate subsequent exposure is the most problematic and where such an issue is present, use of an SCCS

design that circumvents it is necessary. However, SCCS models that begin observation from exposure

maximise bias relating to non-rare unique outcomes, and this includes the modified SCCS models outlined

in Farrington et al. (2009) and Kuhnert et al. (2011) for outcomes that prohibit subsequent exposure.
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Outcomes that can be studied using such SCCS models include death (Petersen et al., 2016), and we have

demonstrated that death can be relatively common within certain population subgroups. To reiterate, use

of these models that use observation time from exposure forwards is essential to reduce bias relating to

the assumption that outcomes must not influence subsequent exposure, and any bias relating to common

unique non-recurrent outcomes is likely to be small in comparison with this.
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